diff options
Diffstat (limited to 'src/libspeex/lsp.c')
-rw-r--r-- | src/libspeex/lsp.c | 656 |
1 files changed, 656 insertions, 0 deletions
diff --git a/src/libspeex/lsp.c b/src/libspeex/lsp.c new file mode 100644 index 00000000..a73d8835 --- /dev/null +++ b/src/libspeex/lsp.c @@ -0,0 +1,656 @@ +/*---------------------------------------------------------------------------*\ +Original copyright + FILE........: lsp.c + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + +Heavily modified by Jean-Marc Valin (c) 2002-2006 (fixed-point, + optimizations, additional functions, ...) + + This file contains functions for converting Linear Prediction + Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the + LSP coefficients are not in radians format but in the x domain of the + unit circle. + + Speex License: + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + - Neither the name of the Xiph.org Foundation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR + CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +/*---------------------------------------------------------------------------*\ + + Introduction to Line Spectrum Pairs (LSPs) + ------------------------------------------ + + LSPs are used to encode the LPC filter coefficients {ak} for + transmission over the channel. LSPs have several properties (like + less sensitivity to quantisation noise) that make them superior to + direct quantisation of {ak}. + + A(z) is a polynomial of order lpcrdr with {ak} as the coefficients. + + A(z) is transformed to P(z) and Q(z) (using a substitution and some + algebra), to obtain something like: + + A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1) + + As you can imagine A(z) has complex zeros all over the z-plane. P(z) + and Q(z) have the very neat property of only having zeros _on_ the + unit circle. So to find them we take a test point z=exp(jw) and + evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0 + and pi. + + The zeros (roots) of P(z) also happen to alternate, which is why we + swap coefficients as we find roots. So the process of finding the + LSP frequencies is basically finding the roots of 5th order + polynomials. + + The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence + the name Line Spectrum Pairs (LSPs). + + To convert back to ak we just evaluate (1), "clocking" an impulse + thru it lpcrdr times gives us the impulse response of A(z) which is + {ak}. + +\*---------------------------------------------------------------------------*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <math.h> +#include "lsp.h" +#include "stack_alloc.h" +#include "math_approx.h" + +#ifndef M_PI +#define M_PI 3.14159265358979323846 /* pi */ +#endif + +#ifndef NULL +#define NULL 0 +#endif + +#ifdef FIXED_POINT + +#define FREQ_SCALE 16384 + +/*#define ANGLE2X(a) (32768*cos(((a)/8192.)))