diff options
author | IronClawTrem <louie.nutman@gmail.com> | 2020-02-16 03:40:06 +0000 |
---|---|---|
committer | IronClawTrem <louie.nutman@gmail.com> | 2020-02-16 03:40:06 +0000 |
commit | 425decdf7e9284d15aa726e3ae96b9942fb0e3ea (patch) | |
tree | 6c0dd7edfefff1be7b9e75fe0b3a0a85fe1595f3 /src/renderergl2/tr_bsp.cpp | |
parent | ccb0b2e4d6674a7a00c9bf491f08fc73b6898c54 (diff) |
create tremded branch
Diffstat (limited to 'src/renderergl2/tr_bsp.cpp')
-rw-r--r-- | src/renderergl2/tr_bsp.cpp | 3046 |
1 files changed, 3046 insertions, 0 deletions
diff --git a/src/renderergl2/tr_bsp.cpp b/src/renderergl2/tr_bsp.cpp new file mode 100644 index 0000000..3bf74b5 --- /dev/null +++ b/src/renderergl2/tr_bsp.cpp @@ -0,0 +1,3046 @@ +/* +=========================================================================== +Copyright (C) 1999-2005 Id Software, Inc. +Copyright (C) 2000-2013 Darklegion Development +Copyright (C) 2015-2019 GrangerHub + +This file is part of Tremulous. + +Tremulous is free software; you can redistribute it +and/or modify it under the terms of the GNU General Public License as +published by the Free Software Foundation; either version 3 of the License, +or (at your option) any later version. + +Tremulous is distributed in the hope that it will be +useful, but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with Tremulous; if not, see <https://www.gnu.org/licenses/> + +=========================================================================== +*/ +// tr_map.c + +#include "tr_local.h" + +#define JSON_IMPLEMENTATION +#include "qcommon/json.h" +#undef JSON_IMPLEMENTATION + +/* + +Loads and prepares a map file for scene rendering. + +A single entry point: + +void RE_LoadWorldMap( const char *name ); + +*/ + +static world_t s_worldData; +static byte *fileBase; + +int c_subdivisions; +int c_gridVerts; + +//=============================================================================== + +static void HSVtoRGB( float h, float s, float v, float rgb[3] ) +{ + int i; + float f; + float p, q, t; + + h *= 5; + + i = floor( h ); + f = h - i; + + p = v * ( 1 - s ); + q = v * ( 1 - s * f ); + t = v * ( 1 - s * ( 1 - f ) ); + + switch ( i ) + { + case 0: + rgb[0] = v; + rgb[1] = t; + rgb[2] = p; + break; + case 1: + rgb[0] = q; + rgb[1] = v; + rgb[2] = p; + break; + case 2: + rgb[0] = p; + rgb[1] = v; + rgb[2] = t; + break; + case 3: + rgb[0] = p; + rgb[1] = q; + rgb[2] = v; + break; + case 4: + rgb[0] = t; + rgb[1] = p; + rgb[2] = v; + break; + case 5: + rgb[0] = v; + rgb[1] = p; + rgb[2] = q; + break; + } +} + +/* +=============== +R_ColorShiftLightingBytes + +=============== +*/ +static void R_ColorShiftLightingBytes( byte in[4], byte out[4] ) { + int shift, r, g, b; + + // shift the color data based on overbright range + shift = r_mapOverBrightBits->integer - tr.overbrightBits; + + // shift the data based on overbright range + r = in[0] << shift; + g = in[1] << shift; + b = in[2] << shift; + + // Minimum values + if(r < r_mapLightmapMin->integer){ + r = r_mapLightmapMin->integer; + } + if(g < r_mapLightmapMin->integer){ + g = r_mapLightmapMin->integer; + } + if(b < r_mapLightmapMin->integer){ + b = r_mapLightmapMin->integer; + } + + // normalize by color instead of saturating to white + if ( ( r | g | b ) > 255 ) { + int max; + + max = r > g ? r : g; + max = max > b ? max : b; + r = r * 255 / max; + g = g * 255 / max; + b = b * 255 / max; + } + + out[0] = r; + out[1] = g; + out[2] = b; + out[3] = in[3]; +} + + +/* +=============== +R_ColorShiftLightingFloats + +=============== +*/ +static void R_ColorShiftLightingFloats(float in[4], float out[4]) +{ + float r, g, b; + float scale = (1 << (r_mapOverBrightBits->integer - tr.overbrightBits)) / 255.0f; + + r = in[0] * scale; + g = in[1] * scale; + b = in[2] * scale; + + // Minimum values + if(r < r_mapLightmapMin->value / 255.0f){ + r = r_mapLightmapMin->value / 255.0f; + } + if(g < r_mapLightmapMin->value / 255.0f){ + g = r_mapLightmapMin->value / 255.0f; + } + if(b < r_mapLightmapMin->value / 255.0f){ + b = r_mapLightmapMin->value / 255.0f; + } + + // normalize by color instead of saturating to white + if ( r > 1 || g > 1 || b > 1 ) { + float max; + + max = r > g ? r : g; + max = max > b ? max : b; + r = r / max; + g = g / max; + b = b / max; + } + + out[0] = r; + out[1] = g; + out[2] = b; + out[3] = in[3]; +} + +// Modified from http://graphicrants.blogspot.jp/2009/04/rgbm-color-encoding.html +void ColorToRGBM(const vec3_t color, unsigned char rgbm[4]) +{ + vec3_t sample; + float maxComponent; + + VectorCopy(color, sample); + + maxComponent = MAX(sample[0], sample[1]); + maxComponent = MAX(maxComponent, sample[2]); + maxComponent = CLAMP(maxComponent, 1.0f/255.0f, 1.0f); + + rgbm[3] = (unsigned char) ceil(maxComponent * 255.0f); + maxComponent = 255.0f / rgbm[3]; + + VectorScale(sample, maxComponent, sample); + + rgbm[0] = (unsigned char) (sample[0] * 255); + rgbm[1] = (unsigned char) (sample[1] * 255); + rgbm[2] = (unsigned char) (sample[2] * 255); +} + +void ColorToRGB16(const vec3_t color, uint16_t rgb16[3]) +{ + rgb16[0] = color[0] * 65535.0f + 0.5f; + rgb16[1] = color[1] * 65535.0f + 0.5f; + rgb16[2] = color[2] * 65535.0f + 0.5f; +} + + +/* +=============== +R_LoadLightmaps + +=============== +*/ +#define DEFAULT_LIGHTMAP_SIZE 128 +static void R_LoadLightmaps( lump_t *l, lump_t *surfs ) { + int/*imgFlags_t*/ imgFlags = IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE; + byte *buf, *buf_p; + dsurface_t *surf; + int len; + byte *image; + int i, j, numLightmaps, textureInternalFormat = 0; + int numLightmapsPerPage = 16; + float maxIntensity = 0; + double sumIntensity = 0; + + len = l->filelen; + if ( !len ) { + return; + } + buf = fileBase + l->fileofs; + + // we are about to upload textures + R_IssuePendingRenderCommands(); + + tr.lightmapSize = DEFAULT_LIGHTMAP_SIZE; + numLightmaps = len / (tr.lightmapSize * tr.lightmapSize * 3); + + // check for deluxe mapping + if (numLightmaps <= 1) + { + tr.worldDeluxeMapping = false; + } + else + { + tr.worldDeluxeMapping = true; + for( i = 0, surf = (dsurface_t *)(fileBase + surfs->fileofs); + i < surfs->filelen / sizeof(dsurface_t); i++, surf++ ) { + int lightmapNum = LittleLong( surf->lightmapNum ); + + if ( lightmapNum >= 0 && (lightmapNum & 1) != 0 ) { + tr.worldDeluxeMapping = false; + break; + } + } + } + + image = (byte*)ri.Malloc(tr.lightmapSize * tr.lightmapSize * 4 * 2); + + if (tr.worldDeluxeMapping) + numLightmaps >>= 1; + + // Use fat lightmaps of an appropriate size. + if (r_mergeLightmaps->integer) + { + int maxLightmapsPerAxis = glConfig.maxTextureSize / tr.lightmapSize; + int lightmapCols = 4, lightmapRows = 4; + + // Increase width at first, then height. + while (lightmapCols * lightmapRows < numLightmaps && lightmapCols != maxLightmapsPerAxis) + lightmapCols <<= 1; + + while (lightmapCols * lightmapRows < numLightmaps && lightmapRows != maxLightmapsPerAxis) + lightmapRows <<= 1; + + tr.fatLightmapCols = lightmapCols; + tr.fatLightmapRows = lightmapRows; + numLightmapsPerPage = lightmapCols * lightmapRows; + + tr.numLightmaps = (numLightmaps + (numLightmapsPerPage - 1)) / numLightmapsPerPage; + } + else + { + tr.numLightmaps = numLightmaps; + } + + tr.lightmaps = (image_t**)ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low ); + + if (tr.worldDeluxeMapping) + tr.deluxemaps = (image_t**)ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low ); + + textureInternalFormat = GL_RGBA8; + if (r_hdr->integer) + { + // Check for the first hdr lightmap, if it exists, use GL_RGBA16 for textures. + char filename[MAX_QPATH]; + + Com_sprintf(filename, sizeof(filename), "maps/%s/lm_0000.hdr", s_worldData.baseName); + if (ri.FS_FileExists(filename)) + textureInternalFormat = GL_RGBA16; + } + + if (r_mergeLightmaps->integer) + { + int width = tr.fatLightmapCols * tr.lightmapSize; + int height = tr.fatLightmapRows * tr.lightmapSize; + + for (i = 0; i < tr.numLightmaps; i++) + { + tr.lightmaps[i] = R_CreateImage(va("_fatlightmap%d", i), NULL, width, height, IMGTYPE_COLORALPHA, imgFlags, textureInternalFormat); + + if (tr.worldDeluxeMapping) + tr.deluxemaps[i] = R_CreateImage(va("_fatdeluxemap%d", i), NULL, width, height, IMGTYPE_DELUXE, imgFlags, 0); + } + } + + for(i = 0; i < numLightmaps; i++) + { + int xoff = 0, yoff = 0; + int lightmapnum = i; + // expand the 24 bit on-disk to 32 bit + + if (r_mergeLightmaps->integer) + { + int lightmaponpage = i % numLightmapsPerPage; + xoff = (lightmaponpage % tr.fatLightmapCols) * tr.lightmapSize; + yoff = (lightmaponpage / tr.fatLightmapCols) * tr.lightmapSize; + + lightmapnum /= numLightmapsPerPage; + } + + // if (tr.worldLightmapping) + { + char filename[MAX_QPATH]; + byte *hdrLightmap = NULL; + int size = 0; + + // look for hdr lightmaps + if (textureInternalFormat == GL_RGBA16) + { + Com_sprintf( filename, sizeof( filename ), "maps/%s/lm_%04d.hdr", s_worldData.baseName, i * (tr.worldDeluxeMapping ? 