diff options
Diffstat (limited to 'src/renderergl2/tr_model_iqm.c')
-rw-r--r-- | src/renderergl2/tr_model_iqm.c | 1058 |
1 files changed, 1058 insertions, 0 deletions
diff --git a/src/renderergl2/tr_model_iqm.c b/src/renderergl2/tr_model_iqm.c new file mode 100644 index 00000000..1f1bf747 --- /dev/null +++ b/src/renderergl2/tr_model_iqm.c @@ -0,0 +1,1058 @@ +/* +=========================================================================== +Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu> +Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com> + +This file is part of Quake III Arena source code. + +Quake III Arena source code is free software; you can redistribute it +and/or modify it under the terms of the GNU General Public License as +published by the Free Software Foundation; either version 2 of the License, +or (at your option) any later version. + +Quake III Arena source code is distributed in the hope that it will be +useful, but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with Quake III Arena source code; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +=========================================================================== +*/ + +#include "tr_local.h" + +#define LL(x) x=LittleLong(x) + +static qboolean IQM_CheckRange( iqmHeader_t *header, int offset, + int count,int size ) { + // return true if the range specified by offset, count and size + // doesn't fit into the file + return ( count <= 0 || + offset < 0 || + offset > header->filesize || + offset + count * size < 0 || + offset + count * size > header->filesize ); +} +// "multiply" 3x4 matrices, these are assumed to be the top 3 rows +// of a 4x4 matrix with the last row = (0 0 0 1) +static void Matrix34Multiply( float *a, float *b, float *out ) { + out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8]; + out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9]; + out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10]; + out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3]; + out[ 4] = a[4] * b[0] + a[5] * b[4] + a[ 6] * b[ 8]; + out[ 5] = a[4] * b[1] + a[5] * b[5] + a[ 6] * b[ 9]; + out[ 6] = a[4] * b[2] + a[5] * b[6] + a[ 6] * b[10]; + out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7]; + out[ 8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[ 8]; + out[ 9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[ 9]; + out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10]; + out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11]; +} +static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) { + float unLerp = 1.0f - lerp; + + mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp; + mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp; + mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp; + mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp; + mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp; + mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp; + mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp; + mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp; + mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp; + mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp; + mat[10] = a[10] * unLerp + b[10] * lerp; + mat[11] = a[11] * unLerp + b[11] * lerp; +} +static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans, + float *mat ) { + float xx = 2.0f * rot[0] * rot[0]; + float yy = 2.0f * rot[1] * rot[1]; + float zz = 2.0f * rot[2] * rot[2]; + float xy = 2.0f * rot[0] * rot[1]; + float xz = 2.0f * rot[0] * rot[2]; + float yz = 2.0f * rot[1] * rot[2]; + float wx = 2.0f * rot[3] * rot[0]; + float wy = 2.0f * rot[3] * rot[1]; + float wz = 2.0f * rot[3] * rot[2]; + + mat[ 0] = scale[0] * (1.0f - (yy + zz)); + mat[ 1] = scale[0] * (xy - wz); + mat[ 2] = scale[0] * (xz + wy); + mat[ 3] = trans[0]; + mat[ 4] = scale[1] * (xy + wz); + mat[ 5] = scale[1] * (1.0f - (xx + zz)); + mat[ 6] = scale[1] * (yz - wx); + mat[ 7] = trans[1]; + mat[ 8] = scale[2] * (xz - wy); + mat[ 9] = scale[2] * (yz + wx); + mat[10] = scale[2] * (1.0f - (xx + yy)); + mat[11] = trans[2]; +} +static void Matrix34Invert( float *inMat, float *outMat ) +{ + vec3_t trans; + float invSqrLen, *v; + + outMat[ 0] = inMat[ 0]; outMat[ 1] = inMat[ 4]; outMat[ 2] = inMat[ 8]; + outMat[ 4] = inMat[ 1]; outMat[ 5] = inMat[ 5]; outMat[ 6] = inMat[ 9]; + outMat[ 8] = inMat[ 2]; outMat[ 9] = inMat[ 6]; outMat[10] = inMat[10]; + + v = outMat + 0; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v); + v = outMat + 4; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v); + v = outMat + 8; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v); + + trans[0] = inMat[ 3]; + trans[1] = inMat[ 7]; + trans[2] = inMat[11]; + + outMat[ 3] = -DotProduct(outMat + 0, trans); + outMat[ 7] = -DotProduct(outMat + 4, trans); + outMat[11] = -DotProduct(outMat + 8, trans); +} + +/* +================= +R_LoadIQM + +Load an IQM model and compute the joint matrices for every frame. +================= +*/ +qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_name ) { + iqmHeader_t *header; + iqmVertexArray_t *vertexarray; + iqmTriangle_t *triangle; + iqmMesh_t *mesh; + iqmJoint_t *joint; + iqmPose_t *pose; + iqmBounds_t *bounds; + unsigned short *framedata; + char *str; + int i, j; + float jointMats[IQM_MAX_JOINTS * 2 * 12]; + float *mat; + size_t size, joint_names; + iqmData_t *iqmData; + srfIQModel_t *surface; + + if( filesize < sizeof(iqmHeader_t) ) { + return qfalse; + } + + header = (iqmHeader_t *)buffer; + if( Q_strncmp( header->magic, IQM_MAGIC, sizeof(header->magic) ) ) { + return qfalse; + } + + LL( header->version ); + if( header->version != IQM_VERSION ) { + ri.Printf(PRINT_WARNING, "R_LoadIQM: %s is a unsupported IQM version (%d), only version %d is supported.\n", + mod_name, header->version, IQM_VERSION); + return qfalse; + } + + LL( header->filesize ); + if( header->filesize > filesize || header->filesize > 16<<20 ) { + return qfalse; + } + + LL( header->flags ); + LL( header->num_text ); + LL( header->ofs_text ); + LL( header->num_meshes ); + LL( header->ofs_meshes ); + LL( header->num_vertexarrays ); + LL( header->num_vertexes ); + LL( header->ofs_vertexarrays ); + LL( header->num_triangles ); + LL( header->ofs_triangles ); + LL( header->ofs_adjacency ); + LL( header->num_joints ); + LL( header->ofs_joints ); + LL( header->num_poses ); + LL( header->ofs_poses ); + LL( header->num_anims ); + LL( header->ofs_anims ); + LL( header->num_frames ); + LL( header->num_framechannels ); + LL( header->ofs_frames ); + LL( header->ofs_bounds ); + LL( header->num_comment ); + LL( header->ofs_comment ); + LL( header->num_extensions ); + LL( header->ofs_extensions ); + + // check ioq3 joint limit + if ( header->num_joints > IQM_MAX_JOINTS ) { + ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %d joints (%d).\n", + mod_name, IQM_MAX_JOINTS, header->num_joints); + return qfalse; + } + + // check and swap vertex arrays + if( IQM_CheckRange( header, header->ofs_vertexarrays, + header->num_vertexarrays, + sizeof(iqmVertexArray_t) ) ) { + return qfalse; + } + vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays); + for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) { + int j, n, *intPtr; + + if( vertexarray->size <= 0 || vertexarray->size > 4 ) { + return qfalse; + } + + // total number of values + n = header->num_vertexes * vertexarray->size; + + switch( vertexarray->format ) { + case IQM_BYTE: + case IQM_UBYTE: + // 1 byte, no swapping necessary + if( IQM_CheckRange( header, vertexarray->offset, + n, sizeof(byte) ) ) { + return qfalse; + } + break; + case IQM_INT: + case IQM_UINT: + case IQM_FLOAT: + // 4-byte swap + if( IQM_CheckRange( header, vertexarray->offset, + n, sizeof(float) ) ) { + return qfalse; + } + intPtr = (int *)((byte *)header + vertexarray->offset); + for( j = 0; j < n; j++, intPtr++ ) { + LL( *intPtr ); + } + break; + default: + // not supported + return