summaryrefslogtreecommitdiff
path: root/src/qcommon/cm_trace.cpp
diff options
context:
space:
mode:
authorIronClawTrem <louie.nutman@gmail.com>2020-02-16 03:40:06 +0000
committerIronClawTrem <louie.nutman@gmail.com>2020-02-16 03:40:06 +0000
commit425decdf7e9284d15aa726e3ae96b9942fb0e3ea (patch)
tree6c0dd7edfefff1be7b9e75fe0b3a0a85fe1595f3 /src/qcommon/cm_trace.cpp
parentccb0b2e4d6674a7a00c9bf491f08fc73b6898c54 (diff)
create tremded branch
Diffstat (limited to 'src/qcommon/cm_trace.cpp')
-rw-r--r--src/qcommon/cm_trace.cpp1801
1 files changed, 1801 insertions, 0 deletions
diff --git a/src/qcommon/cm_trace.cpp b/src/qcommon/cm_trace.cpp
new file mode 100644
index 0000000..b773f2a
--- /dev/null
+++ b/src/qcommon/cm_trace.cpp
@@ -0,0 +1,1801 @@
+/*
+===========================================================================
+Copyright (C) 1999-2005 Id Software, Inc.
+Copyright (C) 2000-2013 Darklegion Development
+Copyright (C) 2015-2019 GrangerHub
+
+This file is part of Tremulous.
+
+Tremulous is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 3 of the License,
+or (at your option) any later version.
+
+Tremulous is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Tremulous; if not, see <https://www.gnu.org/licenses/>
+
+===========================================================================
+*/
+
+#include "cm_local.h"
+
+// always use bbox vs. bbox collision and never capsule vs. bbox or vice versa
+//#define ALWAYS_BBOX_VS_BBOX
+// always use capsule vs. capsule collision and never capsule vs. bbox or vice versa
+//#define ALWAYS_CAPSULE_VS_CAPSULE
+
+//#define CAPSULE_DEBUG
+
+/*
+===============================================================================
+
+BASIC MATH
+
+===============================================================================
+*/
+
+/*
+================
+RotatePoint
+================
+*/
+void RotatePoint(vec3_t point, /*const*/ vec3_t matrix[3]) { // FIXME
+ vec3_t tvec;
+
+ VectorCopy(point, tvec);
+ point[0] = DotProduct(matrix[0], tvec);
+ point[1] = DotProduct(matrix[1], tvec);
+ point[2] = DotProduct(matrix[2], tvec);
+}
+
+/*
+================
+TransposeMatrix
+================
+*/
+void TransposeMatrix(/*const*/ vec3_t matrix[3], vec3_t transpose[3]) { // FIXME
+ int i, j;
+ for (i = 0; i < 3; i++) {
+ for (j = 0; j < 3; j++) {
+ transpose[i][j] = matrix[j][i];
+ }
+ }
+}
+
+/*
+================
+CreateRotationMatrix
+================
+*/
+void CreateRotationMatrix(const vec3_t angles, vec3_t matrix[3]) {
+ AngleVectors(angles, matrix[0], matrix[1], matrix[2]);
+ VectorInverse(matrix[1]);
+}
+
+/*
+================
+CM_ProjectPointOntoVector
+================
+*/
+void CM_ProjectPointOntoVector( vec3_t point, vec3_t vStart, vec3_t vDir, vec3_t vProj )
+{
+ vec3_t pVec;
+
+ VectorSubtract( point, vStart, pVec );
+ // project onto the directional vector for this segment
+ VectorMA( vStart, DotProduct( pVec, vDir ), vDir, vProj );
+}
+
+/*
+================
+CM_DistanceFromLineSquared
+================
+*/
+float CM_DistanceFromLineSquared(vec3_t p, vec3_t lp1, vec3_t lp2, vec3_t dir) {
+ vec3_t proj, t;
+ int j;
+
+ CM_ProjectPointOntoVector(p, lp1, dir, proj);
+ for (j = 0; j < 3; j++)
+ if ((proj[j] > lp1[j] && proj[j] > lp2[j]) ||
+ (proj[j] < lp1[j] && proj[j] < lp2[j]))
+ break;
+ if (j < 3) {
+ if (fabs(proj[j] - lp1[j]) < fabs(proj[j] - lp2[j]))
+ VectorSubtract(p, lp1, t);
+ else
+ VectorSubtract(p, lp2, t);
+ return VectorLengthSquared(t);
+ }
+ VectorSubtract(p, proj, t);
+ return VectorLengthSquared(t);
+}
+
+/*
+================
+CM_VectorDistanceSquared
+================
+*/
+float CM_VectorDistanceSquared(vec3_t p1, vec3_t p2) {
+ vec3_t dir;
+
+ VectorSubtract(p2, p1, dir);
+ return VectorLengthSquared(dir);
+}
+
+/*
+================
+SquareRootFloat
+================
+*/
+float SquareRootFloat(float number) {
+ floatint_t t;
+ float x, y;
+ const float f = 1.5F;
+
+ x = number * 0.5F;
+ t.f = number;
+ t.i = 0x5f3759df - ( t.i >> 1 );
+ y = t.f;
+ y = y * ( f - ( x * y * y ) );
+ y = y * ( f - ( x * y * y ) );
+ return number * y;
+}
+
+
+/*
+===============================================================================
+
+POSITION TESTING
+
+===============================================================================
+*/
+
+/*
+================
+CM_TestBoxInBrush
+================
+*/
+void CM_TestBoxInBrush( traceWork_t *tw, cbrush_t *brush ) {
+ int i;
+ cplane_t *plane;
+ float dist;
+ float d1;
+ cbrushside_t *side;
+ float t;
+ vec3_t startp;
+
+ if (!brush->numsides) {
+ return;
+ }
+
+ // special test for axial
+ if ( tw->bounds[0][0] > brush->bounds[1][0]
+ || tw->bounds[0][1] > brush->bounds[1][1]
+ || tw->bounds[0][2] > brush->bounds[1][2]
+ || tw->bounds[1][0] < brush->bounds[0][0]
+ || tw->bounds[1][1] < brush->bounds[0][1]
+ || tw->bounds[1][2] < brush->bounds[0][2]
+ ) {
+ return;
+ }
+
+ if ( tw->type == TT_CAPSULE ) {
+ // the first six planes are the axial planes, so we only
+ // need to test the remainder
+ for ( i = 6 ; i < brush->numsides ; i++ ) {
+ side = brush->sides + i;
+ plane = side->plane;
+
+ // adjust the plane distance apropriately for radius
+ dist = plane->dist + tw->sphere.radius;
+ // find the closest point on the capsule to the plane
+ t = DotProduct( plane->normal, tw->sphere.offset );
+ if ( t > 0 )
+ {
+ VectorSubtract( tw->start, tw->sphere.offset, startp );
+ }
+ else
+ {
+ VectorAdd( tw->start, tw->sphere.offset, startp );
+ }
+ d1 = DotProduct( startp, plane->normal ) - dist;
+ // if completely in front of face, no intersection
+ if ( d1 > 0 ) {
+ return;
+ }
+ }
+ } else {
+ // the first six planes are the axial planes, so we only
+ // need to test the remainder
+ for ( i = 6 ; i < brush->numsides ; i++ ) {
+ side = brush->sides + i;
+ plane = side->plane;
+
+ // adjust the plane distance apropriately for mins/maxs
+ dist = plane->dist - DotProduct( tw->offsets[ plane->signbits ], plane->normal );
+
+ d1 = DotProduct( tw->start, plane->normal ) - dist;
+
+ // if completely in front of face, no intersection
+ if ( d1 > 0 ) {
+ return;
+ }
+ }
+ }
+
+ // inside this brush
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ tw->trace.contents = brush->contents;
+}
+
+
+
+/*
+================
+CM_TestInLeaf
