diff options
Diffstat (limited to 'src/opus-1.0.2/celt/cwrs.c')
-rw-r--r-- | src/opus-1.0.2/celt/cwrs.c | 645 |
1 files changed, 645 insertions, 0 deletions
diff --git a/src/opus-1.0.2/celt/cwrs.c b/src/opus-1.0.2/celt/cwrs.c new file mode 100644 index 00000000..8edc919d --- /dev/null +++ b/src/opus-1.0.2/celt/cwrs.c @@ -0,0 +1,645 @@ +/* Copyright (c) 2007-2008 CSIRO + Copyright (c) 2007-2009 Xiph.Org Foundation + Copyright (c) 2007-2009 Timothy B. Terriberry + Written by Timothy B. Terriberry and Jean-Marc Valin */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "os_support.h" +#include "cwrs.h" +#include "mathops.h" +#include "arch.h" + +#ifdef CUSTOM_MODES + +/*Guaranteed to return a conservatively large estimate of the binary logarithm + with frac bits of fractional precision. + Tested for all possible 32-bit inputs with frac=4, where the maximum + overestimation is 0.06254243 bits.*/ +int log2_frac(opus_uint32 val, int frac) +{ + int l; + l=EC_ILOG(val); + if(val&(val-1)){ + /*This is (val>>l-16), but guaranteed to round up, even if adding a bias + before the shift would cause overflow (e.g., for 0xFFFFxxxx). + Doesn't work for val=0, but that case fails the test above.*/ + if(l>16)val=((val-1)>>(l-16))+1; + else val<<=16-l; + l=(l-1)<<frac; + /*Note that we always need one iteration, since the rounding up above means + that we might need to adjust the integer part of the logarithm.*/ + do{ + int b; + b=(int)(val>>16); + l+=b<<frac; + val=(val+b)>>b; + val=(val*val+0x7FFF)>>15; + } + while(frac-->0); + /*If val is not exactly 0x8000, then we have to round up the remainder.*/ + return l+(val>0x8000); + } + /*Exact powers of two require no rounding.*/ + else return (l-1)<<frac; +} +#endif + +#ifndef SMALL_FOOTPRINT + +#define MASK32 (0xFFFFFFFF) + +/*INV_TABLE[i] holds the multiplicative inverse of (2*i+1) mod 2**32.*/ +static const opus_uint32 INV_TABLE[53]={ + 0x00000001,0xAAAAAAAB,0xCCCCCCCD,0xB6DB6DB7, + 0x38E38E39,0xBA2E8BA3,0xC4EC4EC5,0xEEEEEEEF, + 0xF0F0F0F1,0x286BCA1B,0x3CF3CF3D,0xE9BD37A7, + 0xC28F5C29,0x684BDA13,0x4F72C235,0xBDEF7BDF, + 0x3E0F83E1,0x8AF8AF8B,0x914C1BAD,0x96F96F97, + 0xC18F9C19,0x2FA0BE83,0xA4FA4FA5,0x677D46CF, + 0x1A1F58D1,0xFAFAFAFB,0x8C13521D,0x586FB587, + 0xB823EE09,0xA08AD8F3,0xC10C9715,0xBEFBEFBF, + 0xC0FC0FC1,0x07A44C6B,0xA33F128D,0xE327A977, + 0xC7E3F1F9,0x962FC963,0x3F2B3885,0x613716AF, + 0x781948B1,0x2B2E43DB,0xFCFCFCFD,0x6FD0EB67, + 0xFA3F47E9,0xD2FD2FD3,0x3F4FD3F5,0xD4E25B9F, + 0x5F02A3A1,0xBF5A814B,0x7C32B16D,0xD3431B57, + 0xD8FD8FD9, +}; + +/*Computes (_a*_b-_c)/(2*_d+1) when the quotient is known to be exact. + _a, _b, _c, and _d may be arbitrary so long as the arbitrary precision result + fits in 32 bits, but currently the table for multiplicative inverses is only + valid for _d<=52.*/ +static inline opus_uint32 imusdiv32odd(opus_uint32 _a,opus_uint32 _b, + opus_uint32 _c,int _d){ + celt_assert(_d<=52); + return (_a*_b-_c)*INV_TABLE[_d]&MASK32; +} + +/*Computes (_a*_b-_c)/_d when the quotient is known to be exact. + _d does not actually have to be even, but imusdiv32odd will be faster when + it's odd, so you should use that instead. + _a and _d are assumed to be small (e.g., _a*_d fits in 32 bits; currently the + table for multiplicative inverses is only valid for _d<=54). + _b and _c may be arbitrary so long as the arbitrary precision reuslt fits in + 32 bits.