// Copyright (C) 1999-2000 Id Software, Inc.
//
// q_math.c -- stateless support routines that are included in each code module

/*
 *  Portions Copyright (C) 2000-2001 Tim Angus
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation; either version 2.1, or (at your option)
 *  any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*  To assertain which portions are licensed under the LGPL and which are
 *  licensed by Id Software, Inc. please run a diff between the equivalent
 *  versions of the "Tremulous" modification and the unmodified "Quake3"
 *  game source code.
 */
                    
#include "q_shared.h"


vec3_t  vec3_origin = {0,0,0};
vec3_t  axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };


vec4_t    colorBlack  = {0, 0, 0, 1};
vec4_t    colorRed  = {1, 0, 0, 1};
vec4_t    colorGreen  = {0, 1, 0, 1};
vec4_t    colorBlue = {0, 0, 1, 1};
vec4_t    colorYellow = {1, 1, 0, 1};
vec4_t    colorMagenta= {1, 0, 1, 1};
vec4_t    colorCyan = {0, 1, 1, 1};
vec4_t    colorWhite  = {1, 1, 1, 1};
vec4_t    colorLtGrey = {0.75, 0.75, 0.75, 1};
vec4_t    colorMdGrey = {0.5, 0.5, 0.5, 1};
vec4_t    colorDkGrey = {0.25, 0.25, 0.25, 1};

vec4_t  g_color_table[8] =
  {
  {0.0, 0.0, 0.0, 1.0},
  {1.0, 0.0, 0.0, 1.0},
  {0.0, 1.0, 0.0, 1.0},
  {1.0, 1.0, 0.0, 1.0},
  {0.0, 0.0, 1.0, 1.0},
  {0.0, 1.0, 1.0, 1.0},
  {1.0, 0.0, 1.0, 1.0},
  {1.0, 1.0, 1.0, 1.0},
  };


vec3_t  bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f}, 
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f}, 
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f}, 
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f}, 
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f}, 
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f}, 
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f}, 
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f}, 
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f}, 
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f}, 
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f}, 
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f}, 
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f}, 
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f}, 
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f}, 
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f}, 
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f}, 
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f}, 
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f}, 
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f}, 
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f}, 
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f}, 
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f}, 
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f}, 
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f}, 
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f}, 
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f}, 
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f}, 
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f}, 
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f}, 
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f}, 
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f}, 
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f}, 
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f}, 
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f}, 
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f}, 
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f}, 
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f}, 
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f}, 
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f}, 
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f}, 
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f}, 
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f}, 
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f}, 
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f}, 
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f}, 
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f}, 
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f}, 
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f}, 
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f}, 
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f}, 
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f}, 
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f}, 
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f}, 
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f}, 
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f}, 
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f}, 
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f}, 
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f}, 
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f}, 
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f}, 
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f}, 
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f}, 
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f}, 
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f}, 
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f}, 
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f}, 
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f}, 
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f}, 
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f}, 
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f}, 
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f}, 
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f}, 
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f}, 
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f}, 
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f}, 
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f}, 
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f}, 
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f}, 
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
};

//==============================================================

int   Q_rand( int *seed ) {
  *seed = (69069 * *seed + 1);
  return *seed;
}

float Q_random( int *seed ) {
  return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}

float Q_crandom( int *seed ) {
  return 2.0 * ( Q_random( seed ) - 0.5 );
}

#ifdef __LCC__

int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
	if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
		return 0;
	}			
	return 1;
}

vec_t VectorLength( const vec3_t v ) {
	return (vec_t)sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}

vec_t VectorLengthSquared( const vec3_t v ) {
	return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}

vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
	vec3_t	v;

	VectorSubtract (p2, p1, v);
	return VectorLength( v );
}

vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
	vec3_t	v;

	VectorSubtract (p2, p1, v);
	return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}

// fast vector normalize routine that does not check to make sure
// that length != 0, nor does it return length, uses rsqrt approximation
void VectorNormalizeFast( vec3_t v )
{
	float ilength;

	ilength = Q_rsqrt( DotProduct( v, v ) );

	v[0] *= ilength;
	v[1] *= ilength;
	v[2] *= ilength;
}

void VectorInverse( vec3_t v ){
	v[0] = -v[0];
	v[1] = -v[1];
	v[2] = -v[2];
}

void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
	cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
	cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
	cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
#endif