+================
+*/
+void CM_TestInLeaf( traceWork_t *tw, cLeaf_t *leaf ) {
+ int k;
+ int brushnum;
+ cbrush_t *b;
+ cPatch_t *patch;
+
+ // test box position against all brushes in the leaf
+ for (k=0 ; k<leaf->numLeafBrushes ; k++) {
+ brushnum = cm.leafbrushes[leaf->firstLeafBrush+k];
+ b = &cm.brushes[brushnum];
+ if (b->checkcount == cm.checkcount) {
+ continue; // already checked this brush in another leaf
+ }
+ b->checkcount = cm.checkcount;
+
+ if ( !(b->contents & tw->contents)) {
+ continue;
+ }
+
+ CM_TestBoxInBrush( tw, b );
+ if ( tw->trace.allsolid ) {
+ return;
+ }
+ }
+
+ // test against all patches
+#ifdef BSPC
+ if (1) {
+#else
+ if ( !cm_noCurves->integer ) {
+#endif //BSPC
+ for ( k = 0 ; k < leaf->numLeafSurfaces ; k++ ) {
+ patch = cm.surfaces[ cm.leafsurfaces[ leaf->firstLeafSurface + k ] ];
+ if ( !patch ) {
+ continue;
+ }
+ if ( patch->checkcount == cm.checkcount ) {
+ continue; // already checked this brush in another leaf
+ }
+ patch->checkcount = cm.checkcount;
+
+ if ( !(patch->contents & tw->contents)) {
+ continue;
+ }
+
+ if ( CM_PositionTestInPatchCollide( tw, patch->pc ) ) {
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ tw->trace.contents = patch->contents;
+ return;
+ }
+ }
+ }
+}
+
+/*
+==================
+CM_TestCapsuleInCapsule
+
+capsule inside capsule check
+==================
+*/
+void CM_TestCapsuleInCapsule( traceWork_t *tw, clipHandle_t model ) {
+ int i;
+ vec3_t mins, maxs;
+ vec3_t top, bottom;
+ vec3_t p1, p2, tmp;
+ vec3_t offset, symetricSize[2];
+ float radius, halfwidth, halfheight, offs, r;
+
+ CM_ModelBounds(model, mins, maxs);
+
+ VectorAdd(tw->start, tw->sphere.offset, top);
+ VectorSubtract(tw->start, tw->sphere.offset, bottom);
+ for ( i = 0 ; i < 3 ; i++ ) {
+ offset[i] = ( mins[i] + maxs[i] ) * 0.5;
+ symetricSize[0][i] = mins[i] - offset[i];
+ symetricSize[1][i] = maxs[i] - offset[i];
+ }
+ halfwidth = symetricSize[ 1 ][ 0 ];
+ halfheight = symetricSize[ 1 ][ 2 ];
+ radius = ( halfwidth > halfheight ) ? halfheight : halfwidth;
+ offs = halfheight - radius;
+
+ r = Square(tw->sphere.radius + radius);
+ // check if any of the spheres overlap
+ VectorCopy(offset, p1);
+ p1[2] += offs;
+ VectorSubtract(p1, top, tmp);
+ if ( VectorLengthSquared(tmp) < r ) {
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ }
+ VectorSubtract(p1, bottom, tmp);
+ if ( VectorLengthSquared(tmp) < r ) {
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ }
+ VectorCopy(offset, p2);
+ p2[2] -= offs;
+ VectorSubtract(p2, top, tmp);
+ if ( VectorLengthSquared(tmp) < r ) {
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ }
+ VectorSubtract(p2, bottom, tmp);
+ if ( VectorLengthSquared(tmp) < r ) {
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ }
+ // if between cylinder up and lower bounds
+ if ( (top[2] >= p1[2] && top[2] <= p2[2]) ||
+ (bottom[2] >= p1[2] && bottom[2] <= p2[2]) ) {
+ // 2d coordinates
+ top[2] = p1[2] = 0;
+ // if the cylinders overlap
+ VectorSubtract(top, p1, tmp);
+ if ( VectorLengthSquared(tmp) < r ) {
+ tw->trace.startsolid = tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ }
+ }
+}
+
+/*
+==================
+CM_TestBoundingBoxInCapsule
+
+bounding box inside capsule check
+==================
+*/
+void CM_TestBoundingBoxInCapsule( traceWork_t *tw, clipHandle_t model ) {
+ vec3_t mins, maxs, offset, size[2];
+ clipHandle_t h;
+ cmodel_t *cmod;
+ int i;
+
+ // mins maxs of the capsule
+ CM_ModelBounds(model, mins, maxs);
+
+ // offset for capsule center
+ for ( i = 0 ; i < 3 ; i++ ) {
+ offset[i] = ( mins[i] + maxs[i] ) * 0.5;
+ size[0][i] = mins[i] - offset[i];
+ size[1][i] = maxs[i] - offset[i];
+ tw->start[i] -= offset[i];
+ tw->end[i] -= offset[i];
+ }
+
+ // replace the bounding box with the capsule
+ tw->type = TT_CAPSULE;
+ tw->sphere.radius = ( size[1][0] > size[1][2] ) ? size[1][2]: size[1][0];
+ tw->sphere.halfheight = size[1][2];
+ VectorSet( tw->sphere.offset, 0, 0, size[1][2] - tw->sphere.radius );
+
+ // replace the capsule with the bounding box
+ h = CM_TempBoxModel(tw->size[0], tw->size[1], false);
+ // calculate collision
+ cmod = CM_ClipHandleToModel( h );
+ CM_TestInLeaf( tw, &cmod->leaf );
+}
+
+/*
+==================
+CM_PositionTest
+==================
+*/
+#define MAX_POSITION_LEAFS 1024
+void CM_PositionTest( traceWork_t *tw ) {
+ int leafs[MAX_POSITION_LEAFS];
+ int i;
+ leafList_t ll;
+
+ // identify the leafs we are touching
+ VectorAdd( tw->start, tw->size[0], ll.bounds[0] );
+ VectorAdd( tw->start, tw->size[1], ll.bounds[1] );
+
+ for (i=0 ; i<3 ; i++) {
+ ll.bounds[0][i] -= 1;
+ ll.bounds[1][i] += 1;
+ }
+
+ ll.count = 0;
+ ll.maxcount = MAX_POSITION_LEAFS;
+ ll.list = leafs;
+ ll.storeLeafs = CM_StoreLeafs;
+ ll.lastLeaf = 0;
+ ll.overflowed = false;
+
+ cm.checkcount++;
+
+ CM_BoxLeafnums_r( &ll, 0 );
+
+
+ cm.checkcount++;
+
+ // test the contents of the leafs
+ for (i=0 ; i < ll.count ; i++) {
+ CM_TestInLeaf( tw, &cm.leafs[leafs[i]] );
+ if ( tw->trace.allsolid ) {
+ break;
+ }
+ }
+}
+
+/*
+===============================================================================
+
+TRACING
+
+===============================================================================
+*/
+
+/*
+================
+CM_TraceThroughPatch
+================
+*/
+
+void CM_TraceThroughPatch( traceWork_t *tw, cPatch_t *patch ) {
+ float oldFrac;
+
+ c_patch_traces++;
+
+ oldFrac = tw->trace.fraction;
+
+ CM_TraceThroughPatchCollide( tw, patch->pc );
+
+ if ( tw->trace.fraction < oldFrac ) {
+ tw->trace.surfaceFlags = patch->surfaceFlags;
+ tw->trace.contents = patch->contents;
+ }
+}
+
+/*
+================
+CM_TraceThroughBrush
+================
+*/
+void CM_TraceThroughBrush( traceWork_t *tw, cbrush_t *brush ) {
+ int i;
+ cplane_t *plane, *clipplane;
+ float dist;
+ float enterFrac, leaveFrac;
+ float d1, d2;
+ bool getout, startout;
+ float f;
+ cbrushside_t *side, *leadside;
+ float t;
+ vec3_t startp;
+ vec3_t endp;
+
+ enterFrac = -1.0;
+ leaveFrac = 1.0;
+ clipplane = NULL;
+
+ if ( !brush->numsides ) {
+ return;
+ }
+
+ c_brush_traces++;
+
+ getout = false;
+ startout = false;
+
+ leadside = NULL;
+
+ if( tw->type == TT_BISPHERE )
+ {
+ //
+ // compare the trace against all planes of the brush
