// Copyright (C) 1999-2000 Id Software, Inc. // // cg_view.c -- setup all the parameters (position, angle, etc) // for a 3D rendering /* * Portions Copyright (C) 2000-2001 Tim Angus * * This program is free software; you can redistribute it and/or modify it * under the terms of the OSML - Open Source Modification License v1.0 as * described in the file COPYING which is distributed with this source * code. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ #include "cg_local.h" /* ============================================================================= MODEL TESTING The viewthing and gun positioning tools from Q2 have been integrated and enhanced into a single model testing facility. Model viewing can begin with either "testmodel " or "testgun ". The names must be the full pathname after the basedir, like "models/weapons/v_launch/tris.md3" or "players/male/tris.md3" Testmodel will create a fake entity 100 units in front of the current view position, directly facing the viewer. It will remain immobile, so you can move around it to view it from different angles. Testgun will cause the model to follow the player around and supress the real view weapon model. The default frame 0 of most guns is completely off screen, so you will probably have to cycle a couple frames to see it. "nextframe", "prevframe", "nextskin", and "prevskin" commands will change the frame or skin of the testmodel. These are bound to F5, F6, F7, and F8 in q3default.cfg. If a gun is being tested, the "gun_x", "gun_y", and "gun_z" variables will let you adjust the positioning. Note that none of the model testing features update while the game is paused, so it may be convenient to test with deathmatch set to 1 so that bringing down the console doesn't pause the game. ============================================================================= */ /* ================= CG_TestModel_f Creates an entity in front of the current position, which can then be moved around ================= */ void CG_TestModel_f (void) { vec3_t angles; memset( &cg.testModelEntity, 0, sizeof(cg.testModelEntity) ); if ( trap_Argc() < 2 ) { return; } Q_strncpyz (cg.testModelName, CG_Argv( 1 ), MAX_QPATH ); cg.testModelEntity.hModel = trap_R_RegisterModel( cg.testModelName ); if ( trap_Argc() == 3 ) { cg.testModelEntity.backlerp = atof( CG_Argv( 2 ) ); cg.testModelEntity.frame = 1; cg.testModelEntity.oldframe = 0; } if (! cg.testModelEntity.hModel ) { CG_Printf( "Can't register model\n" ); return; } VectorMA( cg.refdef.vieworg, 100, cg.refdef.viewaxis[0], cg.testModelEntity.origin ); angles[PITCH] = 0; angles[YAW] = 180 + cg.refdefViewAngles[1]; angles[ROLL] = 0; AnglesToAxis( angles, cg.testModelEntity.axis ); cg.testGun = qfalse; } /* ================= CG_TestGun_f Replaces the current view weapon with the given model ================= */ void CG_TestGun_f (void) { CG_TestModel_f(); cg.testGun = qtrue; cg.testModelEntity.renderfx = RF_MINLIGHT | RF_DEPTHHACK | RF_FIRST_PERSON; } void CG_TestModelNextFrame_f (void) { cg.testModelEntity.frame++; CG_Printf( "frame %i\n", cg.testModelEntity.frame ); } void CG_TestModelPrevFrame_f (void) { cg.testModelEntity.frame--; if ( cg.testModelEntity.frame < 0 ) { cg.testModelEntity.frame = 0; } CG_Printf( "frame %i\n", cg.testModelEntity.frame ); } void CG_TestModelNextSkin_f (void) { cg.testModelEntity.skinNum++; CG_Printf( "skin %i\n", cg.testModelEntity.skinNum ); } void CG_TestModelPrevSkin_f (void) { cg.testModelEntity.skinNum--; if ( cg.testModelEntity.skinNum < 0 ) { cg.testModelEntity.skinNum = 0; } CG_Printf( "skin %i\n", cg.testModelEntity.skinNum ); } static void CG_AddTestModel (void) { int i; // re-register the model, because the level may have changed cg.testModelEntity.hModel = trap_R_RegisterModel( cg.testModelName ); if (! cg.testModelEntity.hModel ) { CG_Printf ("Can't register model\n"); return; } // if testing a gun, set the origin reletive to the view origin if ( cg.testGun ) { VectorCopy( cg.refdef.vieworg, cg.testModelEntity.origin ); VectorCopy( cg.refdef.viewaxis[0], cg.testModelEntity.axis[0] ); VectorCopy( cg.refdef.viewaxis[1], cg.testModelEntity.axis[1] ); VectorCopy( cg.refdef.viewaxis[2], cg.testModelEntity.axis[2] ); // allow the position to be adjusted for (i=0 ; i<3 ; i++) { cg.testModelEntity.origin[i] += cg.refdef.viewaxis[0][i] * cg_gun_x.value; cg.testModelEntity.origin[i] += cg.refdef.viewaxis[1][i] * cg_gun_y.value; cg.testModelEntity.origin[i] += cg.refdef.viewaxis[2][i] * cg_gun_z.value; } } trap_R_AddRefEntityToScene( &cg.testModelEntity ); } //============================================================================ /* ================= CG_CalcVrect Sets the coordinates of the rendered window ================= */ static void CG_CalcVrect (void) { int size; // the intermission should allways be full screen if ( cg.snap->ps.pm_type == PM_INTERMISSION ) { size = 100; } else { // bound normal viewsize if (cg_viewsize.integer < 30) { trap_Cvar_Set ("cg_viewsize","30"); size = 30; } else if (cg_viewsize.integer > 100) { trap_Cvar_Set ("cg_viewsize","100"); size = 100; } else { size = cg_viewsize.integer; } } cg.refdef.width = cgs.glconfig.vidWidth*size/100; cg.refdef.width &= ~1; cg.refdef.height = cgs.glconfig.vidHeight*size/100; cg.refdef.height &= ~1; cg.refdef.x = (cgs.glconfig.vidWidth - cg.refdef.width)/2; cg.refdef.y = (cgs.glconfig.vidHeight - cg.refdef.height)/2; } //============================================================================== /* =============== CG_OffsetThirdPersonView =============== */ #define FOCUS_DISTANCE 512 static void CG_OffsetThirdPersonView( void ) { vec3_t forward, right, up; vec3_t view; vec3_t focusAngles; trace_t trace; static vec3_t mins = { -4, -4, -4 }; static vec3_t maxs = { 4, 4, 4 }; vec3_t focusPoint; float focusDist; float forwardScale, sideScale; //TA: when wall climbing the viewheight is not straight up if( cg.predictedPlayerState.stats[ STAT_STATE ] & SS_WALLCLIMBING ) VectorMA( cg.refdef.vieworg, cg.predictedPlayerState.viewheight, cg.predictedPlayerState.grapplePoint, cg.refdef.vieworg ); else cg.refdef.vieworg[2] += cg.predictedPlayerState.viewheight; VectorCopy( cg.refdefViewAngles, focusAngles ); // if dead, look at killer if ( cg.predictedPlayerState.stats[STAT_HEALTH] <= 0 ) { focusAngles[YAW] = cg.predictedPlayerState.generic1; cg.refdefViewAngles[YAW] = cg.predictedPlayerState.generic1; } //if ( focusAngles[PITCH] > 45 ) { // focusAngles[PITCH] = 45; // don't go too far overhead //} AngleVectors( focusAngles, forward, NULL, NULL ); VectorMA( cg.refdef.vieworg, FOCUS_DISTANCE, forward, focusPoint ); VectorCopy( cg.refdef.vieworg, view ); //TA: when wall climbing the viewheight is not straight up if( cg.predictedPlayerState.stats[ STAT_STATE ] & SS_WALLCLIMBING ) VectorMA( view, 8, cg.predictedPlayerState.grapplePoint, view ); else view[2] += 8; //cg.refdefViewAngles[PITCH] *= 0.5; AngleVectors( cg.refdefViewAngles, forward, right, up ); forwardScale = cos( cg_thirdPersonAngle.value / 180 * M_PI ); sideScale = sin( cg_thirdPersonAngle.value / 180 * M_PI ); VectorMA( view, -cg_thirdPersonRange.value * forwardScale, forward, view ); VectorMA( view, -cg_thirdPersonRange.value * sideScale, right, view ); // trace a ray from the origin to the viewpoint to make sure the view isn't // in a solid block. Use an 8 by 8 block to prevent the view from near clipping anything if (!cg_cameraMode.integer) { CG_Trace( &trace, cg.refdef.vieworg, mins, maxs, view, cg.predictedPlayerState.clientNum, MASK_SOLID ); if ( trace.fraction != 1.0 ) { VectorCopy( trace.endpos, view ); view[2] += (1.0 - trace.fraction) * 32; // try another trace to this position, because a tunnel may have the ceiling // close enogh that this is poking out CG_Trace( &trace, cg.refdef.vieworg, mins, maxs, view, cg.predictedPlayerState.clientNum, MASK_SOLID ); VectorCopy( trace.endpos, view ); } } VectorCopy( view, cg.refdef.vieworg ); // select pitch to look at focus point from vieword VectorSubtract( focusPoint, cg.refdef.vieworg, focusPoint ); focusDist = sqrt( focusPoint[0] * focusPoint[0] + focusPoint[1] * focusPoint[1] ); if ( focusDist < 1 ) { focusDist = 1; // should never happen } cg.refdefViewAngles[PITCH] = -180 / M_PI * atan2( focusPoint[2], focusDist ); cg.refdefViewAngles[YAW] -= cg_thirdPersonAngle.value; } // this causes a compiler bug on mac MrC compiler static void CG_StepOffset( void ) { int timeDelta; int steptime; steptime = BG_FindSteptimeForClass( cg.predictedPlayerState.stats[ STAT_PCLASS ] ); // smooth out stair climbing timeDelta = cg.time - cg.stepTime; if ( timeDelta < steptime ) { cg.refdef.vieworg[2] -= cg.stepChange * (steptime - timeDelta) / steptime; } } /* =============== CG_OffsetFirstPersonView =============== */ static void CG_OffsetFirstPersonView( void ) { float *origin; float *angles; float bob; float ratio; float delta; float speed; float f; vec3_t predictedVelocity; int timeDelta; float bob2; if ( cg.snap->ps.pm_type == PM_INTERMISSION ) { return; } origin = cg.refdef.vieworg; angles = cg.refdefViewAngles; // if dead, fix the angle and don't add any kick if ( cg.snap->ps.stats[STAT_HEALTH] <= 0 ) { angles[ROLL] = 40; angles[PITCH] = -15; angles[YAW] = cg.snap->ps.generic1; origin[2] += cg.predictedPlayerState.viewheight; return; } // add angles based on weapon kick VectorAdd (angles, cg.kick_angles, angles); // add angles based on damage kick if ( cg.damageTime ) { ratio = cg.time - cg.damageTime; if ( ratio < DAMAGE_DEFLECT_TIME ) { ratio /= DAMAGE_DEFLECT_TIME; angles[PITCH] += ratio * cg.v_dmg_pitch; angles[ROLL] += ratio * cg.v_dmg_roll; } else { ratio = 1.0 - ( ratio - DAMAGE_DEFLECT_TIME ) / DAMAGE_RETURN_TIME; if ( ratio > 0 ) { angles[PITCH] += ratio * cg.v_dmg_pitch; angles[ROLL] += ratio * cg.v_dmg_roll; } } } // add pitch based on fall kick #if 0 ratio = ( cg.time - cg.landTime) / FALL_TIME; if (ratio < 0) ratio = 0; angles[PITCH] += ratio * cg.fall_value; #endif // add angles based on velocity VectorCopy( cg.predictedPlayerState.velocity, predictedVelocity ); delta = DotProduct ( predictedVelocity, cg.refdef.viewaxis[0]); angles[PITCH] += delta * cg_runpitch.value; delta = DotProduct ( predictedVelocity, cg.refdef.viewaxis[1]); angles[ROLL] -= delta * cg_runroll.value; // add angles based on bob //TA: bob amount is class dependant bob2 = BG_FindBobForClass( cg.predictedPlayerState.stats[ STAT_PCLASS ] ); if( bob2 != 0 ) { // make sure the bob is visible even at low speeds speed = cg.xyspeed > 200 ? cg.xyspeed : 200; delta = cg.bobfracsin * ( bob2 ) * speed; if (cg.predictedPlayerState.pm_flags & PMF_DUCKED) delta *= 3; // crouching angles[PITCH] += delta; delta = cg.bobfracsin * ( bob2 ) * speed; if (cg.predictedPlayerState.pm_flags & PMF_DUCKED) delta *= 3; // crouching accentuates roll if (cg.bobcycle & 1) delta = -delta; angles[ROLL] += delta; } //provide some feedback for pouncing if( cg.predictedPlayerState.weapon == WP_POUNCE ) { if( cg.predictedPlayerState.stats[ STAT_MISC ] > 0 ) { float fraction1, fraction2; vec3_t forward; AngleVectors( angles, forward, NULL, NULL ); VectorNormalize( forward ); fraction1 = (float)( cg.time - cg.weapon2Time ) / POUNCE_TIME; if( fraction1 > 1.0f ) fraction1 = 1.0f; fraction2 = -sin( fraction1 * M_PI / 2 ); VectorMA( origin, 15*fraction2, forward, origin ); } } #define STRUGGLE_DIST 5.0f #define STRUGGLE_TIME 250 //allow the player to struggle a little whilst grabbed if( cg.predictedPlayerState.pm_type == PM_GRABBED ) { vec3_t forward, right, up; usercmd_t cmd; int cmdNum; float fFraction, rFraction, uFraction; float fFraction2, rFraction2, uFraction2; cmdNum = trap_GetCurrentCmdNumber(); trap_GetUserCmd( cmdNum, &cmd ); AngleVectors( angles, forward, right, up ); fFraction = (float)( cg.time - cg.forwardMoveTime ) / STRUGGLE_TIME; rFraction = (float)( cg.time - cg.rightMoveTime ) / STRUGGLE_TIME; uFraction = (float)( cg.time - cg.upMoveTime ) / STRUGGLE_TIME; if( fFraction > 1.0f ) fFraction = 1.0f; if( rFraction > 1.0f ) rFraction = 1.0f; if( uFraction > 1.0f ) uFraction = 1.0f; fFraction2 = -sin( fFraction * M_PI / 2 ); rFraction2 = -sin( rFraction * M_PI / 2 ); uFraction2 = -sin( uFraction * M_PI / 2 ); if( cmd.forwardmove > 0 ) VectorMA( origin, STRUGGLE_DIST * fFraction, forward, origin ); else if( cmd.forwardmove < 0 ) VectorMA( origin, -STRUGGLE_DIST * fFraction, forward, origin ); else cg.forwardMoveTime = cg.time; if( cmd.rightmove > 0 ) VectorMA( origin, STRUGGLE_DIST * rFraction, right, origin ); else if( cmd.rightmove < 0 ) VectorMA( origin, -STRUGGLE_DIST * rFraction, right, origin ); else cg.rightMoveTime = cg.time; if( cmd.upmove > 0 ) VectorMA( origin, STRUGGLE_DIST * uFraction, up, origin ); else if( cmd.upmove < 0 ) VectorMA( origin, -STRUGGLE_DIST * uFraction, up, origin ); else cg.upMoveTime = cg.time; } //TA: this *feels* more realisitic for humans if( cg.predictedPlayerState.stats[ STAT_PTEAM ] == PTE_HUMANS ) { angles[PITCH] += cg.bobfracsin * bob2 * 0.5; //TA: heavy breathing effects if( cg.predictedPlayerState.stats[ STAT_STAMINA ] < 0 ) { float deltaBreath = (float)( cg.predictedPlayerState.stats[ STAT_STAMINA ] < 0 ? -cg.predictedPlayerState.stats[ STAT_STAMINA ] : cg.predictedPlayerState.stats[ STAT_STAMINA ] ) / 200.0; float deltaAngle = cos( (float)cg.time/150.0 ) * deltaBreath; deltaAngle += ( deltaAngle < 0 ? -deltaAngle : deltaAngle ) * 0.5; angles[ PITCH ] -= deltaAngle; } } //=================================== // add view height //TA: when wall climbing the viewheight is not straight up if( cg.predictedPlayerState.stats[ STAT_STATE ] & SS_WALLCLIMBING ) VectorMA( origin, cg.predictedPlayerState.viewheight, cg.predictedPlayerState.grapplePoint, origin ); else origin[2] += cg.predictedPlayerState.viewheight; // smooth out duck height changes timeDelta = cg.time - cg.duckTime; if ( timeDelta < DUCK_TIME) { cg.refdef.vieworg[2] -= cg.duckChange * (DUCK_TIME - timeDelta) / DUCK_TIME; } // add bob height bob = cg.bobfracsin * cg.xyspeed * cg_bobup.value; if (bob > 6) { bob = 6; } //TA: likewise for bob if( cg.predictedPlayerState.stats[ STAT_STATE ] & SS_WALLCLIMBING ) VectorMA( origin, bob, cg.predictedPlayerState.grapplePoint, origin ); else origin[2] += bob; // add fall height delta = cg.time - cg.landTime; if( delta < LAND_DEFLECT_TIME ) { f = delta / LAND_DEFLECT_TIME; cg.refdef.vieworg[2] += cg.landChange * f; } else if( delta < LAND_DEFLECT_TIME + LAND_RETURN_TIME ) { delta -= LAND_DEFLECT_TIME; f = 1.0 - ( delta / LAND_RETURN_TIME ); cg.refdef.vieworg[2] += cg.landChange * f; } // add step offset CG_StepOffset(); // add kick offset VectorAdd (origin, cg.kick_origin, origin); // pivot the eye based on a neck length #if 0 { #define NECK_LENGTH 8 vec3_t forward, up; cg.refdef.vieworg[2] -= NECK_LENGTH; AngleVectors( cg.refdefViewAngles, forward, NULL, up ); VectorMA( cg.refdef.vieworg, 3, forward, cg.refdef.vieworg ); VectorMA( cg.refdef.vieworg, NECK_LENGTH, up, cg.refdef.vieworg ); } #endif } //====================================================================== void CG_ZoomDown_f( void ) { if ( cg.zoomed ) { return; } cg.zoomed = qtrue; cg.zoomTime = cg.time; } void CG_ZoomUp_f( void ) { if ( !cg.zoomed ) { return; } cg.zoomed = qfalse; cg.zoomTime = cg.time; } /* ==================== CG_CalcFov Fixed fov at intermissions, otherwise account for fov variable and zooms. ==================== */ #define WAVE_AMPLITUDE 1 #define WAVE_FREQUENCY 0.4 #define FOVWARPTIME 400.0 static int CG_CalcFov( void ) { float x; float phase; float v; int contents; float fov_x, fov_y; float zoomFov; float f; int inwater; int attribFov; int a; float b; attribFov = BG_FindFovForClass( cg.predictedPlayerState.stats[ STAT_PCLASS ] ); if ( cg.predictedPlayerState.pm_type == PM_INTERMISSION ) { // if in intermission, use a fixed value fov_x = 90; } else { //TA: don't lock the fov globally - we need to be able to change it fov_x = attribFov; if ( fov_x < 1 ) fov_x = 1; else if ( fov_x > 160 ) fov_x = 160; if( cg.spawnTime > ( cg.time - FOVWARPTIME ) && BG_ClassHasAbility( cg.predictedPlayerState.stats[ STAT_PCLASS ], SCA_FOVWARPS ) ) { float temp, temp2; temp = (float)( cg.time - cg.spawnTime ) / FOVWARPTIME; temp2 = ( 180 - fov_x ) * temp; //Com_Printf( "%f %f\n", temp*100, temp2*100 ); fov_x = 180 - temp2; } } // account for zooms zoomFov = cg_zoomFov.value; if ( zoomFov < 1 ) zoomFov = 1; else if ( zoomFov > attribFov ) zoomFov = attribFov; //TA: only do all the zoom stuff if the client CAN zoom if( BG_ClassHasAbility( cg.predictedPlayerState.stats[ STAT_PCLASS ], SCA_CANZOOM ) ) { if ( cg.zoomed ) { f = ( cg.time - cg.zoomTime ) / (float)ZOOM_TIME; if ( f > 1.0 ) fov_x = zoomFov; else fov_x = fov_x + f * ( zoomFov - fov_x ); } else { f = ( cg.time - cg.zoomTime ) / (float)ZOOM_TIME; if ( f > 1.0 ) fov_x = fov_x; else fov_x = zoomFov + f * ( fov_x - zoomFov ); } } x = cg.refdef.width / tan( fov_x / 360 * M_PI ); fov_y = atan2( cg.refdef.height, x ); fov_y = fov_y * 360 / M_PI; // warp if underwater contents = CG_PointContents( cg.refdef.vieworg, -1 ); if ( contents & ( CONTENTS_WATER | CONTENTS_SLIME | CONTENTS_LAVA ) ){ phase = cg.time / 1000.0 * WAVE_FREQUENCY * M_PI * 2; v = WAVE_AMPLITUDE * sin( phase ); fov_x += v; fov_y -= v; inwater = qtrue; } else { inwater = qfalse; } // set it cg.refdef.fov_x = fov_x; cg.refdef.fov_y = fov_y; if ( !cg.zoomed ) { cg.zoomSensitivity = 1; } else { cg.zoomSensitivity = cg.refdef.fov_y / 75.0; } return inwater; } /* =============== CG_DamageBlendBlob =============== */ static void CG_DamageBlendBlob( void ) { int t; int maxTime; refEntity_t ent; if ( !cg.damageValue ) { return; } // ragePro systems can't fade blends, so don't obscure the screen if ( cgs.glconfig.hardwareType == GLHW_RAGEPRO ) { return; } maxTime = DAMAGE_TIME; t = cg.time - cg.damageTime; if ( t <= 0 || t >= maxTime ) { return; } memset( &ent, 0, sizeof( ent ) ); ent.reType = RT_SPRITE; ent.renderfx = RF_FIRST_PERSON; VectorMA( cg.refdef.vieworg, 8, cg.refdef.viewaxis[0], ent.origin ); VectorMA( ent.origin, cg.damageX * -8, cg.refdef.viewaxis[1], ent.origin ); VectorMA( ent.origin, cg.damageY * 8, cg.refdef.viewaxis[2], ent.origin ); ent.radius = cg.damageValue * 3; ent.customShader = cgs.media.viewBloodShader; ent.shaderRGBA[0] = 255; ent.shaderRGBA[1] = 255; ent.shaderRGBA[2] = 255; ent.shaderRGBA[3] = 200 * ( 1.0 - ((float)t / maxTime) ); trap_R_AddRefEntityToScene( &ent ); } /* =============== CG_DrawSurfNormal Draws a vector against the surface player is looking at =============== */ static void CG_DrawSurfNormal( void ) { trace_t tr; vec3_t end, temp; vec3_t up = { 0, 5, 0 }; polyVert_t normal[4]; VectorMA( cg.refdef.vieworg, 