summaryrefslogtreecommitdiff
path: root/src/renderergl2/tr_light.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/renderergl2/tr_light.cpp')
-rw-r--r--src/renderergl2/tr_light.cpp513
1 files changed, 513 insertions, 0 deletions
diff --git a/src/renderergl2/tr_light.cpp b/src/renderergl2/tr_light.cpp
new file mode 100644
index 0000000..d14217f
--- /dev/null
+++ b/src/renderergl2/tr_light.cpp
@@ -0,0 +1,513 @@
+/*
+===========================================================================
+Copyright (C) 1999-2005 Id Software, Inc.
+Copyright (C) 2000-2013 Darklegion Development
+Copyright (C) 2015-2019 GrangerHub
+
+This file is part of Tremulous.
+
+Tremulous is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 3 of the License,
+or (at your option) any later version.
+
+Tremulous is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Tremulous; if not, see <https://www.gnu.org/licenses/>
+
+===========================================================================
+*/
+// tr_light.c
+
+#include "tr_local.h"
+
+#define DLIGHT_AT_RADIUS 16
+// at the edge of a dlight's influence, this amount of light will be added
+
+#define DLIGHT_MINIMUM_RADIUS 16
+// never calculate a range less than this to prevent huge light numbers
+
+
+/*
+===============
+R_TransformDlights
+
+Transforms the origins of an array of dlights.
+Used by both the front end (for DlightBmodel) and
+the back end (before doing the lighting calculation)
+===============
+*/
+void R_TransformDlights( int count, dlight_t *dl, orientationr_t *orientation) {
+ int i;
+ vec3_t temp;
+
+ for ( i = 0 ; i < count ; i++, dl++ ) {
+ VectorSubtract( dl->origin, orientation->origin, temp );
+ dl->transformed[0] = DotProduct( temp, orientation->axis[0] );
+ dl->transformed[1] = DotProduct( temp, orientation->axis[1] );
+ dl->transformed[2] = DotProduct( temp, orientation->axis[2] );
+ }
+}
+
+/*
+=============
+R_DlightBmodel
+
+Determine which dynamic lights may effect this bmodel
+=============
+*/
+void R_DlightBmodel( bmodel_t *bmodel ) {
+ int i, j;
+ dlight_t *dl;
+ int mask;
+ msurface_t *surf;
+
+ // transform all the lights
+ R_TransformDlights( tr.refdef.num_dlights, tr.refdef.dlights, &tr.orientation );
+
+ mask = 0;
+ for ( i=0 ; i<tr.refdef.num_dlights ; i++ ) {
+ dl = &tr.refdef.dlights[i];
+
+ // see if the point is close enough to the bounds to matter
+ for ( j = 0 ; j < 3 ; j++ ) {
+ if ( dl->transformed[j] - bmodel->bounds[1][j] > dl->radius ) {
+ break;
+ }
+ if ( bmodel->bounds[0][j] - dl->transformed[j] > dl->radius ) {
+ break;
+ }
+ }
+ if ( j < 3 ) {
+ continue;
+ }
+
+ // we need to check this light
+ mask |= 1 << i;
+ }
+
+ tr.currentEntity->needDlights = (mask != 0);
+
+ // set the dlight bits in all the surfaces
+ for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) {
+ surf = tr.world->surfaces + bmodel->firstSurface + i;
+
+ switch(*surf->data)
+ {
+ case SF_FACE:
+ case SF_GRID:
+ case SF_TRIANGLES:
+ ((srfBspSurface_t *)surf->data)->dlightBits = mask;
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+
+/*
+=============================================================================
+
+LIGHT SAMPLING
+
+=============================================================================
+*/
+
+extern cvar_t *r_ambientScale;
+extern cvar_t *r_directedScale;