+ // find the latest time the trace crosses a plane towards the interior
+ // and the earliest time the trace crosses a plane towards the exterior
+ //
+ for( i = 0; i < brush->numsides; i++ )
+ {
+ side = brush->sides + i;
+ plane = side->plane;
+
+ // adjust the plane distance apropriately for radius
+ d1 = DotProduct( tw->start, plane->normal ) -
+ ( plane->dist + tw->biSphere.startRadius );
+ d2 = DotProduct( tw->end, plane->normal ) -
+ ( plane->dist + tw->biSphere.endRadius );
+
+ if( d2 > 0 )
+ getout = true; // endpoint is not in solid
+
+ if( d1 > 0 )
+ startout = true;
+
+ // if completely in front of face, no intersection with the entire brush
+ if( d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) )
+ return;
+
+ // if it doesn't cross the plane, the plane isn't relevent
+ if( d1 <= 0 && d2 <= 0 )
+ continue;
+
+ brush->collided = true;
+
+ // crosses face
+ if( d1 > d2 )
+ {
+ // enter
+ f = ( d1 - SURFACE_CLIP_EPSILON ) / ( d1 - d2 );
+
+ if( f < 0 )
+ f = 0;
+
+ if( f > enterFrac )
+ {
+ enterFrac = f;
+ clipplane = plane;
+ leadside = side;
+ }
+ }
+ else
+ {
+ // leave
+ f = ( d1 + SURFACE_CLIP_EPSILON ) / ( d1 - d2 );
+
+ if( f > 1 )
+ f = 1;
+
+ if( f < leaveFrac )
+ leaveFrac = f;
+ }
+ }
+ }
+ else if ( tw->type == TT_CAPSULE ) {
+ //
+ // compare the trace against all planes of the brush
+ // find the latest time the trace crosses a plane towards the interior
+ // and the earliest time the trace crosses a plane towards the exterior
+ //
+ for (i = 0; i < brush->numsides; i++) {
+ side = brush->sides + i;
+ plane = side->plane;
+
+ // adjust the plane distance apropriately for radius
+ dist = plane->dist + tw->sphere.radius;
+
+ // find the closest point on the capsule to the plane
+ t = DotProduct( plane->normal, tw->sphere.offset );
+ if ( t > 0 )
+ {
+ VectorSubtract( tw->start, tw->sphere.offset, startp );
+ VectorSubtract( tw->end, tw->sphere.offset, endp );
+ }
+ else
+ {
+ VectorAdd( tw->start, tw->sphere.offset, startp );
+ VectorAdd( tw->end, tw->sphere.offset, endp );
+ }
+
+ d1 = DotProduct( startp, plane->normal ) - dist;
+ d2 = DotProduct( endp, plane->normal ) - dist;
+
+ if (d2 > 0) {
+ getout = true; // endpoint is not in solid
+ }
+ if (d1 > 0) {
+ startout = true;
+ }
+
+ // if completely in front of face, no intersection with the entire brush
+ if (d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) ) {
+ return;
+ }
+
+ // if it doesn't cross the plane, the plane isn't relevent
+ if (d1 <= 0 && d2 <= 0 ) {
+ continue;
+ }
+
+ brush->collided = true;
+
+ // crosses face
+ if (d1 > d2) { // enter
+ f = (d1-SURFACE_CLIP_EPSILON) / (d1-d2);
+ if ( f < 0 ) {
+ f = 0;
+ }
+ if (f > enterFrac) {
+ enterFrac = f;
+ clipplane = plane;
+ leadside = side;
+ }
+ } else { // leave
+ f = (d1+SURFACE_CLIP_EPSILON) / (d1-d2);
+ if ( f > 1 ) {
+ f = 1;
+ }
+ if (f < leaveFrac) {
+ leaveFrac = f;
+ }
+ }
+ }
+ } else {
+ //
+ // compare the trace against all planes of the brush
+ // find the latest time the trace crosses a plane towards the interior
+ // and the earliest time the trace crosses a plane towards the exterior
+ //
+ for (i = 0; i < brush->numsides; i++) {
+ side = brush->sides + i;
+ plane = side->plane;
+
+ // adjust the plane distance apropriately for mins/maxs
+ dist = plane->dist - DotProduct( tw->offsets[ plane->signbits ], plane->normal );
+
+ d1 = DotProduct( tw->start, plane->normal ) - dist;
+ d2 = DotProduct( tw->end, plane->normal ) - dist;
+
+ if (d2 > 0) {
+ getout = true; // endpoint is not in solid
+ }
+ if (d1 > 0) {
+ startout = true;
+ }
+
+ // if completely in front of face, no intersection with the entire brush
+ if (d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) ) {
+ return;
+ }
+
+ // if it doesn't cross the plane, the plane isn't relevent
+ if (d1 <= 0 && d2 <= 0 ) {
+ continue;
+ }
+
+ brush->collided = true;
+
+ // crosses face
+ if (d1 > d2) { // enter
+ f = (d1-SURFACE_CLIP_EPSILON) / (d1-d2);
+ if ( f < 0 ) {
+ f = 0;
+ }
+ if (f > enterFrac) {
+ enterFrac = f;
+ clipplane = plane;
+ leadside = side;
+ }
+ } else { // leave
+ f = (d1+SURFACE_CLIP_EPSILON) / (d1-d2);
+ if ( f > 1 ) {
+ f = 1;
+ }
+ if (f < leaveFrac) {
+ leaveFrac = f;
+ }
+ }
+ }
+ }
+
+ //
+ // all planes have been checked, and the trace was not
+ // completely outside the brush
+ //
+ if (!startout) { // original point was inside brush
+ tw->trace.startsolid = qtrue;
+ if (!getout) {
+ tw->trace.allsolid = qtrue;
+ tw->trace.fraction = 0;
+ tw->trace.contents = brush->contents;
+ }
+ return;
+ }
+
+ if (enterFrac < leaveFrac) {
+ if (enterFrac > -1 && enterFrac < tw->trace.fraction) {
+ if (enterFrac < 0) {
+ enterFrac = 0;
+ }
+ tw->trace.fraction = enterFrac;
+ if (clipplane != NULL) {
+ tw->trace.plane = *clipplane;
+ }
+ if (leadside != NULL) {
+ tw->trace.surfaceFlags = leadside->surfaceFlags;
+ }
+ tw->trace.contents = brush->contents;
+ }
+ }
+}
+
+/*
+================
+CM_ProximityToBrush
+================
+*/
+static void CM_ProximityToBrush( traceWork_t *tw, cbrush_t *brush )
+{
+ int i;
+ cbrushedge_t *edge;
+ float dist, minDist = 1e+10f;
+ float s, t;
+ float sAtMin = 0.0f;
+ float radius = 0.0f, fraction;
+ traceWork_t tw2;
+
+ // cheapish purely linear trace to test for intersection
+ ::memset( &tw2, 0, sizeof( tw2 ) );
+ tw2.trace.fraction = 1.0f;
+ tw2.type = TT_CAPSULE;
+ tw2.sphere.radius = 0.0f;
+ VectorClear( tw2.sphere.offset );
+ VectorCopy( tw->start, tw2.start );
+ VectorCopy( tw->end, tw2.end );
+
+ CM_TraceThroughBrush( &tw2, brush );
+
+ if( tw2.trace.fraction == 1.0f && !tw2.trace.allsolid && !tw2.trace.startsolid )
+ {
+ for( i = 0; i < brush->numEdges; i++ )
+ {
+ edge = &brush->edges[ i ];
+
+ dist = DistanceBetweenLineSegmentsSquared( tw->start, tw->end,
+ edge->p0, edge->p1, &s, &t );
+
+ if( dist < minDist )
+ {
+ minDist = dist;
+ sAtMin = s;
+ }
+ }
+
+ if( tw->type == TT_BISPHERE )
+ {
+ radius = tw->biSphere.startRadius +
+ ( sAtMin * ( tw->biSphere.endRadius - tw->biSphere.startRadius ) );
+ }
+ else if( tw->type == TT_CAPSULE )
+ {
+ radius = tw->sphere.radius;
+ }
+ else if( tw->type == TT_AABB )
+ {
+ //FIXME
+ }
+
+ fraction = minDist / ( radius * radius );
+
+ if( fraction < tw->trace.lateralFraction )
+ tw->trace.lateralFraction = fraction;