8192, cg.refdef.viewaxis[ 0 ], end ); CG_Trace( &tr, cg.refdef.vieworg, NULL, NULL, end, cg.predictedPlayerState.clientNum, MASK_SOLID ); //CG_Printf( "%f %f %f\n", tr.plane.normal[ 0 ], tr.plane.normal[ 1 ], tr.plane.normal[ 2 ] ); VectorCopy( tr.endpos, normal[0].xyz ); normal[0].st[0] = 0; normal[0].st[1] = 0; normal[0].modulate[0] = 255; normal[0].modulate[1] = 255; normal[0].modulate[2] = 255; normal[0].modulate[3] = 255; VectorAdd( up, tr.endpos, temp ); VectorCopy( temp, normal[1].xyz); normal[1].st[0] = 0; normal[1].st[1] = 1; normal[1].modulate[0] = 255; normal[1].modulate[1] = 255; normal[1].modulate[2] = 255; normal[1].modulate[3] = 255; VectorMA( tr.endpos, 64, tr.plane.normal, temp ); VectorAdd( temp, up, temp ); VectorCopy( temp, normal[2].xyz ); normal[2].st[0] = 1; normal[2].st[1] = 1; normal[2].modulate[0] = 255; normal[2].modulate[1] = 255; normal[2].modulate[2] = 255; normal[2].modulate[3] = 255; VectorMA( tr.endpos, 64, tr.plane.normal, temp ); VectorCopy( temp, normal[3].xyz ); normal[3].st[0] = 1; normal[3].st[1] = 0; normal[3].modulate[0] = 255; normal[3].modulate[1] = 255; normal[3].modulate[2] = 255; normal[3].modulate[3] = 255; trap_R_AddPolyToScene( cgs.media.whiteShader, 4, normal ); } /* =============== CG_addSmoothOp =============== */ static void CG_addSmoothOp( vec3_t rotAxis, float rotAngle ) { int i; //iterate through smooth array for( i = 0; i < MAXSMOOTHS; i++ ) { //found an unused index in the smooth array if( cg.sList[ i ].time + cg_smoothTime.integer < cg.time ) { //copy to array and stop VectorCopy( rotAxis, cg.sList[ i ].rotAxis ); cg.sList[ i ].rotAngle = rotAngle; cg.sList[ i ].time = cg.time; return; } } //no free indices in the smooth array } /* =============== CG_smoothWWTransitions =============== */ static void CG_smoothWWTransitions( playerState_t *ps, const vec3_t in, vec3_t out ) { vec3_t surfNormal, rotAxis, temp; vec3_t refNormal = { 0.0f, 0.0f, 1.0f }; vec3_t ceilingNormal = { 0.0f, 0.0f, -1.0f }; int i; float stLocal, sFraction, rotAngle; qboolean performed = qfalse; vec3_t inAxis[ 3 ], lastAxis[ 3 ], outAxis[ 3 ]; //set surfNormal if( !( ps->stats[ STAT_STATE ] & SS_WALLCLIMBINGCEILING ) ) VectorCopy( ps->grapplePoint, surfNormal ); else VectorCopy( ceilingNormal, surfNormal ); AnglesToAxis( in, inAxis ); //if we are moving from one surface to another smooth the transition if( !VectorCompare( surfNormal, cg.lastNormal ) ) { //if we moving from the ceiling to the floor special case //( x product of colinear vectors is undefined) if( VectorCompare( ceilingNormal, cg.lastNormal ) && VectorCompare( refNormal, surfNormal ) ) { AngleVectors( in, NULL, rotAxis, NULL ); rotAngle = 180.0f; } else { AnglesToAxis( cg.lastVangles, lastAxis ); rotAngle = DotProduct( inAxis[ 0 ], lastAxis[ 0 ] ) + DotProduct( inAxis[ 1 ], lastAxis[ 1 ] ) + DotProduct( inAxis[ 2 ], lastAxis[ 2 ] ); rotAngle = RAD2DEG( acos( ( rotAngle - 1.0f ) / 2.0f ) ); CrossProduct( lastAxis[ 0 ], inAxis[ 0 ], temp ); VectorCopy( temp, rotAxis ); CrossProduct( lastAxis[ 1 ], inAxis[ 1 ], temp ); VectorAdd( rotAxis, temp, rotAxis ); CrossProduct( lastAxis[ 2 ], inAxis[ 2 ], temp ); VectorAdd( rotAxis, temp, rotAxis ); VectorNormalize( rotAxis ); } //add the op CG_addSmoothOp( rotAxis, rotAngle ); } //iterate through ops for( i = 0; i < MAXSMOOTHS; i++ ) { //if this op has time remaining, perform it if( cg.time < cg.sList[ i ].time + cg_smoothTime.integer ) { stLocal = 1.0 - ( ( ( cg.sList[ i ].time + cg_smoothTime.integer ) - cg.time ) / cg_smoothTime.integer ); sFraction = -( cos( stLocal * M_PI ) + 1 ) / 2; RotatePointAroundVector( outAxis[ 0 ], cg.sList[ i ].rotAxis, inAxis[ 0 ], sFraction * cg.sList[ i ].rotAngle ); RotatePointAroundVector( outAxis[ 1 ], cg.sList[ i ].rotAxis, inAxis[ 1 ], sFraction * cg.sList[ i ].rotAngle ); RotatePointAroundVector( outAxis[ 2 ], cg.sList[ i ].rotAxis, inAxis[ 2 ], sFraction * cg.sList[ i ].rotAngle ); AxisCopy( outAxis, inAxis ); performed = qtrue; } } //if we performed any ops then return the smoothed angles //otherwise simply return the in angles if( performed ) AxisToAngles( outAxis, out ); else VectorCopy( in, out ); //copy the current normal to the lastNormal VectorCopy( in, cg.lastVangles ); VectorCopy( surfNormal, cg.lastNormal ); } /* =============== CG_CalcViewValues Sets cg.refdef view values =============== */ static int CG_CalcViewValues( void ) { playerState_t *ps; memset( &cg.refdef, 0, sizeof( cg.refdef ) ); // strings for in game rendering // Q_strncpyz( cg.refdef.text[0], "Park Ranger", sizeof(cg.refdef.text[0]) ); // Q_strncpyz( cg.refdef.text[1], "19", sizeof(cg.refdef.text[1]) ); // calculate size of 3D view CG_CalcVrect(); ps = &cg.predictedPlayerState; // intermission view if ( ps->pm_type == PM_INTERMISSION ) { VectorCopy( ps->origin, cg.refdef.vieworg ); VectorCopy( ps->viewangles, cg.refdefViewAngles ); AnglesToAxis( cg.refdefViewAngles, cg.refdef.viewaxis ); return CG_CalcFov(); } cg.bobcycle = ( ps->bobCycle & 128 ) >> 7; cg.bobfracsin = fabs( sin( ( ps->bobCycle & 127 ) / 127.0 * M_PI ) ); cg.xyspeed = sqrt( ps->velocity[0] * ps->velocity[0] + ps->velocity[1] * ps->velocity[1] ); VectorCopy( ps->origin, cg.refdef.vieworg ); if( BG_ClassHasAbility( ps->stats[ STAT_PCLASS ], SCA_WALLCLIMBER ) ) CG_smoothWWTransitions( ps, ps->viewangles, cg.refdefViewAngles ); else VectorCopy( ps->viewangles, cg.refdefViewAngles ); if( !( ps->stats[ STAT_STATE ] & SS_WALLCLIMBING ) ) VectorSet( cg.lastNormal, 0.0f, 0.0f, 1.0f ); if (cg_cameraOrbit.integer) { if (cg.time > cg.nextOrbitTime) { cg.nextOrbitTime = cg.time + cg_cameraOrbitDelay.integer; cg_thirdPersonAngle.value += cg_cameraOrbit.value; } } // add error decay if ( cg_errorDecay.value > 0 ) { int t; float f; t = cg.time - cg.predictedErrorTime; f = ( cg_errorDecay.value - t ) / cg_errorDecay.value; if ( f > 0 && f < 1 ) { VectorMA( cg.refdef.vieworg, f, cg.predictedError, cg.refdef.vieworg ); } else { cg.predictedErrorTime = 0; } } if ( cg.renderingThirdPerson ) { // back away from character CG_OffsetThirdPersonView(); } else { // offset for local bobbing and kicks CG_OffsetFirstPersonView(); } // position eye reletive to origin AnglesToAxis( cg.refdefViewAngles, cg.refdef.viewaxis ); if ( cg.hyperspace ) { cg.refdef.rdflags |= RDF_NOWORLDMODEL | RDF_HYPERSPACE; } //draw the surface normal looking at if( cg_drawSurfNormal.integer ) CG_DrawSurfNormal( ); // field of view return CG_CalcFov(); } /* ===================== CG_PowerupTimerSounds ===================== */ static void CG_PowerupTimerSounds( void ) { int i; int t; // powerup timers going away for ( i = 0 ; i < MAX_POWERUPS ; i++ ) { t = cg.snap->ps.powerups[i]; if ( t <= cg.time ) { continue; } if ( t - cg.time >= POWERUP_BLINKS * POWERUP_BLINK_TIME ) { continue; } if ( ( t - cg.time ) / POWERUP_BLINK_TIME != ( t - cg.oldTime ) / POWERUP_BLINK_TIME ) { trap_S_StartSound( NULL, cg.snap->ps.clientNum, CHAN_ITEM, cgs.media.wearOffSound ); } } } /* ===================== CG_AddBufferedSound ===================== */ void CG_AddBufferedSound( sfxHandle_t sfx ) { if ( !sfx ) return; cg.soundBuffer[cg.soundBufferIn] = sfx; cg.soundBufferIn = (cg.soundBufferIn + 1) % MAX_SOUNDBUFFER; if (cg.soundBufferIn == cg.soundBufferOut) { cg.soundBufferOut++; } } /* ===================== CG_PlayBufferedSounds ===================== */ static void CG_PlayBufferedSounds( void ) { if ( cg.soundTime < cg.time ) { if (cg.soundBufferOut != cg.soundBufferIn && cg.soundBuffer[cg.soundBufferOut]) { trap_S_StartLocalSound(cg.soundBuffer[cg.soundBufferOut], CHAN_ANNOUNCER); cg.soundBuffer[cg.soundBufferOut] = 0; cg.soundBufferOut = (cg.soundBufferOut + 1) % MAX_SOUNDBUFFER; cg.soundTime = cg.time + 750; } } } //========================================================================= /* ================= CG_DrawActiveFrame Generates and draws a game scene and status information at the given time. ================= */ void CG_DrawActiveFrame( int serverTime, stereoFrame_t stereoView, qboolean demoPlayback ) { int inwater; cg.time = serverTime; cg.demoPlayback = demoPlayback; // update cvars CG_UpdateCvars(); // if we are only updating the screen as a loading // pacifier, don't even try to read snapshots if ( cg.infoScreenText[0] != 0 ) { CG_DrawInformation(); return; } // any looped sounds will be respecified as entities // are added to the render list trap_S_ClearLoopingSounds(qfalse); // clear all the render lists trap_R_ClearScene(); // set up cg.snap and possibly cg.nextSnap CG_ProcessSnapshots(); // if we haven't received any snapshots yet, all // we can draw is the information screen if ( !cg.snap || ( cg.snap->snapFlags & SNAPFLAG_NOT_ACTIVE ) ) { CG_DrawInformation(); return; } // let the client system know what our weapon and zoom settings are trap_SetUserCmdValue( cg.weaponSelect, cg.zoomSensitivity ); // this counter will be bumped for every valid scene we generate cg.clientFrame++; // update cg.predictedPlayerState CG_PredictPlayerState(); // decide on third person view cg.renderingThirdPerson = cg_thirdPerson.integer || (cg.snap->ps.stats[STAT_HEALTH] <= 0); // build cg.refdef inwater = CG_CalcViewValues(); // first person blend blobs, done after AnglesToAxis if ( !cg.renderingThirdPerson ) { CG_DamageBlendBlob(); } // build the render lists if ( !cg.hyperspace ) { CG_AddPacketEntities(); // adter calcViewValues, so predicted player state is correct CG_AddMarks(); CG_AddParticles (); CG_AddLocalEntities(); } CG_AddViewWeapon( &cg.predictedPlayerState ); // add buffered sounds CG_PlayBufferedSounds(); // play buffered voice chats CG_PlayBufferedVoiceChats(); // finish up the rest of the refdef if ( cg.testModelEntity.hModel ) { CG_AddTestModel(); } cg.refdef.time = cg.time; memcpy( cg.refdef.areamask, cg.snap->areamask, sizeof( cg.refdef.areamask ) ); // warning sounds when powerup is wearing off /*CG_PowerupTimerSounds();*/ // update audio positions trap_S_Respatialize( cg.snap->ps.clientNum, cg.refdef.vieworg, cg.refdef.viewaxis, inwater ); // make sure the lagometerSample and frame timing isn't done twice when in stereo if ( stereoView != STEREO_RIGHT ) { cg.frametime = cg.time - cg.oldTime; if ( cg.frametime < 0 ) { cg.frametime = 0; } cg.oldTime = cg.time; CG_AddLagometerFrameInfo(); } if (cg_timescale.value != cg_timescaleFadeEnd.value) { if (cg_timescale.value < cg_timescaleFadeEnd.value) { cg_timescale.value += cg_timescaleFadeSpeed.value * ((float)cg.frametime) / 1000; if (cg_timescale.value > cg_timescaleFadeEnd.value) cg_timescale.value = cg_timescaleFadeEnd.value; } else { cg_timescale.value -= cg_timescaleFadeSpeed.value * ((float)cg.frametime) / 1000; if (cg_timescale.value < cg_timescaleFadeEnd.value) cg_timescale.value = cg_timescaleFadeEnd.value; } if (cg_timescaleFadeSpeed.value) { trap_Cvar_Set("timescale", va("%f", cg_timescale.value)); } } if( cg.predictedPlayerState.stats[ STAT_PTEAM ] == PTE_DROIDS && cg.predictedPlayerState.persistant[PERS_TEAM] != TEAM_SPECTATOR ) trap_R_AddAdditiveLightToScene( cg.predictedPlayerState.origin, 500, 0.07f, 0.07f, 0.07f ); // actually issue the rendering calls CG_DrawActive( stereoView ); if ( cg_stats.integer ) { CG_Printf( "cg.clientFrame:%i\n", cg.clientFrame ); } }