qfalse; + break; + } + + switch( vertexarray->type ) { + case IQM_POSITION: + case IQM_NORMAL: + if( vertexarray->format != IQM_FLOAT || + vertexarray->size != 3 ) { + return qfalse; + } + break; + case IQM_TANGENT: + if( vertexarray->format != IQM_FLOAT || + vertexarray->size != 4 ) { + return qfalse; + } + break; + case IQM_TEXCOORD: + if( vertexarray->format != IQM_FLOAT || + vertexarray->size != 2 ) { + return qfalse; + } + break; + case IQM_BLENDINDEXES: + case IQM_BLENDWEIGHTS: + if( vertexarray->format != IQM_UBYTE || + vertexarray->size != 4 ) { + return qfalse; + } + break; + case IQM_COLOR: + if( vertexarray->format != IQM_UBYTE || + vertexarray->size != 4 ) { + return qfalse; + } + break; + } + } + + // check and swap triangles + if( IQM_CheckRange( header, header->ofs_triangles, + header->num_triangles, sizeof(iqmTriangle_t) ) ) { + return qfalse; + } + triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles); + for( i = 0; i < header->num_triangles; i++, triangle++ ) { + LL( triangle->vertex[0] ); + LL( triangle->vertex[1] ); + LL( triangle->vertex[2] ); + + if( triangle->vertex[0] > header->num_vertexes || + triangle->vertex[1] > header->num_vertexes || + triangle->vertex[2] > header->num_vertexes ) { + return qfalse; + } + } + + // check and swap meshes + if( IQM_CheckRange( header, header->ofs_meshes, + header->num_meshes, sizeof(iqmMesh_t) ) ) { + return qfalse; + } + mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes); + for( i = 0; i < header->num_meshes; i++, mesh++) { + LL( mesh->name ); + LL( mesh->material ); + LL( mesh->first_vertex ); + LL( mesh->num_vertexes ); + LL( mesh->first_triangle ); + LL( mesh->num_triangles ); + + // check ioq3 limits + if ( mesh->num_vertexes > SHADER_MAX_VERTEXES ) + { + ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %i verts on a surface (%i).\n", + mod_name, SHADER_MAX_VERTEXES, mesh->num_vertexes ); + return qfalse; + } + if ( mesh->num_triangles*3 > SHADER_MAX_INDEXES ) + { + ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %i triangles on a surface (%i).\n", + mod_name, SHADER_MAX_INDEXES / 3, mesh->num_triangles ); + return qfalse; + } + + if( mesh->first_vertex >= header->num_vertexes || + mesh->first_vertex + mesh->num_vertexes > header->num_vertexes || + mesh->first_triangle >= header->num_triangles || + mesh->first_triangle + mesh->num_triangles > header->num_triangles || + mesh->name >= header->num_text || + mesh->material >= header->num_text ) { + return qfalse; + } + } + + // check and swap joints + if( IQM_CheckRange( header, header->ofs_joints, + header->num_joints, sizeof(iqmJoint_t) ) ) { + return qfalse; + } + joint = (iqmJoint_t *)((byte *)header + header->ofs_joints); + joint_names = 0; + for( i = 0; i < header->num_joints; i++, joint++ ) { + LL( joint->name ); + LL( joint->parent ); + LL( joint->translate[0] ); + LL( joint->translate[1] ); + LL( joint->translate[2] ); + LL( joint->rotate[0] ); + LL( joint->rotate[1] ); + LL( joint->rotate[2] ); + LL( joint->rotate[3] ); + LL( joint->scale[0] ); + LL( joint->scale[1] ); + LL( joint->scale[2] ); + + if( joint->parent < -1 || + joint->parent >= (int)header->num_joints || + joint->name >= (int)header->num_text ) { + return qfalse; + } + joint_names += strlen( (char *)header + header->ofs_text + + joint->name ) + 1; + } + + // check and swap poses + if( header->num_poses != header->num_joints ) { + return qfalse; + } + if( IQM_CheckRange( header, header->ofs_poses, + header->num_poses, sizeof(iqmPose_t) ) ) { + return qfalse; + } + pose = (iqmPose_t *)((byte *)header + header->ofs_poses); + for( i = 0; i < header->num_poses; i++, pose++ ) { + LL( pose->parent ); + LL( pose->mask ); + LL( pose->channeloffset[0] ); + LL( pose->channeloffset[1] ); + LL( pose->channeloffset[2] ); + LL( pose->channeloffset[3] ); + LL( pose->channeloffset[4] ); + LL( pose->channeloffset[5] ); + LL( pose->channeloffset[6] ); + LL( pose->channeloffset[7] ); + LL( pose->channeloffset[8] ); + LL( pose->channeloffset[9] ); + LL( pose->channelscale[0] ); + LL( pose->channelscale[1] ); + LL( pose->channelscale[2] ); + LL( pose->channelscale[3] ); + LL( pose->channelscale[4] ); + LL( pose->channelscale[5] ); + LL( pose->channelscale[6] ); + LL( pose->channelscale[7] ); + LL( pose->channelscale[8] ); + LL( pose->channelscale[9] ); + } + + if (header->ofs_bounds) + { + // check and swap model bounds + if(IQM_CheckRange(header, header->ofs_bounds, + header->num_frames, sizeof(*bounds))) + { + return qfalse; + } + bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds); + for(i = 0; i < header->num_frames; i++) + { + LL(bounds->bbmin[0]); + LL(bounds->bbmin[1]); + LL(bounds->bbmin[2]); + LL(bounds->bbmax[0]); + LL(bounds->bbmax[1]); + LL(bounds->bbmax[2]); + + bounds++; + } + } + + // allocate the model and copy the data + size = sizeof(iqmData_t); + size += header->num_meshes * sizeof( srfIQModel_t ); + size += header->num_joints * header->num_frames * 12 * sizeof( float ); + if(header->ofs_bounds) + size += header->num_frames * 6 * sizeof(float); // model bounds + size += header->num_vertexes * 3 * sizeof(float); // positions + size += header->num_vertexes * 2 * sizeof(float); // texcoords + size += header->num_vertexes * 3 * sizeof(float); // normals + size += header->num_vertexes * 4 * sizeof(float); // tangents + size += header->num_vertexes * 4 * sizeof(byte); // blendIndexes + size += header->num_vertexes * 4 * sizeof(byte); // blendWeights + size += header->num_vertexes * 4 * sizeof(byte); // colors + size += header->num_joints * sizeof(int); // parents + size += header->num_triangles * 3 * sizeof(int); // triangles + size += joint_names; // joint names + + mod->type = MOD_IQM; + iqmData = (iqmData_t *)ri.Hunk_Alloc( size, h_low ); + mod->modelData = iqmData; + + // fill header + iqmData->num_vertexes = header->num_vertexes; + iqmData->num_triangles = header->num_triangles; + iqmData->num_frames = header->num_frames; + iqmData->num_surfaces = header->num_meshes; + iqmData->num_joints = header->num_joints; + iqmData->surfaces = (srfIQModel_t *)(iqmData + 1); + iqmData->poseMats = (float *) (iqmData->surfaces + iqmData->num_surfaces); + if(header->ofs_bounds) + { + iqmData->bounds = iqmData->poseMats + 12 * header->num_joints * header->num_frames; + iqmData->positions = iqmData->bounds + 6 * header->num_frames; + } + else + iqmData->positions = iqmData->poseMats + 12 * header->num_joints * header->num_frames; + iqmData->texcoords = iqmData->positions + 3 * header->num_vertexes; + iqmData->normals = iqmData->texcoords + 2 * header->num_vertexes; + iqmData->tangents = iqmData->normals + 3 * header->num_vertexes; + iqmData->blendIndexes = (byte *)(iqmData->tangents + 4 * header->num_vertexes); + iqmData->blendWeights = iqmData->blendIndexes + 4 * header->num_vertexes; + iqmData->colors = iqmData->blendWeights + 4 * header->num_vertexes; + iqmData->jointParents = (int *)(iqmData->colors + 4 * header->num_vertexes); + iqmData->triangles = iqmData->jointParents + header->num_joints; + iqmData->names = (char *)(iqmData->triangles + 3 * header->num_triangles); + + // calculate joint matrices and their inverses + // they are needed only until the pose matrices are calculated + mat = jointMats; + joint = (iqmJoint_t *)((byte *)header + header->ofs_joints); + for( i = 0; i < header->num_joints; i++, joint++ ) { + float baseFrame[12], invBaseFrame[12]; + + JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame ); + Matrix34Invert( baseFrame, invBaseFrame ); + + if ( joint->parent >= 0 ) + { + Matrix34Multiply( jointMats + 2 * 12 * joint->parent, baseFrame, mat ); + mat += 12; + Matrix34Multiply( invBaseFrame, jointMats + 2 * 12 * joint->parent + 12, mat ); + mat += 12; + } + else + { + Com_Memcpy( mat, baseFrame, sizeof(baseFrame) ); + mat += 12; + Com_Memcpy( mat, invBaseFrame, sizeof(invBaseFrame) ); + mat += 12; + } + } + + // calculate pose matrices + framedata = (unsigned short *)((byte *)header + header->ofs_frames); + mat = iqmData->poseMats; + for( i = 0; i < header->num_frames; i++ ) { + pose = (iqmPose_t *)((byte *)header + header->ofs_poses); + for( j = 0; j < header->num_poses; j++, pose++ ) { + vec3_t translate; + vec4_t rotate; + vec3_t scale; + float mat1[12], mat2[12]; + + translate[0] = pose->channeloffset[0]; + if( pose->mask & 0x001) + translate[0] += *framedata++ * pose->channelscale[0]; + translate[1] = pose->channeloffset[1]; + if( pose->mask & 0x002) + translate[1] += *framedata++ * pose->channelscale[1]; + translate[2] = pose->channeloffset[2]; + if( pose->mask & 0x004) + translate[2] += *framedata++ * pose->channelscale[2]; + + rotate[0] = pose->channeloffset[3]; + if( pose->mask & 0x008) + rotate[0] += *framedata++ * pose->channelscale[3]; + rotate[1] = pose->channeloffset[4]; + if( pose->mask & 0x010) + rotate[1] += *framedata++ * pose->channelscale[4]; + rotate[2] = pose->channeloffset[5]; + if( pose->mask & 0x020) + rotate[2] += *framedata++ * pose->channelscale[5]; + rotate[3] = pose->channeloffset[6]; + if( pose->mask & 0x040) + rotate[3] += *framedata++ * pose->channelscale[6]; + + scale[0] = pose->channeloffset[7]; + if( pose->mask & 0x080) + scale[0] += *framedata++ * pose->channelscale[7]; + scale[1] = pose->channeloffset[8]; + if( pose->mask & 0x100) + scale[1] += *framedata++ * pose->channelscale[8]; + scale[2] = pose->channeloffset[9]; + if( pose->mask & 0x200) + scale[2] += *framedata++ * pose->channelscale[9]; + + // construct transformation matrix + JointToMatrix( rotate, scale, translate, mat1 ); + + if( pose->parent >= 0 ) { + Matrix34Multiply( jointMats + 12 * 2 * pose->parent, + mat1, mat2 ); + } else { + Com_Memcpy( mat2, mat1, sizeof(mat1) ); + } + + Matrix34Multiply( mat2, jointMats + 12 * (2 * j + 1), mat ); + mat += 12; + } + } + + // register shaders + // overwrite the material offset with the shader index + mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes); + surface = iqmData->surfaces; + str = (char *)header + header->ofs_text; + for( i = 0; i < header->num_meshes; i++, mesh++, surface++ ) { + surface->surfaceType = SF_IQM; + Q_strncpyz(surface->name, str + mesh->name, sizeof (surface->name)); + Q_strlwr(surface->name); // lowercase the surface name so skin compares are faster + surface->shader = R_FindShader( str + mesh->material, LIGHTMAP_NONE, qtrue ); + if( surface->shader->defaultShader ) + surface->shader = tr.defaultShader; + surface->data = iqmData; + surface->first_vertex = mesh->first_vertex; + surface->num_vertexes = mesh->num_vertexes; + surface->first_triangle = mesh->first_triangle; + surface->num_triangles = mesh->num_triangles; + } + + // copy vertexarrays and indexes + vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays); + for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) { + int n; + + // total number of values + n = header->num_vertexes * vertexarray->size; + + switch( vertexarray->type ) { + case IQM_POSITION: + Com_Memcpy( iqmData->positions, + (byte *)header + vertexarray->offset, + n * sizeof(float) ); + break; + case IQM_NORMAL: + Com_Memcpy( iqmData->normals, + (byte *)header + vertexarray->offset, + n * sizeof(float) ); + break; + case IQM_TANGENT: + Com_Memcpy( iqmData->tangents, + (byte *)header + vertexarray->offset, + n * sizeof(float) ); + break; + case IQM_TEXCOORD: + Com_Memcpy( iqmData->texcoords, + (byte *)header + vertexarray->offset, + n * sizeof(float) ); + break; + case IQM_BLENDINDEXES: + Com_Memcpy( iqmData->blendIndexes, + (byte *)header + vertexarray->offset, + n * sizeof(byte) ); + break; + case IQM_BLENDWEIGHTS: + Com_Memcpy( iqmData->blendWeights, + (byte *)header + vertexarray->offset, + n * sizeof(byte) ); + break; + case IQM_COLOR: + Com_Memcpy( iqmData->colors, + (byte *)header + vertexarray->offset, + n * sizeof(byte) ); + break; + } + } + + // copy joint parents + joint = (iqmJoint_t *)((byte *)header + header->ofs_joints); + for( i = 0; i < header->num_joints; i++, joint++ ) { + iqmData->jointParents[i] = joint->parent; + } + + // copy triangles + triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles); + for( i = 0; i < header->num_triangles; i++, triangle++ ) { + iqmData->triangles[3*i+0] = triangle->vertex[0]; + iqmData->triangles[3*i+1] = triangle->vertex[1]; + iqmData->triangles[3*i+2] = triangle->vertex[2]; + } + + // copy joint names + str = iqmData->names; + joint = (iqmJoint_t *)((byte *)header + header->ofs_joints); + for( i = 0; i < header->num_joints; i++, joint++ ) { + char *name = (char *)header + header->ofs_text + + joint->name; + int len = strlen( name ) + 1; + Com_Memcpy( str, name, len ); + str += len; + } + + // copy model bounds + if(header->ofs_bounds) + { + mat = iqmData->bounds; + bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds); + for(i = 0; i < header->num_frames; i++) + { + mat[0] = bounds->bbmin[0]; + mat[1] = bounds->bbmin[1]; + mat[2] = bounds->bbmin[2]; + mat[3] = bounds->bbmax[0]; + mat[4] = bounds->bbmax[1]; + mat[5] = bounds->bbmax[2]; + + mat += 6; + bounds++; + } + } + + return qtrue; +} + +/* +============= +R_CullIQM +============= +*/ +static int R_CullIQM( iqmData_t *data, trRefEntity_t *ent ) { + vec3_t bounds[2]; + vec_t *oldBounds, *newBounds; + int i; + + if (!data->bounds) { + tr.pc.c_box_cull_md3_clip++; + return CULL_CLIP; + } + + // compute bounds pointers + oldBounds = data->bounds + 6*ent->e.oldframe; + newBounds = data->bounds + 6*ent->e.frame; + + // calculate a bounding box in the current coordinate system + for (i = 0 ; i < 3 ; i++) { + bounds[0][i] = oldBounds[i] < newBounds[i] ? oldBounds[i] : newBounds[i]; + bounds[1][i] = oldBounds[i+3] > newBounds[i+3] ? oldBounds[i+3] : newBounds[i+3]; + } + + switch ( R_CullLocalBox( bounds ) ) + { + case CULL_IN: + tr.pc.c_box_cull_md3_in++; + return CULL_IN; + case CULL_CLIP: + tr.pc.c_box_cull_md3_clip++; + return CULL_CLIP; + case CULL_OUT: + default: + tr.pc.c_box_cull_md3_out++; + return CULL_OUT; + } +} + +/* +================= +R_ComputeIQMFogNum + +================= +*/ +int R_ComputeIQMFogNum( iqmData_t *data, trRefEntity_t *ent ) { + int i, j; + fog_t *fog; + const vec_t *bounds; + const vec_t defaultBounds[6] = { -8, -8, -8, 8, 8, 8 }; + vec3_t diag, center; + vec3_t localOrigin; + vec_t radius; + + if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { + return 0; + } + + // FIXME: non-normalized axis issues + if (data->bounds) { + bounds = data->bounds + 6*ent->e.frame; + } else { + bounds = defaultBounds; + } + VectorSubtract( bounds+3, bounds, diag ); + VectorMA( bounds, 0.5f, diag, center ); + VectorAdd( ent->e.origin, center, localOrigin ); + radius = 0.5f * VectorLength( diag ); + + for ( i = 1 ; i < tr.world->numfogs ; i++ ) { + fog = &tr.world->fogs[i]; + for ( j = 0 ; j < 3 ; j++ ) { + if ( localOrigin[j] - radius >= fog->bounds[1][j] ) { + break; + } + if ( localOrigin[j] + radius <= fog->bounds[0][j] ) { + break; + } + } + if ( j == 3 ) { + return i; + } + } + + return 0; +} + +/* +================= +R_AddIQMSurfaces + +Add all surfaces of this model +================= +*/ +void R_AddIQMSurfaces( trRefEntity_t *ent ) { + iqmData_t *data; + srfIQModel_t *surface; + int i, j; + qboolean personalModel; + int cull; + int fogNum; + shader_t *shader; + skin_t *skin; + + data = tr.currentModel->modelData; + surface = data->surfaces; + + // don't add third_person objects if not in a portal + personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal; + + if ( ent->e.renderfx & RF_WRAP_FRAMES ) { + ent->e.frame %= data->num_frames; + ent->e.oldframe %= data->num_frames; + } + + // + // Validate the frames so there is no chance of a crash. + // This will write directly into the entity structure, so + // when the surfaces are rendered, they don't need to be + // range checked again. + // + if ( (ent->e.frame >= data->num_frames) + || (ent->e.frame < 0) + || (ent->e.oldframe >= data->num_frames) + || (ent->e.oldframe < 0) ) { + ri.Printf( PRINT_DEVELOPER, "R_AddIQMSurfaces: no such frame %d to %d for '%s'\n", + ent->e.oldframe, ent->e.frame, + tr.currentModel->name ); + ent->e.frame = 0; + ent->e.oldframe = 0; + } + + // + // cull the entire model if merged bounding box of both frames + // is outside the view frustum. + // + cull = R_CullIQM ( data, ent ); + if ( cull == CULL_OUT ) { + return; + } + + // + // set up lighting now that we know we aren't culled + // + if ( !personalModel || r_shadows->integer > 1 ) { + R_SetupEntityLighting( &tr.refdef, ent ); + } + + // + // see if we are in a fog volume + // + fogNum = R_ComputeIQMFogNum( data, ent ); + + for ( i = 0 ; i < data->num_surfaces ; i++ ) { + if(ent->e.customShader) + shader = R_GetShaderByHandle( ent->e.customShader ); + else if(ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins) + { + skin = R_GetSkinByHandle(ent->e.customSkin); + shader = tr.defaultShader; + + for(j = 0; j < skin->numSurfaces; j++) + { + if (!strcmp(skin->surfaces[j]->name, surface->name)) + { + shader = skin->surfaces[j]->shader; + break; + } + } + } else { + shader = surface->shader; + } + + // we will add shadows even if the main object isn't visible in the view + + // stencil shadows can't do personal models unless I polyhedron clip + if ( !personalModel + && r_shadows->integer == 2 + && fogNum == 0 + && !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) ) + && shader->sort == SS_OPAQUE ) { + R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, 0, 0 ); + } + + // projection shadows work fine with personal models + if ( r_shadows->integer == 3 + && fogNum == 0 + && (ent->e.renderfx & RF_SHADOW_PLANE ) + && shader->sort == SS_OPAQUE ) { + R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, 0, 0 ); + } + + if( !personalModel ) { + R_AddDrawSurf( (void *)surface, shader, fogNum, 0, 0 ); + } + + surface++; + } +} + + +static void ComputeJointMats( iqmData_t *data, int frame, int oldframe, + float backlerp, float *mat ) { + float *mat1, *mat2; + int *joint = data->jointParents; + int i; + + if ( oldframe == frame ) { + mat1 = data->poseMats + 12 * data->num_joints * frame; + for( i = 0; i < data->num_joints; i++, joint++ ) { + if( *joint >= 0 ) { + Matrix34Multiply( mat + 12 * *joint, + mat1 + 12*i, mat + 12*i ); + } else { + Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) ); + } + } + } else { + mat1 = data->poseMats + 12 * data->num_joints * frame; + mat2 = data->poseMats + 12 * data->num_joints * oldframe; + + for( i = 0; i < data->num_joints; i++, joint++ ) { + if( *joint >= 0 ) { + float tmpMat[12]; + InterpolateMatrix( mat1 + 12*i, mat2 + 12*i, + backlerp, tmpMat ); + Matrix34Multiply( mat + 12 * *joint, + tmpMat, mat + 12*i ); + + } else { + InterpolateMatrix( mat1 + 12*i, mat2 + 12*i, + backlerp, mat ); + } + } + } +} + + +/* +================= +RB_AddIQMSurfaces + +Compute vertices for this model surface +================= +*/ +void RB_IQMSurfaceAnim( surfaceType_t *surface ) { + srfIQModel_t *surf = (srfIQModel_t *)surface; + iqmData_t *data = surf->data; + float jointMats[IQM_MAX_JOINTS * 12]; + int i; + + vec4_t *outXYZ = &tess.xyz[tess.numVertexes]; + vec4_t *outNormal = &tess.normal[tess.numVertexes]; + vec2_t (*outTexCoord)[2] = &tess.texCoords[tess.numVertexes]; + vec4_t *outColor = &tess.vertexColors[tess.numVertexes]; + + int frame = backEnd.currentEntity->e.frame % data->num_frames; + int oldframe = backEnd.currentEntity->e.oldframe % data->num_frames; + float backlerp = backEnd.currentEntity->e.backlerp; + + int *tri; + glIndex_t *ptr; + glIndex_t base; + + RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 ); + + // compute interpolated joint matrices + ComputeJointMats( data, frame, oldframe, backlerp, jointMats ); + + // transform vertexes and fill other data + for( i = 0; i < surf->num_vertexes; + i++, outXYZ++, outNormal++, outTexCoord++, outColor++ ) { + int j, k; + float vtxMat[12]; + float nrmMat[9]; + int vtx = i + surf->first_vertex; + + // compute the vertex matrix by blending the