*/ +#define ANGLE2X(a) (SHL16(spx_cos(a),2)) + +/*#define X2ANGLE(x) (acos(.00006103515625*(x))*LSP_SCALING)*/ +#define X2ANGLE(x) (spx_acos(x)) + +#ifdef BFIN_ASM +#include "lsp_bfin.h" +#endif + +#else + +/*#define C1 0.99940307 +#define C2 -0.49558072 +#define C3 0.03679168*/ + +#define FREQ_SCALE 1. +#define ANGLE2X(a) (spx_cos(a)) +#define X2ANGLE(x) (acos(x)) + +#endif + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cheb_poly_eva() + + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + This function evaluates a series of Chebyshev polynomials + +\*---------------------------------------------------------------------------*/ + +#ifdef FIXED_POINT + +#ifndef OVERRIDE_CHEB_POLY_EVA +static inline spx_word32_t cheb_poly_eva( + spx_word16_t *coef, /* P or Q coefs in Q13 format */ + spx_word16_t x, /* cos of freq (-1.0 to 1.0) in Q14 format */ + int m, /* LPC order/2 */ + char *stack +) +{ + int i; + spx_word16_t b0, b1; + spx_word32_t sum; + + /*Prevents overflows*/ + if (x>16383) + x = 16383; + if (x<-16383) + x = -16383; + + /* Initialise values */ + b1=16384; + b0=x; + + /* Evaluate Chebyshev series formulation usin g iterative approach */ + sum = ADD32(EXTEND32(coef[m]), EXTEND32(MULT16_16_P14(coef[m-1],x))); + for(i=2;i<=m;i++) + { + spx_word16_t tmp=b0; + b0 = SUB16(MULT16_16_Q13(x,b0), b1); + b1 = tmp; + sum = ADD32(sum, EXTEND32(MULT16_16_P14(coef[m-i],b0))); + } + + return sum; +} +#endif + +#else + +static float cheb_poly_eva(spx_word32_t *coef, spx_word16_t x, int m, char *stack) +{ + int k; + float b0, b1, tmp; + + /* Initial conditions */ + b0=0; /* b_(m+1) */ + b1=0; /* b_(m+2) */ + + x*=2; + + /* Calculate the b_(k) */ + for(k=m;k>0;k--) + { + tmp=b0; /* tmp holds the previous value of b0 */ + b0=x*b0-b1+coef[m-k]; /* b0 holds its new value based on b0 and b1 */ + b1=tmp; /* b1 holds the previous value of b0 */ + } + + return(-b1+.5*x*b0+coef[m]); +} +#endif + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: lpc_to_lsp() + + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + This function converts LPC coefficients to LSP + coefficients. + +\*---------------------------------------------------------------------------*/ + +#ifdef FIXED_POINT +#define SIGN_CHANGE(a,b) (((a)&0x70000000)^((b)&0x70000000)||(b==0)) +#else +#define SIGN_CHANGE(a,b) (((a)*(b))<0.0) +#endif + + +int lpc_to_lsp (spx_coef_t *a,int lpcrdr,spx_lsp_t *freq,int nb,spx_word16_t delta, char *stack) +/* float *a lpc coefficients */ +/* int lpcrdr order of LPC coefficients (10) */ +/* float *freq LSP frequencies in the x domain */ +/* int nb number of sub-intervals (4) */ +/* float delta grid spacing interval (0.02) */ + + +{ + spx_word16_t temp_xr,xl,xr,xm=0; + spx_word32_t psuml,psumr,psumm,temp_psumr/*,temp_qsumr*/; + int i,j,m,flag,k; + VARDECL(spx_word32_t *Q); /* ptrs for memory allocation */ + VARDECL(spx_word32_t *P); + VARDECL(spx_word16_t *Q16); /* ptrs for memory allocation */ + VARDECL(spx_word16_t *P16); + spx_word32_t *px; /* ptrs of respective P'(z) & Q'(z) */ + spx_word32_t *qx; + spx_word32_t *p; + spx_word32_t *q; + spx_word16_t *pt; /* ptr used for cheb_poly_eval() + whether P' or Q' */ + int roots=0; /* DR 8/2/94: number of roots found */ + flag = 1; /* program is searching for a root when, + 1 else has found one */ + m = lpcrdr/2; /* order of P'(z) & Q'(z) polynomials */ + + /* Allocate memory space for polynomials */ + ALLOC(Q, (m+1), spx_word32_t); + ALLOC(P, (m+1), spx_word32_t); + + /* determine