From 425decdf7e9284d15aa726e3ae96b9942fb0e3ea Mon Sep 17 00:00:00 2001 From: IronClawTrem Date: Sun, 16 Feb 2020 03:40:06 +0000 Subject: create tremded branch --- external/nettle-3.3/nettle/macros.h | 245 ++++++++++++++++++++++++++++++++++++ 1 file changed, 245 insertions(+) create mode 100644 external/nettle-3.3/nettle/macros.h (limited to 'external/nettle-3.3/nettle/macros.h') diff --git a/external/nettle-3.3/nettle/macros.h b/external/nettle-3.3/nettle/macros.h new file mode 100644 index 0000000..af84841 --- /dev/null +++ b/external/nettle-3.3/nettle/macros.h @@ -0,0 +1,245 @@ +/* macros.h + + Copyright (C) 2001, 2010 Niels Möller + + This file is part of GNU Nettle. + + GNU Nettle is free software: you can redistribute it and/or + modify it under the terms of either: + + * the GNU Lesser General Public License as published by the Free + Software Foundation; either version 3 of the License, or (at your + option) any later version. + + or + + * the GNU General Public License as published by the Free + Software Foundation; either version 3 of the License, or (at your + option) any later version. + + or both in parallel, as here. + + GNU Nettle is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + General Public License for more details. + + You should have received copies of the GNU General Public License and + the GNU Lesser General Public License along with this program. If + not, see http://www.gnu.org/licenses/. +*/ + +#ifndef NETTLE_MACROS_H_INCLUDED +#define NETTLE_MACROS_H_INCLUDED + +/* Reads a 64-bit integer, in network, big-endian, byte order */ +#define READ_UINT64(p) \ +( (((uint64_t) (p)[0]) << 56) \ + | (((uint64_t) (p)[1]) << 48) \ + | (((uint64_t) (p)[2]) << 40) \ + | (((uint64_t) (p)[3]) << 32) \ + | (((uint64_t) (p)[4]) << 24) \ + | (((uint64_t) (p)[5]) << 16) \ + | (((uint64_t) (p)[6]) << 8) \ + | ((uint64_t) (p)[7])) + +#define WRITE_UINT64(p, i) \ +do { \ + (p)[0] = ((i) >> 56) & 0xff; \ + (p)[1] = ((i) >> 48) & 0xff; \ + (p)[2] = ((i) >> 40) & 0xff; \ + (p)[3] = ((i) >> 32) & 0xff; \ + (p)[4] = ((i) >> 24) & 0xff; \ + (p)[5] = ((i) >> 16) & 0xff; \ + (p)[6] = ((i) >> 8) & 0xff; \ + (p)[7] = (i) & 0xff; \ +} while(0) + +/* Reads a 32-bit integer, in network, big-endian, byte order */ +#define READ_UINT32(p) \ +( (((uint32_t) (p)[0]) << 24) \ + | (((uint32_t) (p)[1]) << 16) \ + | (((uint32_t) (p)[2]) << 8) \ + | ((uint32_t) (p)[3])) + +#define WRITE_UINT32(p, i) \ +do { \ + (p)[0] = ((i) >> 24) & 0xff; \ + (p)[1] = ((i) >> 16) & 0xff; \ + (p)[2] = ((i) >> 8) & 0xff; \ + (p)[3] = (i) & 0xff; \ +} while(0) + +/* Analogous macros, for 24 and 16 bit numbers */ +#define READ_UINT24(p) \ +( (((uint32_t) (p)[0]) << 16) \ + | (((uint32_t) (p)[1]) << 8) \ + | ((uint32_t) (p)[2])) + +#define WRITE_UINT24(p, i) \ +do { \ + (p)[0] = ((i) >> 16) & 0xff; \ + (p)[1] = ((i) >> 8) & 0xff; \ + (p)[2] = (i) & 0xff; \ +} while(0) + +#define READ_UINT16(p) \ +( (((uint32_t) (p)[0]) << 8) \ + | ((uint32_t) (p)[1])) + +#define WRITE_UINT16(p, i) \ +do { \ + (p)[0] = ((i) >> 8) & 0xff; \ + (p)[1] = (i) & 0xff; \ +} while(0) + +/* And the other, little-endian, byteorder */ +#define LE_READ_UINT64(p) \ +( (((uint64_t) (p)[7]) << 56) \ + | (((uint64_t) (p)[6]) << 48) \ + | (((uint64_t) (p)[5]) << 40) \ + | (((uint64_t) (p)[4]) << 32) \ + | (((uint64_t) (p)[3]) << 24) \ + | (((uint64_t) (p)[2]) << 16) \ + | (((uint64_t) (p)[1]) << 8) \ + | ((uint64_t) (p)[0])) + +#define LE_WRITE_UINT64(p, i) \ +do { \ + (p)[7] = ((i) >> 56) & 0xff; \ + (p)[6] = ((i) >> 48) & 0xff; \ + (p)[5] = ((i) >> 40) & 0xff; \ + (p)[4] = ((i) >> 32) & 0xff; \ + (p)[3] = ((i) >> 