//=======================================================

signed char ClampChar( int i ) {
  if ( i < -128 ) {
    return -128;
  }
  if ( i > 127 ) {
    return 127;
  }
  return i;
}

signed short ClampShort( int i ) {
  if ( i < -32768 ) {
    return -32768;
  }
  if ( i > 0x7fff ) {
    return 0x7fff;
  }
  return i;
}


// this isn't a real cheap function to call!
int DirToByte( vec3_t dir ) {
  int   i, best;
  float d, bestd;

  if ( !dir ) {
    return 0;
  }

  bestd = 0;
  best = 0;
  for (i=0 ; i<NUMVERTEXNORMALS ; i++)
  {
    d = DotProduct (dir, bytedirs[i]);
    if (d > bestd)
    {
      bestd = d;
      best = i;
    }
  }

  return best;
}

void ByteToDir( int b, vec3_t dir ) {
  if ( b < 0 || b >= NUMVERTEXNORMALS ) {
    VectorCopy( vec3_origin, dir );
    return;
  }
  VectorCopy (bytedirs[b], dir);
}


unsigned ColorBytes3 (float r, float g, float b) {
  unsigned  i;

  ( (byte *)&i )[0] = r * 255;
  ( (byte *)&i )[1] = g * 255;
  ( (byte *)&i )[2] = b * 255;

  return i;
}

unsigned ColorBytes4 (float r, float g, float b, float a) {
  unsigned  i;

  ( (byte *)&i )[0] = r * 255;
  ( (byte *)&i )[1] = g * 255;
  ( (byte *)&i )[2] = b * 255;
  ( (byte *)&i )[3] = a * 255;

  return i;
}

float NormalizeColor( const vec3_t in, vec3_t out ) {
  float max;

  max = in[0];
  if ( in[1] > max ) {
    max = in[1];
  }
  if ( in[2] > max ) {
    max = in[2];
  }

  if ( !max ) {
    VectorClear( out );
  } else {
    out[0] = in[0] / max;
    out[1] = in[1] / max;
    out[2] = in[2] / max;
  }
  return max;
}


/*
=====================
PlaneFromPoints

Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
  vec3_t  d1, d2;

  VectorSubtract( b, a, d1 );
  VectorSubtract( c, a, d2 );
  CrossProduct( d2, d1, plane );
  if ( VectorNormalize( plane ) == 0 ) {
    return qfalse;
  }

  plane[3] = DotProduct( a, plane );
  return qtrue;
}


/// These optimised and much cleaner implementations of the Vector Rotation
/// functions were provided by Riv of planetquake (riviera@planetquake.com)
/// ...Cheers Riv...
/*
===============
RotatePointAroundVector

This is not implemented very well...
===============
*/
void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees)
{
  float sin_a;
  float cos_a;
  float cos_ia;
  float i_i_ia;
  float j_j_ia;
  float k_k_ia;
  float i_j_ia;
  float i_k_ia;
  float j_k_ia;
  float a_sin;
  float b_sin;
  float c_sin;
  float rot[3][3];

  cos_ia = DEG2RAD(degrees);
  sin_a = sin(cos_ia);
  cos_a = cos(cos_ia);
  cos_ia = 1.0F - cos_a;

  i_i_ia = dir[0] * dir[0] * cos_ia;
  j_j_ia = dir[1] * dir[1] * cos_ia;
  k_k_ia = dir[2] * dir[2] * cos_ia;
  i_j_ia = dir[0] * dir[1] * cos_ia;
  i_k_ia = dir[0] * dir[2] * cos_ia;
  j_k_ia = dir[1] * dir[2] * cos_ia;

  a_sin = dir[0] * sin_a;
  b_sin = dir[1] * sin_a;
  c_sin = dir[2] * sin_a;

  rot[0][0] = i_i_ia + cos_a;
  rot[0][1] = i_j_ia - c_sin;
  rot[0][2] = i_k_ia + b_sin;
  rot[1][0] = i_j_ia + c_sin;
  rot[1][1] = j_j_ia + cos_a;
  rot[1][2] = j_k_ia - a_sin;
  rot[2][0] = i_k_ia - b_sin;
  rot[2][1] = j_k_ia + a_sin;
  rot[2][2] = k_k_ia + cos_a;

  dst[0] = point[0] * rot[0][0] + point[1] * rot[0][1] + point[2] * rot[0][2];
  dst[1] = point[0] * rot[1][0] + point[1] * rot[1][1] + point[2] * rot[1][2];
  dst[2] = point[0] * rot[2][0] + point[1] * rot[2][1] + point[2] * rot[2][2];
}