P'(z)'s and Q'(z)'s coefficients where + P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */ + + px = P; /* initialise ptrs */ + qx = Q; + p = px; + q = qx; + +#ifdef FIXED_POINT + *px++ = LPC_SCALING; + *qx++ = LPC_SCALING; + for(i=0;i<m;i++){ + *px++ = SUB32(ADD32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *p++); + *qx++ = ADD32(SUB32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *q++); + } + px = P; + qx = Q; + for(i=0;i<m;i++) + { + /*if (fabs(*px)>=32768) + speex_warning_int("px", *px); + if (fabs(*qx)>=32768) + speex_warning_int("qx", *qx);*/ + *px = PSHR32(*px,2); + *qx = PSHR32(*qx,2); + px++; + qx++; + } + /* The reason for this lies in the way cheb_poly_eva() is implemented for fixed-point */ + P[m] = PSHR32(P[m],3); + Q[m] = PSHR32(Q[m],3); +#else + *px++ = LPC_SCALING; + *qx++ = LPC_SCALING; + for(i=0;i<m;i++){ + *px++ = (a[i]+a[lpcrdr-1-i]) - *p++; + *qx++ = (a[i]-a[lpcrdr-1-i]) + *q++; + } + px = P; + qx = Q; + for(i=0;i<m;i++){ + *px = 2**px; + *qx = 2**qx; + px++; + qx++; + } +#endif + + px = P; /* re-initialise ptrs */ + qx = Q; + + /* now that we have computed P and Q convert to 16 bits to + speed up cheb_poly_eval */ + + ALLOC(P16, m+1, spx_word16_t); + ALLOC(Q16, m+1, spx_word16_t); + + for (i=0;i<m+1;i++) + { + P16[i] = P[i]; + Q16[i] = Q[i]; + } + + /* Search for a zero in P'(z) polynomial first and then alternate to Q'(z). + Keep alternating between the two polynomials as each zero is found */ + + xr = 0; /* initialise xr to zero */ + xl = FREQ_SCALE; /* start at point xl = 1 */ + + for(j=0;j<lpcrdr;j++){ + if(j&1) /* determines whether P' or Q' is eval. */ + pt = Q16; + else + pt = P16; + + psuml = cheb_poly_eva(pt,xl,m,stack); /* evals poly. at xl */ + flag = 1; + while(flag && (xr >= -FREQ_SCALE)){ + spx_word16_t dd; + /* Modified by JMV to provide smaller steps around x=+-1 */ +#ifdef FIXED_POINT + dd = MULT16_16_Q15(delta,SUB16(FREQ_SCALE, MULT16_16_Q14(MULT16_16_Q14(xl,xl),14000))); + if (psuml<512 && psuml>-512) + dd = PSHR16(dd,1); +#else + dd=delta*(1-.9*xl*xl); + if (fabs(psuml)<.2) + dd *= .5; +#endif + xr = SUB16(xl, dd); /* interval spacing */ + psumr = cheb_poly_eva(pt,xr,m,stack);/* poly(xl-delta_x) */ + temp_psumr = psumr; + temp_xr = xr; + + /* if no sign change increment xr and re-evaluate poly(xr). Repeat til + sign change. + if a sign change has occurred the interval is bisected and then + checked again for a sign change which determines in which + interval the zero lies in. + If there is no sign change between poly(xm) and poly(xl) set interval + between xm and xr else set interval between xl and xr and repeat till + root is located within the specified limits */ + + if(SIGN_CHANGE(psumr,psuml)) + { + roots++; + + psumm=psuml; + for(k=0;k<=nb;k++){ +#ifdef FIXED_POINT + xm = ADD16(PSHR16(xl,1),PSHR16(xr,1)); /* bisect the interval */ +#else + xm = .5*(xl+xr); /* bisect the interval */ +#endif + psumm=cheb_poly_eva(pt,xm,m,stack); + /*if(psumm*psuml>0.)