import numpy as np, scipy.optimize as optimize from colour import * from colour.difference import * from colour.plotting import * from matplotlib import pyplot as plt # Makes a comparison plot with SDs and swatches def plot_comparison(target_sd, matched_sd, label, error): target_XYZ = sd_to_XYZ(target_sd) target_RGB = np.clip(XYZ_to_sRGB(target_XYZ / 100), 0, 1) target_swatch = ColourSwatch(label, target_RGB) matched_XYZ = sd_to_XYZ(matched_sd) matched_RGB = np.clip(XYZ_to_sRGB(matched_XYZ / 100), 0, 1) matched_swatch = ColourSwatch("Model", matched_RGB) axes = plt.subplot(2, 1, 1) plt.title(label) plot_multi_sds([target_sd, matched_sd], axes=axes, standalone=False) axes = plt.subplot(2, 1, 2) plt.title("ΔE = %g" % error) plot_multi_colour_swatches([target_swatch, matched_swatch], axes=axes) # The same illuminant is used throughout il = ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D65'] # The same wavelength grid is used throughout wvl = np.arange(360, 830, 10) # This is the model of spectral reflectivity described in the article. def model(wvl, cc): # One thing they didn't mention in the text is that their polynomial # is nondimensionalized (mapped from 360--800 nm to 0--1). def remap(x): return (x - 360) / (830 - 360) x = cc[0] * remap(wvl) ** 2 + cc[1] * remap(wvl) + cc[2] return 1 / 2 + x / (2 * np.sqrt(1 + x ** 2)) # The goal is to minimize the color difference between a given distrbution # and the one computed from the model above. def error_function(cc, target): ev = model(wvl, cc) sd = SpectralDistribution(ev, wvl) Lab = XYZ_to_Lab(sd_to_XYZ(sd), il) return delta_E_CIE1976(target, Lab) # This callback to scipy.optimize.basinhopping tells the solver to stop once # the error is small enough. The threshold was chosen arbitrarily, as a small # fraction of the JND (about 2.3 with this metric). def cb_basinhopping(x, f, accept): return f < 0.1 # This demo goes through SDs in a color checker for name, sd in COLOURCHECKERS_SDS['ColorChecker N Ohta'].items(): XYZ = sd_to_XYZ(sd) target = XYZ_to_Lab(XYZ, il) print("The target is '%s' with L=%g, a=%g, b=%g" % (name, *target)) # First, a conventional solver is called. For 'yellow green' this # actually fails: gets stuck at a local minimum that's far away # from the global one. # FIXME: better parameters, a better x0, a better method? # FIXME: stop iterating as soon as delta E is negligible (instead of # going). opt = optimize.minimize( error_function, (0, 0, 0), target, method="L-BFGS-B", options={"disp": True, "ftol": 1e-5} ) print(opt) error = error_function(opt.x, target) print("Delta E is %g" % error) # Basin hopping is far more likely to find the actual minimum we're # looking for, but it's extremely slow in comparison. if error > 0.1: print("Error too large, trying global optimization") opt = optimize.basinhopping( lambda cc: error_function(cc, target), (0, 0, 0), disp=True, callback=cb_basinhopping ) print(opt) error = error_function(opt.x, target) print("Global delta E is %g" % error) matched_sd = SpectralDistribution(model(wvl, opt.x), wvl, name="Model") plot_comparison(sd, matched_sd, name, error)