summaryrefslogtreecommitdiff
path: root/pca_decomposition.py
diff options
context:
space:
mode:
Diffstat (limited to 'pca_decomposition.py')
-rw-r--r--pca_decomposition.py34
1 files changed, 34 insertions, 0 deletions
diff --git a/pca_decomposition.py b/pca_decomposition.py
new file mode 100644
index 0000000..d6ea828
--- /dev/null
+++ b/pca_decomposition.py
@@ -0,0 +1,34 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+from otsu2018 import load_Otsu2018_spectra, Clustering
+
+
+if __name__ == '__main__':
+ sds = load_Otsu2018_spectra('CommonData/spectrum_m.csv', every_nth=1)
+ wl = np.arange(380, 731, 10)
+
+ mean = np.mean(sds, axis=0)
+ data_matrix = sds - mean
+ covariance_matrix = np.dot(data_matrix.T, data_matrix)
+ eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
+
+ for i, v in enumerate(eigenvalues):
+ w = eigenvectors[:, i]
+ color = 'C%d' % (i % 10)
+
+ scale = 0.5 / np.max(np.abs(w))
+ baseline = i + 1
+
+ plt.plot((min(wl), max(wl)), (baseline, baseline), color + ':')
+ plt.plot(wl, baseline + scale * w, color + '-')
+
+ plt.annotate('λ = %g' % v, color=color, xy=(max(wl), baseline),
+ xytext=(max(wl), baseline + 0.05), ha='right')
+
+ plt.title('PCA decomposition')
+ plt.xlabel('Wavelength [nm]')
+ plt.ylabel('Eigenvector number')
+ plt.xlim(370, 740)
+ plt.ylim(30.5, 36.5)
+ plt.show()