*/ + if(!SIGN_CHANGE(psumm,psuml)) + { + psuml=psumm; + xl=xm; + } else { + psumr=psumm; + xr=xm; + } + } + + /* once zero is found, reset initial interval to xr */ + freq[j] = X2ANGLE(xm); + xl = xm; + flag = 0; /* reset flag for next search */ + } + else{ + psuml=temp_psumr; + xl=temp_xr; + } + } + } + return(roots); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: lsp_to_lpc() + + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + Converts LSP coefficients to LPC coefficients. + +\*---------------------------------------------------------------------------*/ + +#ifdef FIXED_POINT + +void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack) +/* float *freq array of LSP frequencies in the x domain */ +/* float *ak array of LPC coefficients */ +/* int lpcrdr order of LPC coefficients */ +{ + int i,j; + spx_word32_t xout1,xout2,xin; + spx_word32_t mult, a; + VARDECL(spx_word16_t *freqn); + VARDECL(spx_word32_t **xp); + VARDECL(spx_word32_t *xpmem); + VARDECL(spx_word32_t **xq); + VARDECL(spx_word32_t *xqmem); + int m = lpcrdr>>1; + + /* + + Reconstruct P(z) and Q(z) by cascading second order polynomials + in form 1 - 2cos(w)z(-1) + z(-2), where w is the LSP frequency. + In the time domain this is: + + y(n) = x(n) - 2cos(w)x(n-1) + x(n-2) + + This is what the ALLOCS below are trying to do: + + int xp[m+1][lpcrdr+1+2]; // P matrix in QIMP + int xq[m+1][lpcrdr+1+2]; // Q matrix in QIMP + + These matrices store the output of each stage on each row. The + final (m-th) row has the output of the final (m-th) cascaded + 2nd order filter. The first row is the impulse input to the + system (not written as it is known). + + The version below takes advantage of the fact that a lot of the + outputs are zero or known, for example if we put an inpulse + into the first section the "clock" it 10 times only the first 3 + outputs samples are non-zero (it's an FIR filter). + */ + + ALLOC(xp, (m+1), spx_word32_t*); + ALLOC(xpmem, (m+1)*(lpcrdr+1+2), spx_word32_t); + + ALLOC(xq, (m+1), spx_word32_t*); + ALLOC(xqmem, (m+1)*(lpcrdr+1+2), spx_word32_t); + + for(i=0; i<=m; i++) { + xp[i] = xpmem + i*(lpcrdr+1+2); + xq[i] = xqmem + i*(lpcrdr+1+2); + } + + /* work out 2cos terms in Q14 */ + + ALLOC(freqn, lpcrdr, spx_word16_t); + for (i=0;i<lpcrdr;i++) + freqn[i] = ANGLE2X(freq[i]); + + #define QIMP 21 /* scaling for impulse */ + + xin = SHL32(EXTEND32(1), (QIMP-1)); /* 0.5 in QIMP format */ + + /* first col and last non-zero values of each row are trivial */ + + for(i=0;i<=m;i++) { + xp[i][1] = 0; + xp[i][2] = xin; + xp[i][2+2*i] = xin; + xq[i][1] = 0; + xq[i][2] = xin; + xq[i][2+2*i] = xin; + } + + /* 2nd row (first output row) is trivial */ + + xp[1][3] = -MULT16_32_Q14(freqn[0],xp[0][2]); + xq[1][3] = -MULT16_32_Q14(freqn[1],xq[0][2]); + + xout1 = xout2 = 0; + + /* now generate remaining rows */ + + for(i=1;i<m;i++) { + + for(j=1;j<2*(i+1)-1;j++) { + mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]); + xp[i+1][j+2] = ADD32(SUB32(xp[i][j+2], mult), xp[i][j]); + mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]); + xq[i+1][j+2] = ADD32(SUB32(xq[i][j+2], mult), xq[i][j]); + } + + /* for last col xp[i][j+2] = xq[i][j+2] = 0 */ + + mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]); + xp[i+1][j+2] = SUB32(xp[i][j], mult); + mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]); + xq[i+1][j+2] = SUB32(xq[i][j], mult); + } + + /* process