+extern cvar_t *r_debugLight;
+
+/*
+=================
+R_SetupEntityLightingGrid
+
+=================
+*/
+static void R_SetupEntityLightingGrid( trRefEntity_t *ent, world_t *world ) {
+ vec3_t lightOrigin;
+ int pos[3];
+ int i, j;
+ byte *gridData;
+ float frac[3];
+ int gridStep[3];
+ vec3_t direction;
+ float totalFactor;
+
+ if ( ent->e.renderfx & RF_LIGHTING_ORIGIN ) {
+ // seperate lightOrigins are needed so an object that is
+ // sinking into the ground can still be lit, and so
+ // multi-part models can be lit identically
+ VectorCopy( ent->e.lightingOrigin, lightOrigin );
+ } else {
+ VectorCopy( ent->e.origin, lightOrigin );
+ }
+
+ VectorSubtract( lightOrigin, world->lightGridOrigin, lightOrigin );
+ for ( i = 0 ; i < 3 ; i++ ) {
+ float v;
+
+ v = lightOrigin[i]*world->lightGridInverseSize[i];
+ pos[i] = floor( v );
+ frac[i] = v - pos[i];
+ if ( pos[i] < 0 ) {
+ pos[i] = 0;
+ } else if ( pos[i] > world->lightGridBounds[i] - 1 ) {
+ pos[i] = world->lightGridBounds[i] - 1;
+ }
+ }
+
+ VectorClear( ent->ambientLight );
+ VectorClear( ent->directedLight );
+ VectorClear( direction );
+
+ assert( world->lightGridData ); // NULL with -nolight maps
+
+ // trilerp the light value
+ gridStep[0] = 8;
+ gridStep[1] = 8 * world->lightGridBounds[0];
+ gridStep[2] = 8 * world->lightGridBounds[0] * world->lightGridBounds[1];
+ gridData = world->lightGridData + pos[0] * gridStep[0]
+ + pos[1] * gridStep[1] + pos[2] * gridStep[2];
+
+ totalFactor = 0;
+ for ( i = 0 ; i < 8 ; i++ ) {
+ float factor;
+ byte *data;
+ int lat, lng;
+ vec3_t normal;
+ #if idppc
+ float d0, d1, d2, d3, d4, d5;
+ #endif
+ factor = 1.0;
+ data = gridData;
+ for ( j = 0 ; j < 3 ; j++ ) {
+ if ( i & (1<<j) ) {
+ if ( pos[j] + 1 > world->lightGridBounds[j] - 1 ) {
+ break; // ignore values outside lightgrid
+ }
+ factor *= frac[j];
+ data += gridStep[j];
+ } else {
+ factor *= (1.0f - frac[j]);
+ }
+ }
+
+ if ( j != 3 ) {
+ continue;
+ }
+
+ if (world->lightGrid16)
+ {
+ uint16_t *data16 = world->lightGrid16 + (int)(data - world->lightGridData) / 8 * 6;
+ if (!(data16[0]+data16[1]+data16[2]+data16[3]+data16[4]+data16[5])) {
+ continue; // ignore samples in walls
+ }
+ }
+ else
+ {
+ if (!(data[0]+data[1]+data[2]+data[3]+data[4]+data[5]) ) {
+ continue; // ignore samples in walls
+ }
+ }
+ totalFactor += factor;
+ #if idppc
+ d0 = data[0]; d1 = data[1]; d2 = data[2];
+ d3 = data[3]; d4 = data[4]; d5 = data[5];
+
+ ent->ambientLight[0] += factor * d0;
+ ent->ambientLight[1] += factor * d1;
+ ent->ambientLight[2] += factor * d2;
+
+ ent->directedLight[0] += factor * d3;
+ ent->directedLight[1] += factor * d4;
+ ent->directedLight[2] += factor * d5;
+ #else
+ if (world->lightGrid16)
+ {
+ // FIXME: this is hideous
+ uint16_t *data16 = world->lightGrid16 + (int)(data - world->lightGridData) / 8 * 6;
+
+ ent->ambientLight[0] += factor * data16[0] / 257.0f;
+ ent->ambientLight[1] += factor * data16[1] / 257.0f;
+ ent->ambientLight[2] += factor * data16[2] / 257.0f;
+
+ ent->directedLight[0] += factor * data16[3] / 257.0f;
+ ent->directedLight[1] += factor * data16[4] / 257.0f;
+ ent->directedLight[2] += factor * data16[5] / 257.0f;
+ }
+ else
+ {
+ ent->ambientLight[0] += factor * data[0];
+ ent->ambientLight[1] += factor * data[1];
+ ent->ambientLight[2] += factor * data[2];
+