/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection(vec3_t axis[3], vec_t angle)
{
  vec_t scale;

  angle = DEG2RAD(angle);

  // create an arbitrary axis[1] 
  PerpendicularVector(axis[1], axis[0]);

  // cross to get axis[2]
  CrossProduct(axis[0], axis[1], axis[2]);

  // rotate
  scale = cos(angle);
  VectorScale(axis[1], scale, axis[1]);

  scale = sin(angle);
  VectorMA(axis[1], scale, axis[2], axis[1]);

  // recalculate axis[2]
  CrossProduct(axis[0], axis[1], axis[2]);
}


void vectoangles( const vec3_t value1, vec3_t angles ) {
  float forward;
  float yaw, pitch;

  if ( value1[1] == 0 && value1[0] == 0 ) {
    yaw = 0;
    if ( value1[2] > 0 ) {
      pitch = 90;
    }
    else {
      pitch = 270;
    }
  }
  else {
    if ( value1[0] ) {
      yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
    }
    else if ( value1[1] > 0 ) {
      yaw = 90;
    }
    else {
      yaw = 270;
    }
    if ( yaw < 0 ) {
      yaw += 360;
    }

    forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
    pitch = ( atan2(value1[2], forward) * 180 / M_PI );
    if ( pitch < 0 ) {
      pitch += 360;
    }
  }

  angles[PITCH] = -pitch;
  angles[YAW] = yaw;
  angles[ROLL] = 0;
}


/*
=================
AxisToAngles
TA: takes an axis (forward + right + up)
    and returns angles -- including a roll
=================
*/
void AxisToAngles( vec3_t axis[3], vec3_t angles ) {
  float length1;
  float yaw, pitch, roll;

  if ( axis[0][1] == 0 && axis[0][0] == 0 ) {
    yaw = 0;
    if ( axis[0][2] > 0 ) {
      pitch = 90;
    }
    else {
      pitch = 270;
    }
  }
  else {
    if ( axis[0][0] ) {
      yaw = ( atan2 ( axis[0][1], axis[0][0] ) * 180 / M_PI );
    }
    else if ( axis[0][1] > 0 ) {
      yaw = 90;
    }
    else {
      yaw = 270;
    }
    if ( yaw < 0 ) {
      yaw += 360;
    }

    length1 = sqrt ( axis[0][0]*axis[0][0] + axis[0][1]*axis[0][1] );
    pitch = ( atan2(axis[0][2], length1) * 180 / M_PI );
    if ( pitch < 0 ) {
      pitch += 360;
    }

    roll = ( atan2( axis[1][2], axis[2][2] ) * 180 / M_PI );
    if ( roll < 0 ) {
      roll += 360;
    }
  }

  angles[PITCH] = -pitch;
  angles[YAW] = yaw;
  angles[ROLL] = roll;
}

/*
=================
AnglesToAxis
=================
*/
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
  vec3_t  right;

  // angle vectors returns "right" instead of "y axis"
  AngleVectors( angles, axis[0], right, axis[2] );
  VectorSubtract( vec3_origin, right, axis[1] );
}

void AxisClear( vec3_t axis[3] ) {
  axis[0][0] = 1;
  axis[0][1] = 0;
  axis[0][2] = 0;
  axis[1][0] = 0;
  axis[1][1] = 1;
  axis[1][2] = 0;
  axis[2][0] = 0;
  axis[2][1] = 0;
  axis[2][2] = 1;
}

void AxisCopy( vec3_t in[3], vec3_t out[3] ) {
  VectorCopy( in[0], out[0] );
  VectorCopy( in[1], out[1] );
  VectorCopy( in[2], out[2] );
}

void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
  float d;
  vec3_t n;
  float inv_denom;

  inv_denom = 1.0F / DotProduct( normal, normal );

#ifndef Q3_VM
  assert( Q_fabs(inv_denom) != 0.0f ); // bk010122 - zero vectors get here
#endif
  inv_denom = 1.0f / inv_denom;
    
  d = DotProduct( normal, p ) * inv_denom;

  n[0] = normal[0] * inv_denom;
  n[1] = normal[1] * inv_denom;
  n[2] = normal[2] * inv_denom;

  dst[0] = p[0] - d * n[0];
  dst[1] = p[1] - d * n[1];
  dst[2] = p[2] - d * n[2];
}

