diff options
Diffstat (limited to 'src/opus-1.0.2/celt/bands.c')
-rw-r--r-- | src/opus-1.0.2/celt/bands.c | 1302 |
1 files changed, 0 insertions, 1302 deletions
diff --git a/src/opus-1.0.2/celt/bands.c b/src/opus-1.0.2/celt/bands.c deleted file mode 100644 index 3be543c3..00000000 --- a/src/opus-1.0.2/celt/bands.c +++ /dev/null @@ -1,1302 +0,0 @@ -/* Copyright (c) 2007-2008 CSIRO - Copyright (c) 2007-2009 Xiph.Org Foundation - Copyright (c) 2008-2009 Gregory Maxwell - Written by Jean-Marc Valin and Gregory Maxwell */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include <math.h> -#include "bands.h" -#include "modes.h" -#include "vq.h" -#include "cwrs.h" -#include "stack_alloc.h" -#include "os_support.h" -#include "mathops.h" -#include "rate.h" - -opus_uint32 celt_lcg_rand(opus_uint32 seed) -{ - return 1664525 * seed + 1013904223; -} - -/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness - with this approximation is important because it has an impact on the bit allocation */ -static opus_int16 bitexact_cos(opus_int16 x) -{ - opus_int32 tmp; - opus_int16 x2; - tmp = (4096+((opus_int32)(x)*(x)))>>13; - celt_assert(tmp<=32767); - x2 = tmp; - x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); - celt_assert(x2<=32766); - return 1+x2; -} - -static int bitexact_log2tan(int isin,int icos) -{ - int lc; - int ls; - lc=EC_ILOG(icos); - ls=EC_ILOG(isin); - icos<<=15-lc; - isin<<=15-ls; - return (ls-lc)*(1<<11) - +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) - -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); -} - -#ifdef FIXED_POINT -/* Compute the amplitude (sqrt energy) in each of the bands */ -void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) -{ - int i, c, N; - const opus_int16 *eBands = m->eBands; - N = M*m->shortMdctSize; - c=0; do { - for (i=0;i<end;i++) - { - int j; - opus_val32 maxval=0; - opus_val32 sum = 0; - - j=M*eBands[i]; do { - maxval = MAX32(maxval, X[j+c*N]); - maxval = MAX32(maxval, -X[j+c*N]); - } while (++j<M*eBands[i+1]); - - if (maxval > 0) - { - int shift = celt_ilog2(maxval)-10; - j=M*eBands[i]; do { - sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)), - EXTRACT16(VSHR32(X[j+c*N],shift))); - } while (++j<M*eBands[i+1]); - /* We're adding one here to ensure the normalized band isn't larger than unity norm */ - bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); - } else { - bandE[i+c*m->nbEBands] = EPSILON; - } - /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ - } - } while (++c<C); - /*printf ("\n");*/ -} - -/* Normalise each band such that the energy is one. */ -void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) -{ - int i, c, N; - const opus_int16 *eBands = m->eBands; - N = M*m->shortMdctSize; - c=0; do { - i=0; do { - opus_val16 g; - int j,shift; - opus_val16 E; - shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; - E = VSHR32(bandE[i+c*m->nbEBands], shift); - g = EXTRACT16(celt_rcp(SHL32(E,3))); - j=M*eBands[i]; do { - X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); - } while (++j<M*eBands[i+1]); - } while (++i<end); - } while (++c<C); -} - -#else /* FIXED_POINT */ -/* Compute the amplitude (sqrt energy) in each of the bands */ -void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) -{ - int i, c, N; - const opus_int16 *eBands = m->eBands; - N = M*m->shortMdctSize; - c=0; do { - for (i=0;i<end;i++) - { - int j; - opus_val32 sum = 1e-27f; - for (j=M*eBands[i];j<M*eBands[i+1];j++) - sum += X[j+c*N]*X[j+c*N]; - bandE[i+c*m->nbEBands] = celt_sqrt(sum); - /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ - } - } while (++c<C); - /*printf ("\n");*/ -} - -/* Normalise each band such that the energy is one. */ -void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) -{ - int i, c, N; - const opus_int16 *eBands = m->eBands; - N = M*m->shortMdctSize; - c=0; do { - for (i=0;i<end;i++) - { - int j; - opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); - for (j=M*eBands[i];j<M*eBands[i+1];j++) - X[j+c*N] = freq[j+c*N]*g; - } - } while (++c<C); -} - -#endif /* FIXED_POINT */ - -/* De-normalise the energy to produce the synthesis from the unit-energy bands */ -void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, celt_sig * OPUS_RESTRICT freq, const celt_ener *bandE, int end, int C, int M) -{ - int i, c, N; - const opus_int16 *eBands = m->eBands; - N = M*m->shortMdctSize; - celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels"); - c=0; do { - celt_sig * OPUS_RESTRICT f; - const celt_norm * OPUS_RESTRICT x; - f = freq+c*N; - x = X+c*N; - for (i=0;i<end;i++) - { - int j, band_end; - opus_val32 g = SHR32(bandE[i+c*m->nbEBands],1); - j=M*eBands[i]; - band_end = M*eBands[i+1]; - do { - *f++ = SHL32(MULT16_32_Q15(*x, g),2); - x++; - } while (++j<band_end); - } - for (i=M*eBands[end];i<N;i++) - *f++ = 0; - } while (++c<C); -} - -/* This prevents energy collapse for transients with multiple short MDCTs */ -void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, - int start, int end, opus_val16 *logE, opus_val16 *prev1logE, - opus_val16 *prev2logE, int *pulses, opus_uint32 seed) -{ - int c, i, j, k; - for (i=start;i<end;i++) - { - int N0; - opus_val16 thresh, sqrt_1; - int depth; -#ifdef FIXED_POINT - int shift; - opus_val32 thresh32; -#endif - - N0 = m->eBands[i+1]-m->eBands[i]; - /* depth in 1/8 bits */ - depth = (1+pulses[i])/((m->eBands[i+1]-m->eBands[i])<<LM); - -#ifdef FIXED_POINT - thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); - thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); - { - opus_val32 t; - t = N0<<LM; - shift = celt_ilog2(t)>>1; - t = SHL32(t, (7-shift)<<1); - sqrt_1 = celt_rsqrt_norm(t); - } -#else - thresh = .5f*celt_exp2(-.125f*depth); - sqrt_1 = celt_rsqrt(N0<<LM); -#endif - - c=0; do - { - celt_norm *X; - opus_val16 prev1; - opus_val16 prev2; - opus_val32 Ediff; - opus_val16 r; - int renormalize=0; - prev1 = prev1logE[c*m->nbEBands+i]; - prev2 = prev2logE[c*m->nbEBands+i]; - if (C==1) - { - prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]); - prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); - } - Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2)); - Ediff = MAX32(0, Ediff); - -#ifdef FIXED_POINT - if (Ediff < 16384) - { - opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1); - r = 2*MIN16(16383,r32); - } else { - r = 0; - } - if (LM==3) - r = MULT16_16_Q14(23170, MIN32(23169, r)); - r = SHR16(MIN16(thresh, r),1); - r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); -#else - /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because - short blocks don't have the same energy as long */ - r = 2.f*celt_exp2(-Ediff); - if (LM==3) - r *= 1.41421356f; - r = MIN16(thresh, r); - r = r*sqrt_1; -#endif - X = X_+c*size+(m->eBands[i]<<LM); - for (k=0;k<1<<LM;k++) - { - /* Detect collapse */ - if (!(collapse_masks[i*C+c]&1<<k)) - { - /* Fill with noise */ - for (j=0;j<N0;j++) - { - seed = celt_lcg_rand(seed); - X[(j<<LM)+k] = (seed&0x8000 ? r : -r); - } - renormalize = 1; - } - } - /* We just added some energy, so we need to renormalise */ - if (renormalize) - renormalise_vector(X, N0<<LM, Q15ONE); - } while (++c<C); - } -} - -static void intensity_stereo(const CELTMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bandE, int bandID, int N) -{ - int i = bandID; - int j; - opus_val16 a1, a2; - opus_val16 left, right; - opus_val16 norm; -#ifdef FIXED_POINT - int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; -#endif - left = VSHR32(bandE[i],shift); - right = VSHR32(bandE[i+m->nbEBands],shift); - norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); - a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); - a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); - for (j=0;j<N;j++) - { - celt_norm r, l; - l = X[j]; - r = Y[j]; - X[j] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r); - /* Side is not encoded, no need to calculate */ - } -} - -static void