+ ent->directedLight[0] += factor * data[3];
+ ent->directedLight[1] += factor * data[4];
+ ent->directedLight[2] += factor * data[5];
+ }
+ #endif
+ lat = data[7];
+ lng = data[6];
+ lat *= (FUNCTABLE_SIZE/256);
+ lng *= (FUNCTABLE_SIZE/256);
+
+ // decode X as cos( lat ) * sin( long )
+ // decode Y as sin( lat ) * sin( long )
+ // decode Z as cos( long )
+
+ normal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
+ normal[1] = tr.sinTable[lat] * tr.sinTable[lng];
+ normal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
+
+ VectorMA( direction, factor, normal, direction );
+ }
+
+ if ( totalFactor > 0 && totalFactor < 0.99 ) {
+ totalFactor = 1.0f / totalFactor;
+ VectorScale( ent->ambientLight, totalFactor, ent->ambientLight );
+ VectorScale( ent->directedLight, totalFactor, ent->directedLight );
+ }
+
+ VectorScale( ent->ambientLight, r_ambientScale->value, ent->ambientLight );
+ VectorScale( ent->directedLight, r_directedScale->value, ent->directedLight );
+
+ VectorNormalize2( direction, ent->lightDir );
+}
+
+
+/*
+===============
+LogLight
+===============
+*/
+static void LogLight( trRefEntity_t *ent ) {
+ int max1, max2;
+
+ if ( !(ent->e.renderfx & RF_FIRST_PERSON ) ) {
+ return;
+ }
+
+ max1 = ent->ambientLight[0];
+ if ( ent->ambientLight[1] > max1 ) {
+ max1 = ent->ambientLight[1];
+ } else if ( ent->ambientLight[2] > max1 ) {
+ max1 = ent->ambientLight[2];
+ }
+
+ max2 = ent->directedLight[0];
+ if ( ent->directedLight[1] > max2 ) {
+ max2 = ent->directedLight[1];
+ } else if ( ent->directedLight[2] > max2 ) {
+ max2 = ent->directedLight[2];
+ }
+
+ ri.Printf( PRINT_ALL, "amb:%i dir:%i\n", max1, max2 );
+}
+
+/*
+=================
+R_SetupEntityLighting
+
+Calculates all the lighting values that will be used
+by the Calc_* functions
+=================
+*/
+void R_SetupEntityLighting( const trRefdef_t *refdef, trRefEntity_t *ent ) {
+ int i;
+ dlight_t *dl;
+ float power;
+ vec3_t dir;
+ float d;
+ vec3_t lightDir;
+ vec3_t lightOrigin;
+
+ // lighting calculations
+ if ( ent->lightingCalculated ) {
+ return;
+ }
+ ent->lightingCalculated = true;
+
+ //
+ // trace a sample point down to find ambient light
+ //
+ if ( ent->e.renderfx & RF_LIGHTING_ORIGIN ) {
+ // seperate lightOrigins are needed so an object that is
+ // sinking into the ground can still be lit, and so
+ // multi-part models can be lit identically
+ VectorCopy( ent->e.lightingOrigin, lightOrigin );
+ } else {
+ VectorCopy( ent->e.origin, lightOrigin );
+ }
+
+ // if NOWORLDMODEL, only use dynamic lights (menu system, etc)
+ if ( !(refdef->rdflags & RDF_NOWORLDMODEL )
+ && tr.world->lightGridData ) {
+ R_SetupEntityLightingGrid( ent, tr.world );
+ } else {
+ ent->ambientLight[0] = ent->ambientLight[1] =
+ ent->ambientLight[2] = tr.identityLight * 150;
+ ent->directedLight[0] = ent->directedLight[1] =
+ ent->directedLight[2] = tr.identityLight * 150;
+ VectorCopy( tr.sunDirection, ent->lightDir );
+ }
+
+ // bonus items and view weapons have a fixed minimum add
+ if ( !r_hdr->integer /* ent->e.renderfx & RF_MINLIGHT */ ) {
+ // give everything a minimum light add
+ ent->ambientLight[0] += tr.identityLight * 32;
+ ent->ambientLight[1] += tr.identityLight * 32;
+ ent->ambientLight[2] += tr.identityLight * 32;
+ }
+
+ //
+ // modify the light by dynamic lights
+ //
+ d = VectorLength( ent->directedLight );
