uniform sampler2D u_DiffuseMap; #if defined(USE_LIGHTMAP) uniform sampler2D u_LightMap; #endif #if defined(USE_NORMALMAP) uniform sampler2D u_NormalMap; #endif #if defined(USE_DELUXEMAP) uniform sampler2D u_DeluxeMap; #endif #if defined(USE_SPECULARMAP) uniform sampler2D u_SpecularMap; #endif #if defined(USE_SHADOWMAP) uniform sampler2D u_ShadowMap; #endif #if defined(USE_CUBEMAP) uniform samplerCube u_CubeMap; #endif #if defined(USE_NORMALMAP) || defined(USE_DELUXEMAP) || defined(USE_SPECULARMAP) || defined(USE_CUBEMAP) // y = deluxe, w = cube uniform vec4 u_EnableTextures; #endif #if defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT) uniform vec3 u_DirectedLight; uniform vec3 u_AmbientLight; #endif #if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP) uniform vec3 u_PrimaryLightColor; uniform vec3 u_PrimaryLightAmbient; #endif #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) uniform vec4 u_NormalScale; uniform vec4 u_SpecularScale; #endif #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) #if defined(USE_CUBEMAP) uniform vec4 u_CubeMapInfo; #endif #endif varying vec4 var_TexCoords; varying vec4 var_Color; #if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) #if defined(USE_VERT_TANGENT_SPACE) varying vec4 var_Normal; varying vec4 var_Tangent; varying vec4 var_Bitangent; #else varying vec3 var_Normal; varying vec3 var_ViewDir; #endif #endif #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) varying vec4 var_LightDir; #endif #if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP) varying vec4 var_PrimaryLightDir; #endif #define EPSILON 0.00000001 #if defined(USE_PARALLAXMAP) float SampleDepth(sampler2D normalMap, vec2 t) { #if defined(SWIZZLE_NORMALMAP) return 1.0 - texture2D(normalMap, t).r; #else return 1.0 - texture2D(normalMap, t).a; #endif } float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap) { const int linearSearchSteps = 16; const int binarySearchSteps = 6; // current size of search window float size = 1.0 / float(linearSearchSteps); // current depth position float depth = 0.0; // best match found (starts with last position 1.0) float bestDepth = 1.0; // search front to back for first point inside object for(int i = 0; i < linearSearchSteps - 1; ++i) { depth += size; float t = SampleDepth(normalMap, dp + ds * depth); if(bestDepth > 0.996) // if no depth found yet if(depth >= t) bestDepth = depth; // store best depth } depth = bestDepth; // recurse around first point (depth) for closest match for(int i = 0; i < binarySearchSteps; ++i) { size *= 0.5; float t = SampleDepth(normalMap, dp + ds * depth); if(depth >= t) { bestDepth = depth; depth -= 2.0 * size; } depth += size; } return bestDepth; } #endif vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL, float shininess) { #if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR) float gamma = dot(E, L) - NE * NL; float B = 2.22222 + 0.1 * shininess; #if defined(USE_OREN_NAYAR) float A = 1.0 - 1.0 / (2.0 + 0.33 * shininess); gamma = clamp(gamma, 0.0, 1.0); #endif #if defined(USE_TRIACE_OREN_NAYAR) float A = 1.0 - 1.0 / (2.0 + 0.65 * shininess); if (gamma >= 0.0) #endif { B = max(B * max(NL, NE), EPSILON); } return diffuseAlbedo * (A + gamma / B); #else return diffuseAlbedo; #endif } vec3 EnvironmentBRDF(float gloss, float NE, vec3 specular) { #if 1 // from http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf vec4 t = vec4( 1/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96,0.25 ) * gloss; t += vec4( 0.0, 0.0, (0.015 - 0.75 * 0.04)/0.96,0.75 ); float a0 = t.x * min( t.y, exp2( -9.28 * NE ) ) + t.z; float a1 = t.w; return clamp( a0 + specular * ( a1 - a0 ), 0.0, 1.0 ); #elif 0 // from http://seblagarde.wordpress.com/2011/08/17/hello-world/ return specular + CalcFresnel(NE) * clamp(vec3(gloss) - specular, 0.0, 1.0); #else // from