2 : 1) ); + //ri.Printf(PRINT_ALL, "looking for %s\n", filename); + + size = ri.FS_ReadFile(filename, (void **)&hdrLightmap); + } + + if (hdrLightmap) + { + byte *p = hdrLightmap, *end = hdrLightmap + size; + //ri.Printf(PRINT_ALL, "found!\n"); + + /* FIXME: don't just skip over this header and actually parse it */ + while (p < end && !(*p == '\n' && *(p+1) == '\n')) + p++; + + p += 2; + + while (p < end && !(*p == '\n')) + p++; + + p++; + + if (p >= end) + ri.Error(ERR_DROP, "Bad header for %s!", filename); + + buf_p = p; + +#if 0 // HDRFILE_RGBE + if ((int)(end - hdrLightmap) != tr.lightmapSize * tr.lightmapSize * 4) + ri.Error(ERR_DROP, "Bad size for %s (%i)!", filename, size); +#else // HDRFILE_FLOAT + if ((int)(end - hdrLightmap) != tr.lightmapSize * tr.lightmapSize * 12) + ri.Error(ERR_DROP, "Bad size for %s (%i)!", filename, size); +#endif + } + else + { + int imgOffset = tr.worldDeluxeMapping ? i * 2 : i; + buf_p = buf + imgOffset * tr.lightmapSize * tr.lightmapSize * 3; + } + + for ( j = 0 ; j < tr.lightmapSize * tr.lightmapSize; j++ ) + { + if (hdrLightmap) + { + vec4_t color; + +#if 0 // HDRFILE_RGBE + float exponent = exp2(buf_p[j*4+3] - 128); + + color[0] = buf_p[j*4+0] * exponent; + color[1] = buf_p[j*4+1] * exponent; + color[2] = buf_p[j*4+2] * exponent; +#else // HDRFILE_FLOAT + memcpy(color, &buf_p[j*12], 12); + + color[0] = LittleFloat(color[0]); + color[1] = LittleFloat(color[1]); + color[2] = LittleFloat(color[2]); +#endif + color[3] = 1.0f; + + R_ColorShiftLightingFloats(color, color); + + ColorToRGB16(color, (uint16_t *)(&image[j * 8])); + ((uint16_t *)(&image[j * 8]))[3] = 65535; + } + else if (textureInternalFormat == GL_RGBA16) + { + vec4_t color; + + //hack: convert LDR lightmap to HDR one + color[0] = MAX(buf_p[j*3+0], 0.499f); + color[1] = MAX(buf_p[j*3+1], 0.499f); + color[2] = MAX(buf_p[j*3+2], 0.499f); + + // if under an arbitrary value (say 12) grey it out + // this prevents weird splotches in dimly lit areas + if (color[0] + color[1] + color[2] < 12.0f) + { + float avg = (color[0] + color[1] + color[2]) * 0.3333f; + color[0] = avg; + color[1] = avg; + color[2] = avg; + } + color[3] = 1.0f; + + R_ColorShiftLightingFloats(color, color); + + ColorToRGB16(color, (uint16_t *)(&image[j * 8])); + ((uint16_t *)(&image[j * 8]))[3] = 65535; + } + else + { + if ( r_lightmap->integer == 2 ) + { // color code by intensity as development tool (FIXME: check range) + float r = buf_p[j*3+0]; + float g = buf_p[j*3+1]; + float b = buf_p[j*3+2]; + float intensity; + float out[3] = {0.0, 0.0, 0.0}; + + intensity = 0.33f * r + 0.685f * g + 0.063f * b; + + if ( intensity > 255 ) + intensity = 1.0f; + else + intensity /= 255.0f; + + if ( intensity > maxIntensity ) + maxIntensity = intensity; + + HSVtoRGB( intensity, 1.00, 0.50, out ); + + image[j*4+0] = out[0] * 255; + image[j*4+1] = out[1] * 255; + image[j*4+2] = out[2] * 255; + image[j*4+3] = 255; + + sumIntensity += intensity; + } + else + { + R_ColorShiftLightingBytes( &buf_p[j*3], &image[j*4] ); + image[j*4+3] = 255; + } + } + } + + if (r_mergeLightmaps->integer) + R_UpdateSubImage(tr.lightmaps[lightmapnum], image, xoff, yoff, tr.lightmapSize, tr.lightmapSize, textureInternalFormat); + else + tr.lightmaps[i] = R_CreateImage(va("*lightmap%d", i), image, tr.lightmapSize, tr.lightmapSize, IMGTYPE_COLORALPHA, imgFlags, textureInternalFormat ); + + if (hdrLightmap) + ri.FS_FreeFile(hdrLightmap); + } + + if (tr.worldDeluxeMapping) + { + buf_p = buf + (i * 2 + 1) * tr.lightmapSize * tr.lightmapSize * 3; + + for ( j = 0 ; j < tr.lightmapSize * tr.lightmapSize; j++ ) { + image[j*4+0] = buf_p[j*3+0]; + image[j*4+1] = buf_p[j*3+1]; + image[j*4+2] = buf_p[j*3+2]; + + // make 0,0,0 into 127,127,127 + if ((image[j*4+0] == 0) && (image[j*4+1] == 0) && (image[j*4+2] == 0)) + { + image[j*4+0] = + image[j*4+1] = + image[j*4+2] = 127; + } + + image[j*4+3] = 255; + } + + if (r_mergeLightmaps->integer) + R_UpdateSubImage(tr.deluxemaps[lightmapnum], image, xoff, yoff, tr.lightmapSize, tr.lightmapSize, GL_RGBA8 ); + else + tr.deluxemaps[i] = R_CreateImage(va("*deluxemap%d", i), image, tr.lightmapSize, tr.lightmapSize, IMGTYPE_DELUXE, imgFlags, 0 ); + } + } + + if ( r_lightmap->integer == 2 ) { + ri.Printf( PRINT_ALL, "Brightest lightmap value: %d\n", ( int ) ( maxIntensity * 255 ) ); + } + + ri.Free(image); +} + + +static float FatPackU(float input, int lightmapnum) +{ + if (lightmapnum < 0) + return input; + + if (tr.worldDeluxeMapping) + lightmapnum >>= 1; + + if (tr.fatLightmapCols > 0) + { + lightmapnum %= (tr.fatLightmapCols * tr.fatLightmapRows); + return (input + (lightmapnum % tr.fatLightmapCols)) / (float)(tr.fatLightmapCols); + } + + return input; +} + +static float FatPackV(float input, int lightmapnum) +{ + if (lightmapnum < 0) + return input; + + if (tr.worldDeluxeMapping) + lightmapnum >>= 1; + + if (tr.fatLightmapCols > 0) + { + lightmapnum %= (tr.fatLightmapCols * tr.fatLightmapRows); + return (input + (lightmapnum / tr.fatLightmapCols)) / (float)(tr.fatLightmapRows); + } + + return input; +} + + +static int FatLightmap(int lightmapnum) +{ + if (lightmapnum < 0) + return lightmapnum; + + if (tr.worldDeluxeMapping) + lightmapnum >>= 1; + + if (tr.fatLightmapCols > 0) + return lightmapnum / (tr.fatLightmapCols * tr.fatLightmapRows); + + return lightmapnum; +} + +/* +================= +RE_SetWorldVisData + +This is called by the clipmodel subsystem so we can share the 1.8 megs of +space in big maps... +================= +*/ +void RE_SetWorldVisData( const byte *vis ) { + tr.externalVisData = vis; +} + + +/* +================= +R_LoadVisibility +================= +*/ +static void R_LoadVisibility( lump_t *l ) { + int len; + byte *buf; + + len = l->filelen; + if ( !len ) { + return; + } + buf = fileBase + l->fileofs; + + s_worldData.numClusters = LittleLong( ((int *)buf)[0] ); + s_worldData.clusterBytes = LittleLong( ((int *)buf)[1] ); + + // CM_Load should have given us the vis data to share, so + // we don't need to allocate another copy + if ( tr.externalVisData ) { + s_worldData.vis = tr.externalVisData; + } else { + byte *dest = (byte*)ri.Hunk_Alloc( len - 8, h_low ); + Com_Memcpy( dest, buf + 8, len - 8 ); + s_worldData.vis = dest; + } +} + +//=============================================================================== + + +/* +=============== +ShaderForShaderNum +=============== +*/ +static shader_t *ShaderForShaderNum( int shaderNum, int lightmapNum ) { + shader_t *shader; + dshader_t *dsh; + + int _shaderNum = LittleLong( shaderNum ); + if ( _shaderNum < 0 || _shaderNum >= s_worldData.numShaders ) { + ri.Error( ERR_DROP, "ShaderForShaderNum: bad num %i", _shaderNum ); + } + dsh = &s_worldData.shaders[ _shaderNum ]; + + if ( r_vertexLight->integer || glConfig.hardwareType == GLHW_PERMEDIA2 ) { + lightmapNum = LIGHTMAP_BY_VERTEX; + } + + if ( r_fullbright->integer ) { + lightmapNum = LIGHTMAP_WHITEIMAGE; + } + + shader = R_FindShader( dsh->shader, lightmapNum, true ); + + // if the shader had errors, just use default shader + if ( shader->defaultShader ) { + return tr.defaultShader; + } + + return shader; +} + +void LoadDrawVertToSrfVert(srfVert_t *s, drawVert_t *d, int realLightmapNum, float hdrVertColors[3], vec3_t *bounds) +{ + vec4_t v; + + s->xyz[0] = LittleFloat(d->xyz[0]); + s->xyz[1] = LittleFloat(d->xyz[1]); + s->xyz[2] = LittleFloat(d->xyz[2]); + + if (bounds) + AddPointToBounds(s->xyz, bounds[0], bounds[1]); + + s->st[0] = LittleFloat(d->st[0]); + s->st[1] = LittleFloat(d->st[1]); + + if (realLightmapNum >= 0) + { + s->lightmap[0] = FatPackU(LittleFloat(d->lightmap[0]), realLightmapNum); + s->lightmap[1] = FatPackV(LittleFloat(d->lightmap[1]), realLightmapNum); + } + else + { + s->lightmap[0] = LittleFloat(d->lightmap[0]); + s->lightmap[1] = LittleFloat(d->lightmap[1]); + } + + v[0] = LittleFloat(d->normal[0]); + v[1] = LittleFloat(d->normal[1]); + v[2] = LittleFloat(d->normal[2]); + + R_VaoPackNormal(s->normal, v); + + if (hdrVertColors) + { + v[0] = hdrVertColors[0]; + v[1] = hdrVertColors[1]; + v[2] = hdrVertColors[2]; + } + else + { + //hack: convert LDR vertex colors to HDR + if (r_hdr->integer) + { + v[0] = MAX(d->color[0], 0.499f); + v[1] = MAX(d->color[1], 0.499f); + v[2] = MAX(d->color[2], 0.499f); + } + else + { + v[0] = d->color[0]; + v[1] = d->color[1]; + v[2] = d->color[2]; + } + + } + v[3] = d->color[3] / 255.0f; + + R_ColorShiftLightingFloats(v, v); + R_VaoPackColor(s->color, v); +} + + +/* +=============== +ParseFace +=============== +*/ +static void ParseFace( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf, int *indexes ) { + int i, j; + srfBspSurface_t *cv; + glIndex_t *tri; + int numVerts, numIndexes, badTriangles; + int realLightmapNum; + + realLightmapNum = LittleLong( ds->lightmapNum ); + + // get fog volume + surf->fogIndex = LittleLong( ds->fogNum ) + 1; + + // get shader value + surf->shader = ShaderForShaderNum( ds->shaderNum, FatLightmap(realLightmapNum) ); + if ( r_singleShader->integer && !surf->shader->isSky ) { + surf->shader = tr.defaultShader; + } + + numVerts = LittleLong(ds->numVerts); + if (numVerts > MAX_FACE_POINTS) { + ri.Printf( PRINT_WARNING, "WARNING: MAX_FACE_POINTS exceeded: %i\n", numVerts); + numVerts = MAX_FACE_POINTS; + surf->shader = tr.defaultShader; + } + + numIndexes = LittleLong(ds->numIndexes); + + //cv = ri.Hunk_Alloc(sizeof(*cv), h_low); + cv = (srfBspSurface_t*)surf->data; + cv->surfaceType = SF_FACE; + + cv->numIndexes = numIndexes; + cv->indexes = (glIndex_t*)ri.Hunk_Alloc(numIndexes * sizeof(cv->indexes[0]), h_low); + + cv->numVerts = numVerts; + cv->verts = (srfVert_t*)ri.Hunk_Alloc(numVerts * sizeof(cv->verts[0]), h_low); + + // copy vertexes + surf->cullinfo.type = CULLINFO_PLANE | CULLINFO_BOX; + ClearBounds(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]); + verts += LittleLong(ds->firstVert); + for(i = 0; i < numVerts; i++) + LoadDrawVertToSrfVert(&cv->verts[i], &verts[i], realLightmapNum, hdrVertColors ? hdrVertColors + (ds->firstVert + i) * 3 : NULL, surf->cullinfo.bounds); + + // copy triangles + badTriangles = 0; + indexes += LittleLong(ds->firstIndex); + for(i = 0, tri = cv->indexes; i < numIndexes; i += 3, tri += 3) + { + for(j = 0; j < 3; j++) + { + tri[j] = LittleLong(indexes[i + j]); + + if(tri[j] >= numVerts) + { + ri.Error(ERR_DROP, "Bad index in face surface"); + } + } + + if ((tri[0] == tri[1]) || (tri[1] == tri[2]) || (tri[0] == tri[2])) + { + tri -= 3; + badTriangles++; + } + } + + if (badTriangles) + { + ri.Printf(PRINT_WARNING, "Face has bad triangles, originally shader %s %d tris %d verts, now %d tris\n", surf->shader->name, numIndexes / 3, numVerts, numIndexes / 3 - badTriangles); + cv->numIndexes -= badTriangles * 3; + } + + // take the plane information from the lightmap vector + for ( i = 0 ; i < 3 ; i++ ) { + cv->cullPlane.normal[i] = LittleFloat( ds->lightmapVecs[2][i] ); + } + cv->cullPlane.dist = DotProduct( cv->verts[0].xyz, cv->cullPlane.normal ); + SetPlaneSignbits( &cv->cullPlane ); + cv->cullPlane.type = PlaneTypeForNormal( cv->cullPlane.normal ); + surf->cullinfo.plane = cv->cullPlane; + + surf->data = (surfaceType_t *)cv; + + // Calculate tangent spaces + { + srfVert_t *dv[3]; + + for(i = 0, tri = cv->indexes; i < numIndexes; i += 3, tri += 3) + { + dv[0] = &cv->verts[tri[0]]; + dv[1] = &cv->verts[tri[1]]; + dv[2] = &cv->verts[tri[2]]; + + R_CalcTangentVectors(dv); + } + } +} + + +/* +=============== +ParseMesh +=============== +*/ +static void ParseMesh ( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf ) { + srfBspSurface_t *grid = (srfBspSurface_t *)surf->data; + int i; + int width, height, numPoints; + srfVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE]; + vec3_t bounds[2]; + vec3_t tmpVec; + static surfaceType_t skipData = SF_SKIP; + int realLightmapNum; + + realLightmapNum = LittleLong( ds->lightmapNum ); + + // get fog volume + surf->fogIndex = LittleLong( ds->fogNum ) + 1; + + // get shader value + surf->shader = ShaderForShaderNum( ds->shaderNum, FatLightmap(realLightmapNum) ); + if ( r_singleShader->integer && !surf->shader->isSky ) { + surf->shader = tr.defaultShader; + } + + // we may have a nodraw surface, because they might still need to + // be around for movement clipping + if ( s_worldData.shaders[ LittleLong( ds->shaderNum ) ].surfaceFlags & SURF_NODRAW ) { + surf->data = &skipData; + return; + } + + width = LittleLong( ds->patchWidth ); + height = LittleLong( ds->patchHeight ); + + if(width < 0 || width > MAX_PATCH_SIZE || height < 0 || height > MAX_PATCH_SIZE) + ri.Error(ERR_DROP, "ParseMesh: bad size"); + + verts += LittleLong( ds->firstVert ); + numPoints = width * height; + for(i = 0; i < numPoints; i++) + LoadDrawVertToSrfVert(&points[i], &verts[i], realLightmapNum, hdrVertColors ? hdrVertColors + (ds->firstVert + i) * 3 : NULL, NULL); + + // pre-tesseleate + R_SubdividePatchToGrid( grid, width, height, points ); + + // copy the level of detail origin, which is the center + // of the group of all curves that must subdivide the same + // to avoid cracking + for ( i = 0 ; i < 3 ; i++ ) { + bounds[0][i] = LittleFloat( ds->lightmapVecs[0][i] ); + bounds[1][i] = LittleFloat( ds->lightmapVecs[1][i] ); + } + VectorAdd( bounds[0], bounds[1], bounds[1] ); + VectorScale( bounds[1], 0.5f, grid->lodOrigin ); + VectorSubtract( bounds[0], grid->lodOrigin, tmpVec ); + grid->lodRadius = VectorLength( tmpVec ); + + surf->cullinfo.type = CULLINFO_BOX | CULLINFO_SPHERE; + VectorCopy(grid->cullBounds[0], surf->cullinfo.bounds[0]); + VectorCopy(grid->cullBounds[1], surf->cullinfo.bounds[1]); + VectorCopy(grid->cullOrigin, surf->cullinfo.localOrigin); + surf->cullinfo.radius = grid->cullRadius; +} + +/* +=============== +ParseTriSurf +=============== +*/ +static void ParseTriSurf( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf, int *indexes ) { + srfBspSurface_t *cv; + glIndex_t *tri; + int i, j; + int numVerts, numIndexes, badTriangles; + + // get fog volume + surf->fogIndex = LittleLong( ds->fogNum ) + 1; + + // get shader + surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX ); + if ( r_singleShader->integer && !surf->shader->isSky ) { + surf->shader = tr.defaultShader; + } + + numVerts = LittleLong(ds->numVerts); + numIndexes = LittleLong(ds->numIndexes); + + //cv = ri.Hunk_Alloc(sizeof(*cv), h_low); + cv = (srfBspSurface_t*)surf->data; + cv->surfaceType = SF_TRIANGLES; + + cv->numIndexes = numIndexes; + cv->indexes = (glIndex_t*)ri.Hunk_Alloc(numIndexes * sizeof(cv->indexes[0]), h_low); + + cv->numVerts = numVerts; + cv->verts = (srfVert_t*)ri.Hunk_Alloc(numVerts * sizeof(cv->verts[0]), h_low); + + surf->data = (surfaceType_t *) cv; + + // copy vertexes + surf->cullinfo.type = CULLINFO_BOX; + ClearBounds(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]); + verts += LittleLong(ds->firstVert); + for(i = 0; i < numVerts; i++) + LoadDrawVertToSrfVert(&cv->verts[i], &verts[i], -1, hdrVertColors ? hdrVertColors + (ds->firstVert + i) * 3 : NULL, surf->cullinfo.bounds); + + // copy triangles + badTriangles = 0; + indexes += LittleLong(ds->firstIndex); + for(i = 0, tri = cv->indexes; i < numIndexes; i += 3, tri += 3) + { + for(j = 0; j < 3; j++) + { + tri[j] = LittleLong(indexes[i + j]); + + if(tri[j] >= numVerts) + { + ri.Error(ERR_DROP, "Bad index in face surface"); + } + } + + if ((tri[0] == tri[1]) || (tri[1] == tri[2]) || (tri[0] == tri[2])) + { + tri -= 3; + badTriangles++; + } + } + + if (badTriangles) + { + ri.Printf(PRINT_WARNING, "Trisurf has bad triangles, originally shader %s %d tris %d verts, now %d tris\n", surf->shader->name, numIndexes / 3, numVerts, numIndexes / 3 - badTriangles); + cv->numIndexes -= badTriangles * 3; + } + + // Calculate tangent spaces + { + srfVert_t *dv[3]; + + for(i = 0, tri = cv->indexes; i < numIndexes; i += 3, tri += 3) + { + dv[0] = &cv->verts[tri[0]]; + dv[1] = &cv->verts[tri[1]]; + dv[2] = &cv->verts[tri[2]]; + + R_CalcTangentVectors(dv); + } + } +} + +/* +=============== +ParseFlare +=============== +*/ +static void ParseFlare( dsurface_t *ds, drawVert_t *verts, msurface_t *surf, int *indexes ) { + srfFlare_t *flare; + int i; + + // get fog volume + surf->fogIndex = LittleLong( ds->fogNum ) + 1; + + // get shader + surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX ); + if ( r_singleShader->integer && !surf->shader->isSky ) { + surf->shader = tr.defaultShader; + } + + //flare = ri.Hunk_Alloc( sizeof( *flare ), h_low ); + flare = (srfFlare_t*)surf->data; + flare->surfaceType = SF_FLARE; + + surf->data = (surfaceType_t *)flare; + + for ( i = 0 ; i < 3 ; i++ ) { + flare->origin[i] = LittleFloat( ds->lightmapOrigin[i] ); + flare->color[i] = LittleFloat( ds->lightmapVecs[0][i] ); + flare->normal[i] = LittleFloat( ds->lightmapVecs[2][i] ); + } + + surf->cullinfo.type = CULLINFO_NONE; +} + + +/* +================= +R_MergedWidthPoints + +returns true if there are grid