*/ +static inline opus_uint32 imusdiv32even(opus_uint32 _a,opus_uint32 _b, + opus_uint32 _c,int _d){ + opus_uint32 inv; + int mask; + int shift; + int one; + celt_assert(_d>0); + celt_assert(_d<=54); + shift=EC_ILOG(_d^(_d-1)); + inv=INV_TABLE[(_d-1)>>shift]; + shift--; + one=1<<shift; + mask=one-1; + return (_a*(_b>>shift)-(_c>>shift)+ + ((_a*(_b&mask)+one-(_c&mask))>>shift)-1)*inv&MASK32; +} + +#endif /* SMALL_FOOTPRINT */ + +/*Although derived separately, the pulse vector coding scheme is equivalent to + a Pyramid Vector Quantizer \cite{Fis86}. + Some additional notes about an early version appear at + http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering + and the definitions of some terms have evolved since that was written. + + The conversion from a pulse vector to an integer index (encoding) and back + (decoding) is governed by two related functions, V(N,K) and U(N,K). + + V(N,K) = the number of combinations, with replacement, of N items, taken K + at a time, when a sign bit is added to each item taken at least once (i.e., + the number of N-dimensional unit pulse vectors with K pulses). + One way to compute this is via + V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, + where choose() is the binomial function. + A table of values for N<10 and K<10 looks like: + V[10][10] = { + {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}, + {1, 4, 8, 12, 16, 20, 24, 28, 32, 36}, + {1, 6, 18, 38, 66, 102, 146, 198, 258, 326}, + {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992}, + {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290}, + {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436}, + {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598}, + {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688}, + {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146} + }; + + U(N,K) = the number of such combinations wherein N-1 objects are taken at + most K-1 at a time. + This is given by + U(N,K) = sum(k=0...K-1,V(N-1,k)) + = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. + The latter expression also makes clear that U(N,K) is half the number of such + combinations wherein the first object is taken at least once. + Although it may not be clear from either of these definitions, U(N,K) is the + natural function to work with when enumerating the pulse vector codebooks, + not V(N,K). + U(N,K) is not well-defined for N=0, but with the extension + U(0,K) = K>0 ? 0 : 1, + the function becomes symmetric: U(N,K) = U(K,N), with a similar table: + U[10][10] = { + {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, + {0, 1, 3, 5, 7, 9, 11, 13, 15, 17}, + {0, 1, 5, 13, 25, 41, 61, 85, 113, 145}, + {0, 1, 7, 25, 63, 129, 231, 377, 575, 833}, + {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649}, + {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073}, + {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081}, + {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545}, + {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729} + }; + + With this extension, V(N,K) may be written in terms of U(N,K): + V(N,K) = U(N,K) + U(N,K+1) + for all N>=0, K>=0. + Thus U(N,K+1) represents the number of combinations where the first element + is positive or zero, and U(N,K) represents the number of combinations where + it is negative. + With a large enough table of U(N,K) values, we could write O(N) encoding + and O(min(N*log(K),N+K)) decoding routines, but such a table would be + prohibitively large for small embedded devices (K may be as large as 32767 + for small N, and N may be as large as 200). + + Both functions obey the same recurrence relation: + V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), + U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), + for all N>0, K>0, with different initial conditions at N=0 or K=0. + This allows us to construct a row of one of the tables above given the + previous row or the next row. + Thus we can derive O(NK) encoding and decoding routines with O(K) memory + using only addition