/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. Copyright (C) 2000-2009 Darklegion Development This file is part of Tremulous. Tremulous is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Tremulous is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Tremulous; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_image.c #include "tr_local.h" static byte s_intensitytable[256]; static unsigned char s_gammatable[256]; int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST; int gl_filter_max = GL_LINEAR; #define FILE_HASH_SIZE 1024 static image_t* hashTable[FILE_HASH_SIZE]; /* ** R_GammaCorrect */ void R_GammaCorrect( byte *buffer, int bufSize ) { int i; for ( i = 0; i < bufSize; i++ ) { buffer[i] = s_gammatable[buffer[i]]; } } typedef struct { char *name; int minimize, maximize; } textureMode_t; textureMode_t modes[] = { {"GL_NEAREST", GL_NEAREST, GL_NEAREST}, {"GL_LINEAR", GL_LINEAR, GL_LINEAR}, {"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST}, {"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR}, {"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST}, {"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR} }; /* ================ return a hash value for the filename ================ */ static long generateHashValue( const char *fname ) { int i; long hash; char letter; hash = 0; i = 0; while (fname[i] != '\0') { letter = tolower(fname[i]); if (letter =='.') break; // don't include extension if (letter =='\\') letter = '/'; // damn path names hash+=(long)(letter)*(i+119); i++; } hash &= (FILE_HASH_SIZE-1); return hash; } /* =============== GL_TextureMode =============== */ void GL_TextureMode( const char *string ) { int i; image_t *glt; for ( i=0 ; i< 6 ; i++ ) { if ( !Q_stricmp( modes[i].name, string ) ) { break; } } // hack to prevent trilinear from being set on voodoo, // because their driver freaks... if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) { ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" ); i = 3; } if ( i == 6 ) { ri.Printf (PRINT_ALL, "bad filter name\n"); return; } gl_filter_min = modes[i].minimize; gl_filter_max = modes[i].maximize; // change all the existing mipmap texture objects for ( i = 0 ; i < tr.numImages ; i++ ) { glt = tr.images[ i ]; if ( glt->mipmap ) { GL_Bind (glt); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max); } } } /* =============== R_SumOfUsedImages =============== */ int R_SumOfUsedImages( void ) { int total; int i; total = 0; for ( i = 0; i < tr.numImages; i++ ) { if ( tr.images[i]->frameUsed == tr.frameCount ) { total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight; } } return total; } /* =============== R_ImageList_f =============== */ void R_ImageList_f( void ) { int i; image_t *image; int texels; const char *yesno[] = { "no ", "yes" }; ri.Printf (PRINT_ALL, "\n -w-- -h-- -mm- -TMU- -if-- wrap --name-------\n"); texels = 0; for ( i = 0 ; i < tr.numImages ; i++ ) { image = tr.images[ i ]; texels += image->uploadWidth*image->uploadHeight; ri.Printf (PRINT_ALL, "%4i: %4i %4i %s %d ", i, image->uploadWidth, image->uploadHeight, yesno[image->mipmap], image->TMU ); switch ( image->internalFormat ) { case 1: ri.Printf( PRINT_ALL, "I " ); break; case 2: ri.Printf( PRINT_ALL, "IA " ); break; case 3: ri.Printf( PRINT_ALL, "RGB " ); break; case 4: ri.Printf( PRINT_ALL, "RGBA " ); break; case GL_RGBA8: ri.Printf( PRINT_ALL, "RGBA8" ); break; case GL_RGB8: ri.Printf( PRINT_ALL, "RGB8" ); break; case GL_RGB4_S3TC: case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: ri.Printf( PRINT_ALL, "S3TC " ); break; case GL_RGBA4: ri.Printf( PRINT_ALL, "RGBA4" ); break; case GL_RGB5: ri.Printf( PRINT_ALL, "RGB5 " ); break; default: ri.Printf( PRINT_ALL, "???? " ); } switch ( image->wrapClampMode ) { case GL_REPEAT: ri.Printf( PRINT_ALL, "rept " ); break; case GL_CLAMP_TO_EDGE: ri.Printf( PRINT_ALL, "clmp " ); break; default: ri.Printf( PRINT_ALL, "%4i ", image->wrapClampMode ); break; } ri.Printf( PRINT_ALL, " %s\n", image->imgName ); } ri.Printf (PRINT_ALL, " ---------\n"); ri.Printf (PRINT_ALL, " %i total texels (not including mipmaps)\n", texels); ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages ); } //======================================================================= /* ================ ResampleTexture Used to resample images in a more