+ }
+ else
+ tw->trace.lateralFraction = 0.0f;
+}
+
+/*
+================
+CM_ProximityToPatch
+================
+*/
+static void CM_ProximityToPatch( traceWork_t *tw, cPatch_t *patch )
+{
+ traceWork_t tw2;
+
+ // cheapish purely linear trace to test for intersection
+ ::memset( &tw2, 0, sizeof( tw2 ) );
+ tw2.trace.fraction = 1.0f;
+ tw2.type = TT_CAPSULE;
+ tw2.sphere.radius = 0.0f;
+ VectorClear( tw2.sphere.offset );
+ VectorCopy( tw->start, tw2.start );
+ VectorCopy( tw->end, tw2.end );
+
+ CM_TraceThroughPatch( &tw2, patch );
+
+ if( tw2.trace.fraction == 1.0f && !tw2.trace.allsolid && !tw2.trace.startsolid )
+ {
+ //FIXME: implement me
+ }
+ else
+ tw->trace.lateralFraction = 0.0f;
+}
+
+/*
+================
+CM_TraceThroughLeaf
+================
+*/
+void CM_TraceThroughLeaf( traceWork_t *tw, cLeaf_t *leaf ) {
+ int k;
+ int brushnum;
+ cbrush_t *b;
+ cPatch_t *patch;
+
+ // trace line against all brushes in the leaf
+ for ( k = 0 ; k < leaf->numLeafBrushes ; k++ ) {
+ brushnum = cm.leafbrushes[leaf->firstLeafBrush+k];
+
+ b = &cm.brushes[brushnum];
+ if ( b->checkcount == cm.checkcount ) {
+ continue; // already checked this brush in another leaf
+ }
+ b->checkcount = cm.checkcount;
+
+ if ( !(b->contents & tw->contents) ) {
+ continue;
+ }
+
+ b->collided = false;
+
+ if ( !CM_BoundsIntersect( tw->bounds[0], tw->bounds[1],
+ b->bounds[0], b->bounds[1] ) ) {
+ continue;
+ }
+
+ CM_TraceThroughBrush( tw, b );
+ if ( !tw->trace.fraction ) {
+ tw->trace.lateralFraction = 0.0f;
+ return;
+ }
+ }
+
+ // trace line against all patches in the leaf
+#ifdef BSPC
+ if (1) {
+#else
+ if ( !cm_noCurves->integer ) {
+#endif
+ for ( k = 0 ; k < leaf->numLeafSurfaces ; k++ ) {
+ patch = cm.surfaces[ cm.leafsurfaces[ leaf->firstLeafSurface + k ] ];
+ if ( !patch ) {
+ continue;
+ }
+ if ( patch->checkcount == cm.checkcount ) {
+ continue; // already checked this patch in another leaf
+ }
+ patch->checkcount = cm.checkcount;
+
+ if ( !(patch->contents & tw->contents) ) {
+ continue;
+ }
+
+ CM_TraceThroughPatch( tw, patch );
+
+ if ( !tw->trace.fraction ) {
+ tw->trace.lateralFraction = 0.0f;
+ return;
+ }
+ }
+ }
+
+ if( tw->testLateralCollision && tw->trace.fraction < 1.0f )
+ {
+ for( k = 0; k < leaf->numLeafBrushes; k++ )
+ {
+ brushnum = cm.leafbrushes[ leaf->firstLeafBrush + k ];
+
+ b = &cm.brushes[ brushnum ];
+
+ // This brush never collided, so don't bother
+ if( !b->collided )
+ continue;
+
+ if( !( b->contents & tw->contents ) )
+ continue;
+
+ CM_ProximityToBrush( tw, b );
+
+ if( !tw->trace.lateralFraction )
+ return;
+ }
+
+ for( k = 0; k < leaf->numLeafSurfaces; k++ )
+ {
+ patch = cm.surfaces[ cm.leafsurfaces[ leaf->firstLeafSurface + k ] ];
+ if( !patch )
+ continue;
+
+ if( !( patch->contents & tw->contents ) )
+ continue;
+
+ CM_ProximityToPatch( tw, patch );
+
+ if( !tw->trace.lateralFraction )
+ return;
+ }
+ }
+}
+
+#define RADIUS_EPSILON 1.0f
+
+/*
+================
+CM_TraceThroughSphere
+
+get the first intersection of the ray with the sphere
+================
+*/
+void CM_TraceThroughSphere( traceWork_t *tw, vec3_t origin, float radius, vec3_t start, vec3_t end ) {
+ float l1, l2, length, scale, fraction;
+ //float a;
+ float b, c, d, sqrtd;
+ vec3_t v1, dir, intersection;
+
+ // if inside the sphere
+ VectorSubtract(start, origin, dir);
+ l1 = VectorLengthSquared(dir);
+ if (l1 < Square(radius)) {
+ tw->trace.fraction = 0;
+ tw->trace.startsolid = qtrue;
+ // test for allsolid
+ VectorSubtract(end, origin, dir);
+ l1 = VectorLengthSquared(dir);
+ if (l1 < Square(radius)) {
+ tw->trace.allsolid = qtrue;
+ }
+ return;
+ }
+ //
+ VectorSubtract(end, start, dir);
+ length = VectorNormalize(dir);
+ //
+ l1 = CM_DistanceFromLineSquared(origin, start, end, dir);
+ VectorSubtract(end, origin, v1);
+ l2 = VectorLengthSquared(v1);
+ // if no intersection with the sphere and the end point is at least an epsilon away
+ if (l1 >= Square(radius) && l2 > Square(radius+SURFACE_CLIP_EPSILON)) {
+ return;
+ }
+ //
+ // | origin - (start + t * dir) | = radius
+ // a = dir[0]^2 + dir[1]^2 + dir[2]^2;
+ // b = 2 * (dir[0] * (start[0] - origin[0]) + dir[1] * (start[1] - origin[1]) + dir[2] * (start[2] - origin[2]));
+ // c = (start[0] - origin[0])^2 + (start[1] - origin[1])^2 + (start[2] - origin[2])^2 - radius^2;
+ //
+ VectorSubtract(start, origin, v1);
+ // dir is normalized so a = 1
+ //a = 1.0f;//dir[0] * dir[0] + dir[1] * dir[1] + dir[2] * dir[2];
+ b = 2.0f * (dir[0] * v1[0] + dir[1] * v1[1] + dir[2] * v1[2]);
+ c = v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] - (radius+RADIUS_EPSILON) * (radius+RADIUS_EPSILON);
+
+ d = b * b - 4.0f * c;// * a;
+ if (d > 0) {
+ sqrtd = SquareRootFloat(d);
+ // = (- b + sqrtd) * 0.5f; // / (2.0f * a);
+ fraction = (- b - sqrtd) * 0.5f; // / (2.0f * a);
+ //
+ if (fraction < 0) {
+ fraction = 0;
+ }
+ else {
+ fraction /= length;
+ }
+ if ( fraction < tw->trace.fraction ) {
+ tw->trace.fraction = fraction;
+ VectorSubtract(end, start, dir);
+ VectorMA(start, fraction, dir, intersection);
+ VectorSubtract(intersection, origin, dir);
+ #ifdef CAPSULE_DEBUG
+ l2 = VectorLength(dir);
+ if (l2 < radius) {
+ int bah = 1;
+ }
+ #endif
+ scale = 1 / (radius+RADIUS_EPSILON);
+ VectorScale(dir, scale, dir);
+ VectorCopy(dir, tw->trace.plane.normal);
+ VectorAdd( tw->modelOrigin, intersection, intersection);
+ tw->trace.plane.dist = DotProduct(tw->trace.plane.normal, intersection);
+ tw->trace.contents = CONTENTS_BODY;
+ }
+ }
+ else if (d == 0) {
+ //t1 = (- b ) / 2;
+ // slide along the sphere
+ }
+ // no intersection at all
+}
+
+/*
+================
+CM_TraceThroughVerticalCylinder
+
+get the first intersection of the ray with the cylinder
+the cylinder extends halfheight above and below the origin
+================
+*/
+void CM_TraceThroughVerticalCylinder( traceWork_t *tw, vec3_t origin, float radius, float halfheight, vec3_t start, vec3_t end) {
+ float length, scale, fraction, l1, l2;
+ //float a;
+ float b, c, d, sqrtd;
+ vec3_t v1, dir, start2d, end2d, org2d, intersection;
+
+ // 2d coordinates
+ VectorSet(start2d, start[0], start[1], 0);
+ VectorSet(end2d, end[0], end[1], 0);
+ VectorSet(org2d, origin[0], origin[1], 0);
+ // if between lower and upper cylinder bounds