points merged on a width edge +================= +*/ +int R_MergedWidthPoints(srfBspSurface_t *grid, int offset) { + int i, j; + + for (i = 1; i < grid->width-1; i++) { + for (j = i + 1; j < grid->width-1; j++) { + if ( fabs(grid->verts[i + offset].xyz[0] - grid->verts[j + offset].xyz[0]) > .1) continue; + if ( fabs(grid->verts[i + offset].xyz[1] - grid->verts[j + offset].xyz[1]) > .1) continue; + if ( fabs(grid->verts[i + offset].xyz[2] - grid->verts[j + offset].xyz[2]) > .1) continue; + return true; + } + } + return false; +} + +/* +================= +R_MergedHeightPoints + +returns true if there are grid points merged on a height edge +================= +*/ +int R_MergedHeightPoints(srfBspSurface_t *grid, int offset) { + int i, j; + + for (i = 1; i < grid->height-1; i++) { + for (j = i + 1; j < grid->height-1; j++) { + if ( fabs(grid->verts[grid->width * i + offset].xyz[0] - grid->verts[grid->width * j + offset].xyz[0]) > .1) continue; + if ( fabs(grid->verts[grid->width * i + offset].xyz[1] - grid->verts[grid->width * j + offset].xyz[1]) > .1) continue; + if ( fabs(grid->verts[grid->width * i + offset].xyz[2] - grid->verts[grid->width * j + offset].xyz[2]) > .1) continue; + return true; + } + } + return false; +} + +/* +================= +R_FixSharedVertexLodError_r + +NOTE: never sync LoD through grid edges with merged points! + +FIXME: write generalized version that also avoids cracks between a patch and one that meets half way? +================= +*/ +void R_FixSharedVertexLodError_r( int start, srfBspSurface_t *grid1 ) { + int j, k, l, m, n, offset1, offset2, touch; + srfBspSurface_t *grid2; + + for ( j = start; j < s_worldData.numsurfaces; j++ ) { + // + grid2 = (srfBspSurface_t *) s_worldData.surfaces[j].data; + // if this surface is not a grid + if ( grid2->surfaceType != SF_GRID ) continue; + // if the LOD errors are already fixed for this patch + if ( grid2->lodFixed == 2 ) continue; + // grids in the same LOD group should have the exact same lod radius + if ( grid1->lodRadius != grid2->lodRadius ) continue; + // grids in the same LOD group should have the exact same lod origin + if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue; + if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue; + if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue; + // + touch = false; + for (n = 0; n < 2; n++) { + // + if (n) offset1 = (grid1->height-1) * grid1->width; + else offset1 = 0; + if (R_MergedWidthPoints(grid1, offset1)) continue; + for (k = 1; k < grid1->width-1; k++) { + for (m = 0; m < 2; m++) { + + if (m) offset2 = (grid2->height-1) * grid2->width; + else offset2 = 0; + if (R_MergedWidthPoints(grid2, offset2)) continue; + for ( l = 1; l < grid2->width-1; l++) { + // + if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue; + if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue; + if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue; + // ok the points are equal and should have the same lod error + grid2->widthLodError[l] = grid1->widthLodError[k]; + touch = true; + } + } + for (m = 0; m < 2; m++) { + + if (m) offset2 = grid2->width-1; + else offset2 = 0; + if (R_MergedHeightPoints(grid2, offset2)) continue; + for ( l = 1; l < grid2->height-1; l++) { + // + if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue; + if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue; + if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue; + // ok the points are equal and should have the same lod error + grid2->heightLodError[l] = grid1->widthLodError[k]; + touch = true; + } + } + } + } + for (n = 0; n < 2; n++) { + // + if (n) offset1 = grid1->width-1; + else offset1 = 0; + if (R_MergedHeightPoints(grid1, offset1)) continue; + for (k = 1; k < grid1->height-1; k++) { + for (m = 0; m < 2; m++) { + + if (m) offset2 = (grid2->height-1) * grid2->width; + else offset2 = 0; + if (R_MergedWidthPoints(grid2, offset2)) continue; + for ( l = 1; l < grid2->width-1; l++) { + // + if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue; + if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue; + if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue; + // ok the points are equal and should have the same lod error + grid2->widthLodError[l] = grid1->heightLodError[k]; + touch = true; + } + } + for (m = 0; m < 2; m++) { + + if (m) offset2 = grid2->width-1; + else offset2 = 0; + if (R_MergedHeightPoints(grid2, offset2)) continue; + for ( l = 1; l < grid2->height-1; l++) { + // + if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue; + if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue; + if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue; + // ok the points are equal and should have the same lod error + grid2->heightLodError[l] = grid1->heightLodError[k]; + touch = true; + } + } + } + } + if (touch) { + grid2->lodFixed = 2; + R_FixSharedVertexLodError_r ( start, grid2 ); + //NOTE: this would be correct but makes things really slow + //grid2->lodFixed = 1; + } + } +} + +/* +================= +R_FixSharedVertexLodError + +This function assumes that all patches in one group are nicely stitched together for the highest LoD. +If this is not the case this function will still do its job but won't fix the highest LoD cracks. +================= +*/ +void R_FixSharedVertexLodError( void ) { + int i; + srfBspSurface_t *grid1; + + for ( i = 0; i < s_worldData.numsurfaces; i++ ) { + // + grid1 = (srfBspSurface_t *) s_worldData.surfaces[i].data; + // if this surface is not a grid + if ( grid1->surfaceType != SF_GRID ) + continue; + // + if ( grid1->lodFixed ) + continue; + // + grid1->lodFixed = 2; + // recursively fix other patches in the same LOD group + R_FixSharedVertexLodError_r( i + 1, grid1); + } +} + + +/* +=============== +R_StitchPatches +=============== +*/ +int R_StitchPatches( int grid1num, int grid2num ) { + float *v1, *v2; + srfBspSurface_t *grid1, *grid2; + int k, l, m, n, offset1, offset2, row, column; + + grid1 = (srfBspSurface_t *) s_worldData.surfaces[grid1num].data; + grid2 = (srfBspSurface_t *) s_worldData.surfaces[grid2num].data; + for (n = 0; n < 2; n++) { + // + if (n) offset1 = (grid1->height-1) * grid1->width; + else offset1 = 0; + if (R_MergedWidthPoints(grid1, offset1)) + continue; + for (k = 0; k < grid1->width-2; k += 2) { + + for (m = 0; m < 2; m++) { + + if ( grid2->width >= MAX_GRID_SIZE ) + break; + if (m) offset2 = (grid2->height-1) * grid2->width; + else offset2 = 0; + for ( l = 0; l < grid2->width-1; l++) { + // + v1 = grid1->verts[k + offset1].xyz; + v2 = grid2->verts[l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[k + 2 + offset1].xyz; + v2 = grid2->verts[l + 1 + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[l + offset2].xyz; + v2 = grid2->verts[l + 1 + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert column into grid2 right after after column l + if (m) row = grid2->height-1; + else row = 0; + R_GridInsertColumn( grid2, l+1, row, + grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + for (m = 0; m < 2; m++) { + + if (grid2->height >= MAX_GRID_SIZE) + break; + if (m) offset2 = grid2->width-1; + else offset2 = 0; + for ( l = 0; l < grid2->height-1; l++) { + // + v1 = grid1->verts[k + offset1].xyz; + v2 = grid2->verts[grid2->width * l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[k + 2 + offset1].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[grid2->width * l + offset2].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert row into grid2 right after after row l + if (m) column = grid2->width-1; + else column = 0; + R_GridInsertRow( grid2, l+1, column, + grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + } + } + for (n = 0; n < 2; n++) { + // + if (n) offset1 = grid1->width-1; + else offset1 = 0; + if (R_MergedHeightPoints(grid1, offset1)) + continue; + for (k = 0; k < grid1->height-2; k += 2) { + for (m = 0; m < 2; m++) { + + if ( grid2->width >= MAX_GRID_SIZE ) + break; + if (m) offset2 = (grid2->height-1) * grid2->width; + else offset2 = 0; + for ( l = 0; l < grid2->width-1; l++) { + // + v1 = grid1->verts[grid1->width * k + offset1].xyz; + v2 = grid2->verts[l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz; + v2 = grid2->verts[l + 1 + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[l + offset2].xyz; + v2 = grid2->verts[(l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert column into grid2 right after after column l + if (m) row = grid2->height-1; + else row = 0; + R_GridInsertColumn( grid2, l+1, row, + grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + for (m = 0; m < 2; m++) { + + if (grid2->height >= MAX_GRID_SIZE) + break; + if (m) offset2 = grid2->width-1; + else offset2 = 0; + for ( l = 0; l < grid2->height-1; l++) { + // + v1 = grid1->verts[grid1->width * k + offset1].xyz; + v2 = grid2->verts[grid2->width * l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[grid2->width * l + offset2].