summaryrefslogtreecommitdiff
path: root/src/phys.py
diff options
context:
space:
mode:
authorPaweł Redman <pawel.redman@gmail.com>2019-04-28 17:29:18 +0200
committerPaweł Redman <pawel.redman@gmail.com>2019-04-28 19:07:20 +0200
commit52a8a95a8553f5b2a1224db474e6cf1d649533c8 (patch)
tree003e0c94839b6daebef19049c75ba0ed43082a7b /src/phys.py
Initial commit
Diffstat (limited to 'src/phys.py')
-rw-r--r--src/phys.py99
1 files changed, 99 insertions, 0 deletions
diff --git a/src/phys.py b/src/phys.py
new file mode 100644
index 0000000..2109f28
--- /dev/null
+++ b/src/phys.py
@@ -0,0 +1,99 @@
+import re, sys, traceback
+import numpy as np
+import scipy.optimize
+from PyQt5.QtWidgets import *
+from PyQt5.QtGui import *
+from PyQt5.QtCore import *
+
+from ui import *
+
+def R(theta):
+ return np.array([[np.cos(theta), np.sin(theta)],
+ [-np.sin(theta), np.cos(theta)]])
+
+
+class Ellipse:
+ def __init__(self, state):
+ # FIXME: a less brute-force way of doing this
+ if state is None:
+ self.alpha = np.nan
+ self.theta = np.nan
+ self.e = np.nan
+ self.a = np.nan
+ self.b = np.nan
+ return
+
+ def x(theta):
+ return np.real(np.exp(1j * theta) * state)
+
+ def r(theta):
+ return np.linalg.norm(x(theta))
+
+ def angle(x):
+ a = np.arctan2(x[1], x[0])
+ if a < 0:
+ a += 2 * np.pi
+ if a > np.pi:
+ a -= np.pi
+ return a
+
+ opt = scipy.optimize.minimize_scalar(r, bounds=[0, np.pi], \
+ method="bounded")
+ self.b = r(opt.x)
+ opt = scipy.optimize.minimize_scalar(lambda x: -r(x), \
+ bounds=[0, np.pi], method="bounded")
+ self.a = r(opt.x)
+
+ self.alpha = angle(x(opt.x))
+
+ self.e = self.b / self.a
+ self.theta = np.arctan(self.e)
+ if self.alpha > angle(x(opt.x + 0.001)):
+ self.theta *= -1
+
+class Polarizer:
+ def __init__(self, type, delta=0):
+ self.type = type
+ self.angle = 0
+ self.delta = delta
+ self.ref = False # FIXME: move this to UI or System
+ self.set_type(type)
+
+ def set_type(self, type):
+ if type == "linear":
+ self.M = np.array([[1, 0], [0, 0]])
+ elif type == "quarterwave":
+ self.M = np.exp(-1j / 4 * np.pi) * \
+ np.array([[1, 0], [0, 1j]])
+ else:
+ raise ValueError("bad Polarizer type: %s" % type)
+ self.type = type
+
+ def mul(self, state):
+ # unpolarized light
+ if state is None:
+ if self.type == "linear":
+ return np.dot(R(-self.angle - self.delta), \
+ np.array([[1], [0]]))
+ else:
+ return None
+
+ M = np.matmul(R(-self.angle - self.delta), \
+ np.matmul(self.M, R(self.angle + self.delta)))
+ return np.dot(M, state)
+
+class System:
+ def __init__(self):
+ self.elements = list()
+ self.ignore = list()
+
+ def recalculate(system):
+ system.states = [None] * len(system.elements)
+ system.ellipses = list()
+
+ state = None
+ for i, pol in enumerate(system.elements):
+ if i >= len(system.ignore) or not system.ignore[i]:
+ state = pol.mul(state)
+ system.states[i] = state
+ system.ellipses.append(Ellipse(state))