http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20%28Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course%29.pptx return mix(specular.rgb, vec3(1.0), CalcFresnel(NE) / (4.0 - 3.0 * gloss)); #endif } float CalcBlinn(float NH, float shininess) { #if defined(USE_BLINN) || defined(USE_BLINN_FRESNEL) // Normalized Blinn-Phong float norm = shininess * 0.125 + 1.0; #elif defined(USE_MCAULEY) // Cook-Torrance as done by Stephen McAuley // http://blog.selfshadow.com/publications/s2012-shading-course/mcauley/s2012_pbs_farcry3_notes_v2.pdf float norm = shininess * 0.25 + 0.125; #elif defined(USE_GOTANDA) // Neumann-Neumann as done by Yoshiharu Gotanda // http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf float norm = shininess * 0.124858 + 0.269182; #elif defined(USE_LAZAROV) // Cook-Torrance as done by Dimitar Lazarov // http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf float norm = shininess * 0.125 + 0.25; #else float norm = 1.0; #endif #if 0 // from http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/ float a = shininess + 0.775; return norm * exp(a * NH - a); #else return norm * pow(NH, shininess); #endif } float CalcGGX(float NH, float gloss) { // from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf float a_sq = exp2(gloss * -13.0 + 1.0); float d = ((NH * NH) * (a_sq - 1.0) + 1.0); return a_sq / (d * d); } float CalcFresnel(float EH) { #if 1 // From http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf // not accurate, but fast return exp2(-10.0 * EH); #elif 0 // From http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/ return exp2((-5.55473 * EH - 6.98316) * EH); #elif 0 float blend = 1.0 - EH; float blend2 = blend * blend; blend *= blend2 * blend2; return blend; #else return pow(1.0 - EH, 5.0); #endif } float CalcVisibility(float NH, float NL, float NE, float EH, float gloss) { #if defined(USE_GOTANDA) // Neumann-Neumann as done by Yoshiharu Gotanda // http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf return 1.0 / max(max(NL, NE), EPSILON); #elif defined(USE_LAZAROV) // Cook-Torrance as done by Dimitar Lazarov // http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf float k = min(1.0, gloss + 0.545); return 1.0 / (k * (EH * EH - 1.0) + 1.0); #elif defined(USE_GGX) float roughness = exp2(gloss * -6.5); // Modified from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf // NL, NE in numerator factored out from cook-torrance float k = roughness + 1.0; k *= k * 0.125; float k2 = 1.0 - k; float invGeo1 = NL * k2 + k; float invGeo2 = NE * k2 + k; return 1.0 / (invGeo1 * invGeo2); #else return 1.0; #endif } vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float gloss, float shininess) { #if defined(USE_GGX) float distrib = CalcGGX(NH, gloss); #else float distrib = CalcBlinn(NH, shininess); #endif #if defined(USE_BLINN) vec3 fSpecular = specular; #else vec3 fSpecular = mix(specular, vec3(1.0), CalcFresnel(EH)); #endif float vis = CalcVisibility(NH, NL, NE, EH, gloss); return fSpecular * (distrib * vis); } float CalcLightAttenuation(float point, float normDist) { // zero light at 1.0, approximating q3 style // also don't attenuate directional light float attenuation = (0.5 * normDist - 1.5) * point + 1.0; // clamp attenuation #if defined(NO_LIGHT_CLAMP) attenuation = max(attenuation, 0.0); #else attenuation = clamp(attenuation, 0.0, 1.0); #endif return attenuation; } // from http://www.thetenthplanet.de/archives/1180 mat3 cotangent_frame( vec3 N, vec3 p, vec2 uv ) { // get edge vectors of the pixel triangle vec3 dp1 = dFdx( p ); vec3 dp2 = dFdy( p ); vec2 duv1 = dFdx( uv ); vec2 duv2 = dFdy( uv ); // solve the linear system vec3 dp2perp = cross( dp2, N ); vec3 dp1perp = cross( N, dp1 ); vec3 T = dp2perp * duv1.x + dp1perp * duv2.x; vec3 B = dp2perp * duv1.y + dp1perp * duv2.y; // construct a scale-invariant frame float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) ); return