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert row into grid2 right after after row l + if (m) column = grid2->width-1; + else column = 0; + R_GridInsertRow( grid2, l+1, column, + grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + } + } + for (n = 0; n < 2; n++) { + // + if (n) offset1 = (grid1->height-1) * grid1->width; + else offset1 = 0; + if (R_MergedWidthPoints(grid1, offset1)) + continue; + for (k = grid1->width-1; k > 1; k -= 2) { + + for (m = 0; m < 2; m++) { + + if ( !grid2 || grid2->width >= MAX_GRID_SIZE ) + break; + if (m) offset2 = (grid2->height-1) * grid2->width; + else offset2 = 0; + for ( l = 0; l < grid2->width-1; l++) { + // + v1 = grid1->verts[k + offset1].xyz; + v2 = grid2->verts[l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[k - 2 + offset1].xyz; + v2 = grid2->verts[l + 1 + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[l + offset2].xyz; + v2 = grid2->verts[(l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert column into grid2 right after after column l + if (m) row = grid2->height-1; + else row = 0; + R_GridInsertColumn( grid2, l+1, row, + grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + for (m = 0; m < 2; m++) { + + if (!grid2 || grid2->height >= MAX_GRID_SIZE) + break; + if (m) offset2 = grid2->width-1; + else offset2 = 0; + for ( l = 0; l < grid2->height-1; l++) { + // + v1 = grid1->verts[k + offset1].xyz; + v2 = grid2->verts[grid2->width * l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[k - 2 + offset1].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[grid2->width * l + offset2].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert row into grid2 right after after row l + if (m) column = grid2->width-1; + else column = 0; + R_GridInsertRow( grid2, l+1, column, + grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]); + if (!grid2) + break; + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + } + } + for (n = 0; n < 2; n++) { + // + if (n) offset1 = grid1->width-1; + else offset1 = 0; + if (R_MergedHeightPoints(grid1, offset1)) + continue; + for (k = grid1->height-1; k > 1; k -= 2) { + for (m = 0; m < 2; m++) { + + if (!grid2 || grid2->width >= MAX_GRID_SIZE ) + break; + if (m) offset2 = (grid2->height-1) * grid2->width; + else offset2 = 0; + for ( l = 0; l < grid2->width-1; l++) { + // + v1 = grid1->verts[grid1->width * k + offset1].xyz; + v2 = grid2->verts[l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz; + v2 = grid2->verts[l + 1 + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[l + offset2].xyz; + v2 = grid2->verts[(l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert column into grid2 right after after column l + if (m) row = grid2->height-1; + else row = 0; + R_GridInsertColumn( grid2, l+1, row, + grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + for (m = 0; m < 2; m++) { + + if (!grid2 || grid2->height >= MAX_GRID_SIZE) + break; + if (m) offset2 = grid2->width-1; + else offset2 = 0; + for ( l = 0; l < grid2->height-1; l++) { + // + v1 = grid1->verts[grid1->width * k + offset1].xyz; + v2 = grid2->verts[grid2->width * l + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + + v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) > .1) + continue; + if ( fabs(v1[1] - v2[1]) > .1) + continue; + if ( fabs(v1[2] - v2[2]) > .1) + continue; + // + v1 = grid2->verts[grid2->width * l + offset2].xyz; + v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; + if ( fabs(v1[0] - v2[0]) < .01 && + fabs(v1[1] - v2[1]) < .01 && + fabs(v1[2] - v2[2]) < .01) + continue; + // + //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); + // insert row into grid2 right after after row l + if (m) column = grid2->width-1; + else column = 0; + R_GridInsertRow( grid2, l+1, column, + grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]); + grid2->lodStitched = false; + s_worldData.surfaces[grid2num].data = (surfaceType_t*) grid2; + return true; + } + } + } + } + return false; +} + +/* +=============== +R_TryStitchPatch + +This function will try to stitch patches in the same LoD group together for the highest LoD. + +Only single missing vertice cracks will be fixed. + +Vertices will be joined at the patch side a crack is first found, at the other side +of the patch (on the same row or column) the vertices will not be joined and cracks +might still appear at that side. +=============== +*/ +int R_TryStitchingPatch( int grid1num ) { + int j, numstitches; + srfBspSurface_t *grid1, *grid2; + + numstitches = 0; + grid1 = (srfBspSurface_t *) s_worldData.surfaces[grid1num].data; + for ( j = 0; j < s_worldData.numsurfaces; j++ ) { + // + grid2 = (srfBspSurface_t *) s_worldData.surfaces[j].data; + // if this surface is not a grid + if ( grid2->surfaceType != SF_GRID ) continue; + // grids in the same LOD group should have the exact same lod radius + if ( grid1->lodRadius != grid2->lodRadius ) continue; + // grids in the same LOD group should have the exact same lod origin + if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue; + if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue; + if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue; + // + while (R_StitchPatches(grid1num, j)) + { + numstitches++; + } + } + return numstitches; +} + +/* +=============== +R_StitchAllPatches +=============== +*/ +void R_StitchAllPatches( void ) { + int i, stitched, numstitches; + srfBspSurface_t *grid1; + + numstitches = 0; + do + { + stitched = false; + for ( i = 0; i < s_worldData.numsurfaces; i++ ) { + // + grid1 = (srfBspSurface_t *) s_worldData.surfaces[i].data; + // if this surface is not a grid + if ( grid1->surfaceType != SF_GRID ) + continue; + // + if ( grid1->lodStitched ) + continue; + // + grid1->lodStitched = true; + stitched = true; + // + numstitches += R_TryStitchingPatch( i ); + } + } + while (stitched); + ri.Printf( PRINT_ALL, "stitched %d LoD cracks\n", numstitches ); +} + +/* +=============== +R_MovePatchSurfacesToHunk +=============== +*/ +void R_MovePatchSurfacesToHunk(void) { + int i; + srfBspSurface_t *grid; + + for ( i = 0; i < s_worldData.numsurfaces; i++ ) { + void *copyFrom; + // + grid = (srfBspSurface_t *) s_worldData.surfaces[i].data; + // if this surface is not a grid + if ( grid->surfaceType != SF_GRID ) + continue; + // + + copyFrom = grid->widthLodError; + grid->widthLodError = (float*)ri.Hunk_Alloc( grid->width * 4, h_low ); + Com_Memcpy(grid->widthLodError, copyFrom, grid->width * 4); + ri.Free(copyFrom); + + copyFrom = grid->heightLodError; + grid->heightLodError = (float*)ri.Hunk_Alloc(grid->height * 4, h_low); + Com_Memcpy(grid->heightLodError, copyFrom, grid->height * 4); + ri.Free(copyFrom); + + copyFrom = grid->indexes; + grid->indexes = (glIndex_t*)ri.Hunk_Alloc(grid->numIndexes * sizeof(glIndex_t), h_low); + Com_Memcpy(grid->indexes, copyFrom, grid->numIndexes * sizeof(glIndex_t)); + ri.Free(copyFrom); + + copyFrom = grid->verts; + grid->verts = (srfVert_t*)ri.Hunk_Alloc(grid->numVerts * sizeof(srfVert_t), h_low); + Com_Memcpy(grid->verts, copyFrom, grid->numVerts * sizeof(srfVert_t)); + ri.Free(copyFrom); + } +} + + +/* +=============== +R_LoadSurfaces +=============== +*/ +static void R_LoadSurfaces( lump_t *surfs, lump_t *verts, lump_t *indexLump ) { + dsurface_t *in; + msurface_t *out; + drawVert_t *dv; + int *indexes; + int count; + int numFaces, numMeshes, numTriSurfs, numFlares; + int i; + float *hdrVertColors = NULL; + + numFaces = 0; + numMeshes = 0; + numTriSurfs = 0; + numFlares = 0; + + if (surfs->filelen % sizeof(*in)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + count = surfs->filelen / sizeof(*in); + + dv = (drawVert_t*)(fileBase + verts->fileofs); + if (verts->filelen % sizeof(*dv)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + + indexes = (int*)(fileBase + indexLump->fileofs); + if ( indexLump->filelen % sizeof(*indexes)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + + out = (msurface_t*)ri.Hunk_Alloc ( count * sizeof(*out), h_low ); + + s_worldData.surfaces = out; + s_worldData.numsurfaces = count; + s_worldData.surfacesViewCount = (int*)ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesViewCount), h_low ); + s_worldData.surfacesDlightBits = (int*)ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesDlightBits), h_low ); + s_worldData.surfacesPshadowBits = (int*)ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesPshadowBits), h_low ); + + // load hdr vertex colors + if (r_hdr->integer) + { + char filename[MAX_QPATH]; + int size; + + Com_sprintf( filename, sizeof( filename ), "maps/%s/vertlight.raw", s_worldData.baseName); + //ri.Printf(PRINT_ALL, "looking for %s\n", filename); + + size = ri.FS_ReadFile(filename, (void **)&hdrVertColors); + + if (hdrVertColors) + { + //ri.Printf(PRINT_ALL, "Found!