+ if (start[2] <= origin[2] + halfheight &&
+ start[2] >= origin[2] - halfheight) {
+ // if inside the cylinder
+ VectorSubtract(start2d, org2d, dir);
+ l1 = VectorLengthSquared(dir);
+ if (l1 < Square(radius)) {
+ tw->trace.fraction = 0;
+ tw->trace.startsolid = qtrue;
+ VectorSubtract(end2d, org2d, dir);
+ l1 = VectorLengthSquared(dir);
+ if (l1 < Square(radius)) {
+ tw->trace.allsolid = qtrue;
+ }
+ return;
+ }
+ }
+ //
+ VectorSubtract(end2d, start2d, dir);
+ length = VectorNormalize(dir);
+ //
+ l1 = CM_DistanceFromLineSquared(org2d, start2d, end2d, dir);
+ VectorSubtract(end2d, org2d, v1);
+ l2 = VectorLengthSquared(v1);
+ // if no intersection with the cylinder and the end point is at least an epsilon away
+ if (l1 >= Square(radius) && l2 > Square(radius+SURFACE_CLIP_EPSILON)) {
+ return;
+ }
+ //
+ //
+ // (start[0] - origin[0] - t * dir[0]) ^ 2 + (start[1] - origin[1] - t * dir[1]) ^ 2 = radius ^ 2
+ // (v1[0] + t * dir[0]) ^ 2 + (v1[1] + t * dir[1]) ^ 2 = radius ^ 2;
+ // v1[0] ^ 2 + 2 * v1[0] * t * dir[0] + (t * dir[0]) ^ 2 +
+ // v1[1] ^ 2 + 2 * v1[1] * t * dir[1] + (t * dir[1]) ^ 2 = radius ^ 2
+ // t ^ 2 * (dir[0] ^ 2 + dir[1] ^ 2) + t * (2 * v1[0] * dir[0] + 2 * v1[1] * dir[1]) +
+ // v1[0] ^ 2 + v1[1] ^ 2 - radius ^ 2 = 0
+ //
+ VectorSubtract(start, origin, v1);
+ // dir is normalized so we can use a = 1
+ //a = 1.0f;// * (dir[0] * dir[0] + dir[1] * dir[1]);
+ b = 2.0f * (v1[0] * dir[0] + v1[1] * dir[1]);
+ c = v1[0] * v1[0] + v1[1] * v1[1] - (radius+RADIUS_EPSILON) * (radius+RADIUS_EPSILON);
+
+ d = b * b - 4.0f * c;// * a;
+ if (d > 0) {
+ sqrtd = SquareRootFloat(d);
+ // = (- b + sqrtd) * 0.5f;// / (2.0f * a);
+ fraction = (- b - sqrtd) * 0.5f;// / (2.0f * a);
+ //
+ if (fraction < 0) {
+ fraction = 0;
+ }
+ else {
+ fraction /= length;
+ }
+ if ( fraction < tw->trace.fraction ) {
+ VectorSubtract(end, start, dir);
+ VectorMA(start, fraction, dir, intersection);
+ // if the intersection is between the cylinder lower and upper bound
+ if (intersection[2] <= origin[2] + halfheight &&
+ intersection[2] >= origin[2] - halfheight) {
+ //
+ tw->trace.fraction = fraction;
+ VectorSubtract(intersection, origin, dir);
+ dir[2] = 0;
+ #ifdef CAPSULE_DEBUG
+ l2 = VectorLength(dir);
+ if (l2 <= radius) {
+ int bah = 1;
+ }
+ #endif
+ scale = 1 / (radius+RADIUS_EPSILON);
+ VectorScale(dir, scale, dir);
+ VectorCopy(dir, tw->trace.plane.normal);
+ VectorAdd( tw->modelOrigin, intersection, intersection);
+ tw->trace.plane.dist = DotProduct(tw->trace.plane.normal, intersection);
+ tw->trace.contents = CONTENTS_BODY;
+ }
+ }
+ }
+ else if (d == 0) {
+ //t[0] = (- b ) / 2 * a;
+ // slide along the cylinder
+ }
+ // no intersection at all
+}
+
+/*
+================
+CM_TraceCapsuleThroughCapsule
+
+capsule vs. capsule collision (not rotated)
+================
+*/
+void CM_TraceCapsuleThroughCapsule( traceWork_t *tw, clipHandle_t model ) {
+ int i;
+ vec3_t mins, maxs;
+ vec3_t top, bottom, starttop, startbottom, endtop, endbottom;
+ vec3_t offset, symetricSize[2];
+ float radius, halfwidth, halfheight, offs, h;
+
+ CM_ModelBounds(model, mins, maxs);
+ // test trace bounds vs. capsule bounds
+ if ( tw->bounds[0][0] > maxs[0] + RADIUS_EPSILON
+ || tw->bounds[0][1] > maxs[1] + RADIUS_EPSILON
+ || tw->bounds[0][2] > maxs[2] + RADIUS_EPSILON
+ || tw->bounds[1][0] < mins[0] - RADIUS_EPSILON
+ || tw->bounds[1][1] < mins[1] - RADIUS_EPSILON
+ || tw->bounds[1][2] < mins[2] - RADIUS_EPSILON
+ ) {
+ return;
+ }
+ // top origin and bottom origin of each sphere at start and end of trace
+ VectorAdd(tw->start, tw->sphere.offset, starttop);
+ VectorSubtract(tw->start, tw->sphere.offset, startbottom);
+ VectorAdd(tw->end, tw->sphere.offset, endtop);
+ VectorSubtract(tw->end, tw->sphere.offset, endbottom);
+
+ // calculate top and bottom of the capsule spheres to collide with
+ for ( i = 0 ; i < 3 ; i++ ) {
+ offset[i] = ( mins[i] + maxs[i] ) * 0.5;
+ symetricSize[0][i] = mins[i] - offset[i];
+ symetricSize[1][i] = maxs[i] - offset[i];
+ }
+ halfwidth = symetricSize[ 1 ][ 0 ];
+ halfheight = symetricSize[ 1 ][ 2 ];
+ radius = ( halfwidth > halfheight ) ? halfheight : halfwidth;
+ offs = halfheight - radius;
+ VectorCopy(offset, top);
+ top[2] += offs;
+ VectorCopy(offset, bottom);
+ bottom[2] -= offs;
+ // expand radius of spheres
+ radius += tw->sphere.radius;
+ // if there is horizontal movement
+ if ( tw->start[0] != tw->end[0] || tw->start[1] != tw->end[1] ) {
+ // height of the expanded cylinder is the height of both cylinders minus the radius of both spheres
+ h = halfheight + tw->sphere.halfheight - radius;
+ // if the cylinder has a height
+ if ( h > 0 ) {
+ // test for collisions between the cylinders
+ CM_TraceThroughVerticalCylinder(tw, offset, radius, h, tw->start, tw->end);
+ }
+ }
+ // test for collision between the spheres
+ CM_TraceThroughSphere(tw, top, radius, startbottom, endbottom);
+ CM_TraceThroughSphere(tw, bottom, radius, starttop, endtop);
+}
+
+/*
+================
+CM_TraceBoundingBoxThroughCapsule
+
+bounding box vs. capsule collision
+================
+*/
+void CM_TraceBoundingBoxThroughCapsule( traceWork_t *tw, clipHandle_t model ) {
+ vec3_t mins, maxs, offset, size[2];
+ clipHandle_t h;
+ cmodel_t *cmod;
+ int i;
+
+ // mins maxs of the capsule
+ CM_ModelBounds(model, mins, maxs);
+
+ // offset for capsule center
+ for ( i = 0 ; i < 3 ; i++ ) {
+ offset[i] = ( mins[i] + maxs[i] ) * 0.5;
+ size[0][i] = mins[i] - offset[i];
+ size[1][i] = maxs[i] - offset[i];
+ tw->start[i] -= offset[i];
+ tw->end[i] -= offset[i];
+ }
+
+ // replace the bounding box with the capsule
+ tw->type = TT_CAPSULE;
+ tw->sphere.radius = ( size[1][0] > size[1][2] ) ? size[1][2]: size[1][0];
+ tw->sphere.halfheight = size[1][2];
+ VectorSet( tw->sphere.offset, 0, 0, size[1][2] - tw->sphere.radius );
+
+ // replace the capsule with the bounding box
+ h = CM_TempBoxModel(tw->size[0], tw->size[1], false);
+ // calculate collision
+ cmod = CM_ClipHandleToModel( h );
+ CM_TraceThroughLeaf( tw, &cmod->leaf );
+}
+
+//=========================================================================================
+
+/*
+==================
+CM_TraceThroughTree
+
+Traverse all the contacted leafs from the start to the end position.