stereo_split(celt_norm *X, celt_norm *Y, int N) -{ - int j; - for (j=0;j<N;j++) - { - celt_norm r, l; - l = MULT16_16_Q15(QCONST16(.70710678f,15), X[j]); - r = MULT16_16_Q15(QCONST16(.70710678f,15), Y[j]); - X[j] = l+r; - Y[j] = r-l; - } -} - -static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N) -{ - int j; - opus_val32 xp=0, side=0; - opus_val32 El, Er; - opus_val16 mid2; -#ifdef FIXED_POINT - int kl, kr; -#endif - opus_val32 t, lgain, rgain; - - /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ - for (j=0;j<N;j++) - { - xp = MAC16_16(xp, X[j], Y[j]); - side = MAC16_16(side, Y[j], Y[j]); - } - /* Compensating for the mid normalization */ - xp = MULT16_32_Q15(mid, xp); - /* mid and side are in Q15, not Q14 like X and Y */ - mid2 = SHR32(mid, 1); - El = MULT16_16(mid2, mid2) + side - 2*xp; - Er = MULT16_16(mid2, mid2) + side + 2*xp; - if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) - { - for (j=0;j<N;j++) - Y[j] = X[j]; - return; - } - -#ifdef FIXED_POINT - kl = celt_ilog2(El)>>1; - kr = celt_ilog2(Er)>>1; -#endif - t = VSHR32(El, (kl-7)<<1); - lgain = celt_rsqrt_norm(t); - t = VSHR32(Er, (kr-7)<<1); - rgain = celt_rsqrt_norm(t); - -#ifdef FIXED_POINT - if (kl < 7) - kl = 7; - if (kr < 7) - kr = 7; -#endif - - for (j=0;j<N;j++) - { - celt_norm r, l; - /* Apply mid scaling (side is already scaled) */ - l = MULT16_16_Q15(mid, X[j]); - r = Y[j]; - X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); - Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); - } -} - -/* Decide whether we should spread the pulses in the current frame */ -int spreading_decision(const CELTMode *m, celt_norm *X, int *average, - int last_decision, int *hf_average, int *tapset_decision, int update_hf, - int end, int C, int M) -{ - int i, c, N0; - int sum = 0, nbBands=0; - const opus_int16 * OPUS_RESTRICT eBands = m->eBands; - int decision; - int hf_sum=0; - - celt_assert(end>0); - - N0 = M*m->shortMdctSize; - - if (M*(eBands[end]-eBands[end-1]) <= 8) - return SPREAD_NONE; - c=0; do { - for (i=0;i<end;i++) - { - int j, N, tmp=0; - int tcount[3] = {0,0,0}; - celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; - N = M*(eBands[i+1]-eBands[i]); - if (N<=8) - continue; - /* Compute rough CDF of |x[j]| */ - for (j=0;j<N;j++) - { - opus_val32 x2N; /* Q13 */ - - x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); - if (x2N < QCONST16(0.25f,13)) - tcount[0]++; - if (x2N < QCONST16(0.0625f,13)) - tcount[1]++; - if (x2N < QCONST16(0.015625f,13)) - tcount[2]++; - } - - /* Only include four last bands (8 kHz and up) */ - if (i>m->nbEBands-4) - hf_sum += 32*(tcount[1]+tcount[0])/N; - tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); - sum += tmp*256; - nbBands++; - } - } while (++c<C); - - if (update_hf) - { - if (hf_sum) - hf_sum /= C*(4-m->nbEBands+end); - *hf_average = (*hf_average+hf_sum)>>1; - hf_sum = *hf_average; - if (*tapset_decision==2) - hf_sum += 4; - else if (*tapset_decision==0) - hf_sum -= 4; - if (hf_sum > 22) - *tapset_decision=2; - else if (hf_sum > 18) - *tapset_decision=1; - else - *tapset_decision=0; - } - /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ - celt_assert(nbBands>0); /*M*(eBands[end]-eBands[end-1]) <= 8 assures this*/ - sum /= nbBands; - /* Recursive averaging */ - sum = (sum+*average)>>1; - *average = sum; - /* Hysteresis */ - sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; - if (sum < 80) - { - decision = SPREAD_AGGRESSIVE; - } else if (sum < 256) - { - decision = SPREAD_NORMAL; - } else if (sum < 384) - { - decision = SPREAD_LIGHT; - } else { - decision = SPREAD_NONE; - } -#ifdef FUZZING - decision = rand()&0x3; - *tapset_decision=rand()%3; -#endif - return decision; -} - -#ifdef MEASURE_NORM_MSE - -float MSE[30] = {0}; -int nbMSEBands = 0; -int MSECount[30] = {0}; - -void dump_norm_mse(void) -{ - int i; - for (i=0;i<nbMSEBands;i++) - { - printf ("%g ", MSE[i]/MSECount[i]); - } - printf ("\n"); -} - -void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C) -{ - static int init = 0; - int i; - if (!init) - { - atexit(dump_norm_mse); - init = 1; - } - for (i=0;i<m->nbEBands;i++) - { - int j; - int c; - float g; - if (bandE0[i]<10 || (C==2 && bandE0[i+m->nbEBands]<1)) - continue; - c=0; do { - g = bandE[i+c*m->nbEBands]/(1e-15+bandE0[i+c*m->nbEBands]); - for (j=M*m->eBands[i];j<M*m->eBands[i+1];j++) - MSE[i] += (g*X[j+c*N]-X0[j+c*N])*(g*X[j+c*N]-X0[j+c*N]); - } while (++c<C); - MSECount[i]+=C; - } - nbMSEBands = m->nbEBands; -} - -#endif - -/* Indexing table for converting from natural Hadamard to ordery Hadamard - This is essentially a bit-reversed Gray, on top of which we've added - an inversion of the order because we want the DC at the end rather than - the beginning. The lines are for N=2, 4, 8, 16 */ -static const int ordery_table[] = { - 1, 0, - 3, 0, 2, 1, - 7, 0, 4, 3, 6, 1, 5, 2, - 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, -}; - -static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) -{ - int i,j; - VARDECL(celt_norm, tmp); - int N; - SAVE_STACK; - N = N0*stride; - ALLOC(tmp, N, celt_norm); - celt_assert(stride>0); - if (hadamard) - { - const int *ordery = ordery_table+stride-2; - for (i=0;i<stride;i++) - { - for (j=0;j<N0;j++) - tmp[ordery[i]*N0+j] = X[j*stride+i]; - } - } else { - for (i=0;i<stride;i++) - for (j=0;j<N0;j++) - tmp[i*N0+j] = X[j*stride+i]; - } - for (j=0;j<N;j++) - X[j] = tmp[j]; - RESTORE_STACK; -} - -static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) -{ - int i,j; - VARDECL(celt_norm, tmp); - int N; - SAVE_STACK; - N = N0*stride; - ALLOC(tmp, N, celt_norm); - if (hadamard) - { - const int *ordery = ordery_table+stride-2; - for (i=0;i<stride;i++) - for (j=0;j<N0;j++) - tmp[j*stride+i] = X[ordery[i]*N0+j]; - } else { - for (i=0;i<stride;i++) - for (j=0;j<N0;j++) - tmp[j*stride+i] = X[i*N0+j]; - } - for (j=0;j<N;j++) - X[j] = tmp[j]; - RESTORE_STACK; -} - -void haar1(celt_norm *X, int N0, int stride) -{ - int i, j; - N0 >>= 1; - for (i=0;i<stride;i++) - for (j=0;j<N0;j++) - { - celt_norm tmp1, tmp2; - tmp1 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*2*j+i]); - tmp2 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); - X[stride*2*j+i] = tmp1 + tmp2; - X[stride*(2*j+1)+i] = tmp1 - tmp2; - } -} - -static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) -{ - static const opus_int16 exp2_table8[8] = - {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; - int qn, qb; - int N2 = 2*N-1; - if (stereo && N==2) - N2--; - /* The upper limit ensures that in a stereo split with itheta==16384, we'll - always have enough bits left over to code at least one pulse in the - side; otherwise it would collapse, since it doesn't get folded. */ - qb = IMIN(b-pulse_cap-(4<<BITRES), (b+N2*offset)/N2); - - qb = IMIN(8<<BITRES, qb); - - if (qb<(1<<BITRES>>1)) { - qn = 1; - } else { - qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); - qn = (qn+1)>>1<<1; - } - celt_assert(qn <= 256); - return qn; -} - -/* This function is responsible for encoding and decoding a band for both - the mono and stereo case. Even in the mono case, it can split the band - in two and transmit the energy difference with the two half-bands. It - can be called recursively so bands can end up being split in 8 parts. */ -static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y, - int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, ec_ctx *ec, - opus_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level, - opus_uint32 *seed, opus_val16 gain, celt_norm *lowband_scratch, int fill) -{ - const unsigned char *cache; - int q; - int curr_bits; - int stereo, split; - int imid=0, iside=0; - int N0=N; - int N_B=N; - int N_B0; - int B0=B; - int time_divide=0; - int recombine=0; - int inv = 0; - opus_val16 mid=0, side=0; - int longBlocks; - unsigned cm=0; -#ifdef RESYNTH - int resynth = 1; -#else - int resynth = !encode; -#endif - - longBlocks = B0==1; - - N_B /= B; - N_B0 = N_B; - - split = stereo = Y != NULL; - - /* Special case for one sample */ - if (N==1) - { - int c; - celt_norm *x = X; - c=0; do { - int sign=0; - if (*remaining_bits>=1<<BITRES) - { - if (encode) - { - sign = x[0]<0; - ec_enc_bits(ec, sign, 1); - } else { - sign = ec_dec_bits(ec, 1); - } - *remaining_bits -= 1<<BITRES; - b-=1<<BITRES; - } - if (resynth) - x[0] = sign ? -NORM_SCALING : NORM_SCALING; - x = Y; - } while (++c<1+stereo); - if (lowband_out) - lowband_out[0] = SHR16(X[0],4); - return 1; - } - - if (!stereo && level == 0) - { - int k; - if (tf_change>0) - recombine = tf_change; - /* Band recombining to increase frequency resolution */ - - if (lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) - { - int j; - for (j=0;j<N;j++) - lowband_scratch[j] = lowband[j]; - lowband = lowband_scratch; - } - - for (k=0;k<recombine;k++) - { - static const unsigned char bit_interleave_table[16]={ - 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 - }; - if (encode) - haar1(X, N>>k, 1<<k); - if (lowband) - haar1(lowband, N>>k, 1<<k); - fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; - } - B>>=recombine; - N_B<<=recombine; - - /* Increasing the time resolution */ - while ((N_B&1) == 0 && tf_change<0) - { - if (encode) - haar1(X, N_B, B); - if (lowband) - haar1(lowband, N_B, B); - fill |= fill<<B; - B <<= 1; - N_B >>= 1; - time_divide++; - tf_change++; - } - B0=B; - N_B0 = N_B; - - /* Reorganize the samples in time order instead of frequency order */ - if (B0>1) - { - if (encode) - deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); - if (lowband) - deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); - } - } - - /* If we need 1.5 more bit than we can produce, split the band in two. */ - cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; - if (!stereo && LM != -1 && b > cache[cache[0]]+12 && N>2) - { - N >>= 1; - Y = X+N; - split = 1; - LM -= 1; - if (B==1) - fill = (fill&1)|(fill<<1); - B = (B+1)>>1; - } - - if (split) - { - int qn; - int itheta=0; - int mbits, sbits, delta; - int qalloc; - int pulse_cap; - int offset; - int orig_fill; - opus_int32 tell; - - /* Decide on the resolution to give to the split parameter theta */ - pulse_cap = m->logN[i]+LM*(1<<BITRES); - offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); - qn = compute_qn(N, b, offset, pulse_cap, stereo); - if (stereo && i>=intensity) - qn = 1; - if (encode) - { - /* theta is the atan() of the ratio between the (normalized) - side and mid. With just that parameter, we can re-scale both - mid and side because we know that 1) they have unit norm and - 2) they are orthogonal. */ - itheta = stereo_itheta(X, Y, stereo, N); - } - tell = ec_tell_frac(ec); - if (qn!=1) - { - if (encode) - itheta = (itheta*qn+8192)>>14; - - /* Entropy coding of the angle. We use a uniform pdf for the - time split, a step for stereo, and a triangular one for the rest. */ - if (stereo && N>2) - { - int p0 = 3; - int x = itheta; - int x0 = qn/2; - int ft = p0*(x0+1) + x0; - /* Use a probability of p0 up to itheta=8192 and then use 1 after */ - if (encode) - { - ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); - } else { - int fs; - fs=ec_decode(ec,ft); - if (fs<(x0+1)*p0) - x=fs/p0; - else - x=x0+1+(fs-(x0+1)*p0); - ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); - itheta = x; - } - } else if (B0>1 || stereo) { - /* Uniform pdf */ - if (encode) - ec_enc_uint(ec, itheta, qn+1); - else - itheta = ec_dec_uint(ec, qn+1); - } else { - int fs=1, ft; - ft = ((qn>>1)+1)*((qn>>1)+1); - if (encode) - { - int fl; - - fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; - fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : - ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); - - ec_encode(ec, fl, fl+fs, ft); - } else { - /* Triangular pdf */ - int fl=0; - int fm; - fm = ec_decode(ec, ft); - - if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) - { - itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; - fs = itheta + 1; - fl = itheta*(itheta + 1)>>1; - } - else - { - itheta = (2*(qn + 1) - - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; - fs = qn + 1 - itheta; - fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); - } - - ec_dec_update(ec, fl, fl+fs, ft); - } - } - itheta = (opus_int32)itheta*16384/qn; - if (encode && stereo) - { - if (itheta==0) - intensity_stereo(m, X, Y, bandE, i, N); - else - stereo_split(X, Y, N); - } - /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. - Let's do that at higher complexity */ - } else if (stereo) { - if (encode) - { - inv = itheta > 8192; - if (inv) - { - int j; - for (j=0;j<N;j++) - Y[j] = -Y[j]; - } - intensity_stereo(m, X, Y, bandE, i, N); - } - if (b>2<<BITRES && *remaining_bits > 2<<BITRES) - { - if (encode) - ec_enc_bit_logp(ec, inv, 2); - else - inv = ec_dec_bit_logp(ec, 2); - } else - inv = 0; - itheta = 0; - } - qalloc = ec_tell_frac(ec) - tell; - b -= qalloc; - - orig_fill = fill; - if (itheta == 0) - { - imid = 32767; - iside = 0; - fill &= (1<<B)-1; - delta = -16384; - } else if (itheta == 16384) - { - imid = 0; - iside = 32767; - fill &= ((1<<B)-1)<<B; - delta = 16384; - } else { - imid = bitexact_cos((opus_int16)itheta); - iside = bitexact_cos((opus_int16)(16384-itheta)); - /* This is the mid vs side allocation that minimizes squared error - in that band. */ - delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); - } - -#ifdef FIXED_POINT - mid = imid; - side = iside; -#else - mid = (1.f/32768)*imid; - side = (1.f/32768)*iside; -#endif - - /* This is a special case for N=2 that only works for stereo and takes - advantage of the fact that mid and side are orthogonal to encode - the side with just one bit. */ - if (N==2 && stereo) - { - int c; - int sign=0; - celt_norm *x2, *y2; - mbits = b; - sbits = 0; - /* Only need one bit for the side */ - if (itheta != 0 && itheta != 16384) - sbits = 1<<BITRES; - mbits -= sbits; - c = itheta > 8192; - *remaining_bits -= qalloc+sbits; - - x2 = c ? Y : X; - y2 = c ? X : Y; - if (sbits) - { - if (encode) - { - /* Here we only need to encode a sign for the side */ - sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; - ec_enc_bits(ec, sign, 1); - } else { - sign = ec_dec_bits(ec, 1); - } - } - sign = 1-2*sign; - /* We use orig_fill here because we want to fold the side, but if - itheta==16384, we'll have cleared the low bits of fill. */ - cm = quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, intensity, tf_change, lowband, ec, remaining_bits, LM, lowband_out, NULL, level, seed, gain, lowband_scratch, orig_fill); - /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), - and there's no need to worry about mixing with the other channel. */ - y2[0] = -sign*x2[1]; - y2[1] = sign*x2[0]; - if (resynth) - { - celt_norm tmp; - X[0] = MULT16_16_Q15(mid, X[0]); - X[1] = MULT16_16_Q15(mid, X[1]); - Y[0] = MULT16_16_Q15(side, Y[0]); - Y[1] = MULT16_16_Q15(side, Y[1]); - tmp = X[0]; - X[0] = SUB16(tmp,Y[0]); - Y[0] = ADD16(tmp,Y[0]); - tmp = X[1]; - X[1] = SUB16(tmp,Y[1]); - Y[1] = ADD16(tmp,Y[1]); - } - } else { - /* "Normal" split code */ - celt_norm *next_lowband2=NULL; - celt_norm *next_lowband_out1=NULL; - int next_level=0; - opus_int32 rebalance; - - /* Give more bits to low-energy MDCTs than they would otherwise deserve */ - if (B0>1 && !stereo && (itheta&0x3fff)) - { - if (itheta > 8192) - /* Rough approximation for pre-echo masking */ - delta -= delta>>(4-LM); - else - /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ - delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); - } - mbits = IMAX(0, IMIN(b, (b-delta)/2)); - sbits = b-mbits; - *remaining_bits -= qalloc; - - if (lowband && !stereo) - next_lowband2 = lowband+N; /* >32-bit split case */ - - /* Only stereo needs to pass on lowband_out. Otherwise, it's - handled at the end */ - if (stereo) - next_lowband_out1 = lowband_out; - else - next_level = level+1; - - rebalance = *remaining_bits; - if (mbits >= sbits) - { - /* In stereo mode, we do not apply a scaling to the mid because we need the normalized - mid for folding later */ - cm = quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change, - lowband, ec, remaining_bits, LM, next_lowband_out1, - NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill); - rebalance = mbits - (rebalance-*remaining_bits); - if (rebalance > 3<<BITRES && itheta!