last row to extra a{k} */ + + for(j=1;j<=lpcrdr;j++) { + int shift = QIMP-13; + + /* final filter sections */ + a = PSHR32(xp[m][j+2] + xout1 + xq[m][j+2] - xout2, shift); + xout1 = xp[m][j+2]; + xout2 = xq[m][j+2]; + + /* hard limit ak's to +/- 32767 */ + + if (a < -32767) a = -32767; + if (a > 32767) a = 32767; + ak[j-1] = (short)a; + + } + +} + +#else + +void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack) +/* float *freq array of LSP frequencies in the x domain */ +/* float *ak array of LPC coefficients */ +/* int lpcrdr order of LPC coefficients */ + + +{ + int i,j; + float xout1,xout2,xin1,xin2; + VARDECL(float *Wp); + float *pw,*n1,*n2,*n3,*n4=NULL; + VARDECL(float *x_freq); + int m = lpcrdr>>1; + + ALLOC(Wp, 4*m+2, float); + pw = Wp; + + /* initialise contents of array */ + + for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */ + *pw++ = 0.0; + } + + /* Set pointers up */ + + pw = Wp; + xin1 = 1.0; + xin2 = 1.0; + + ALLOC(x_freq, lpcrdr, float); + for (i=0;i<lpcrdr;i++) + x_freq[i] = ANGLE2X(freq[i]); + + /* reconstruct P(z) and Q(z) by cascading second order + polynomials in form 1 - 2xz(-1) +z(-2), where x is the + LSP coefficient */ + + for(j=0;j<=lpcrdr;j++){ + int i2=0; + for(i=0;i<m;i++,i2+=2){ + n1 = pw+(i*4); + n2 = n1 + 1; + n3 = n2 + 1; + n4 = n3 + 1; + xout1 = xin1 - 2.f*x_freq[i2] * *n1 + *n2; + xout2 = xin2 - 2.f*x_freq[i2+1] * *n3 + *n4; + *n2 = *n1; + *n4 = *n3; + *n1 = xin1; + *n3 = xin2; + xin1 = xout1; + xin2 = xout2; + } + xout1 = xin1 + *(n4+1); + xout2 = xin2 - *(n4+2); + if (j>0) + ak[j-1] = (xout1 + xout2)*0.5f; + *(n4+1) = xin1; + *(n4+2) = xin2; + + xin1 = 0.0; + xin2 = 0.0; + } + +} +#endif + + +#ifdef FIXED_POINT + +/*Makes sure the LSPs are stable*/ +void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin) +{ + int i; + spx_word16_t m = margin; + spx_word16_t m2 = 25736-margin; + + if (lsp[0]<m) + lsp[0]=m; + if (lsp[len-1]>m2) + lsp[len-1]=m2; + for (i=1;i<len-1;i++) + { + if (lsp[i]<lsp[i-1]+m) + lsp[i]=lsp[i-1]+m; + + if (lsp[i]>lsp[i+1]-m) + lsp[i]= SHR16(lsp[i],1) + SHR16(lsp[i+1]-m,1); + } +} + + +void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes) +{ + int i; + spx_word16_t tmp = DIV32_16(SHL32(EXTEND32(1 + subframe),14),nb_subframes); + spx_word16_t tmp2 = 16384-tmp; + for (i=0;i<len;i++) + { + interp_lsp[i] = MULT16_16_P14(tmp2,old_lsp[i]) + MULT16_16_P14(tmp,new_lsp[i]); + } +} + +#else + +/*Makes sure the LSPs are stable*/ +void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin) +{ + int i; + if (lsp[0]<LSP_SCALING*margin) + lsp[0]=LSP_SCALING*margin; + if (lsp[len-1]>LSP_SCALING*(M_PI-margin)) + lsp[len-1]=LSP_SCALING*(M_PI-margin); + for (i=1;i<len-1;i++) + { + if (lsp[i]<lsp[i-1]+LSP_SCALING*margin) + lsp[i]=lsp[i-1]+LSP_SCALING*margin; + + if (lsp[i]>lsp[i+1]-LSP_SCALING*margin) + lsp[i]= .5f* (lsp[i] + lsp[i+1]-LSP_SCALING*margin); + } +} + + +void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes) +{ + int i; + float tmp = (1.0f + subframe)/nb_subframes; + for (i=0;i<len;i++) + { + interp_lsp[i] = (1-tmp)*old_lsp[i] + tmp*new_lsp[i]; + } +} + +#endif |