import numpy as np, scipy.optimize as optimize from colour import * from colour.difference import delta_E_CIE1976 from colour.colorimetry import * # The same wavelength grid is used throughout wvl = np.arange(360, 830, 5) wvlp = (wvl - 360) / (830 - 360) # This is the model of spectral reflectivity described in the article. def model(wvlp, ccp): yy = ccp[0] * wvlp**2 + ccp[1] * wvlp + ccp[2] return 1 / 2 + yy / (2 * np.sqrt(1 + yy ** 2)) # Create a SpectralDistribution using given coefficients def model_sd(ccp, primed=True): # FIXME: don't hardcode the wavelength grid; there should be a way # of creating a SpectralDistribution from the function alone grid = wvlp if primed else wvl return SpectralDistribution(model(grid, ccp), wvl, name="Model") # The goal is to minimize the color difference between a given distrbution # and the one computed from the model above. def error_function(ccp, target, ill_sd, ill_xy): # One thing they didn't mention in the text is that their polynomial # is nondimensionalized (mapped from 360--800 nm to 0--1). sd = model_sd(ccp) Lab = XYZ_to_Lab(sd_to_XYZ(sd, illuminant=ill_sd) / 100, ill_xy) return delta_E_CIE1976(target, Lab) # Finds the parameters for Jakob and Hanika's model def jakob_hanika(target_XYZ, ill_sd, ill_xy, ccp0=(0, 0, 0), verbose=True, try_hard=True): def do_optimize(XYZ, ccp0): Lab = XYZ_to_Lab(XYZ, ill_xy) opt = optimize.minimize( error_function, ccp0, (Lab, ill_sd, ill_xy), method="Nelder-Mead", options={"disp": verbose} ) if verbose: print(opt) return opt # A special case that's hard to solve numerically if np.allclose(target_XYZ, [0, 0, 0]): return np.array([0, 0, -1e+9]), 0 # FIXME: dtype? if verbose: print("Trying the target directly, XYZ=%s" % target_XYZ) opt = do_optimize(target_XYZ, ccp0) if opt.fun < 0.1 or not try_hard: return opt.x, opt.fun good_XYZ = (1/3, 1/3, 1/3) good_ccp = (2.1276356, -1.07293026, -0.29583292) # FIXME: valid only for D65 divisions = 3 while divisions < 10: if verbose: print("Trying with %d divisions" % divisions) keep_divisions = False ref_XYZ = good_XYZ ref_ccp = good_ccp ccp0 = ref_ccp for i in range(1, divisions): intermediate_XYZ = ref_XYZ + (target_XYZ - ref_XYZ) * i / (divisions - 1) if verbose: print("Intermediate step %d/%d, XYZ=%s with ccp0=%s" % (i + 1, divisions, intermediate_XYZ, ccp0)) opt = do_optimize(intermediate_XYZ, ccp0) if opt.fun > 0.1: if verbose: print("WARNING: intermediate optimization failed") break else: good_XYZ = intermediate_XYZ good_ccp = opt.x keep_divisions = True ccp0 = opt.x else: return opt.x, opt.fun if not keep_divisions: divisions += 2 raise Exception("optimization failed for target_XYZ=%s, ccp0=%s" \ % (target_XYZ, ccp0))