uniform sampler2D u_DiffuseMap; #if defined(USE_LIGHTMAP) uniform sampler2D u_LightMap; #endif #if defined(USE_NORMALMAP) uniform sampler2D u_NormalMap; #endif #if defined(USE_DELUXEMAP) uniform sampler2D u_DeluxeMap; #endif #if defined(USE_SPECULARMAP) uniform sampler2D u_SpecularMap; #endif #if defined(USE_SHADOWMAP) uniform sampler2D u_ShadowMap; #endif #if defined(USE_CUBEMAP) uniform samplerCube u_CubeMap; #endif #if defined(USE_NORMALMAP) || defined(USE_DELUXEMAP) || defined(USE_SPECULARMAP) || defined(USE_CUBEMAP) // y = deluxe, w = cube uniform vec4 u_EnableTextures; #endif #if defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT) uniform vec3 u_DirectedLight; uniform vec3 u_AmbientLight; #endif #if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP) uniform vec3 u_PrimaryLightColor; uniform vec3 u_PrimaryLightAmbient; #endif #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) uniform vec4 u_NormalScale; uniform vec4 u_SpecularScale; #endif #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) #if defined(USE_CUBEMAP) uniform vec4 u_CubeMapInfo; #endif #endif varying vec4 var_TexCoords; varying vec4 var_Color; #if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) #if defined(USE_VERT_TANGENT_SPACE) varying vec4 var_Normal; varying vec4 var_Tangent; varying vec4 var_Bitangent; #else varying vec3 var_Normal; varying vec3 var_ViewDir; #endif #endif #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) varying vec4 var_LightDir; #endif #if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP) varying vec4 var_PrimaryLightDir; #endif #define EPSILON 0.00000001 #if defined(USE_PARALLAXMAP) float SampleDepth(sampler2D normalMap, vec2 t) { #if defined(SWIZZLE_NORMALMAP) return 1.0 - texture2D(normalMap, t).r; #else return 1.0 - texture2D(normalMap, t).a; #endif } float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap) { const int linearSearchSteps = 16; const int binarySearchSteps = 6; // current size of search window float size = 1.0 / float(linearSearchSteps); // current depth position float depth = 0.0; // best match found (starts with last position 1.0) float bestDepth = 1.0; // texture depth at best depth float texDepth = 0.0; float prevT = SampleDepth(normalMap, dp); float prevTexDepth = prevT; // search front to back for first point inside object for(int i = 0; i < linearSearchSteps - 1; ++i) { depth += size; float t = SampleDepth(normalMap, dp + ds * depth); if(bestDepth > 0.996) // if no depth found yet if(depth >= t) { bestDepth = depth; // store best depth texDepth = t; prevTexDepth = prevT; } prevT = t; } depth = bestDepth; #if !defined (USE_RELIEFMAP) float div = 1.0 / (1.0 + (prevTexDepth - texDepth) * float(linearSearchSteps)); bestDepth -= (depth - size - prevTexDepth) * div; #else // recurse around first point (depth) for closest match for(int i = 0; i < binarySearchSteps; ++i) { size *= 0.5; float t = SampleDepth(normalMap, dp + ds * depth); if(depth >= t) { bestDepth = depth; depth -= 2.0 * size; } depth += size; } #endif return bestDepth; } #endif vec3 CalcDiffuse(vec3 diffuseAlbedo, float EH, float NH, float roughness) { #if defined(USE_BURLEY) // modified from https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf float fd90 = -0.5 + EH * EH * roughness; float burley = 1.0 + fd90 * 0.04 / NH; burley *= burley; return diffuseAlbedo * burley; #else return diffuseAlbedo; #endif } vec3 EnvironmentBRDF(float roughness, float NE, vec3 specular) { // from http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf float v = 1.0 - max(roughness, NE); v *= v * v; return vec3(v) + specular; } vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float roughness) { // from http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf float rr = roughness*roughness; float rrrr = rr*rr; float d = (NH * NH) * (rrrr - 1.0) + 1.0; float