up to + // four blend weights + for( k = 0; k < 12; k++ ) + vtxMat[k] = data->blendWeights[4*vtx] + * jointMats[12*data->blendIndexes[4*vtx] + k]; + for( j = 1; j < 4; j++ ) { + if( data->blendWeights[4*vtx + j] <= 0 ) + break; + for( k = 0; k < 12; k++ ) + vtxMat[k] += data->blendWeights[4*vtx + j] + * jointMats[12*data->blendIndexes[4*vtx + j] + k]; + } + for( k = 0; k < 12; k++ ) + vtxMat[k] *= 1.0f / 255.0f; + + // compute the normal matrix as transpose of the adjoint + // of the vertex matrix + nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9]; + nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10]; + nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8]; + nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10]; + nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8]; + nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9]; + nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5]; + nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6]; + nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4]; + + (*outTexCoord)[0][0] = data->texcoords[2*vtx + 0]; + (*outTexCoord)[0][1] = data->texcoords[2*vtx + 1]; + (*outTexCoord)[1][0] = (*outTexCoord)[0][0]; + (*outTexCoord)[1][1] = (*outTexCoord)[0][1]; + + (*outXYZ)[0] = + vtxMat[ 0] * data->positions[3*vtx+0] + + vtxMat[ 1] * data->positions[3*vtx+1] + + vtxMat[ 2] * data->positions[3*vtx+2] + + vtxMat[ 3]; + (*outXYZ)[1] = + vtxMat[ 4] * data->positions[3*vtx+0] + + vtxMat[ 5] * data->positions[3*vtx+1] + + vtxMat[ 6] * data->positions[3*vtx+2] + + vtxMat[ 7]; + (*outXYZ)[2] = + vtxMat[ 8] * data->positions[3*vtx+0] + + vtxMat[ 9] * data->positions[3*vtx+1] + + vtxMat[10] * data->positions[3*vtx+2] + + vtxMat[11]; + (*outXYZ)[3] = 1.0f; + + (*outNormal)[0] = + nrmMat[ 0] * data->normals[3*vtx+0] + + nrmMat[ 1] * data->normals[3*vtx+1] + + nrmMat[ 2] * data->normals[3*vtx+2]; + (*outNormal)[1] = + nrmMat[ 3] * data->normals[3*vtx+0] + + nrmMat[ 4] * data->normals[3*vtx+1] + + nrmMat[ 5] * data->normals[3*vtx+2]; + (*outNormal)[2] = + nrmMat[ 6] * data->normals[3*vtx+0] + + nrmMat[ 7] * data->normals[3*vtx+1] + + nrmMat[ 8] * data->normals[3*vtx+2]; + (*outNormal)[3] = 0.0f; + + (*outColor)[0] = data->colors[4*vtx+0] / 255.0f; + (*outColor)[1] = data->colors[4*vtx+1] / 255.0f; + (*outColor)[2] = data->colors[4*vtx+2] / 255.0f; + (*outColor)[3] = data->colors[4*vtx+3] / 255.0f; + } + + tri = data->triangles + 3 * surf->first_triangle; + ptr = &tess.indexes[tess.numIndexes]; + base = tess.numVertexes; + + for( i = 0; i < surf->num_triangles; i++ ) { + *ptr++ = base + (*tri++ - surf->first_vertex); + *ptr++ = base + (*tri++ - surf->first_vertex); + *ptr++ = base + (*tri++ - surf->first_vertex); + } + + tess.numIndexes += 3 * surf->num_triangles; + tess.numVertexes += surf->num_vertexes; +} + +int R_IQMLerpTag( orientation_t *tag, iqmData_t *data, + int startFrame, int endFrame, + float frac, const char *tagName ) { + float jointMats[IQM_MAX_JOINTS * 12]; + int joint; + char *names = data->names; + + // get joint number by reading the joint names + for( joint = 0; joint < data->num_joints; joint++ ) { + if( !strcmp( tagName, names ) ) + break; + names += strlen( names ) + 1; + } + if( joint >= data->num_joints ) { + AxisClear( tag->axis ); + VectorClear( tag->origin ); + return qfalse; + } + + ComputeJointMats( data, startFrame, endFrame, frac, jointMats ); + + tag->axis[0][0] = jointMats[12 * joint + 0]; + tag->axis[1][0] = jointMats[12 * joint + 1]; + tag->axis[2][0] = jointMats[12 * joint + 2]; + tag->origin[0] = jointMats[12 * joint + 3]; + tag->axis[0][1] = jointMats[12 * joint + 4]; + tag->axis[1][1] = jointMats[12 * joint + 5]; + tag->axis[2][1] = jointMats[12 * joint + 6]; + tag->origin[1] = jointMats[12 * joint + 7]; + tag->axis[0][2] = jointMats[12 * joint + 8]; + tag->axis[1][2] = jointMats[12 * joint + 9]; + tag->axis[2][2] = jointMats[12 * joint + 10]; + tag->origin[2] = jointMats[12 * joint + 11]; + + return qtrue; +} |