and subtraction. + + When encoding, we build up from the U(2,K) row and work our way forwards. + When decoding, we need to start at the U(N,K) row and work our way backwards, + which requires a means of computing U(N,K). + U(N,K) may be computed from two previous values with the same N: + U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) + for all N>1, and since U(N,K) is symmetric, a similar relation holds for two + previous values with the same K: + U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) + for all K>1. + This allows us to construct an arbitrary row of the U(N,K) table by starting + with the first two values, which are constants. + This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) + multiplications. + Similar relations can be derived for V(N,K), but are not used here. + + For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree + polynomial for fixed N. + The first few are + U(1,K) = 1, + U(2,K) = 2*K-1, + U(3,K) = (2*K-2)*K+1, + U(4,K) = (((4*K-6)*K+8)*K-3)/3, + U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, + and + V(1,K) = 2, + V(2,K) = 4*K, + V(3,K) = 4*K*K+2, + V(4,K) = 8*(K*K+2)*K/3, + V(5,K) = ((4*K*K+20)*K*K+6)/3, + for all K>0. + This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for + small N (and indeed decoding is also O(N) for N<3). + + @ARTICLE{Fis86, + author="Thomas R. Fischer", + title="A Pyramid Vector Quantizer", + journal="IEEE Transactions on Information Theory", + volume="IT-32", + number=4, + pages="568--583", + month=Jul, + year=1986 + }*/ + +#ifndef SMALL_FOOTPRINT +/*Compute U(2,_k). + Note that this may be called with _k=32768 (maxK[2]+1).*/ +static inline unsigned ucwrs2(unsigned _k){ + celt_assert(_k>0); + return _k+(_k-1); +} + +/*Compute V(2,_k).*/ +static inline opus_uint32 ncwrs2(int _k){ + celt_assert(_k>0); + return 4*(opus_uint32)_k; +} + +/*Compute U(3,_k). + Note that this may be called with _k=32768 (maxK[3]+1).*/ +static inline opus_uint32 ucwrs3(unsigned _k){ + celt_assert(_k>0); + return (2*(opus_uint32)_k-2)*_k+1; +} + +/*Compute V(3,_k).*/ +static inline opus_uint32 ncwrs3(int _k){ + celt_assert(_k>0); + return 2*(2*(unsigned)_k*(opus_uint32)_k+1); +} + +/*Compute U(4,_k).*/ +static inline opus_uint32 ucwrs4(int _k){ + celt_assert(_k>0); + return imusdiv32odd(2*_k,(2*_k-3)*(opus_uint32)_k+4,3,1); +} + +/*Compute V(4,_k).*/ +static inline opus_uint32 ncwrs4(int _k){ + celt_assert(_k>0); + return ((_k*(opus_uint32)_k+2)*_k)/3<<3; +} + +#endif /* SMALL_FOOTPRINT */ + +/*Computes the next row/column of any recurrence that obeys the relation + u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. + _ui0 is the base case for the new row/column.*/ +static inline void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){ + opus_uint32 ui1; + unsigned j; + /*This do-while will overrun the array if we don't have storage for at least + 2 values.*/ + j=1; do { + ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); + _ui[j-1]=_ui0; + _ui0=ui1; + } while (++j<_len); + _ui[j-1]=_ui0; +} + +/*Computes the previous row/column of any recurrence that obeys the relation + u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. + _ui0 is the base case for the new row/column.*/ +static inline void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){ + opus_uint32 ui1; + unsigned j; + /*This do-while will overrun the array if we don't have storage for at least + 2 values.*/ + j=1; do { + ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); + _ui[j-1]=_ui0; + _ui0=ui1; + } while (++j<_n); + _ui[j-1]=_ui0; +} + +/*Compute V(_n,_k), as well as U(_n,0..._k+1). + _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ +static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){ + opus_uint32 um2; + unsigned len; + unsigned k; + len=_k+2; + /*We require storage at least 3 values (e.g., _k>0).