From 49f34e4d60b25797c04c4a6a903748e3cb4b992f Mon Sep 17 00:00:00 2001 From: Paweł Redman Date: Fri, 24 Jul 2020 18:28:27 +0200 Subject: A script that plots the PCA decomposition. --- pca_decomposition.py | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 pca_decomposition.py (limited to 'pca_decomposition.py') diff --git a/pca_decomposition.py b/pca_decomposition.py new file mode 100644 index 0000000..d6ea828 --- /dev/null +++ b/pca_decomposition.py @@ -0,0 +1,34 @@ +import numpy as np +import matplotlib.pyplot as plt + +from otsu2018 import load_Otsu2018_spectra, Clustering + + +if __name__ == '__main__': + sds = load_Otsu2018_spectra('CommonData/spectrum_m.csv', every_nth=1) + wl = np.arange(380, 731, 10) + + mean = np.mean(sds, axis=0) + data_matrix = sds - mean + covariance_matrix = np.dot(data_matrix.T, data_matrix) + eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix) + + for i, v in enumerate(eigenvalues): + w = eigenvectors[:, i] + color = 'C%d' % (i % 10) + + scale = 0.5 / np.max(np.abs(w)) + baseline = i + 1 + + plt.plot((min(wl), max(wl)), (baseline, baseline), color + ':') + plt.plot(wl, baseline + scale * w, color + '-') + + plt.annotate('λ = %g' % v, color=color, xy=(max(wl), baseline), + xytext=(max(wl), baseline + 0.05), ha='right') + + plt.title('PCA decomposition') + plt.xlabel('Wavelength [nm]') + plt.ylabel('Eigenvector number') + plt.xlim(370, 740) + plt.ylim(30.5, 36.5) + plt.show() -- cgit