mat3( T * invmax, B * invmax, N ); } void main() { vec3 viewDir, lightColor, ambientColor; vec3 L, N, E, H; float NL, NH, NE, EH, attenuation; #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) #if defined(USE_VERT_TANGENT_SPACE) mat3 tangentToWorld = mat3(var_Tangent.xyz, var_Bitangent.xyz, var_Normal.xyz); viewDir = vec3(var_Normal.w, var_Tangent.w, var_Bitangent.w); #else mat3 tangentToWorld = cotangent_frame(var_Normal, -var_ViewDir, var_TexCoords.xy); viewDir = var_ViewDir; #endif E = normalize(viewDir); L = var_LightDir.xyz; #if defined(USE_DELUXEMAP) L += (texture2D(u_DeluxeMap, var_TexCoords.zw).xyz - vec3(0.5)) * u_EnableTextures.y; #endif float sqrLightDist = dot(L, L); #endif #if defined(USE_LIGHTMAP) vec4 lightmapColor = texture2D(u_LightMap, var_TexCoords.zw); #if defined(RGBM_LIGHTMAP) lightmapColor.rgb *= lightmapColor.a; #endif #endif vec2 texCoords = var_TexCoords.xy; #if defined(USE_PARALLAXMAP) vec3 offsetDir = normalize(E * tangentToWorld); offsetDir.xy *= -u_NormalScale.a / offsetDir.z; texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap); #endif vec4 diffuse = texture2D(u_DiffuseMap, texCoords); #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) #if defined(USE_LIGHTMAP) lightColor = lightmapColor.rgb * var_Color.rgb; ambientColor = vec3(0.0); attenuation = 1.0; #elif defined(USE_LIGHT_VECTOR) lightColor = u_DirectedLight * var_Color.rgb; ambientColor = u_AmbientLight * var_Color.rgb; attenuation = CalcLightAttenuation(float(var_LightDir.w > 0.0), var_LightDir.w / sqrLightDist); #elif defined(USE_LIGHT_VERTEX) lightColor = var_Color.rgb; ambientColor = vec3(0.0); attenuation = 1.0; #endif #if defined(USE_NORMALMAP) #if defined(SWIZZLE_NORMALMAP) N.xy = texture2D(u_NormalMap, texCoords).ag - vec2(0.5); #else N.xy = texture2D(u_NormalMap, texCoords).rg - vec2(0.5); #endif N.xy *= u_NormalScale.xy; N.z = sqrt(clamp((0.25 - N.x * N.x) - N.y * N.y, 0.0, 1.0)); N = tangentToWorld * N; #else N = var_Normal.xyz; #endif N = normalize(N); L /= sqrt(sqrLightDist); #if defined(USE_SHADOWMAP) vec2 shadowTex = gl_FragCoord.xy * r_FBufScale; float shadowValue = texture2D(u_ShadowMap, shadowTex).r; // surfaces not facing the light are always shadowed shadowValue *= float(dot(var_Normal.xyz, var_PrimaryLightDir.xyz) > 0.0); #if defined(SHADOWMAP_MODULATE) //vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor); vec3 shadowColor = u_PrimaryLightAmbient * lightColor; #if 0 // Only shadow when the world light is parallel to the primary light shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDir.xyz), 0.0, 1.0); #endif lightColor = mix(shadowColor, lightColor, shadowValue); #endif #endif #if defined(r_lightGamma) lightColor = pow(lightColor, vec3(r_lightGamma)); ambientColor = pow(ambientColor, vec3(r_lightGamma)); #endif #if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX) ambientColor = lightColor; float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0); // Scale the incoming light to compensate for the baked-in light angle // attenuation. lightColor /= max(surfNL, 0.25); // Recover any unused light as ambient, in case attenuation is over 4x or // light is below the surface ambientColor = clamp(ambientColor - lightColor * surfNL, 0.0, 1.0); #endif vec3 reflectance; NL = clamp(dot(N, L), 0.0, 1.0); NE = clamp(dot(N, E), 0.0, 1.0); #if defined(USE_SPECULARMAP) vec4 specular = texture2D(u_SpecularMap, texCoords); #else vec4 specular = vec4(1.0); #endif specular *= u_SpecularScale; #if defined(r_materialGamma) diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma)); specular.rgb = pow(specular.rgb, vec3(r_materialGamma)); #endif float gloss = specular.a; float shininess = exp2(gloss * 13.0); #if defined(SPECULAR_IS_METALLIC) // diffuse is actually base color, and red of specular is metallicness float metallic = specular.r; specular.rgb = (0.96 * metallic) * diffuse.rgb + vec3(0.04); diffuse.rgb *= 1.0 - metallic; #else // adjust diffuse by specular reflectance, to maintain energy conservation diffuse.rgb *= vec3(1.0) - specular.rgb; #endif reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess); #if defined(r_deluxeSpecular) || defined(USE_LIGHT_VECTOR) float adjGloss = gloss; float adjShininess = shininess; #if !defined(USE_LIGHT_VECTOR) adjGloss *= r_deluxeSpecular; adjShininess = exp2(adjGloss * 13.0); #endif H = normalize(L + E); EH = clamp(dot(E, H), 0.0, 1.0); NH = clamp(dot(N, H), 0.0, 1.0); #if !defined(USE_LIGHT_VECTOR) reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjGloss, adjShininess) * r_deluxeSpecular; #else reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjGloss, adjShininess); #endif #endif gl_FragColor.rgb = lightColor * reflectance * (attenuation * NL); #if 0 vec3 aSpecular = EnvironmentBRDF(gloss, NE, specular.rgb); // do ambient as two hemisphere lights, one straight up one straight down float hemiDiffuseUp = N.z * 0.5 + 0.5; float hemiDiffuseDown = 1.0 - hemiDiffuseUp; float hemiSpecularUp = mix(hemiDiffuseUp, float(N.z >= 0.0), gloss); float hemiSpecularDown = 1.0 - hemiSpecularUp; gl_FragColor.rgb += ambientColor * 0.75 * (diffuse.rgb * hemiDiffuseUp + aSpecular * hemiSpecularUp); gl_FragColor.rgb += ambientColor * 0.25 * (diffuse.rgb * hemiDiffuseDown + aSpecular * hemiSpecularDown); #else gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb); #endif #if defined(USE_CUBEMAP) reflectance = EnvironmentBRDF(gloss, NE, specular.rgb); vec3 R = reflect(E, N); // parallax corrected cubemap (cheaper trick) // from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/ vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir; vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 - gloss * 7.0).rgb * u_EnableTextures.w; // normalize cubemap based on lowest mip (~diffuse) // multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation //vec3 cubeLightDiffuse = max(textureCubeLod(u_CubeMap, N, 6.0).rgb, 0.5 / 255.0); //cubeLightColor /= dot(cubeLightDiffuse, vec3(0.2125, 0.7154, 0.0721)); #if defined(r_framebufferGamma) cubeLightColor = pow(cubeLightColor, vec3(r_framebufferGamma)); #endif // multiply cubemap values by lighting // not technically correct, but helps make reflections look less unnatural //cubeLightColor *= lightColor * (attenuation * NL) + ambientColor; gl_FragColor.rgb += cubeLightColor * reflectance; #endif #if defined(USE_PRIMARY_LIGHT) vec3 L2, H2; float NL2, EH2, NH2; L2 = var_PrimaryLightDir.xyz; // enable when point lights are supported as primary lights //sqrLightDist = dot(L2, L2); //L2 /= sqrt(sqrLightDist); NL2 = clamp(dot(N, L2), 0.0, 1.0); H2 = normalize(L2 + E); EH2 = clamp(dot(E, H2), 0.0, 1.0); NH2 = clamp(dot(N, H2), 0.0, 1.0); reflectance = CalcDiffuse(diffuse.rgb, N, L2, E, NE, NL2, shininess); reflectance += CalcSpecular(specular.rgb, NH2, NL2, NE, EH2, gloss, shininess); lightColor = u_PrimaryLightColor * var_Color.rgb; #if defined(r_lightGamma) lightColor = pow(lightColor, vec3(r_lightGamma)); #endif #if defined(USE_SHADOWMAP) lightColor *= shadowValue; #endif // enable when point lights are supported as primary lights //lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist); gl_FragColor.rgb += lightColor * reflectance * NL2; #endif #else lightColor = var_Color.rgb; #if defined(USE_LIGHTMAP) lightColor *= lightmapColor.rgb; #endif #if defined(r_lightGamma) lightColor = pow(lightColor, vec3(r_lightGamma)); #endif #if defined(r_materialGamma) diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma)); #endif gl_FragColor.rgb = diffuse.rgb * lightColor; #endif #if defined(r_framebufferGamma) gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0 / r_framebufferGamma)); #endif gl_FragColor.a = diffuse.a * var_Color.a; }