=0) - sbits += rebalance - (3<<BITRES); - - /* For a stereo split, the high bits of fill are always zero, so no - folding will be done to the side. */ - cm |= quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change, - next_lowband2, ec, remaining_bits, LM, NULL, - NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(stereo-1)); - } else { - /* For a stereo split, the high bits of fill are always zero, so no - folding will be done to the side. */ - cm = quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change, - next_lowband2, ec, remaining_bits, LM, NULL, - NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(stereo-1)); - rebalance = sbits - (rebalance-*remaining_bits); - if (rebalance > 3<<BITRES && itheta!=16384) - mbits += rebalance - (3<<BITRES); - /* In stereo mode, we do not apply a scaling to the mid because we need the normalized - mid for folding later */ - cm |= quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change, - lowband, ec, remaining_bits, LM, next_lowband_out1, - NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill); - } - } - - } else { - /* This is the basic no-split case */ - q = bits2pulses(m, i, LM, b); - curr_bits = pulses2bits(m, i, LM, q); - *remaining_bits -= curr_bits; - - /* Ensures we can never bust the budget */ - while (*remaining_bits < 0 && q > 0) - { - *remaining_bits += curr_bits; - q--; - curr_bits = pulses2bits(m, i, LM, q); - *remaining_bits -= curr_bits; - } - - if (q!=0) - { - int K = get_pulses(q); - - /* Finally do the actual quantization */ - if (encode) - { - cm = alg_quant(X, N, K, spread, B, ec -#ifdef RESYNTH - , gain -#endif - ); - } else { - cm = alg_unquant(X, N, K, spread, B, ec, gain); - } - } else { - /* If there's no pulse, fill the band anyway */ - int j; - if (resynth) - { - unsigned cm_mask; - /*B can be as large as 16, so this shift might overflow an int on a - 16-bit platform; use a long to get defined behavior.*/ - cm_mask = (unsigned)(1UL<<B)-1; - fill &= cm_mask; - if (!fill) - { - for (j=0;j<N;j++) - X[j] = 0; - } else { - if (lowband == NULL) - { - /* Noise */ - for (j=0;j<N;j++) - { - *seed = celt_lcg_rand(*seed); - X[j] = (celt_norm)((opus_int32)*seed>>20); - } - cm = cm_mask; - } else { - /* Folded spectrum */ - for (j=0;j<N;j++) - { - opus_val16 tmp; - *seed = celt_lcg_rand(*seed); - /* About 48 dB below the "normal" folding level */ - tmp = QCONST16(1.0f/256, 10); - tmp = (*seed)&0x8000 ? tmp : -tmp; - X[j] = lowband[j]+tmp; - } - cm = fill; - } - renormalise_vector(X, N, gain); - } - } - } - } - - /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (resynth) - { - if (stereo) - { - if (N!=2) - stereo_merge(X, Y, mid, N); - if (inv) - { - int j; - for (j=0;j<N;j++) - Y[j] = -Y[j]; - } - } else if (level == 0) - { - int k; - - /* Undo the sample reorganization going from time order to frequency order */ - if (B0>1) - interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); - - /* Undo time-freq changes that we did earlier */ - N_B = N_B0; - B = B0; - for (k=0;k<time_divide;k++) - { - B >>= 1; - N_B <<= 1; - cm |= cm>>B; - haar1(X, N_B, B); - } - - for (k=0;k<recombine;k++) - { - static const unsigned char bit_deinterleave_table[16]={ - 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, - 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF - }; - cm = bit_deinterleave_table[cm]; - haar1(X, N0>>k, 1<<k); - } - B<<=recombine; - - /* Scale output for later folding */ - if (lowband_out) - { - int j; - opus_val16 n; - n = celt_sqrt(SHL32(EXTEND32(N0),22)); - for (j=0;j<N0;j++) - lowband_out[j] = MULT16_16_Q15(n,X[j]); - } - cm &= (1<<B)-1; - } - } - return cm; -} - -void quant_all_bands(int encode, const CELTMode *m, int start, int end, - celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses, - int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res, - opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int LM, int codedBands, opus_uint32 *seed) -{ - int i; - opus_int32 remaining_bits; - const opus_int16 * OPUS_RESTRICT eBands = m->eBands; - celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; - VARDECL(celt_norm, _norm); - VARDECL(celt_norm, lowband_scratch); - int B; - int M; - int lowband_offset; - int update_lowband = 1; - int C = Y_ != NULL ? 2 : 1; -#ifdef RESYNTH - int resynth = 1; -#else - int resynth = !encode; -#endif - SAVE_STACK; - - M = 1<<LM; - B = shortBlocks ? M : 1; - ALLOC(_norm, C*M*eBands[m->nbEBands], celt_norm); - ALLOC(lowband_scratch, M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]), celt_norm); - norm = _norm; - norm2 = norm + M*eBands[m->nbEBands]; - - lowband_offset = 0; - for (i=start;i<end;i++) - { - opus_int32 tell; - int b; - int N; - opus_int32 curr_balance; - int effective_lowband=-1; - celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; - int tf_change=0; - unsigned x_cm; - unsigned y_cm; - - X = X_+M*eBands[i]; - if (Y_!=NULL) - Y = Y_+M*eBands[i]; - else - Y = NULL; - N = M*eBands[i+1]-M*eBands[i]; - tell = ec_tell_frac(ec); - - /* Compute how many bits we want to allocate to this band */ - if (i != start) - balance -= tell; - remaining_bits = total_bits-tell-1; - if (i <= codedBands-1) - { - curr_balance = balance / IMIN(3, codedBands-i); - b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); - } else { - b = 0; - } - - if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) - lowband_offset = i; - - tf_change = tf_res[i]; - if (i>=m->effEBands) - { - X=norm; - if (Y_!=NULL) - Y = norm; - } - - /* Get a conservative estimate of the collapse_mask's for the bands we're - going to be folding from. */ - if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) - { - int fold_start; - int fold_end; - int fold_i; - /* This ensures we never repeat spectral content within one band */ - effective_lowband = IMAX(M*eBands[start], M*eBands[lowband_offset]-N); - fold_start = lowband_offset; - while(M*eBands[--fold_start] > effective_lowband); - fold_end = lowband_offset-1; - while(M*eBands[++fold_end] < effective_lowband+N); - x_cm = y_cm = 0; - fold_i = fold_start; do { - x_cm |= collapse_masks[fold_i*C+0]; - y_cm |= collapse_masks[fold_i*C+C-1]; - } while (++fold_i<fold_end); - } - /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost - always) be non-zero.*/ - else - x_cm = y_cm = (1<<B)-1; - - if (dual_stereo && i==intensity) - { - int j; - - /* Switch off dual stereo to do intensity */ - dual_stereo = 0; - if (resynth) - for (j=M*eBands[start];j<M*eBands[i];j++) - norm[j] = HALF32(norm[j]+norm2[j]); - } - if (dual_stereo) - { - x_cm = quant_band(encode, m, i, X, NULL, N, b/2, spread, B, intensity, tf_change, - effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM, - norm+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, x_cm); - y_cm = quant_band(encode, m, i, Y, NULL, N, b/2, spread, B, intensity, tf_change, - effective_lowband != -1 ? norm2+effective_lowband : NULL, ec, &remaining_bits, LM, - norm2+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, y_cm); - } else { - x_cm = quant_band(encode, m, i, X, Y, N, b, spread, B, intensity, tf_change, - effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM, - norm+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, x_cm|y_cm); - y_cm = x_cm; - } - collapse_masks[i*C+0] = (unsigned char)x_cm; - collapse_masks[i*C+C-1] = (unsigned char)y_cm; - balance += pulses[i] + tell; - - /* Update the folding position only as long as we have 1 bit/sample depth */ - update_lowband = b>(N<<BITRES); - } - RESTORE_STACK; -} - |