general than quartering fashion. This will only be filtered properly if the resampled size is greater than half the original size. If a larger shrinking is needed, use the mipmap function before or after. ================ */ static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out, int outwidth, int outheight ) { int i, j; unsigned *inrow, *inrow2; unsigned frac, fracstep; unsigned p1[2048], p2[2048]; byte *pix1, *pix2, *pix3, *pix4; if (outwidth>2048) ri.Error(ERR_DROP, "ResampleTexture: max width"); fracstep = inwidth*0x10000/outwidth; frac = fracstep>>2; for ( i=0 ; i<outwidth ; i++ ) { p1[i] = 4*(frac>>16); frac += fracstep; } frac = 3*(fracstep>>2); for ( i=0 ; i<outwidth ; i++ ) { p2[i] = 4*(frac>>16); frac += fracstep; } for (i=0 ; i<outheight ; i++, out += outwidth) { inrow = in + inwidth*(int)((i+0.25)*inheight/outheight); inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight); frac = fracstep >> 1; for (j=0 ; j<outwidth ; j++) { pix1 = (byte *)inrow + p1[j]; pix2 = (byte *)inrow + p2[j]; pix3 = (byte *)inrow2 + p1[j]; pix4 = (byte *)inrow2 + p2[j]; ((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2; ((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2; ((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2; ((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2; } } } /* ================ R_LightScaleTexture Scale up the pixel values in a texture to increase the lighting range ================ */ void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma ) { if ( only_gamma ) { if ( !glConfig.deviceSupportsGamma ) { int i, c; byte *p; p = (byte *)in; c = inwidth*inheight; for (i=0 ; i<c ; i++, p+=4) { p[0] = s_gammatable[p[0]]; p[1] = s_gammatable[p[1]]; p[2] = s_gammatable[p[2]]; } } } else { int i, c; byte *p; p = (byte *)in; c = inwidth*inheight; if ( glConfig.deviceSupportsGamma ) { for (i=0 ; i<c ; i++, p+=4) { p[0] = s_intensitytable[p[0]]; p[1] = s_intensitytable[p[1]]; p[2] = s_intensitytable[p[2]]; } } else { for (i=0 ; i<c ; i++, p+=4) { p[0] = s_gammatable[s_intensitytable[p[0]]]; p[1] = s_gammatable[s_intensitytable[p[1]]]; p[2] = s_gammatable[s_intensitytable[p[2]]]; } } } } /* ================ R_MipMap2 Operates in place, quartering the size of the texture Proper linear filter ================ */ static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) { int i, j, k; byte *outpix; int inWidthMask, inHeightMask; int total; int outWidth, outHeight; unsigned *temp; outWidth = inWidth >> 1; outHeight = inHeight >> 1; temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 ); inWidthMask = inWidth - 1; inHeightMask = inHeight - 1; for ( i = 0 ; i < outHeight ; i++ ) { for ( j = 0 ; j < outWidth ; j++ ) { outpix = (byte *) ( temp + i * outWidth + j ); for ( k = 0 ; k < 4 ; k++ ) { total = 1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k]; outpix[k] = total / 36; } } } Com_Memcpy( in, temp, outWidth * outHeight * 4 ); ri.Hunk_FreeTempMemory( temp ); } /* ================ R_MipMap Operates in place, quartering the size of the texture ================ */ static void R_MipMap (byte *in, int width, int height) { int i, j; byte *out; int row; if ( !r_simpleMipMaps->integer ) { R_MipMap2( (unsigned *)in, width, height ); return; } if ( width == 1 && height == 1 ) { return; } row = width * 4; out = in; width >>= 1; height >>= 1; if ( width == 0 || height == 0 ) { width += height; // get largest for (i=0 ; i<width ; i++, out+=4, in+=8 ) { out[0] = ( in[0] + in[4] )>>1; out[1] = ( in[1] + in[5] )>>1; out[2] = ( in[2] + in[6] )>>1; out[3] = ( in[3] + in[7] )>>1; } return; } for (i=0 ; i<height ; i++, in+=row) { for (j=0 ; j<width ; j++, out+=4, in+=8) { out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2; out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2; out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2; out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2; } } } /* ================== R_BlendOverTexture Apply a color blend over a set of pixels ================== */ static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) { int i; int inverseAlpha; int premult[3]; inverseAlpha = 255 - blend[3]; premult[0] = blend[0] * blend[3]; premult[1] = blend[1] * blend[3]; premult[2] = blend[2] * blend[3]; for ( i = 0 ; i < pixelCount ; i++, data+=4 ) { data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9; data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9; data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9; } } byte mipBlendColors[16][4] = { {0,0,0,0}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, }; /* =============== Upload32 =============== */ extern qboolean charSet; static void Upload32( unsigned *data, int width, int height, qboolean mipmap, qboolean picmip, qboolean lightMap, int *format, int *pUploadWidth, int *pUploadHeight ) { int samples; unsigned *scaledBuffer = NULL; unsigned *resampledBuffer = NULL; int scaled_width, scaled_height; int i, c; byte *scan; GLenum internalFormat = GL_RGB; float rMax = 0, gMax = 0, bMax = 0; // // convert to exact power of 2 sizes // for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1) ; for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1) ; if ( r_roundImagesDown->integer && scaled_width > width ) scaled_width >>= 1; if ( r_roundImagesDown->integer && scaled_height > height ) scaled_height >>= 1; if ( scaled_width != width || scaled_height != height ) { resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 ); ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height); data = resampledBuffer; width = scaled_width; height = scaled_height; } // // perform optional picmip operation // if ( picmip ) { scaled_width >>= r_picmip->integer; scaled_height >>= r_picmip->integer; } // // clamp to minimum size // if (scaled_width < 1) { scaled_width = 1; } if (scaled_height < 1) { scaled_height = 1; } // // clamp to the current upper OpenGL limit // scale both axis down equally so we don't have to // deal with a half mip resampling // while ( scaled_width > glConfig.maxTextureSize || scaled_height > glConfig.maxTextureSize ) { scaled_width >>= 1; scaled_height >>= 1; } scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height ); // // scan the texture for each channel's max values // and verify if the alpha channel is being used or not // c = width*height; scan = ((byte *)data); samples = 3; if( r_greyscale->integer ) { for ( i = 0; i < c; i++ ) { byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]); scan[i*4] = luma; scan[i*4 + 1] = luma; scan[i*4 + 2] = luma; } } else if( r_greyscale->value ) { for ( i = 0; i < c; i++ ) { float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]); scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value); scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value); scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value); } } if(lightMap) { if(r_greyscale->integer) internalFormat = GL_LUMINANCE; else internalFormat = GL_RGB; } else { for ( i = 0; i < c; i++ ) { if ( scan[i*4+0] > rMax ) { rMax = scan[i*4+0]; } if ( scan[i*4+1] > gMax ) { gMax = scan[i*4+1]; } if ( scan[i*4+2] > bMax ) { bMax = scan[i*4+2]; } if ( scan[i*4 + 3] != 255 ) { samples = 4; break; } } // select proper internal format if ( samples == 3 ) { if(r_greyscale->integer) { if(r_texturebits->integer == 16) internalFormat = GL_LUMINANCE8; else if(r_texturebits->integer == 32) internalFormat = GL_LUMINANCE16; else internalFormat = GL_LUMINANCE; } else { if ( glConfig.textureCompression == TC_S3TC_ARB ) { internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; } else if ( glConfig.textureCompression == TC_S3TC ) { internalFormat = GL_RGB4_S3TC; } else if ( r_texturebits->integer == 16 ) { internalFormat = GL_RGB5; } else if ( r_texturebits->integer == 32 ) { internalFormat = GL_RGB8; } else { internalFormat = GL_RGB; } } } else if ( samples == 4 ) { if(r_greyscale->integer) { if(r_texturebits->integer == 16) internalFormat = GL_LUMINANCE8_ALPHA8; else if(r_texturebits->integer == 32) internalFormat = GL_LUMINANCE16_ALPHA16; else internalFormat = GL_LUMINANCE_ALPHA; } else { if ( r_texturebits->integer == 16 ) { internalFormat = GL_RGBA4; } else if ( r_texturebits->integer == 32 ) { internalFormat = GL_RGBA8; } else { internalFormat = GL_RGBA; } } } } // copy or resample data as appropriate for first MIP level if ( ( scaled_width == width ) && ( scaled_height == height ) ) { if (!mipmap) { qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); *pUploadWidth = scaled_width; *pUploadHeight = scaled_height; *format = internalFormat; goto done; } Com_Memcpy (scaledBuffer, data, width*height*4); } else { // use the normal mip-mapping