/*
================
MakeNormalVectors

Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
  float   d;

  // this rotate and negate guarantees a vector
  // not colinear with the original
  right[1] = -forward[0];
  right[2] = forward[1];
  right[0] = forward[2];

  d = DotProduct (right, forward);
  VectorMA (right, -d, forward, right);
  VectorNormalize (right);
  CrossProduct (right, forward, up);
}


void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
{
  out[0] = DotProduct( in, matrix[0] );
  out[1] = DotProduct( in, matrix[1] );
  out[2] = DotProduct( in, matrix[2] );
}

//============================================================================

#if !idppc
/*
** float q_rsqrt( float number )
*/
float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;

  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;           // evil floating point bit level hacking
  i  = 0x5f3759df - ( i >> 1 );               // what the fuck?
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
//  y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed

#ifndef Q3_VM
#ifdef __linux__
  assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
  
  return y;
}
#endif

float Q_fabs( float f ) {
  int tmp = * ( int * ) &f;
  tmp &= 0x7FFFFFFF;
  return * ( float * ) &tmp;
}

//============================================================

/*
===============
LerpAngle

===============
*/
float LerpAngle (float from, float to, float frac) {
  float a;

  if ( to - from > 180 ) {
    to -= 360;
  }
  if ( to - from < -180 ) {
    to += 360;
  }
  a = from + frac * (to - from);

  return a;
}


/*
=================
AngleSubtract

Always returns a value from -180 to 180
=================
*/
float AngleSubtract( float a1, float a2 ) {
  float a;

  a = a1 - a2;
  while ( a > 180 ) {
    a -= 360;
  }
  while ( a < -180 ) {
    a += 360;
  }
  return a;
}


void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
  v3[0] = AngleSubtract( v1[0], v2[0] );
  v3[1] = AngleSubtract( v1[1], v2[1] );
  v3[2] = AngleSubtract( v1[2], v2[2] );
}


float AngleMod(float a) {
  a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
  return a;
}


/*
=================
AngleNormalize360

returns angle normalized to the range [0 <= angle < 360]
=================
*/
float AngleNormalize360 ( float angle ) {
  return (360.0 / 65536) * ((int)(angle * (65536 / 360.0)) & 65535);
}


/*
=================
AngleNormalize180

returns angle normalized to the range [-180 < angle <= 180]
=================
*/
float AngleNormalize180 ( float angle ) {
  angle = AngleNormalize360( angle );
  if ( angle > 180.0 ) {
    angle -= 360.0;
  }
  return angle;
}


/*
=================
AngleDelta

returns the normalized delta from angle1 to angle2
=================
*/
float AngleDelta ( float angle1, float angle2 ) {
  return AngleNormalize180( angle1 - angle2 );
}


//============================================================


/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits (cplane_t *out) {
  int bits, j;

  // for fast box on planeside test
  bits = 0;
  for (j=0 ; j<3 ; j++) {
    if (out->normal[j] < 0) {
      bits |= 1<<j;
    }
  }
  out->signbits = bits;
}


/*
==================
BoxOnPlaneSide

Returns 1, 2, or 1 + 2

// this is the slow, general version
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
  int   i;
  float dist1, dist2;
  int   sides;
  vec3_t  corners[2];

  for (i=0 ; i<3 ; i++)
  {
    if (p->normal[i] < 0)
    {
      corners[0][i] = emins[i];
      corners[1][i] = emaxs[i];
    }
    else
    {
      corners[1][i] = emins[i];
      corners[0][i] = emaxs[i];
    }
  }
  dist1 = DotProduct (p->normal, corners[0]) - p->dist;
  dist2 = DotProduct (p->normal, corners[1]) - p->dist;
  sides = 0;
  if (dist1 >= 0)
    sides = 1;
  if (dist2 < 0)
    sides |= 2;

  return sides;
}

==================
*/
#if !( (defined __linux__ || __FreeBSD__) && (defined __i386__) && (!defined C_ONLY)) // rb010123
#if defined __LCC__ || defined C_ONLY || !id386 || defined __VECTORC

int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
  float dist1, dist2;
  int   sides;