v = (EH * EH) * (roughness + 0.5); return specular * (rrrr / (4.0 * d * d * v)); } float CalcLightAttenuation(float point, float normDist) { // zero light at 1.0, approximating q3 style // also don't attenuate directional light float attenuation = (0.5 * normDist - 1.5) * point + 1.0; // clamp attenuation #if defined(NO_LIGHT_CLAMP) attenuation = max(attenuation, 0.0); #else attenuation = clamp(attenuation, 0.0, 1.0); #endif return attenuation; } // from http://www.thetenthplanet.de/archives/1180 mat3 cotangent_frame( vec3 N, vec3 p, vec2 uv ) { // get edge vectors of the pixel triangle vec3 dp1 = dFdx( p ); vec3 dp2 = dFdy( p ); vec2 duv1 = dFdx( uv ); vec2 duv2 = dFdy( uv ); // solve the linear system vec3 dp2perp = cross( dp2, N ); vec3 dp1perp = cross( N, dp1 ); vec3 T = dp2perp * duv1.x + dp1perp * duv2.x; vec3 B = dp2perp * duv1.y + dp1perp * duv2.y; // construct a scale-invariant frame float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) ); return mat3( T * invmax, B * invmax, N ); } void main() { vec3 viewDir, lightColor, ambientColor; vec3 L, N, E, H; float NL, NH, NE, EH, attenuation; #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) #if defined(USE_VERT_TANGENT_SPACE) mat3 tangentToWorld = mat3(var_Tangent.xyz, var_Bitangent.xyz, var_Normal.xyz); viewDir = vec3(var_Normal.w, var_Tangent.w, var_Bitangent.w); #else mat3 tangentToWorld = cotangent_frame(var_Normal, -var_ViewDir, var_TexCoords.xy); viewDir = var_ViewDir; #endif E = normalize(viewDir); L = var_LightDir.xyz; #if defined(USE_DELUXEMAP) L += (texture2D(u_DeluxeMap, var_TexCoords.zw).xyz - vec3(0.5)) * u_EnableTextures.y; #endif float sqrLightDist = dot(L, L); #endif #if defined(USE_LIGHTMAP) vec4 lightmapColor = texture2D(u_LightMap, var_TexCoords.zw); #if defined(RGBM_LIGHTMAP) lightmapColor.rgb *= lightmapColor.a; #endif #endif vec2 texCoords = var_TexCoords.xy; #if defined(USE_PARALLAXMAP) vec3 offsetDir = viewDir * tangentToWorld; offsetDir.xy *= -u_NormalScale.a / offsetDir.z; texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap); #endif vec4 diffuse = texture2D(u_DiffuseMap, texCoords); #if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) #if defined(USE_LIGHTMAP) lightColor = lightmapColor.rgb * var_Color.rgb; ambientColor = vec3(0.0); attenuation = 1.0; #elif defined(USE_LIGHT_VECTOR) lightColor = u_DirectedLight * var_Color.rgb; ambientColor = u_AmbientLight * var_Color.rgb; attenuation = CalcLightAttenuation(float(var_LightDir.w > 0.0), var_LightDir.w / sqrLightDist); #elif defined(USE_LIGHT_VERTEX) lightColor = var_Color.rgb; ambientColor = vec3(0.0); attenuation = 1.0; #endif #if defined(r_lightGamma) lightColor = pow(lightColor, vec3(r_lightGamma)); ambientColor = pow(ambientColor, vec3(r_lightGamma)); #endif #if defined(USE_NORMALMAP) #if defined(SWIZZLE_NORMALMAP) N.xy = texture2D(u_NormalMap, texCoords).ag - vec2(0.5); #else N.xy = texture2D(u_NormalMap, texCoords).rg - vec2(0.5); #endif N.xy *= u_NormalScale.xy; N.z = sqrt(clamp((0.25 - N.x * N.x) - N.y * N.y, 0.0, 1.0)); N = tangentToWorld * N; #else N = var_Normal.xyz; #endif N = normalize(N); L /= sqrt(sqrLightDist); #if defined(USE_SHADOWMAP) vec2 shadowTex = gl_FragCoord.xy * r_FBufScale; float shadowValue = texture2D(u_ShadowMap, shadowTex).r; // surfaces not facing the light are always shadowed shadowValue *= float(dot(var_Normal.xyz, var_PrimaryLightDir.xyz) > 0.0); #if defined(SHADOWMAP_MODULATE) lightColor *= shadowValue * (1.0 - u_PrimaryLightAmbient.r) + u_PrimaryLightAmbient.r; #endif #endif #if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX) ambientColor = lightColor; float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0); // Scale the incoming light to compensate for the baked-in light angle // attenuation. lightColor /= max(surfNL, 0.25); // Recover any unused light as ambient, in