*/ + celt_assert(len>=3); + _u[0]=0; + _u[1]=um2=1; +#ifndef SMALL_FOOTPRINT + /*_k>52 doesn't work in the false branch due to the limits of INV_TABLE, + but _k isn't tested here because k<=52 for n=7*/ + if(_n<=6) +#endif + { + /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ + /*If _n==1, _u[i] should be 1 for i>1.*/ + celt_assert(_n>=2); + /*If _k==0, the following do-while loop will overflow the buffer.*/ + celt_assert(_k>0); + k=2; + do _u[k]=(k<<1)-1; + while(++k<len); + for(k=2;k<_n;k++)unext(_u+1,_k+1,1); + } +#ifndef SMALL_FOOTPRINT + else{ + opus_uint32 um1; + opus_uint32 n2m1; + _u[2]=n2m1=um1=(_n<<1)-1; + for(k=3;k<len;k++){ + /*U(N,K) = ((2*N-1)*U(N,K-1)-U(N,K-2))/(K-1) + U(N,K-2)*/ + _u[k]=um2=imusdiv32even(n2m1,um1,um2,k-1)+um2; + if(++k>=len)break; + _u[k]=um1=imusdiv32odd(n2m1,um2,um1,(k-1)>>1)+um1; + } + } +#endif /* SMALL_FOOTPRINT */ + return _u[_k]+_u[_k+1]; +} + +#ifndef SMALL_FOOTPRINT + +/*Returns the _i'th combination of _k elements (at most 32767) chosen from a + set of size 1 with associated sign bits. + _y: Returns the vector of pulses.*/ +static inline void cwrsi1(int _k,opus_uint32 _i,int *_y){ + int s; + s=-(int)_i; + _y[0]=(_k+s)^s; +} + +/*Returns the _i'th combination of _k elements (at most 32767) chosen from a + set of size 2 with associated sign bits. + _y: Returns the vector of pulses.*/ +static inline void cwrsi2(int _k,opus_uint32 _i,int *_y){ + opus_uint32 p; + int s; + int yj; + p=ucwrs2(_k+1U); + s=-(_i>=p); + _i-=p&s; + yj=_k; + _k=(_i+1)>>1; + p=_k?ucwrs2(_k):0; + _i-=p; + yj-=_k; + _y[0]=(yj+s)^s; + cwrsi1(_k,_i,_y+1); +} + +/*Returns the _i'th combination of _k elements (at most 32767) chosen from a + set of size 3 with associated sign bits. + _y: Returns the vector of pulses.*/ +static void cwrsi3(int _k,opus_uint32 _i,int *_y){ + opus_uint32 p; + int s; + int yj; + p=ucwrs3(_k+1U); + s=-(_i>=p); + _i-=p&s; + yj=_k; + /*Finds the maximum _k such that ucwrs3(_k)<=_i (tested for all + _i<2147418113=U(3,32768)).*/ + _k=_i>0?(isqrt32(2*_i-1)+1)>>1:0; + p=_k?ucwrs3(_k):0; + _i-=p; + yj-=_k; + _y[0]=(yj+s)^s; + cwrsi2(_k,_i,_y+1); +} + +/*Returns the _i'th combination of _k elements (at most 1172) chosen from a set + of size 4 with associated sign bits. + _y: Returns the vector of pulses.*/ +static void cwrsi4(int _k,opus_uint32 _i,int *_y){ + opus_uint32 p; + int s; + int yj; + int kl; + int kr; + p=ucwrs4(_k+1); + s=-(_i>=p); + _i-=p&s; + yj=_k; + /*We could solve a cubic for k here, but the form of the direct solution does + not lend itself well to exact integer arithmetic. + Instead we do a binary search on U(4,K).*/ + kl=0; + kr=_k; + for(;;){ + _k=(kl+kr)>>1; + p=_k?ucwrs4(_k):0; + if(p<_i){ + if(_k>=kr)break; + kl=_k+1; + } + else if(p>_i)kr=_k-1; + else break; + } + _i-=p; + yj-=_k; + _y[0]=(yj+s)^s; + cwrsi3(_k,_i,_y+1); +} + +#endif /* SMALL_FOOTPRINT */ + +/*Returns the _i'th combination of _k elements chosen from a set of size _n + with associated sign bits. + _y: Returns the vector of pulses. + _u: Must contain entries [0..._k+1] of row _n of U() on input. + Its contents will be destructively modified.*/ +static void cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){ + int j; + celt_assert(_n>0); + j=0; + do{ + opus_uint32 p; + int s; + int yj; + p=_u[_k+1]; + s=-(_i>=p); + _i-=p&s; + yj=_k; + p=_u[_k]; + while(p>_i)p=_u[--_k]; + _i-=p; + yj-=_k; + _y[j]=(yj+s)^s; + uprev(_u,_k+2,0); + } + while(++j<_n); +} + +/*Returns the index of the given combination of K elements chosen from a set + of size 1 with associated sign bits. + _y: The vector of pulses, whose sum of absolute values is K. + _k: Returns K.