// fast axial cases
  if (p->type < 3)
  {
    if (p->dist <= emins[p->type])
      return 1;
    if (p->dist >= emaxs[p->type])
      return 2;
    return 3;
  }

// general case
  switch (p->signbits)
  {
  case 0:
    dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
    dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
    break;
  case 1:
    dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
    dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
    break;
  case 2:
    dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
    dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
    break;
  case 3:
    dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
    dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
    break;
  case 4:
    dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
    dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
    break;
  case 5:
    dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
    dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
    break;
  case 6:
    dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
    dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
    break;
  case 7:
    dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
    dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
    break;
  default:
    dist1 = dist2 = 0;    // shut up compiler
    break;
  }

  sides = 0;
  if (dist1 >= p->dist)
    sides = 1;
  if (dist2 < p->dist)
    sides |= 2;

  return sides;
}
#else
#pragma warning( disable: 4035 )

__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
  static int bops_initialized;
  static int Ljmptab[8];

  __asm {

    push ebx

    cmp bops_initialized, 1
    je  initialized
    mov bops_initialized, 1

    mov Ljmptab[0*4], offset Lcase0
    mov Ljmptab[1*4], offset Lcase1
    mov Ljmptab[2*4], offset Lcase2
    mov Ljmptab[3*4], offset Lcase3
    mov Ljmptab[4*4], offset Lcase4
    mov Ljmptab[5*4], offset Lcase5
    mov Ljmptab[6*4], offset Lcase6
    mov Ljmptab[7*4], offset Lcase7

initialized:

    mov edx,dword ptr[4+12+esp]
    mov ecx,dword ptr[4+4+esp]
    xor eax,eax
    mov ebx,dword ptr[4+8+esp]
    mov al,byte ptr[17+edx]
    cmp al,8
    jge Lerror
    fld dword ptr[0+edx]
    fld st(0)
    jmp dword ptr[Ljmptab+eax*4]
Lcase0:
    fmul dword ptr[ebx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ebx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ebx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ecx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase1:
    fmul dword ptr[ecx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ebx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ebx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ecx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase2:
    fmul dword ptr[ebx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ecx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ebx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ecx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase3:
    fmul dword ptr[ecx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ecx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ebx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ecx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase4:
    fmul dword ptr[ebx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ebx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ecx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ebx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase5:
    fmul dword ptr[ecx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ebx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ecx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ebx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase6:
    fmul dword ptr[ebx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ecx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ecx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ecx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ebx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
    jmp LSetSides
Lcase7:
    fmul dword ptr[ecx]
    fld dword ptr[0+4+edx]
    fxch st(2)
    fmul dword ptr[ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[4+ecx]
    fld dword ptr[0+8+edx]
    fxch st(2)
    fmul dword ptr[4+ebx]
    fxch st(2)
    fld st(0)
    fmul dword ptr[8+ecx]
    fxch st(5)
    faddp st(3),st(0)
    fmul dword ptr[8+ebx]
    fxch st(1)
    faddp st(3),st(0)
    fxch st(3)
    faddp st(2),st(0)
LSetSides:
    faddp st(2),st(0)
    fcomp dword ptr[12+edx]
    xor ecx,ecx
    fnstsw ax
    fcomp dword ptr[12+edx]
    and ah,1
    xor ah,1
    add cl,ah
    fnstsw ax
    and ah,1
    add ah,ah
    add cl,ah
    pop ebx
    mov eax,ecx
    ret
Lerror:
    int 3
  }
}
#pragma warning( default: 4035 )

#endif
#endif

/*
=================
RadiusFromBounds
=================
*/
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
  int   i;
  vec3_t  corner;
  float a, b;

  for (i=0 ; i<3 ; i++) {
    a = fabs( mins[i] );
    b = fabs( maxs[i] );
    corner[i] = a > b ? a : b;
  }

  return VectorLength (corner);
}


void ClearBounds( vec3_t mins, vec3_t maxs ) {
  mins[0] = mins[1] = mins[2] = 99999;
  maxs[0] = maxs[1] = maxs[2] = -99999;
}

void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
  if ( v[0] < mins[0] ) {
    mins[0] = v[0];
  }
  if ( v[0] > maxs[0]) {
    maxs[0] = v[0];
  }

  if ( v[1] < mins[1] ) {
    mins[1] = v[1];
  }
  if ( v[1] > maxs[1]) {
    maxs[1] = v[1];
  }

