1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
import re, sys, traceback
import numpy as np
import scipy.optimize
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from ui import *
def jones_to_stokes(E):
I = np.abs(E[0] ** 2) + np.abs(E[1] ** 2)
Q = np.abs(E[0] ** 2) - np.abs(E[1] ** 2)
U = 2 * np.real(E[0] * np.conjugate(E[1]))
V = 2 * np.imag(E[0] * np.conjugate(E[1]))
return np.array([I, Q, U, V])
def R(theta):
return np.array([[np.cos(theta), np.sin(theta)],
[-np.sin(theta), np.cos(theta)]])
class Ellipse:
def __init__(self, state):
if state is None:
self.alpha = np.nan
self.theta = np.nan
self.e = np.nan
self.a = np.nan
self.b = np.nan
return
def x(theta):
return np.real(np.exp(1j * theta) * state)
def r(theta):
return np.linalg.norm(x(theta))
def angle(x):
a = np.arctan2(x[1], x[0])
if a < 0:
a += 2 * np.pi
if a > np.pi:
a -= np.pi
return a
opt = scipy.optimize.minimize_scalar(r, bounds=[0, np.pi], \
method="bounded")
self.b = r(opt.x)
opt = scipy.optimize.minimize_scalar(lambda x: -r(x), \
bounds=[0, np.pi], method="bounded")
self.a = r(opt.x)
V = jones_to_stokes(state)
self.alpha = np.arctan2(V[2], V[1]) / 2
if self.alpha < 0:
self.alpha += np.pi
R = np.sqrt(V[1] ** 2 + V[2] ** 2 + V[3] ** 2)
self.theta = np.arcsin(V[3] / R) / 2
class Polarizer:
def __init__(self, delta=0):
self.name = "New element" # FIXME
self.phase_retardation = 0
self.angle = 0
self.delta = delta
self.ref = False
self.t1 = 1
self.t2 = 0
self.enable = True
def matrix(self):
A = np.sqrt(np.array([[self.t1, 0], [0, self.t2]])) # FIXME: half-assed again
M = np.array([[1, 0], [0, np.exp(1j * self.phase_retardation),]])
return np.matmul(R(-self.angle - self.delta),
np.matmul(np.matmul(M, A), R(self.angle + self.delta)))
def mul(self, state):
# unpolarized light
if state is None:
if self.t2 == 0: # FIXME: this is half-assed
return np.dot(R(-self.angle - self.delta), \
np.array([[1], [0]])) * np.sqrt(self.t1)
else:
return None
return np.dot(self.matrix(), state)
class System:
def __init__(self):
self.elements = list()
self.input_intensity = 1
def recalculate(system):
system.states = [None] * len(system.elements)
system.Vs = [None] * len(system.elements)
system.ellipses = list()
state = None
for i, pol in enumerate(system.elements):
if pol.enable:
new_state = pol.mul(state)
if state is None and new_state is not None:
state = new_state * np.sqrt(system.input_intensity)
else:
state = new_state
system.states[i] = state
system.ellipses.append(Ellipse(state))
|