case attenuation is over 4x or // light is below the surface ambientColor = clamp(ambientColor - lightColor * surfNL, 0.0, 1.0); #endif vec3 reflectance; NL = clamp(dot(N, L), 0.0, 1.0); NE = clamp(dot(N, E), 0.0, 1.0); #if defined(USE_SPECULARMAP) vec4 specular = texture2D(u_SpecularMap, texCoords); #else vec4 specular = vec4(1.0); #endif specular *= u_SpecularScale; #if defined(r_materialGamma) diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma)); #if !defined(SPECULAR_IS_METALLIC) specular.rgb = pow(specular.rgb, vec3(r_materialGamma)); #endif #endif float gloss = specular.a; #if defined(GLOSS_IS_ROUGHNESS) float roughness = gloss; #else float roughness = exp2(-3.0 * gloss); #endif #if defined(SPECULAR_IS_METALLIC) // diffuse is actually base color, and green of specular is metallicness float metallic = specular.g; specular.rgb = metallic * diffuse.rgb + vec3(0.04 - 0.04 * metallic); diffuse.rgb *= 1.0 - metallic; #else // adjust diffuse by specular reflectance, to maintain energy conservation diffuse.rgb *= vec3(1.0) - specular.rgb; #endif reflectance = CalcDiffuse(diffuse.rgb, EH, NH, roughness); gl_FragColor.rgb = lightColor * reflectance * (attenuation * NL); gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb); #if defined(USE_CUBEMAP) reflectance = EnvironmentBRDF(roughness, NE, specular.rgb); vec3 R = reflect(E, N); // parallax corrected cubemap (cheaper trick) // from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/ vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir; #if defined(GLOSS_IS_ROUGHNESS) vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 * roughness).rgb * u_EnableTextures.w; #else vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 - gloss * 7.0).rgb * u_EnableTextures.w; #endif // normalize cubemap based on lowest mip (~diffuse) // multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation //vec3 cubeLightDiffuse = max(textureCubeLod(u_CubeMap, N, 6.0).rgb, 0.5 / 255.0); //cubeLightColor /= dot(cubeLightDiffuse, vec3(0.2125, 0.7154, 0.0721)); #if defined(r_framebufferGamma) cubeLightColor = pow(cubeLightColor, vec3(r_framebufferGamma)); #endif // multiply cubemap values by lighting // not technically correct, but helps make reflections look less unnatural //cubeLightColor *= lightColor * (attenuation * NL) + ambientColor; gl_FragColor.rgb += cubeLightColor * reflectance; #endif #if defined(USE_PRIMARY_LIGHT) || defined(SHADOWMAP_MODULATE) vec3 L2, H2; float NL2, EH2, NH2; L2 = var_PrimaryLightDir.xyz; // enable when point lights are supported as primary lights //sqrLightDist = dot(L2, L2); //L2 /= sqrt(sqrLightDist); NL2 = clamp(dot(N, L2), 0.0, 1.0); H2 = normalize(L2 + E); EH2 = clamp(dot(E, H2), 0.0, 1.0); NH2 = clamp(dot(N, H2), 0.0, 1.0); reflectance = CalcSpecular(specular.rgb, NH2, NL2, NE, EH2, roughness); // bit of a hack, with modulated shadowmaps, ignore diffuse #if !defined(SHADOWMAP_MODULATE) reflectance += CalcDiffuse(diffuse.rgb, EH2, NH2, roughness); #endif lightColor = u_PrimaryLightColor; #if defined(r_lightGamma) lightColor = pow(lightColor, vec3(r_lightGamma)); #endif #if defined(USE_SHADOWMAP) lightColor *= shadowValue; #endif // enable when point lights are supported as primary lights //lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist); gl_FragColor.rgb += lightColor * reflectance * NL2; #endif #else lightColor = var_Color.rgb; #if defined(USE_LIGHTMAP) lightColor *= lightmapColor.rgb; #endif #if defined(r_lightGamma) lightColor = pow(lightColor, vec3(r_lightGamma)); #endif #if defined(r_materialGamma) diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma)); #endif gl_FragColor.rgb = diffuse.rgb * lightColor; #endif #if defined(r_framebufferGamma) gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0 / r_framebufferGamma)); #endif gl_FragColor.a = diffuse.a * var_Color.a; }