+If the trace is a point, they will be exactly in order, but for larger
+trace volumes it is possible to hit something in a later leaf with
+a smaller intercept fraction.
+==================
+*/
+void CM_TraceThroughTree( traceWork_t *tw, int num, float p1f, float p2f, vec3_t p1, vec3_t p2) {
+ cNode_t *node;
+ cplane_t *plane;
+ float t1, t2, offset;
+ float frac, frac2;
+ float idist;
+ vec3_t mid;
+ int side;
+ float midf;
+
+ if (tw->trace.fraction <= p1f) {
+ return; // already hit something nearer
+ }
+
+ // if < 0, we are in a leaf node
+ if (num < 0) {
+ CM_TraceThroughLeaf( tw, &cm.leafs[-1-num] );
+ return;
+ }
+
+ //
+ // find the point distances to the seperating plane
+ // and the offset for the size of the box
+ //
+ node = cm.nodes + num;
+ plane = node->plane;
+
+ // adjust the plane distance apropriately for mins/maxs
+ if ( plane->type < 3 ) {
+ t1 = p1[plane->type] - plane->dist;
+ t2 = p2[plane->type] - plane->dist;
+ offset = tw->extents[plane->type];
+ } else {
+ t1 = DotProduct (plane->normal, p1) - plane->dist;
+ t2 = DotProduct (plane->normal, p2) - plane->dist;
+ if ( tw->isPoint ) {
+ offset = 0;
+ } else {
+ // this is silly
+ offset = 2048;
+ }
+ }
+
+ // see which sides we need to consider
+ if ( t1 >= offset + 1 && t2 >= offset + 1 ) {
+ CM_TraceThroughTree( tw, node->children[0], p1f, p2f, p1, p2 );
+ return;
+ }
+ if ( t1 < -offset - 1 && t2 < -offset - 1 ) {
+ CM_TraceThroughTree( tw, node->children[1], p1f, p2f, p1, p2 );
+ return;
+ }
+
+ // put the crosspoint SURFACE_CLIP_EPSILON pixels on the near side
+ if ( t1 < t2 ) {
+ idist = 1.0/(t1-t2);
+ side = 1;
+ frac2 = (t1 + offset + SURFACE_CLIP_EPSILON)*idist;
+ frac = (t1 - offset + SURFACE_CLIP_EPSILON)*idist;
+ } else if (t1 > t2) {
+ idist = 1.0/(t1-t2);
+ side = 0;
+ frac2 = (t1 - offset - SURFACE_CLIP_EPSILON)*idist;
+ frac = (t1 + offset + SURFACE_CLIP_EPSILON)*idist;
+ } else {
+ side = 0;
+ frac = 1;
+ frac2 = 0;
+ }
+
+ // move up to the node
+ if ( frac < 0 ) {
+ frac = 0;
+ }
+ if ( frac > 1 ) {
+ frac = 1;
+ }
+
+ midf = p1f + (p2f - p1f)*frac;
+
+ mid[0] = p1[0] + frac*(p2[0] - p1[0]);
+ mid[1] = p1[1] + frac*(p2[1] - p1[1]);
+ mid[2] = p1[2] + frac*(p2[2] - p1[2]);
+
+ CM_TraceThroughTree( tw, node->children[side], p1f, midf, p1, mid );
+
+
+ // go past the node
+ if ( frac2 < 0 ) {
+ frac2 = 0;
+ }
+ if ( frac2 > 1 ) {
+ frac2 = 1;
+ }
+
+ midf = p1f + (p2f - p1f)*frac2;
+
+ mid[0] = p1[0] + frac2*(p2[0] - p1[0]);
+ mid[1] = p1[1] + frac2*(p2[1] - p1[1]);
+ mid[2] = p1[2] + frac2*(p2[2] - p1[2]);
+
+ CM_TraceThroughTree( tw, node->children[side^1], midf, p2f, mid, p2 );
+}
+
+//======================================================================
+
+
+/*
+==================
+CM_Trace
+==================
+*/
+void CM_Trace( trace_t *results, const vec3_t start,
+ const vec3_t end, vec3_t mins, vec3_t maxs,
+ clipHandle_t model, const vec3_t origin, int brushmask,
+ traceType_t type, sphere_t *sphere ) {
+ int i;
+ traceWork_t tw;
+ vec3_t offset;
+ cmodel_t *cmod;
+
+ cmod = CM_ClipHandleToModel( model );
+
+ cm.checkcount++; // for multi-check avoidance
+
+ c_traces++; // for statistics, may be zeroed
+
+ // fill in a default trace
+ ::memset( &tw, 0, sizeof(tw) );
+ tw.trace.fraction = 1; // assume it goes the entire distance until shown otherwise
+ VectorCopy(origin, tw.modelOrigin);
+ tw.type = type;
+
+ if (!cm.numNodes) {
+ *results = tw.trace;
+
+ return; // map not loaded, shouldn't happen
+ }
+
+ // allow NULL to be passed in for 0,0,0
+ if ( !mins ) {
+ mins = vec3_origin;
+ }
+ if ( !maxs ) {
+ maxs = vec3_origin;
+ }
+
+ // set basic parms
+ tw.contents = brushmask;
+
+ // adjust so that mins and maxs are always symetric, which
+ // avoids some complications with plane expanding of rotated
+ // bmodels
+ for ( i = 0 ; i < 3 ; i++ ) {
+ offset[i] = ( mins[i] + maxs[i] ) * 0.5;
+ tw.size[0][i] = mins[i] - offset[i];
+ tw.size[1][i] = maxs[i] - offset[i];
+ tw.start[i] = start[i] + offset[i];
+ tw.end[i] = end[i] + offset[i];
+ }
+
+ // if a sphere is already specified
+ if ( sphere ) {
+ tw.sphere = *sphere;
+ }
+ else {
+ tw.sphere.radius = ( tw.size[1][0] > tw.size[1][2] ) ? tw.size[1][2]: tw.size[1][0];