function to go down from here while ( width > scaled_width || height > scaled_height ) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; if ( width < 1 ) { width = 1; } if ( height < 1 ) { height = 1; } } Com_Memcpy( scaledBuffer, data, width * height * 4 ); } R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !mipmap ); *pUploadWidth = scaled_width; *pUploadHeight = scaled_height; *format = internalFormat; qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer ); if (mipmap) { int miplevel; miplevel = 0; while (scaled_width > 1 || scaled_height > 1) { R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height ); scaled_width >>= 1; scaled_height >>= 1; if (scaled_width < 1) scaled_width = 1; if (scaled_height < 1) scaled_height = 1; miplevel++; if ( r_colorMipLevels->integer ) { R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] ); } qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer ); } } done: if (mipmap) { if ( glConfig.textureFilterAnisotropic ) qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (GLint)Com_Clamp( 1, glConfig.maxAnisotropy, r_ext_max_anisotropy->integer ) ); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max); } else { if ( glConfig.textureFilterAnisotropic ) qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 ); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } GL_CheckErrors(); if ( scaledBuffer != 0 ) ri.Hunk_FreeTempMemory( scaledBuffer ); if ( resampledBuffer != 0 ) ri.Hunk_FreeTempMemory( resampledBuffer ); } /* ================ R_CreateImage This is the only way any image_t are created ================ */ image_t *R_CreateImage( const char *name, const byte *pic, int width, int height, qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) { image_t *image; qboolean isLightmap = qfalse; long hash; if (strlen(name) >= MAX_QPATH ) { ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name); } if ( !strncmp( name, "*lightmap", 9 ) ) { isLightmap = qtrue; } if ( tr.numImages == MAX_DRAWIMAGES ) { ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit"); } image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low ); image->texnum = 1024 + tr.numImages; tr.numImages++; image->mipmap = mipmap; image->allowPicmip = allowPicmip; strcpy (image->imgName, name); image->width = width; image->height = height; image->wrapClampMode = glWrapClampMode; // lightmaps are always allocated on TMU 1 if ( qglActiveTextureARB && isLightmap ) { image->TMU = 1; } else { image->TMU = 0; } if ( qglActiveTextureARB ) { GL_SelectTexture( image->TMU ); } GL_Bind(image); Upload32( (unsigned *)pic, image->width, image->height, image->mipmap, allowPicmip, isLightmap, &image->internalFormat, &image->uploadWidth, &image->uploadHeight ); qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode ); qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode ); qglBindTexture( GL_TEXTURE_2D, 0 ); if ( image->TMU == 1 ) { GL_SelectTexture( 0 ); } hash = generateHashValue(name); image->next = hashTable[hash]; hashTable[hash] = image; return image; } //=================================================================== typedef struct { char *ext; void (*ImageLoader)( const char *, unsigned char **, int *, int * ); } imageExtToLoaderMap_t; // Note that the ordering indicates the order of preference used // when there are multiple images of different formats available static imageExtToLoaderMap_t imageLoaders[ ] = { { "tga", R_LoadTGA }, { "jpg", R_LoadJPG }, { "jpeg", R_LoadJPG }, { "png", R_LoadPNG }, { "pcx", R_LoadPCX }, { "bmp", R_LoadBMP } }; static int numImageLoaders = ARRAY_LEN( imageLoaders ); /* ================= R_LoadImage Loads any of the supported image types into a cannonical 32 bit format. ================= */ void R_LoadImage( const char *name, byte **pic, int *width, int *height ) { qboolean orgNameFailed = qfalse; int orgLoader = -1; int i; char localName[ MAX_QPATH ]; const char *ext; char *altName; *pic = NULL; *width = 0; *height = 0; Q_strncpyz( localName, name, MAX_QPATH ); ext = COM_GetExtension( localName ); if( *ext ) { // Look for the correct loader and use it for( i = 0; i < numImageLoaders; i++ ) { if( !Q_stricmp( ext, imageLoaders[ i ].ext ) ) { // Load imageLoaders[ i ].ImageLoader( localName, pic, width, height ); break; } } // A loader was found if( i < numImageLoaders ) { if( *pic == NULL ) { // Loader failed, most likely because the file isn't there; // try again without the extension orgNameFailed = qtrue; orgLoader = i; COM_StripExtension( name, localName, MAX_QPATH ); } else { // Something loaded return; } } } // Try and find a suitable match using all // the image formats supported for( i = 0; i < numImageLoaders; i++ ) { if (i == orgLoader) continue; altName = va( "%s.