\n"); + if (size != sizeof(float) * 3 * (verts->filelen / sizeof(*dv))) + ri.Error(ERR_DROP, "Bad size for %s (%i, expected %i)!", filename, size, (int)((sizeof(float)) * 3 * (verts->filelen / sizeof(*dv)))); + } + } + + + // Two passes, allocate surfaces first, then load them full of data + // This ensures surfaces are close together to reduce L2 cache misses when using VAOs, + // which don't actually use the verts and indexes + in = (dsurface_t*)(fileBase + surfs->fileofs); + out = s_worldData.surfaces; + for ( i = 0 ; i < count ; i++, in++, out++ ) { + switch ( LittleLong( in->surfaceType ) ) { + case MST_PATCH: + out->data = (surfaceType_t*)ri.Hunk_Alloc( sizeof(srfBspSurface_t), h_low); + break; + case MST_TRIANGLE_SOUP: + out->data = (surfaceType_t*)ri.Hunk_Alloc( sizeof(srfBspSurface_t), h_low); + break; + case MST_PLANAR: + out->data = (surfaceType_t*)ri.Hunk_Alloc( sizeof(srfBspSurface_t), h_low); + break; + case MST_FLARE: + out->data = (surfaceType_t*)ri.Hunk_Alloc( sizeof(srfFlare_t), h_low); + break; + default: + break; + } + } + + in = (dsurface_t*)(fileBase + surfs->fileofs); + out = s_worldData.surfaces; + for ( i = 0 ; i < count ; i++, in++, out++ ) { + switch ( LittleLong( in->surfaceType ) ) { + case MST_PATCH: + ParseMesh ( in, dv, hdrVertColors, out ); + numMeshes++; + break; + case MST_TRIANGLE_SOUP: + ParseTriSurf( in, dv, hdrVertColors, out, indexes ); + numTriSurfs++; + break; + case MST_PLANAR: + ParseFace( in, dv, hdrVertColors, out, indexes ); + numFaces++; + break; + case MST_FLARE: + ParseFlare( in, dv, out, indexes ); + numFlares++; + break; + default: + ri.Error( ERR_DROP, "Bad surfaceType" ); + } + } + + if (hdrVertColors) + { + ri.FS_FreeFile(hdrVertColors); + } + +#ifdef PATCH_STITCHING + R_StitchAllPatches(); +#endif + + R_FixSharedVertexLodError(); + +#ifdef PATCH_STITCHING + R_MovePatchSurfacesToHunk(); +#endif + + ri.Printf( PRINT_ALL, "...loaded %d faces, %i meshes, %i trisurfs, %i flares\n", + numFaces, numMeshes, numTriSurfs, numFlares ); +} + + + +/* +================= +R_LoadSubmodels +================= +*/ +static void R_LoadSubmodels( lump_t *l ) { + dmodel_t *in; + bmodel_t *out; + int i, j, count; + + in = (dmodel_t*)(fileBase + l->fileofs); + if (l->filelen % sizeof(*in)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + count = l->filelen / sizeof(*in); + + s_worldData.numBModels = count; + s_worldData.bmodels = out = (bmodel_t*)ri.Hunk_Alloc( count * sizeof(*out), h_low ); + + for ( i=0 ; i<count ; i++, in++, out++ ) { + model_t *model; + + model = R_AllocModel(); + + assert( model != NULL ); // this should never happen + if ( model == NULL ) { + ri.Error(ERR_DROP, "R_LoadSubmodels: R_AllocModel() failed"); + } + + model->type = MOD_BRUSH; + model->bmodel = out; + Com_sprintf( model->name, sizeof( model->name ), "*%d", i ); + + for (j=0 ; j<3 ; j++) { + out->bounds[0][j] = LittleFloat (in->mins[j]); + out->bounds[1][j] = LittleFloat (in->maxs[j]); + } + + out->firstSurface = LittleLong( in->firstSurface ); + out->numSurfaces = LittleLong( in->numSurfaces ); + + if(i == 0) + { + // Add this for limiting VAO surface creation + s_worldData.numWorldSurfaces = out->numSurfaces; + } + } +} + + + +//================================================================== + +/* +================= +R_SetParent +================= +*/ +static void R_SetParent (mnode_t *node, mnode_t *parent) +{ + node->parent = parent; + if (node->contents != -1) + return; + R_SetParent (node->children[0], node); + R_SetParent (node->children[1], node); +} + +/* +================= +R_LoadNodesAndLeafs +================= +*/ +static void R_LoadNodesAndLeafs (lump_t *nodeLump, lump_t *leafLump) { + int i, j, p; + dnode_t *in; + dleaf_t *inLeaf; + mnode_t *out; + int numNodes, numLeafs; + + in = (dnode_t*)(fileBase + nodeLump->fileofs); + if (nodeLump->filelen % sizeof(dnode_t) || + leafLump->filelen % sizeof(dleaf_t) ) { + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + } + numNodes = nodeLump->filelen / sizeof(dnode_t); + numLeafs = leafLump->filelen / sizeof(dleaf_t); + + out = (mnode_t*)ri.Hunk_Alloc ( (numNodes + numLeafs) * sizeof(*out), h_low); + + s_worldData.nodes = out; + s_worldData.numnodes = numNodes + numLeafs; + s_worldData.numDecisionNodes = numNodes; + + // load nodes + for ( i=0 ; i<numNodes; i++, in++, out++) + { + for (j=0 ; j<3 ; j++) + { + out->mins[j] = LittleLong (in->mins[j]); + out->maxs[j] = LittleLong (in->maxs[j]); + } + + p = LittleLong(in->planeNum); + out->plane = s_worldData.planes + p; + + out->contents = CONTENTS_NODE; // differentiate from leafs + + for (j=0 ; j<2 ; j++) + { + p = LittleLong (in->children[j]); + if (p >= 0) + out->children[j] = s_worldData.nodes + p; + else + out->children[j] = s_worldData.nodes + numNodes + (-1 - p); + } + } + + // load leafs + inLeaf = (dleaf_t*)(fileBase + leafLump->fileofs); + for ( i=0 ; i<numLeafs ; i++, inLeaf++, out++) + { + for (j=0 ; j<3 ; j++) + { + out->mins[j] = LittleLong (inLeaf->mins[j]); + out->maxs[j] = LittleLong (inLeaf->maxs[j]); + } + + out->cluster = LittleLong(inLeaf->cluster); + out->area = LittleLong(inLeaf->area); + + if ( out->cluster >= s_worldData.numClusters ) { + s_worldData.numClusters = out->cluster + 1; + } + + out->firstmarksurface = LittleLong(inLeaf->firstLeafSurface); + out->nummarksurfaces = LittleLong(inLeaf->numLeafSurfaces); + } + + // chain decendants + R_SetParent (s_worldData.nodes, NULL); +} + +//============================================================================= + +/* +================= +R_LoadShaders +================= +*/ +static void R_LoadShaders( lump_t *l ) { + int i, count; + dshader_t *in, *out; + + in = (dshader_t*)(fileBase + l->fileofs); + if (l->filelen % sizeof(*in)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + count = l->filelen / sizeof(*in); + out = (dshader_t*)ri.Hunk_Alloc ( count*sizeof(*out), h_low ); + + s_worldData.shaders = out; + s_worldData.numShaders = count; + + Com_Memcpy( out, in, count*sizeof(*out) ); + + for ( i=0 ; i<count ; i++ ) { + out[i].surfaceFlags = LittleLong( out[i].surfaceFlags ); + out[i].contentFlags = LittleLong( out[i].contentFlags ); + } +} + + +/* +================= +R_LoadMarksurfaces +================= +*/ +static void R_LoadMarksurfaces (lump_t *l) +{ + int i, j, count; + int *in; + int *out; + + in = (int*)(fileBase + l->fileofs); + if (l->filelen % sizeof(*in)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + count = l->filelen / sizeof(*in); + out = (int*)ri.Hunk_Alloc ( count*sizeof(*out), h_low); + + s_worldData.marksurfaces = out; + s_worldData.nummarksurfaces = count; + + for ( i=0 ; i<count ; i++) + { + j = LittleLong(in[i]); + out[i] = j; + } +} + + +/* +================= +R_LoadPlanes +================= +*/ +static void R_LoadPlanes( lump_t *l ) { + int i, j; + cplane_t *out; + dplane_t *in; + int count; + int bits; + + in = (dplane_t*)(fileBase + l->fileofs); + if (l->filelen % sizeof(*in)) + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + count = l->filelen / sizeof(*in); + out = (cplane_t*)ri.Hunk_Alloc ( count*2*sizeof(*out), h_low); + + s_worldData.planes = out; + s_worldData.numplanes = count; + + for ( i=0 ; i<count ; i++, in++, out++) { + bits = 0; + for (j=0 ; j<3 ; j++) { + out->normal[j] = LittleFloat (in->normal[j]); + if (out->normal[j] < 0) { + bits |= 1<<j; + } + } + + out->dist = LittleFloat (in->dist); + out->type = PlaneTypeForNormal( out->normal ); + out->signbits = bits; + } +} + +/* +================= +R_LoadFogs + +================= +*/ +static void R_LoadFogs( lump_t *l, lump_t *brushesLump, lump_t *sidesLump ) { + int i; + fog_t *out; + dfog_t *fogs; + dbrush_t *brushes, *brush; + dbrushside_t *sides; + int count, brushesCount, sidesCount; + int sideNum; + int planeNum; + shader_t *shader; + float d; + int firstSide; + + fogs = (dfog_t*)(fileBase + l->fileofs); + if (l->filelen % sizeof(*fogs)) { + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + } + count = l->filelen / sizeof(*fogs); + + // create fog strucutres for them + s_worldData.numfogs = count + 1; + s_worldData.fogs = (fog_t*)ri.Hunk_Alloc ( s_worldData.numfogs*sizeof(*out), h_low); + out = s_worldData.fogs + 1; + + if ( !count ) { + return; + } + + brushes = (dbrush_t*)(fileBase + brushesLump->fileofs); + if (brushesLump->filelen % sizeof(*brushes)) { + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + } + brushesCount = brushesLump->filelen / sizeof(*brushes); + + sides = (dbrushside_t*)(fileBase + sidesLump->fileofs); + if (sidesLump->filelen % sizeof(*sides)) { + ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); + } + sidesCount = sidesLump->filelen / sizeof(*sides); + + for ( i=0 ; i<count ; i++, fogs++) { + out->originalBrushNumber = LittleLong( fogs->brushNum ); + + if ( (unsigned)out->originalBrushNumber >= brushesCount ) { + ri.Error( ERR_DROP, "fog brushNumber out of range" ); + } + brush = brushes + out->originalBrushNumber; + + firstSide = LittleLong( brush->firstSide ); + + if ( (unsigned)firstSide > sidesCount - 6 ) { + ri.Error( ERR_DROP, "fog brush sideNumber out of range" ); + } + + // brushes are always sorted with the axial sides first + sideNum = firstSide + 0; + planeNum = LittleLong( sides[ sideNum ].planeNum ); + out->bounds[0][0] = -s_worldData.planes[ planeNum ].dist; + + sideNum = firstSide + 1; + planeNum = LittleLong( sides[ sideNum ].planeNum ); + out->bounds[1][0] = s_worldData.planes[ planeNum ].dist; + + sideNum = firstSide + 2; + planeNum = LittleLong( sides[ sideNum ].planeNum ); + out->bounds[0][1] = -s_worldData.planes[ planeNum ].dist; + + sideNum = firstSide + 3; + planeNum = LittleLong( sides[ sideNum ].planeNum ); + out->bounds[1][1] = s_worldData.planes[ planeNum ].dist; + + sideNum = firstSide + 4; + planeNum = LittleLong( sides[ sideNum ].planeNum ); + out->bounds[0][2] = -s_worldData.planes[ planeNum ].dist; + + sideNum = firstSide + 5; + planeNum = LittleLong( sides[ sideNum ].planeNum ); + out->bounds[1][2] = s_worldData.planes[ planeNum ].dist; + + // get information from the shader for fog parameters + shader = R_FindShader( fogs->shader, LIGHTMAP_NONE, true ); + + out->parms = shader->fogParms; + + out->colorInt = ColorBytes4 ( shader->fogParms.color[0], + shader->fogParms.color[1], + shader->fogParms.color[2], 1.0 ); + + d = shader->fogParms.depthForOpaque < 1 ? 1 : shader->fogParms.depthForOpaque; + out->tcScale = 1.0f / ( d * 8 ); + + // set the gradient vector + sideNum = LittleLong( fogs->visibleSide ); + + if ( sideNum == -1 ) { + out->hasSurface = false; + } else { + out->hasSurface = true; + planeNum = LittleLong( sides[ firstSide + sideNum ].planeNum ); + VectorSubtract( vec3_origin, s_worldData.planes[ planeNum ].normal, out->surface ); + out->surface[3] = -s_worldData.planes[ planeNum ].dist; + } + + out++; + } + +} + + +/* +================ +R_LoadLightGrid + +================ +*/ +void R_LoadLightGrid( lump_t *l ) { + int i; + vec3_t maxs; + int numGridPoints; + world_t *w; + float *wMins, *wMaxs; + + w = &s_worldData; + + w->lightGridInverseSize[0] = 1.0f / w->lightGridSize[0]; + w->lightGridInverseSize[1] = 1.0f / w->lightGridSize[1]; + w->lightGridInverseSize[2] = 1.0f / w->lightGridSize[2]; + + wMins = w->bmodels[0].bounds[0]; + wMaxs = w->bmodels[0].bounds[1]; + + for ( i = 0 ; i < 3 ; i++ ) { + w->lightGridOrigin[i] = w->lightGridSize[i] * ceil( wMins[i] / w->lightGridSize[i] ); + maxs[i] = w->lightGridSize[i] * floor( wMaxs[i] / w->lightGridSize[i] ); + w->lightGridBounds[i] = (maxs[i] - w->lightGridOrigin[i])/w->lightGridSize[i] + 1; + } + + numGridPoints = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2]; + + if ( l->filelen != numGridPoints * 8 ) { + ri.Printf( PRINT_WARNING, "WARNING: light grid mismatch\n" ); + w->lightGridData = NULL; + return; + } + + w->lightGridData = (byte*)ri.Hunk_Alloc( l->filelen, h_low ); + Com_Memcpy( w->lightGridData, (void *)(fileBase + l->fileofs), l->filelen ); + + // deal with overbright bits + for ( i = 0 ; i < numGridPoints ; i++ ) { + R_ColorShiftLightingBytes( &w->lightGridData[i*8], &w->lightGridData[i*8] ); + R_ColorShiftLightingBytes( &w->lightGridData[i*8+3], &w->lightGridData[i*8+3] ); + } + + // load hdr lightgrid + if (r_hdr->integer) + { + char filename[MAX_QPATH]; + float *hdrLightGrid; + int size; + + Com_sprintf( filename, sizeof( filename ), "maps/%s/lightgrid.raw", s_worldData.baseName); + //ri.Printf(PRINT_ALL, "looking for %s\n", filename); + + size = ri.FS_ReadFile(filename, (void **)&hdrLightGrid); + + if (hdrLightGrid) + { + //ri.Printf(PRINT_ALL, "found!\n"); + + if (size != sizeof(float) * 6 * numGridPoints) + ri.Error(ERR_DROP, "Bad size for %s (%i, expected %i)!", filename, size, (int)(sizeof(float)) * 6 * numGridPoints); + + w->lightGrid16 = (uint16_t*)ri.Hunk_Alloc(sizeof(w->lightGrid16) * 6 * numGridPoints, h_low); + + for (i = 0; i < numGridPoints ; i++) + { + vec4_t c; + + c[0] = hdrLightGrid[i * 6]; + c[1] = hdrLightGrid[i * 6 + 1]; + c[2] = hdrLightGrid[i * 6 + 2]; + c[3] = 1.0f; + + R_ColorShiftLightingFloats(c, c); + ColorToRGB16(c, &w->lightGrid16[i * 6]); + + c[0] = hdrLightGrid[i * 6 + 3]; + c[1] = hdrLightGrid[i * 6 + 4]; + c[2] = hdrLightGrid[i * 6 + 5]; + c[3] = 1.0f; + + R_ColorShiftLightingFloats(c, c); + ColorToRGB16(c, &w->lightGrid16[i * 6 + 3]); + } + } + else if (0) + { + // promote 8-bit lightgrid to 16-bit + w->lightGrid16 = (uint16_t*)ri.Hunk_Alloc(sizeof(w->lightGrid16) * 6 * numGridPoints, h_low); + + for (i = 0; i < numGridPoints; i++) + { + w->lightGrid16[i * 6] = w->lightGridData[i * 8] * 257; + w->lightGrid16[i * 6 + 1] = w->lightGridData[i * 8 + 1] * 257; + w->lightGrid16[i * 6 + 2] = w->lightGridData[i * 8 + 2] * 257; + w->lightGrid16[i * 6 + 3] = w->lightGridData[i * 8 + 3] * 257; + w->lightGrid16[i * 6 + 4] = w->lightGridData[i * 8 + 4] * 257; + w->lightGrid16[i * 6 + 5] = w->lightGridData[i * 8 + 5] * 257; + } + } + + if (hdrLightGrid) + ri.FS_FreeFile(hdrLightGrid); + } +} + +/* +================ +R_LoadEntities +================ +*/ +void R_LoadEntities( lump_t *l ) { + char *p, *token; + char *s; + char keyname[MAX_TOKEN_CHARS]; + char value[MAX_TOKEN_CHARS]; + world_t *w; + + w = &s_worldData; + w->lightGridSize[0] = 64; + w->lightGridSize[1] = 64; + w->lightGridSize[2] = 128; + + p = (char *)(fileBase + l->fileofs); + + // store for reference by the cgame + w->entityString = (char*)ri.Hunk_Alloc( l->filelen + 1, h_low ); + strcpy( w->entityString, p ); + w->entityParsePoint = w->entityString; + + token = COM_ParseExt( &p, qtrue ); + if (!*token || *token != '{') { + return; + } + + // only parse the world spawn + while ( 1 ) { + // parse key + token = COM_ParseExt( &p, qtrue ); + + if ( !*token || *token == '}' ) { + break; + } + Q_strncpyz(keyname, token, sizeof(keyname)); + + // parse value + token = COM_ParseExt( &p, qtrue ); + + if ( !*token || *token == '}' ) { + break; + } + Q_strncpyz(value, token, sizeof(value)); + + // check for remapping of shaders for vertex lighting + if (!Q_strncmp(keyname, "vertexremapshader", strlen("vertexremapshader")) ) { + s = strchr(value, ';'); + if (!s) { + ri.Printf( PRINT_WARNING, "WARNING: no semi colon in vertexshaderremap '%s'\n", value ); + break; + } + *s++ = 0; + if (r_vertexLight->integer) { + R_RemapShader(value, s, "0"); + } + continue; + } + // check for remapping of shaders + if (!Q_strncmp(keyname, "remapshader", strlen("remapshader")) ) { + s = strchr(value, ';'); + if (!s) { + ri.Printf( PRINT_WARNING, "WARNING: no semi colon in shaderremap '%s'\n", value ); + break; + } + *s++ = 0; + R_RemapShader(value, s, "0"); + continue; + } + // check for a different grid size + if (!Q_stricmp(keyname, "gridsize")) { + sscanf(value, "%f %f %f", &w->lightGridSize[0], &w->lightGridSize[1], &w->lightGridSize[2] ); + continue; + } + + // check for auto exposure + if (!Q_stricmp(keyname, "autoExposureMinMax")) { + sscanf(value, "%f %f", &tr.autoExposureMinMax[0], &tr.autoExposureMinMax[1]); + continue; + } + } +} + +/* +================= +R_GetEntityToken +================= +*/ +bool R_GetEntityToken( char *buffer, int size ) { + const char *s; + + s = COM_Parse( &s_worldData.entityParsePoint ); + Q_strncpyz( buffer, s, size ); + if ( !s_worldData.entityParsePoint && !s[0] ) { + s_worldData.entityParsePoint = s_worldData.entityString; + return false; + } else { + return true; + } +} + +#ifndef MAX_SPAWN_VARS +#define MAX_SPAWN_VARS 64 +#endif + +// derived from G_ParseSpawnVars() in g_spawn.c +bool R_ParseSpawnVars( char *spawnVarChars, int maxSpawnVarChars, int *numSpawnVars, char *spawnVars[MAX_SPAWN_VARS][2] ) +{ + char keyname[MAX_TOKEN_CHARS]; + char com_token[MAX_TOKEN_CHARS]; + int numSpawnVarChars = 0; + + *numSpawnVars = 0; + + // parse the opening