+ tw.sphere.halfheight = tw.size[1][2];
+ VectorSet( tw.sphere.offset, 0, 0, tw.size[1][2] - tw.sphere.radius );
+ }
+
+ tw.maxOffset = tw.size[1][0] + tw.size[1][1] + tw.size[1][2];
+
+ // tw.offsets[signbits] = vector to apropriate corner from origin
+ tw.offsets[0][0] = tw.size[0][0];
+ tw.offsets[0][1] = tw.size[0][1];
+ tw.offsets[0][2] = tw.size[0][2];
+
+ tw.offsets[1][0] = tw.size[1][0];
+ tw.offsets[1][1] = tw.size[0][1];
+ tw.offsets[1][2] = tw.size[0][2];
+
+ tw.offsets[2][0] = tw.size[0][0];
+ tw.offsets[2][1] = tw.size[1][1];
+ tw.offsets[2][2] = tw.size[0][2];
+
+ tw.offsets[3][0] = tw.size[1][0];
+ tw.offsets[3][1] = tw.size[1][1];
+ tw.offsets[3][2] = tw.size[0][2];
+
+ tw.offsets[4][0] = tw.size[0][0];
+ tw.offsets[4][1] = tw.size[0][1];
+ tw.offsets[4][2] = tw.size[1][2];
+
+ tw.offsets[5][0] = tw.size[1][0];
+ tw.offsets[5][1] = tw.size[0][1];
+ tw.offsets[5][2] = tw.size[1][2];
+
+ tw.offsets[6][0] = tw.size[0][0];
+ tw.offsets[6][1] = tw.size[1][1];
+ tw.offsets[6][2] = tw.size[1][2];
+
+ tw.offsets[7][0] = tw.size[1][0];
+ tw.offsets[7][1] = tw.size[1][1];
+ tw.offsets[7][2] = tw.size[1][2];
+
+ //
+ // calculate bounds
+ //
+ if ( tw.type == TT_CAPSULE ) {
+ for ( i = 0 ; i < 3 ; i++ ) {
+ if ( tw.start[i] < tw.end[i] ) {
+ tw.bounds[0][i] = tw.start[i] - fabs(tw.sphere.offset[i]) - tw.sphere.radius;
+ tw.bounds[1][i] = tw.end[i] + fabs(tw.sphere.offset[i]) + tw.sphere.radius;
+ } else {
+ tw.bounds[0][i] = tw.end[i] - fabs(tw.sphere.offset[i]) - tw.sphere.radius;
+ tw.bounds[1][i] = tw.start[i] + fabs(tw.sphere.offset[i]) + tw.sphere.radius;
+ }
+ }
+ }
+ else {
+ for ( i = 0 ; i < 3 ; i++ ) {
+ if ( tw.start[i] < tw.end[i] ) {
+ tw.bounds[0][i] = tw.start[i] + tw.size[0][i];
+ tw.bounds[1][i] = tw.end[i] + tw.size[1][i];
+ } else {
+ tw.bounds[0][i] = tw.end[i] + tw.size[0][i];
+ tw.bounds[1][i] = tw.start[i] + tw.size[1][i];
+ }
+ }
+ }
+
+ //
+ // check for position test special case
+ //
+ if (start[0] == end[0] && start[1] == end[1] && start[2] == end[2]) {
+ if ( model ) {
+#ifdef ALWAYS_BBOX_VS_BBOX // FIXME - compile time flag?
+ if ( model == BOX_MODEL_HANDLE || model == CAPSULE_MODEL_HANDLE) {
+ tw.type = TT_AABB;
+ CM_TestInLeaf( &tw, &cmod->leaf );
+ }
+ else
+#elif defined(ALWAYS_CAPSULE_VS_CAPSULE)
+ if ( model == BOX_MODEL_HANDLE || model == CAPSULE_MODEL_HANDLE) {
+ CM_TestCapsuleInCapsule( &tw, model );
+ }
+ else
+#endif
+ if ( model == CAPSULE_MODEL_HANDLE ) {
+ if ( tw.type == TT_CAPSULE ) {
+ CM_TestCapsuleInCapsule( &tw, model );
+ }
+ else {
+ CM_TestBoundingBoxInCapsule( &tw, model );
+ }
+ }
+ else {
+ CM_TestInLeaf( &tw, &cmod->leaf );
+ }
+ } else {
+ CM_PositionTest( &tw );
+ }
+ } else {
+ //
+ // check for point special case
+ //
+ if ( tw.size[0][0] == 0 && tw.size[0][1] == 0 && tw.size[0][2] == 0 ) {
+ tw.isPoint = true;
+ VectorClear( tw.extents );
+ } else {
+ tw.isPoint = false;
+ tw.extents[0] = tw.size[1][0];
+ tw.extents[1] = tw.size[1][1];
+ tw.extents[2] = tw.size[1][2];
+ }
+
+ //
+ // general sweeping through world
+ //
+ if ( model ) {
+#ifdef ALWAYS_BBOX_VS_BBOX
+ if ( model == BOX_MODEL_HANDLE || model == CAPSULE_MODEL_HANDLE) {
+ tw.type = TT_AABB;
+ CM_TraceThroughLeaf( &tw, &cmod->leaf );
+ }
+ else
+#elif defined(ALWAYS_CAPSULE_VS_CAPSULE)
+ if ( model == BOX_MODEL_HANDLE || model == CAPSULE_MODEL_HANDLE) {
+ CM_TraceCapsuleThroughCapsule( &tw, model );
+ }
+ else
+#endif
+ if ( model == CAPSULE_MODEL_HANDLE ) {
+ if ( tw.type == TT_CAPSULE ) {
+ CM_TraceCapsuleThroughCapsule( &tw, model );
+ }
+ else {
+ CM_TraceBoundingBoxThroughCapsule( &tw, model );
+ }
+ }
+ else {
+ CM_TraceThroughLeaf( &tw, &cmod->leaf );
+ }
+ } else {
+ CM_TraceThroughTree( &tw, 0, 0, 1, tw.start, tw.end );
+ }
+ }
+
+ // generate endpos from the original, unmodified start/end
+ if ( tw.trace.fraction == 1 ) {
+ VectorCopy (end, tw.trace.endpos);
+ } else {
+ for ( i=0 ; i<3 ; i++ ) {
+ tw.trace.endpos[i] = start[i] + tw.trace.fraction * (end[i] - start[i]);
+ }
+ }
+
+ // If allsolid is set (was entirely inside something solid), the plane is not valid.
+ // If fraction == 1.0, we never hit anything, and thus the plane is not valid.