*/ +static inline opus_uint32 icwrs1(const int *_y,int *_k){ + *_k=abs(_y[0]); + return _y[0]<0; +} + +#ifndef SMALL_FOOTPRINT + +/*Returns the index of the given combination of K elements chosen from a set + of size 2 with associated sign bits. + _y: The vector of pulses, whose sum of absolute values is K. + _k: Returns K.*/ +static inline opus_uint32 icwrs2(const int *_y,int *_k){ + opus_uint32 i; + int k; + i=icwrs1(_y+1,&k); + i+=k?ucwrs2(k):0; + k+=abs(_y[0]); + if(_y[0]<0)i+=ucwrs2(k+1U); + *_k=k; + return i; +} + +/*Returns the index of the given combination of K elements chosen from a set + of size 3 with associated sign bits. + _y: The vector of pulses, whose sum of absolute values is K. + _k: Returns K.*/ +static inline opus_uint32 icwrs3(const int *_y,int *_k){ + opus_uint32 i; + int k; + i=icwrs2(_y+1,&k); + i+=k?ucwrs3(k):0; + k+=abs(_y[0]); + if(_y[0]<0)i+=ucwrs3(k+1U); + *_k=k; + return i; +} + +/*Returns the index of the given combination of K elements chosen from a set + of size 4 with associated sign bits. + _y: The vector of pulses, whose sum of absolute values is K. + _k: Returns K.*/ +static inline opus_uint32 icwrs4(const int *_y,int *_k){ + opus_uint32 i; + int k; + i=icwrs3(_y+1,&k); + i+=k?ucwrs4(k):0; + k+=abs(_y[0]); + if(_y[0]<0)i+=ucwrs4(k+1); + *_k=k; + return i; +} + +#endif /* SMALL_FOOTPRINT */ + +/*Returns the index of the given combination of K elements chosen from a set + of size _n with associated sign bits. + _y: The vector of pulses, whose sum of absolute values must be _k. + _nc: Returns V(_n,_k).*/ +static inline opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y, + opus_uint32 *_u){ + opus_uint32 i; + int j; + int k; + /*We can't unroll the first two iterations of the loop unless _n>=2.*/ + celt_assert(_n>=2); + _u[0]=0; + for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; + i=icwrs1(_y+_n-1,&k); + j=_n-2; + i+=_u[k]; + k+=abs(_y[j]); + if(_y[j]<0)i+=_u[k+1]; + while(j-->0){ + unext(_u,_k+2,0); + i+=_u[k]; + k+=abs(_y[j]); + if(_y[j]<0)i+=_u[k+1]; + } + *_nc=_u[k]+_u[k+1]; + return i; +} + +#ifdef CUSTOM_MODES +void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ + int k; + /*_maxk==0 => there's nothing to do.*/ + celt_assert(_maxk>0); + _bits[0]=0; + if (_n==1) + { + for (k=1;k<=_maxk;k++) + _bits[k] = 1<<_frac; + } + else { + VARDECL(opus_uint32,u); + SAVE_STACK; + ALLOC(u,_maxk+2U,opus_uint32); + ncwrs_urow(_n,_maxk,u); + for(k=1;k<=_maxk;k++) + _bits[k]=log2_frac(u[k]+u[k+1],_frac); + RESTORE_STACK; + } +} +#endif /* CUSTOM_MODES */ + +void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ + opus_uint32 i; + celt_assert(_k>0); +#ifndef SMALL_FOOTPRINT + switch(_n){ + case 2:{ + i=icwrs2(_y,&_k); + ec_enc_uint(_enc,i,ncwrs2(_k)); + }break; + case 3:{ + i=icwrs3(_y,&_k); + ec_enc_uint(_enc,i,ncwrs3(_k)); + }break; + case 4:{ + i=icwrs4(_y,&_k); + ec_enc_uint(_enc,i,ncwrs4(_k)); + }break; + default: + { +#endif + VARDECL(opus_uint32,u); + opus_uint32 nc; + SAVE_STACK; + ALLOC(u,_k+2U,opus_uint32); + i=icwrs(_n,_k,&nc,_y,u); + ec_enc_uint(_enc,i,nc); + RESTORE_STACK; +#ifndef SMALL_FOOTPRINT + } + break; + } +#endif +} + +void decode_pulses(int *_y,int _n,int _k,ec_dec *_dec) +{ + celt_assert(_k>0); +#ifndef SMALL_FOOTPRINT + switch(_n){ + case 2:cwrsi2(_k,ec_dec_uint(_dec,ncwrs2(_k)),_y);break; + case 3:cwrsi3(_k,ec_dec_uint(_dec,ncwrs3(_k)),_y);break; + case 4:cwrsi4(_k,ec_dec_uint(_dec,ncwrs4(_k)),_y);break; + default: + { +#endif + VARDECL(opus_uint32,u); + SAVE_STACK; + ALLOC(u,_k+2U,opus_uint32); + cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); + RESTORE_STACK; +#ifndef SMALL_FOOTPRINT + } + break; + } +#endif +} |