  if ( v[2] < mins[2] ) {
    mins[2] = v[2];
  }
  if ( v[2] > maxs[2]) {
    maxs[2] = v[2];
  }
}


vec_t VectorNormalize( vec3_t v ) {
  float length, ilength;

  length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
  length = sqrt (length);

  if ( length ) {
    ilength = 1/length;
    v[0] *= ilength;
    v[1] *= ilength;
    v[2] *= ilength;
  }

  return length;
}

vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
  float length, ilength;

  length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
  length = sqrt (length);

  if (length)
  {
    ilength = 1/length;
    out[0] = v[0]*ilength;
    out[1] = v[1]*ilength;
    out[2] = v[2]*ilength;
  } else {
    VectorClear( out );
  }

  return length;

}

void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
  vecc[0] = veca[0] + scale*vecb[0];
  vecc[1] = veca[1] + scale*vecb[1];
  vecc[2] = veca[2] + scale*vecb[2];
}


vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
  return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
  out[0] = veca[0]-vecb[0];
  out[1] = veca[1]-vecb[1];
  out[2] = veca[2]-vecb[2];
}

void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
  out[0] = veca[0]+vecb[0];
  out[1] = veca[1]+vecb[1];
  out[2] = veca[2]+vecb[2];
}

void _VectorCopy( const vec3_t in, vec3_t out ) {
  out[0] = in[0];
  out[1] = in[1];
  out[2] = in[2];
}

void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
  out[0] = in[0]*scale;
  out[1] = in[1]*scale;
  out[2] = in[2]*scale;
}

void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
  out[0] = in[0]*scale;
  out[1] = in[1]*scale;
  out[2] = in[2]*scale;
  out[3] = in[3]*scale;
}


int Q_log2( int val ) {
  int answer;

  answer = 0;
  while ( ( val>>=1 ) != 0 ) {
    answer++;
  }
  return answer;
}



/*
=================
PlaneTypeForNormal
=================
*/
/*
int PlaneTypeForNormal (vec3_t normal) {
  if ( normal[0] == 1.0 )
    return PLANE_X;
  if ( normal[1] == 1.0 )
    return PLANE_Y;
  if ( normal[2] == 1.0 )
    return PLANE_Z;

  return PLANE_NON_AXIAL;
}
*/


/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
  out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
        in1[0][2] * in2[2][0];
  out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
        in1[0][2] * in2[2][1];
  out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
        in1[0][2] * in2[2][2];
  out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
        in1[1][2] * in2[2][0];
  out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
        in1[1][2] * in2[2][1];
  out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
        in1[1][2] * in2[2][2];
  out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
        in1[2][2] * in2[2][0];
  out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
        in1[2][2] * in2[2][1];
  out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
        in1[2][2] * in2[2][2];
}


void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
  float   angle;
  static float    sr, sp, sy, cr, cp, cy;
  // static to help MS compiler fp bugs

  angle = angles[YAW] * (M_PI*2 / 360);
  sy = sin(angle);
  cy = cos(angle);
  angle = angles[PITCH] * (M_PI*2 / 360);
  sp = sin(angle);
  cp = cos(angle);
  angle = angles[ROLL] * (M_PI*2 / 360);
  sr = sin(angle);
  cr = cos(angle);

  if (forward)
  {
    forward[0] = cp*cy;
    forward[1] = cp*sy;
    forward[2] = -sp;
  }
  if (right)
  {
    right[0] = (-1*sr*sp*cy+-1*cr*-sy);
    right[1] = (-1*sr*sp*sy+-1*cr*cy);
    right[2] = -1*sr*cp;
  }
  if (up)
  {
    up[0] = (cr*sp*cy+-sr*-sy);
    up[1] = (cr*sp*sy+-sr*cy);
    up[2] = cr*cp;
  }
}

/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
  int pos;
  int i;
  float minelem = 1.0F;
  vec3_t tempvec;

  /*
  ** find the smallest magnitude axially aligned vector
  */
  for ( pos = 0, i = 0; i < 3; i++ )
  {
    if ( fabs( src[i] ) < minelem )
    {
      pos = i;
      minelem = fabs( src[i] );
    }
  }
  tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
  tempvec[pos] = 1.0F;

  /*
  ** project the point onto the plane defined by src
  */
  ProjectPointOnPlane( dst, tempvec, src );

  /*
  ** normalize the result
  */
  VectorNormalize( dst );
}