+ // Otherwise, the normal on the plane should have unit length
+ assert(tw.trace.allsolid ||
+ tw.trace.fraction == 1.0 ||
+ VectorLengthSquared(tw.trace.plane.normal) > 0.9999);
+ *results = tw.trace;
+}
+
+/*
+==================
+CM_BoxTrace
+==================
+*/
+void CM_BoxTrace( trace_t *results, const vec3_t start, const vec3_t end,
+ vec3_t mins, vec3_t maxs,
+ clipHandle_t model, int brushmask, traceType_t type ) {
+ CM_Trace( results, start, end, mins, maxs, model, vec3_origin, brushmask, type, NULL );
+}
+
+/*
+==================
+CM_TransformedBoxTrace
+
+Handles offseting and rotation of the end points for moving and
+rotating entities
+==================
+*/
+void CM_TransformedBoxTrace( trace_t *results, const vec3_t start, const vec3_t end,
+ vec3_t mins, vec3_t maxs,
+ clipHandle_t model, int brushmask,
+ const vec3_t origin, const vec3_t angles, traceType_t type ) {
+ trace_t trace;
+ vec3_t start_l, end_l;
+ bool rotated;
+ vec3_t offset;
+ vec3_t symetricSize[2];
+ vec3_t matrix[3], transpose[3];
+ int i;
+ float halfwidth;
+ float halfheight;
+ float t;
+ sphere_t sphere;
+
+ if ( !mins ) {
+ mins = vec3_origin;
+ }
+ if ( !maxs ) {
+ maxs = vec3_origin;
+ }
+
+ // adjust so that mins and maxs are always symetric, which
+ // avoids some complications with plane expanding of rotated
+ // bmodels
+ for ( i = 0 ; i < 3 ; i++ ) {
+ offset[i] = ( mins[i] + maxs[i] ) * 0.5;
+ symetricSize[0][i] = mins[i] - offset[i];
+ symetricSize[1][i] = maxs[i] - offset[i];
+ start_l[i] = start[i] + offset[i];
+ end_l[i] = end[i] + offset[i];
+ }
+
+ // subtract origin offset
+ VectorSubtract( start_l, origin, start_l );
+ VectorSubtract( end_l, origin, end_l );
+
+ // rotate start and end into the models frame of reference
+ if ( model != BOX_MODEL_HANDLE &&
+ (angles[0] || angles[1] || angles[2]) ) {
+ rotated = true;
+ } else {
+ rotated = false;
+ }
+
+ halfwidth = symetricSize[ 1 ][ 0 ];
+ halfheight = symetricSize[ 1 ][ 2 ];
+
+ sphere.radius = ( halfwidth > halfheight ) ? halfheight : halfwidth;
+ sphere.halfheight = halfheight;
+ t = halfheight - sphere.radius;
+
+ if (rotated) {
+ // rotation on trace line (start-end) instead of rotating the bmodel
+ // NOTE: This is still incorrect for bounding boxes because the actual bounding
+ // box that is swept through the model is not rotated. We cannot rotate
+ // the bounding box or the bmodel because that would make all the brush
+ // bevels invalid.
+ // However this is correct for capsules since a capsule itself is rotated too.
+ CreateRotationMatrix(angles, matrix);
+ RotatePoint(start_l, matrix);
+ RotatePoint(end_l, matrix);
+ // rotated sphere offset for capsule
+ sphere.offset[0] = matrix[0][ 2 ] * t;
+ sphere.offset[1] = -matrix[1][ 2 ] * t;
+ sphere.offset[2] = matrix[2][ 2 ] * t;
+ }
+ else {
+ VectorSet( sphere.offset, 0, 0, t );
+ }
+
+ // sweep the box through the model
+ CM_Trace( &trace, start_l, end_l, symetricSize[0], symetricSize[1],
+ model, origin, brushmask, type, &sphere );
+
+ // if the bmodel was rotated and there was a collision
+ if ( rotated && trace.fraction != 1.0 ) {
+ // rotation of bmodel collision plane
+ TransposeMatrix(matrix, transpose);
+ RotatePoint(trace.plane.normal, transpose);
+ }
+
+ // re-calculate the end position of the trace because the trace.endpos
+ // calculated by CM_Trace could be rotated and have an offset
+ trace.endpos[0] = start[0] + trace.fraction * (end[0] - start[0]);
+ trace.endpos[1] = start[1] + trace.fraction * (end[1] - start[1]);
+ trace.endpos[2] = start[2] + trace.fraction * (end[2] - start[2]);
+
+ *results = trace;
+}
+
+/*
+==================
+CM_BiSphereTrace
+==================
+*/
+void CM_BiSphereTrace( trace_t *results, const vec3_t start,
+ const vec3_t end, float startRad, float endRad,
+ clipHandle_t model, int mask )
+{
+ int i;
+ traceWork_t tw;
+ float largestRadius = startRad > endRad ? startRad : endRad;
+ cmodel_t *cmod;
+
+ cmod = CM_ClipHandleToModel( model );
+
+ cm.checkcount++; // for multi-check avoidance
+
+ c_traces++; // for statistics, may be zeroed
+
+ // fill in a default trace
+ ::memset( &tw, 0, sizeof( tw ) );
+ tw.trace.fraction = 1.0f; // assume it goes the entire distance until shown otherwise
+ VectorCopy( vec3_origin, tw.modelOrigin );
+ tw.type = TT_BISPHERE;
+ tw.testLateralCollision = true;
+ tw.trace.lateralFraction = 1.0f;
+
+ if( !cm.numNodes )
+ {
+ *results = tw.trace;
+
+ return; // map not loaded, shouldn't happen
+ }
+
+ // set basic parms
+ tw.contents = mask;
+
+ VectorCopy( start, tw.start );
+ VectorCopy( end, tw.end );
+
+ tw.biSphere.startRadius = startRad;
+ tw.biSphere.endRadius = endRad;
+
+ //
+ // calculate bounds
+ //
+ for( i = 0 ; i < 3 ; i++ )
+ {
+ if( tw.start[ i ] < tw.end[ i ] )
+ {
+ tw.bounds[ 0 ][ i ] = tw.start[ i ] - tw.biSphere.startRadius;
+ tw.bounds[ 1 ][ i ] = tw.end[ i ] + tw.biSphere.endRadius;
+ }
+ else
+ {
+ tw.bounds[ 0 ][ i ] = tw.end[ i ] + tw.biSphere.endRadius;
+ tw.bounds[ 1 ][ i ] = tw.start[ i ] - tw.biSphere.startRadius;
+ }
+ }
+
+ tw.isPoint = false;
+ tw.extents[ 0 ] = largestRadius;
+ tw.extents[ 1 ] = largestRadius;
+ tw.extents[ 2 ] = largestRadius;
+
+ //
+ // general sweeping through world
+ //
+ if( model )
+ CM_TraceThroughLeaf( &tw, &cmod->leaf );
+ else
+ CM_TraceThroughTree( &tw, 0, 0.0f, 1.0f, tw.start, tw.end );
+
+ // generate endpos from the original, unmodified start/end
+ if( tw.trace.fraction == 1.0f )
+ {
+ VectorCopy( end, tw.trace.endpos );
+ }
+ else
+ {
+ for( i = 0; i < 3; i++ )
+ tw.trace.endpos[ i ] = start[ i ] + tw.trace.fraction * ( end[ i ] - start[ i ] );
+ }
+
+ // If allsolid is set (was entirely inside something solid), the plane is not valid.
+ // If fraction == 1.0, we never hit anything, and thus the plane is not valid.
+ // Otherwise, the normal on the plane should have unit length
+ assert( tw.trace.allsolid ||
+ tw.trace.fraction == 1.0 ||
+ VectorLengthSquared(tw.trace.plane.normal ) > 0.9999 );
+
+ *results = tw.trace;
+}
+
+/*
+==================
+CM_TransformedBiSphereTrace
+
+Handles offseting and rotation of the end points for moving and
+rotating entities
+==================
+*/
+void CM_TransformedBiSphereTrace( trace_t *results, const vec3_t start,
+ const vec3_t end, float startRad, float endRad,
+ clipHandle_t model, int mask,
+ const vec3_t origin )
+{
+ trace_t trace;
+ vec3_t start_l, end_l;
+
+ // subtract origin offset
+ VectorSubtract( start, origin, start_l );
+ VectorSubtract( end, origin, end_l );
+
+ CM_BiSphereTrace( &trace, start_l, end_l, startRad, endRad, model, mask );
+
+ // re-calculate the end position of the trace because the trace.endpos
+ // calculated by CM_BiSphereTrace could be rotated and have an offset
+ trace.endpos[0] = start[0] + trace.fraction * (end[0] - start[0]);
+ trace.endpos[1] = start[1] + trace.fraction * (end[1] - start[1]);
+ trace.endpos[2] = start[2] + trace.fraction * (end[2] - start[2]);
+
+ *results = trace;
+}