%s", localName, imageLoaders[ i ].ext ); // Load imageLoaders[ i ].ImageLoader( altName, pic, width, height ); if( *pic ) { if( orgNameFailed ) { ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n", name, altName ); } break; } } } /* =============== R_FindImageFile Finds or loads the given image. Returns NULL if it fails, not a default image. ============== */ image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) { image_t *image; int width, height; byte *pic; long hash; if (!name) { return NULL; } hash = generateHashValue(name); // // see if the image is already loaded // for (image=hashTable[hash]; image; image=image->next) { if ( !strcmp( name, image->imgName ) ) { // the white image can be used with any set of parms, but other mismatches are errors if ( strcmp( name, "*white" ) ) { if ( image->mipmap != mipmap ) { ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed mipmap parm\n", name ); } if ( image->allowPicmip != allowPicmip ) { ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed allowPicmip parm\n", name ); } if ( image->wrapClampMode != glWrapClampMode ) { ri.Printf( PRINT_ALL, "WARNING: reused image %s with mixed glWrapClampMode parm\n", name ); } } return image; } } // // load the pic from disk // R_LoadImage( name, &pic, &width, &height ); if ( pic == NULL ) { return NULL; } image = R_CreateImage( ( char * ) name, pic, width, height, mipmap, allowPicmip, glWrapClampMode ); ri.Free( pic ); return image; } /* ================ R_CreateDlightImage ================ */ #define DLIGHT_SIZE 16 static void R_CreateDlightImage( void ) { int x,y; byte data[DLIGHT_SIZE][DLIGHT_SIZE][4]; int b; // make a centered inverse-square falloff blob for dynamic lighting for (x=0 ; x<DLIGHT_SIZE ; x++) { for (y=0 ; y<DLIGHT_SIZE ; y++) { float d; d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) + ( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y ); b = 4000 / d; if (b > 255) { b = 255; } else if ( b < 75 ) { b = 0; } data[y][x][0] = data[y][x][1] = data[y][x][2] = b; data[y][x][3] = 255; } } tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, qfalse, qfalse, GL_CLAMP_TO_EDGE ); } /* ================= R_InitFogTable ================= */ void R_InitFogTable( void ) { int i; float d; float exp; exp = 0.5; for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) { d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp ); tr.fogTable[i] = d; } } /* ================ R_FogFactor Returns a 0.0 to 1.0 fog density value This is called for each texel of the fog texture on startup and for each vertex of transparent shaders in fog dynamically ================ */ float R_FogFactor( float s, float t ) { float d; s -= 1.0/512; if ( s < 0 ) { return 0; } if ( t < 1.0/32 ) { return 0; } if ( t < 31.0/32 ) { s *= (t - 1.0f/32.0f) / (30.0f/32.0f); } // we need to leave a lot of clamp range s *= 8; if ( s > 1.0 ) { s = 1.0; } d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ]; return d; } /* ================ R_CreateFogImage ================ */ #define FOG_S 256 #define FOG_T 32 static void R_CreateFogImage( void ) { int x,y; byte *data; float d; float borderColor[4]; data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 ); // S is distance, T is depth for (x=0 ; x<FOG_S ; x++) { for (y=0 ; y<FOG_T ; y++) { d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T ); data[(y*FOG_S+x)*4+0] = data[(y*FOG_S+x)*4+1] = data[(y*FOG_S+x)*4+2] = 255; data[(y*FOG_S+x)*4+3] = 255*d; } } // standard openGL clamping doesn't really do what we want -- it includes // the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does // what we want. tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, qfalse, qfalse, GL_CLAMP_TO_EDGE ); ri.Hunk_FreeTempMemory( data ); borderColor[0] = 1.0; borderColor[1] = 1.0; borderColor[2] = 1.0; borderColor[3] = 1; qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor ); } /* ================== R_CreateDefaultImage ================== */ #define DEFAULT_SIZE 16 static void R_CreateDefaultImage( void ) { int x; byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // the default image will be a box, to allow you to see the mapping coordinates Com_Memset( data, 32, sizeof( data ) ); for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[0][x][0] = data[0][x][1] = data[0][x][2] = data[0][x][3] = 255; data[x][0][0] = data[x][0][1] = data[x][0][2] = data[x][0][3] = 255; data[DEFAULT_SIZE-1][x][0] = data[DEFAULT_SIZE-1][x][1] = data[DEFAULT_SIZE-1][x][2] = data[DEFAULT_SIZE-1][x][3] = 255; data[x][DEFAULT_SIZE-1][0] = data[x][DEFAULT_SIZE-1][1] = data[x][DEFAULT_SIZE-1][2] = data[x][DEFAULT_SIZE-1][3] = 255; } tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qtrue, qfalse, GL_REPEAT ); } /* ================== R_CreateBuiltinImages ================== */ void R_CreateBuiltinImages( void ) { int x,y; byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; R_CreateDefaultImage(); // we use a solid white image instead of disabling texturing Com_Memset( data, 255, sizeof( data ) ); tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT ); // with overbright bits active, we need an image which is some fraction of full color, // for default lightmaps, etc for (x=0 ; x<DEFAULT_SIZE ; x++) { for (y=0 ; y<DEFAULT_SIZE ; y++) { data[y][x][0] = data[y][x][1] = data[y][x][2] = tr.identityLightByte; data[y][x][3] = 255; } } tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT ); for(x=0;x<32;x++) { // scratchimage is usually used for cinematic drawing tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qfalse, qtrue, GL_CLAMP_TO_EDGE ); } R_CreateDlightImage(); R_CreateFogImage(); } /* =============== R_SetColorMappings =============== */ void R_SetColorMappings( void ) { int i, j; float g; int inf; int shift; // setup the overbright lighting tr.overbrightBits = r_overBrightBits->integer; if ( !glConfig.deviceSupportsGamma ) { tr.overbrightBits = 0; // need hardware gamma for overbright } // never overbright in windowed mode if ( !glConfig.isFullscreen ) { tr.overbrightBits = 0; } // allow 2 overbright bits in 24 bit, but only 1 in 16 bit if ( glConfig.colorBits > 16 ) { if ( tr.overbrightBits > 2 ) { tr.overbrightBits = 2; } } else { if ( tr.overbrightBits > 1 ) { tr.overbrightBits = 1; } } if ( tr.overbrightBits < 0 ) { tr.overbrightBits = 0; } tr.identityLight = 1.0f / ( 1 << tr.overbrightBits ); tr.identityLightByte = 255 * tr.identityLight; if ( r_intensity->value <= 1 ) { ri.Cvar_Set( "r_intensity", "1" ); } if ( r_gamma->value < 0.5f ) { ri.Cvar_Set( "r_gamma", "0.5" ); } else if ( r_gamma->value > 3.0f ) { ri.Cvar_Set( "r_gamma", "3.0" ); } g = r_gamma->value; shift = tr.overbrightBits; for ( i = 0; i < 256; i++ ) { if ( g == 1 ) { inf = i; } else { inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f; } inf <<= shift; if (inf < 0) { inf = 0; } if (inf > 255) { inf = 255; } s_gammatable[i] = inf; } for (i=0 ; i<256 ; i++) { j = i * r_intensity->value; if (j > 255) { j = 255; } s_intensitytable[i] = j; } if ( glConfig.deviceSupportsGamma ) { GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable ); } } /* =============== R_InitImages =============== */ void R_InitImages( void ) { Com_Memset(hashTable, 0, sizeof(hashTable)); // build brightness translation tables R_SetColorMappings(); // create default texture and white texture R_CreateBuiltinImages(); } /* =============== R_DeleteTextures =============== */ void R_DeleteTextures( void ) { int i; for ( i=0; i<tr.numImages ; i++ ) { qglDeleteTextures( 1, &tr.images[i]->texnum ); } Com_Memset( tr.images, 0, sizeof( tr.images ) ); tr.numImages = 0; Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) ); if ( qglActiveTextureARB ) { GL_SelectTexture( 1 ); qglBindTexture( GL_TEXTURE_2D, 0 ); GL_SelectTexture( 0 ); qglBindTexture( GL_TEXTURE_2D, 0 ); } else { qglBindTexture( GL_TEXTURE_2D, 0 ); } } /* ============================================================================ SKINS ============================================================================ */ /* ================== CommaParse This is unfortunate, but the skin files aren't compatable with our normal parsing rules. ================== */ static char *CommaParse( char **data_p ) { int c = 0, len; char *data; static char com_token[MAX_TOKEN_CHARS]; data = *data_p; len = 0; com_token[0] = 0; // make sure incoming data is valid if ( !data ) { *data_p = NULL; return com_token; } while ( 1 ) { // skip whitespace while( (c = *data) <= ' ') { if( !c ) { break; } data++; } c = *data; // skip double slash comments if ( c == '/' && data[1] == '/' ) { while (*data && *data != '\n') data++; } // skip /* */ comments else if ( c=='/' && data[1] == '*' ) { while ( *data && ( *data != '*' || data[1] != '/' ) ) { data++; } if ( *data ) { data += 2; } } else { break; } } if ( c == 0 ) { return ""; } // handle quoted strings if (c == '\"') { data++; while (1) { c = *data++; if (c=='\"' || !c) { com_token[len] = 0; *data_p = ( char * ) data; return com_token; } if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } } } // parse a regular word do { if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } data++; c = *data; } while (c>32 && c != ',' ); if (len == MAX_TOKEN_CHARS) { // ri.Printf (PRINT_DEVELOPER, "Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS); len = 0; } com_token[len] = 0; *data_p = ( char * ) data; return com_token; } /* =============== RE_RegisterSkin =============== */ qhandle_t RE_RegisterSkin( const char *name ) { qhandle_t hSkin; skin_t *skin; skinSurface_t *surf; union { char *c; void *v; } text; char *text_p; char *token; char surfName[MAX_QPATH]; if ( !name || !name[0] ) { ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" ); return 0; } if ( strlen( name ) >= MAX_QPATH ) { ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" ); return 0; } // see if the skin is already loaded for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) { skin = tr.skins[hSkin]; if ( !Q_stricmp( skin->name, name ) ) { if( skin->numSurfaces == 0 ) { return 0; // default skin } return hSkin; } } // allocate a new skin if ( tr.numSkins == MAX_SKINS ) { ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name ); return 0; } tr.numSkins++; skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low ); tr.skins[hSkin] = skin; Q_strncpyz( skin->name, name, sizeof( skin->name ) ); skin->numSurfaces = 0; // make sure the render thread is stopped R_SyncRenderThread(); // If not a .skin file, load as a single shader if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) { skin->numSurfaces = 1; skin->surfaces[0] = ri.Hunk_Alloc( sizeof(skin->surfaces[0]), h_low ); skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue ); return hSkin; } // load and parse the skin file ri.FS_ReadFile( name, &text.v ); if ( !text.c ) { return 0; } text_p = text.c; while ( text_p && *text_p ) { // get surface name token = CommaParse( &text_p ); Q_strncpyz( surfName, token, sizeof( surfName ) ); if ( !token[0] ) { break; } // lowercase the surface name so skin compares are faster Q_strlwr( surfName ); if ( *text_p == ',' ) { text_p++; } if ( strstr( token, "tag_" ) ) { continue; } // parse the shader name token = CommaParse( &text_p ); surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low ); Q_strncpyz( surf->name, surfName, sizeof( surf->name ) ); surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue ); skin->numSurfaces++; } ri.FS_FreeFile( text.v ); // never let a skin have 0 shaders if ( skin->numSurfaces == 0 ) { return 0; // use default skin } return hSkin; } /* =============== R_InitSkins =============== */ void R_InitSkins( void ) { skin_t *skin; tr.numSkins = 1; // make the default skin have all default shaders skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low ); Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) ); skin->numSurfaces = 1; skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low ); skin->surfaces[0]->shader = tr.defaultShader; } /* =============== R_GetSkinByHandle =============== */ skin_t *R_GetSkinByHandle( qhandle_t hSkin ) { if ( hSkin < 1 || hSkin >= tr.numSkins ) { return tr.skins[0]; } return tr.skins[ hSkin ]; } /* =============== R_SkinList_f =============== */ void R_SkinList_f( void ) { int i, j; skin_t *skin; ri.Printf (PRINT_ALL, "------------------\n"); for ( i = 0 ; i < tr.numSkins ; i++ ) { skin = tr.skins[i]; ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name ); for ( j = 0 ; j < skin->numSurfaces ; j++ ) { ri.Printf( PRINT_ALL, " %s = %s\n", skin->surfaces[j]->name, skin->surfaces[j]->shader->name ); } } ri.Printf (PRINT_ALL, "------------------\n"); }