diff options
-rw-r--r-- | delta_E.py | 103 |
1 files changed, 103 insertions, 0 deletions
diff --git a/delta_E.py b/delta_E.py new file mode 100644 index 0000000..cb47fd5 --- /dev/null +++ b/delta_E.py @@ -0,0 +1,103 @@ +import os +import numpy as np +import matplotlib.pyplot as plt +import tqdm + +from colour import ( + STANDARD_OBSERVER_CMFS, SpectralShape, SpectralDistribution, + COLOURCHECKER_SDS, ILLUMINANT_SDS, ILLUMINANTS, sd_to_XYZ, XYZ_to_xy, + XYZ_to_Lab) +from colour.difference import delta_E_CIE1976 +from colour.utilities import as_float_array +from colour.plotting import plot_chromaticity_diagram_CIE1931 + +from otsu2018 import load_Otsu2018_spectra +from datasets.otsu2018 import * + + +# Copied from https://github.com/enneract/colour/tree/feature/otsu2018 +def XYZ_to_sd_Otsu2018( + XYZ, + cmfs=STANDARD_OBSERVER_CMFS['CIE 1931 2 Degree Standard Observer'] + .copy().align(OTSU_2018_SPECTRAL_SHAPE), + illuminant=ILLUMINANT_SDS['D65'].copy().align( + OTSU_2018_SPECTRAL_SHAPE), + clip=True): + XYZ = as_float_array(XYZ) + xy = XYZ_to_xy(XYZ) + cluster = select_cluster_Otsu2018(xy) + + basis_functions = OTSU_2018_BASIS_FUNCTIONS[cluster] + mean = OTSU_2018_MEANS[cluster] + + M = np.empty((3, 3)) + for i in range(3): + sd = SpectralDistribution( + basis_functions[i, :], + OTSU_2018_SPECTRAL_SHAPE.range(), + ) + M[:, i] = sd_to_XYZ(sd, illuminant=illuminant) / 100 + M_inverse = np.linalg.inv(M) + + sd = SpectralDistribution(mean, OTSU_2018_SPECTRAL_SHAPE.range()) + XYZ_mu = sd_to_XYZ(sd, illuminant=illuminant) / 100 + + weights = np.dot(M_inverse, XYZ - XYZ_mu) + recovered_sd = np.dot(weights, basis_functions) + mean + + if clip: + recovered_sd = np.clip(recovered_sd, 0, 1) + + return SpectralDistribution(recovered_sd, OTSU_2018_SPECTRAL_SHAPE.range()) + + + +if __name__ == '__main__': + print('Loading spectral data...') + data = load_Otsu2018_spectra('CommonData/spectrum_m.csv') + shape = SpectralShape(380, 730, 10) + sds = [SpectralDistribution(data[i, :], shape.range()) + for i in range(data.shape[0])] + + + for name, colourchecker in COLOURCHECKER_SDS.items(): + print('Adding %s...' % name) + sds += colourchecker.values() + + D65 = ILLUMINANT_SDS['D65'] + xy_w = ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D65'] + + x = [] + y = [] + errors = [] + above_JND = 0 + for i, sd in tqdm.tqdm(enumerate(sds), total=len(sds)): + XYZ = sd_to_XYZ(sd, illuminant=D65) / 100 + xy = XYZ_to_xy(XYZ) + x.append(xy[0]) + y.append(xy[1]) + Lab = XYZ_to_Lab(XYZ, xy_w) + + recovered_sd = XYZ_to_sd_Otsu2018(XYZ) + recovered_XYZ = sd_to_XYZ(recovered_sd, illuminant=D65) / 100 + recovered_Lab = XYZ_to_Lab(recovered_XYZ, xy_w) + + error = delta_E_CIE1976(Lab, recovered_Lab) + errors.append(error) + if error > 2.4: + above_JND += 1 + + print('Min. error: %g' % min(errors)) + print('Max. error: %g' % max(errors)) + print('Avg. error: %g' % np.mean(errors)) + print('Errors above JND: %d (%.1f%%)' + % (above_JND, 100 * above_JND / len(sds))) + + bins = [int((max(y) - min(y)) / 0.01), int((max(x) - min(x)) / 0.01)] + histogram, _, _ = np.histogram2d(x, y, bins=bins, weights=errors) + + plot_chromaticity_diagram_CIE1931(standalone=False) + plt.imshow(histogram, extent=(min(x), max(x), min(y), max(y)), + interpolation='bicubic') + plt.colorbar() + plt.show() |