24) & 0xff; \ + (p)[2] = ((i) >> 16) & 0xff; \ + (p)[1] = ((i) >> 8) & 0xff; \ + (p)[0] = (i) & 0xff; \ +} while (0) + +#define LE_READ_UINT32(p) \ +( (((uint32_t) (p)[3]) << 24) \ + | (((uint32_t) (p)[2]) << 16) \ + | (((uint32_t) (p)[1]) << 8) \ + | ((uint32_t) (p)[0])) + +#define LE_WRITE_UINT32(p, i) \ +do { \ + (p)[3] = ((i) >> 24) & 0xff; \ + (p)[2] = ((i) >> 16) & 0xff; \ + (p)[1] = ((i) >> 8) & 0xff; \ + (p)[0] = (i) & 0xff; \ +} while(0) + +/* Analogous macros, for 16 bit numbers */ +#define LE_READ_UINT16(p) \ + ( (((uint32_t) (p)[1]) << 8) \ + | ((uint32_t) (p)[0])) + +#define LE_WRITE_UINT16(p, i) \ + do { \ + (p)[1] = ((i) >> 8) & 0xff; \ + (p)[0] = (i) & 0xff; \ + } while(0) + +/* Macro to make it easier to loop over several blocks. */ +#define FOR_BLOCKS(length, dst, src, blocksize) \ + assert( !((length) % (blocksize))); \ + for (; (length); ((length) -= (blocksize), \ + (dst) += (blocksize), \ + (src) += (blocksize)) ) + +/* The masking of the right shift is needed to allow n == 0 (using + just 32 - n and 64 - n results in undefined behaviour). Most uses + of these macros use a constant and non-zero rotation count. */ +#define ROTL32(n,x) (((x)<<(n)) | ((x)>>((-(n)&31)))) + +#define ROTL64(n,x) (((x)<<(n)) | ((x)>>((-(n))&63))) + +/* Requires that size > 0 */ +#define INCREMENT(size, ctr) \ + do { \ + unsigned increment_i = (size) - 1; \ + if (++(ctr)[increment_i] == 0) \ + while (increment_i > 0 \ + && ++(ctr)[--increment_i] == 0 ) \ + ; \ + } while (0) + + +/* Helper macro for Merkle-Damgård hash functions. Assumes the context + structs includes the following fields: + + uint8_t block[...]; // Buffer holding one block + unsigned int index; // Index into block +*/ + +/* Currently used by sha512 (and sha384) only. */ +#define MD_INCR(ctx) ((ctx)->count_high += !++(ctx)->count_low) + +/* Takes the compression function f as argument. NOTE: also clobbers + length and data. */ +#define MD_UPDATE(ctx, length, data, f, incr) \ + do { \ + if ((ctx)->index) \ + { \ + /* Try to fill partial block */ \ + unsigned __md_left = sizeof((ctx)->block) - (ctx)->index; \ + if ((length) < __md_left) \ + { \ + memcpy((ctx)->block + (ctx)->index, (data), (length)); \ + (ctx)->index += (length); \ + goto __md_done; /* Finished */ \ + } \ + else \ + { \ + memcpy((ctx)->block + (ctx)->index, (data), __md_left); \ + \ + f((ctx), (ctx)->block); \ + (incr); \ + \ + (data) += __md_left; \ + (length) -= __md_left; \ + } \ + } \ + while ((length) >= sizeof((ctx)->block)) \ + { \ + f((ctx), (data)); \ + (incr); \ + \ + (data) += sizeof((ctx)->block); \ + (length) -= sizeof((ctx)->block); \ + } \ + memcpy ((ctx)->block, (data), (length)); \ + (ctx)->index = (length); \ + __md_done: \ + ; \ + } while (0) + +/* Pads the block to a block boundary with the bit pattern 1 0*, + leaving size octets for the length field at the end. If needed, + compresses the block and starts a new one. */ +#define MD_PAD(ctx, size, f) \ + do { \ + unsigned __md_i; \ + __md_i = (ctx)->index; \ + \ + /* Set the first char of padding to 0x80. This is safe since there \ + is always at least one byte free */ \ + \ + assert(__md_i < sizeof((ctx)->block)); \ + (ctx)->block[__md_i++] = 0x80; \ + \ + if (__md_i > (sizeof((ctx)->block) - (size))) \ + { /* No room for length in this block. Process it and \ + pad with another one */ \ + memset((ctx)->block + __md_i, 0, sizeof((ctx)->block) - __md_i); \ + \ + f((ctx), (ctx)->block); \ + __md_i = 0; \ + } \ + memset((ctx)->block + __md_i, 0, \ + sizeof((ctx)->block) - (size) - __md_i); \ + \ + } while (0) + +#endif /* NETTLE_MACROS_H_INCLUDED */ -- cgit