+ VectorScale( ent->lightDir, d, lightDir );
+
+ for ( i = 0 ; i < refdef->num_dlights ; i++ ) {
+ dl = &refdef->dlights[i];
+ VectorSubtract( dl->origin, lightOrigin, dir );
+ d = VectorNormalize( dir );
+
+ power = DLIGHT_AT_RADIUS * ( dl->radius * dl->radius );
+ if ( d < DLIGHT_MINIMUM_RADIUS ) {
+ d = DLIGHT_MINIMUM_RADIUS;
+ }
+ d = power / ( d * d );
+
+ VectorMA( ent->directedLight, d, dl->color, ent->directedLight );
+ VectorMA( lightDir, d, dir, lightDir );
+ }
+
+ // clamp lights
+ // FIXME: old renderer clamps (ambient + NL * directed) per vertex
+ // check if that's worth implementing
+ {
+ float r, g, b, max;
+
+ r = ent->ambientLight[0];
+ g = ent->ambientLight[1];
+ b = ent->ambientLight[2];
+
+ max = MAX(MAX(r, g), b);
+
+ if (max > 255.0f)
+ {
+ max = 255.0f / max;
+ ent->ambientLight[0] *= max;
+ ent->ambientLight[1] *= max;
+ ent->ambientLight[2] *= max;
+ }
+
+ r = ent->directedLight[0];
+ g = ent->directedLight[1];
+ b = ent->directedLight[2];
+
+ max = MAX(MAX(r, g), b);
+
+ if (max > 255.0f)
+ {
+ max = 255.0f / max;
+ ent->directedLight[0] *= max;
+ ent->directedLight[1] *= max;
+ ent->directedLight[2] *= max;
+ }
+ }
+
+
+ if ( r_debugLight->integer ) {
+ LogLight( ent );
+ }
+
+ // save out the byte packet version
+ ((byte *)&ent->ambientLightInt)[0] = static_cast<int>(ent->ambientLight[0]);
+ ((byte *)&ent->ambientLightInt)[1] = static_cast<int>(ent->ambientLight[1]);
+ ((byte *)&ent->ambientLightInt)[2] = static_cast<int>(ent->ambientLight[2]);
+ ((byte *)&ent->ambientLightInt)[3] = 0xff;
+
+ // transform the direction to local space
+ VectorNormalize( lightDir );
+ ent->modelLightDir[0] = DotProduct( lightDir, ent->e.axis[0] );
+ ent->modelLightDir[1] = DotProduct( lightDir, ent->e.axis[1] );
+ ent->modelLightDir[2] = DotProduct( lightDir, ent->e.axis[2] );
+
+ VectorCopy(lightDir, ent->lightDir);
+}
+
+/*
+=================
+R_LightForPoint
+=================
+*/
+bool R_LightForPoint( vec3_t point, vec3_t ambientLight, vec3_t directedLight, vec3_t lightDir )
+{
+ trRefEntity_t ent;
+
+ if ( tr.world->lightGridData == NULL )
+ return false;
+
+ Com_Memset(&ent, 0, sizeof(ent));
+ VectorCopy( point, ent.e.origin );
+ R_SetupEntityLightingGrid( &ent, tr.world );
+ VectorCopy(ent.ambientLight, ambientLight);
+ VectorCopy(ent.directedLight, directedLight);
+ VectorCopy(ent.lightDir, lightDir);
+
+ return true;
+}
+
+
+bool R_LightDirForPoint( vec3_t point, vec3_t lightDir, vec3_t normal, world_t *world )
+{
+ trRefEntity_t ent;
+
+ if ( world->lightGridData == NULL )
+ return false;
+
+ Com_Memset(&ent, 0, sizeof(ent));
+ VectorCopy( point, ent.e.origin );
+ R_SetupEntityLightingGrid( &ent, world );
+
+ if (DotProduct(ent.lightDir, normal) > 0.2f)
+ VectorCopy(ent.lightDir, lightDir);
+ else
+ VectorCopy(normal, lightDir);
+
+ return true;
+}
+
+
+int R_CubemapForPoint( vec3_t point )
+{
+ int cubemapIndex = -1;
+
+ if (r_cubeMapping->integer && tr.numCubemaps)
+ {
+ int i;
+ vec_t shortest = (float)WORLD_SIZE * (float)WORLD_SIZE;
+
+ for (i = 0; i < tr.numCubemaps; i++)
+ {
+ vec3_t diff;
+ vec_t length;
+
+ VectorSubtract(point, tr.cubemaps[i].origin, diff);
+ length = DotProduct(diff, diff);
+
+ if (shortest > length)
+ {
+ shortest = length;
+ cubemapIndex = i;
+ }
+ }
+ }
+
+ return cubemapIndex + 1;
+}