====== Integrating cosĀ² x ====== $$ \int \cos^2{x}\,dx = \frac{x + \sin{x}\cos{x}}{2} + C $$ ===== Using the Pythagorean identity ===== Integrate by parts using $u = \cos{x}, du = -\sin{x}$ and $v = \sin{x}, dv = \cos{x}$: $$ \begin{align} & \int \cos{x}\cos{x}\,dx = \sin{x}\cos{x} - \int -\sin{x}\sin{x}\,dx \\ & \int \cos^2{x}\,dx = \sin{x}\cos{x} + \int \sin^2{x}\,dx \end{align} $$ Add $\int \cos{x}^2\,dx$ to both sides: $$ 2\int \cos^2{x}\,dx = \sin{x}\cos{x} + \int \sin^2{x}\,dx + \int \cos^2{x}\,dx $$ Apply integral linearity: $$ 2\int \cos^2{x}\,dx = \sin{x}\cos{x} + \int \left(\sin^2{x} + \cos^2{x}\right)\,dx $$ Apply the Pythagorean identity and divide both sides by 2: $$ \begin{align} 2\int \cos^2{x}\,dx &= \sin{x}\cos{x} + \int 1\,dx \\ &= \sin{x}\cos{x} + x + C \\ \int \cos^2{x}\,dx &= \frac{x + \sin{x}\cos{x}}{2} + C \end{align} $$ ===== Using the double angle formula ===== {{:sam_johnson_meme.jpg?32|}} Careful! This derivation differs from the one in [[integrating_sin2x|]] by just a sign. Rewrite the integral using the double angle formula for the cosine: $$ \int \cos^2{x}\,dx = \int \frac{1 + \cos{2x}}{2}\,dx $$ Substitute $u = 2x, du = 2\,dx$: $$ \begin{align} \int \frac{1 + \cos{2x}}{2}\,dx &= \int \frac{1 + \cos{u}}{2}\frac{1}{2}\,du \\ &= \frac{1}{4} \left(\int 1\,du + \int \cos{u}\,du\right) \\ &= \frac{u + \sin{u} + C}{4} \end{align} $$ Substitute back and simplify: $$ \begin{align} \frac{u + \sin{u} + C}{4} &= \frac{2x + \sin{2x} + C}{4} \\ &= \frac{x + \frac{\sin{2x}}{2}}{2} + C \\ &= \frac{x + \sin{x}\cos{x}}{2} + C \end{align} $$