brace + if ( !R_GetEntityToken( com_token, sizeof( com_token ) ) ) { + // end of spawn string + return false; + } + if ( com_token[0] != '{' ) { + ri.Printf( PRINT_ALL, "R_ParseSpawnVars: found %s when expecting {\n",com_token ); + return false; + } + + // go through all the key / value pairs + while ( 1 ) { + int keyLength, tokenLength; + + // parse key + if ( !R_GetEntityToken( keyname, sizeof( keyname ) ) ) { + ri.Printf( PRINT_ALL, "R_ParseSpawnVars: EOF without closing brace\n" ); + return false; + } + + if ( keyname[0] == '}' ) { + break; + } + + // parse value + if ( !R_GetEntityToken( com_token, sizeof( com_token ) ) ) { + ri.Printf( PRINT_ALL, "R_ParseSpawnVars: EOF without closing brace\n" ); + return false; + } + + if ( com_token[0] == '}' ) { + ri.Printf( PRINT_ALL, "R_ParseSpawnVars: closing brace without data\n" ); + return false; + } + + if ( *numSpawnVars == MAX_SPAWN_VARS ) { + ri.Printf( PRINT_ALL, "R_ParseSpawnVars: MAX_SPAWN_VARS\n" ); + return false; + } + + keyLength = strlen(keyname) + 1; + tokenLength = strlen(com_token) + 1; + + if (numSpawnVarChars + keyLength + tokenLength > maxSpawnVarChars) + { + ri.Printf( PRINT_ALL, "R_ParseSpawnVars: MAX_SPAWN_VAR_CHARS\n" ); + return false; + } + + strcpy(spawnVarChars + numSpawnVarChars, keyname); + spawnVars[ *numSpawnVars ][0] = spawnVarChars + numSpawnVarChars; + numSpawnVarChars += keyLength; + + strcpy(spawnVarChars + numSpawnVarChars, com_token); + spawnVars[ *numSpawnVars ][1] = spawnVarChars + numSpawnVarChars; + numSpawnVarChars += tokenLength; + + (*numSpawnVars)++; + } + + return true; +} + +void R_LoadEnvironmentJson(const char *baseName) +{ + char filename[MAX_QPATH]; + + union { + char *c; + void *v; + } buffer; + char *bufferEnd; + + const char *cubemapArrayJson; + int filelen, i; + + Com_sprintf(filename, MAX_QPATH, "cubemaps/%s/env.json", baseName); + + filelen = ri.FS_ReadFile(filename, &buffer.v); + if (!buffer.c) + return; + bufferEnd = buffer.c + filelen; + + if (JSON_ValueGetType(buffer.c, bufferEnd) != JSONTYPE_OBJECT) + { + ri.Printf(PRINT_ALL, "Bad %s: does not start with a object\n", filename); + ri.FS_FreeFile(buffer.v); + return; + } + + cubemapArrayJson = JSON_ObjectGetNamedValue(buffer.c, bufferEnd, "Cubemaps"); + if (!cubemapArrayJson) + { + ri.Printf(PRINT_ALL, "Bad %s: no Cubemaps\n", filename); + ri.FS_FreeFile(buffer.v); + return; + } + + if (JSON_ValueGetType(cubemapArrayJson, bufferEnd) != JSONTYPE_ARRAY) + { + ri.Printf(PRINT_ALL, "Bad %s: Cubemaps not an array\n", filename); + ri.FS_FreeFile(buffer.v); + return; + } + + tr.numCubemaps = JSON_ArrayGetIndex(cubemapArrayJson, bufferEnd, NULL, 0); + tr.cubemaps = (cubemap_t*)ri.Hunk_Alloc(tr.numCubemaps * sizeof(*tr.cubemaps), h_low); + memset(tr.cubemaps, 0, tr.numCubemaps * sizeof(*tr.cubemaps)); + + for (i = 0; i < tr.numCubemaps; i++) + { + cubemap_t *cubemap = &tr.cubemaps[i]; + const char *cubemapJson, *keyValueJson, *indexes[3]; + int j; + + cubemapJson = JSON_ArrayGetValue(cubemapArrayJson, bufferEnd, i); + + keyValueJson = JSON_ObjectGetNamedValue(cubemapJson, bufferEnd, "Name"); + if (!JSON_ValueGetString(keyValueJson, bufferEnd, cubemap->name, MAX_QPATH)) + cubemap->name[0] = '\0'; + + keyValueJson = JSON_ObjectGetNamedValue(cubemapJson, bufferEnd, "Position"); + JSON_ArrayGetIndex(keyValueJson, bufferEnd, indexes, 3); + for (j = 0; j < 3; j++) + cubemap->origin[j] = JSON_ValueGetFloat(indexes[j], bufferEnd); + + cubemap->parallaxRadius = 1000.0f; + keyValueJson = JSON_ObjectGetNamedValue(cubemapJson, bufferEnd, "Radius"); + if (keyValueJson) + cubemap->parallaxRadius = JSON_ValueGetFloat(keyValueJson, bufferEnd); + } + + ri.FS_FreeFile(buffer.v); +} + +void R_LoadCubemapEntities(const char *cubemapEntityName) +{ + char spawnVarChars[2048]; + int numSpawnVars; + char *spawnVars[MAX_SPAWN_VARS][2]; + int numCubemaps = 0; + + // count cubemaps + numCubemaps = 0; + while(R_ParseSpawnVars(spawnVarChars, sizeof(spawnVarChars), &numSpawnVars, spawnVars)) + { + int i; + + for (i = 0; i < numSpawnVars; i++) + { + if (!Q_stricmp(spawnVars[i][0], "classname") && !Q_stricmp(spawnVars[i][1], cubemapEntityName)) + numCubemaps++; + } + } + + if (!numCubemaps) + return; + + tr.numCubemaps = numCubemaps; + tr.cubemaps = (cubemap_t*)ri.Hunk_Alloc(tr.numCubemaps * sizeof(*tr.cubemaps), h_low); + memset(tr.cubemaps, 0, tr.numCubemaps * sizeof(*tr.cubemaps)); + + numCubemaps = 0; + while(R_ParseSpawnVars(spawnVarChars, sizeof(spawnVarChars), &numSpawnVars, spawnVars)) + { + int i; + char name[MAX_QPATH]; + bool isCubemap = false; + bool originSet = false; + vec3_t origin; + float parallaxRadius = 1000.0f; + + name[0] = '\0'; + for (i = 0; i < numSpawnVars; i++) + { + if (!Q_stricmp(spawnVars[i][0], "classname") && !Q_stricmp(spawnVars[i][1], cubemapEntityName)) + isCubemap = true; + + if (!Q_stricmp(spawnVars[i][0], "name")) + Q_strncpyz(name, spawnVars[i][1], MAX_QPATH); + + if (!Q_stricmp(spawnVars[i][0], "origin")) + { + sscanf(spawnVars[i][1], "%f %f %f", &origin[0], &origin[1], &origin[2]); + originSet = true; + } + else if (!Q_stricmp(spawnVars[i][0], "radius")) + { + sscanf(spawnVars[i][1], "%f", ¶llaxRadius); + } + } + + if (isCubemap && originSet) + { + cubemap_t *cubemap = &tr.cubemaps[numCubemaps]; + Q_strncpyz(cubemap->name, name, MAX_QPATH); + VectorCopy(origin, cubemap->origin); + cubemap->parallaxRadius = parallaxRadius; + numCubemaps++; + } + } +} + +void R_AssignCubemapsToWorldSurfaces(void) +{ + world_t *w; + int i; + + w = &s_worldData; + + for (i = 0; i < w->numsurfaces; i++) + { + msurface_t *surf = &w->surfaces[i]; + vec3_t surfOrigin; + + if (surf->cullinfo.type & CULLINFO_SPHERE) + { + VectorCopy(surf->cullinfo.localOrigin, surfOrigin); + } + else if (surf->cullinfo.type & CULLINFO_BOX) + { + surfOrigin[0] = (surf->cullinfo.bounds[0][0] + surf->cullinfo.bounds[1][0]) * 0.5f; + surfOrigin[1] = (surf->cullinfo.bounds[0][1] + surf->cullinfo.bounds[1][1]) * 0.5f; + surfOrigin[2] = (surf->cullinfo.bounds[0][2] + surf->cullinfo.bounds[1][2]) * 0.5f; + } + else + { + //ri.Printf(PRINT_ALL, "surface %d has no cubemap\n", i); + continue; + } + + surf->cubemapIndex = R_CubemapForPoint(surfOrigin); + //ri.Printf(PRINT_ALL, "surface %d has cubemap %d\n", i, surf->cubemapIndex); + } +} + + +void R_LoadCubemaps(void) +{ + int i; + int/*imgFlags_t*/ flags = IMGFLAG_CLAMPTOEDGE | IMGFLAG_MIPMAP | IMGFLAG_NOLIGHTSCALE | IMGFLAG_CUBEMAP; + + for (i = 0; i < tr.numCubemaps; i++) + { + char filename[MAX_QPATH]; + cubemap_t *cubemap = &tr.cubemaps[i]; + + Com_sprintf(filename, MAX_QPATH, "cubemaps/%s/%03d.dds", tr.world->baseName, i); + + cubemap->image = R_FindImageFile(filename, IMGTYPE_COLORALPHA, flags); + } +} + + +void R_RenderMissingCubemaps(void) +{ + int i, j; + int/*imgFlags_t*/ flags = IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE | IMGFLAG_MIPMAP | IMGFLAG_NOLIGHTSCALE | IMGFLAG_CUBEMAP; + + for (i = 0; i < tr.numCubemaps; i++) + { + if (!tr.cubemaps[i].image) + { + tr.cubemaps[i].image = R_CreateImage(va("*cubeMap%d", i), NULL, + r_cubemapSize->integer, r_cubemapSize->integer, + IMGTYPE_COLORALPHA, flags, GL_RGBA8); + + for (j = 0; j < 6; j++) + { + RE_ClearScene(); + R_RenderCubemapSide(i, j, false); + R_IssuePendingRenderCommands(); + R_InitNextFrame(); + } + } + } +} + + +void R_CalcVertexLightDirs( void ) +{ + int i, k; + msurface_t *surface; + + for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces /* s_worldData.numWorldSurfaces */; k++, surface++) + { + srfBspSurface_t *bspSurf = (srfBspSurface_t *) surface->data; + + switch(bspSurf->surfaceType) + { + case SF_FACE: + case SF_GRID: + case SF_TRIANGLES: + for(i = 0; i < bspSurf->numVerts; i++) + { + vec3_t lightDir; + vec3_t normal; + + R_VaoUnpackNormal(normal, bspSurf->verts[i].normal); + R_LightDirForPoint( bspSurf->verts[i].xyz, lightDir, normal, &s_worldData ); + R_VaoPackNormal(bspSurf->verts[i].lightdir, lightDir); + } + + break; + + default: + break; + } + } +} + + +/* +================= +RE_LoadWorldMap + +Called directly from cgame +================= +*/ +void RE_LoadWorldMap( const char *name ) { + int i; + dheader_t *header; + union { + byte *b; + void *v; + } buffer; + byte *startMarker; + + if ( tr.worldMapLoaded ) { + ri.Error( ERR_DROP, "ERROR: attempted to redundantly load world map" ); + } + + // set default map light scale + tr.sunShadowScale = 0.5f; + + // set default sun direction to be used if it isn't + // overridden by a shader + tr.sunDirection[0] = 0.45f; + tr.sunDirection[1] = 0.3f; + tr.sunDirection[2] = 0.9f; + + VectorNormalize( tr.sunDirection ); + + // set default autoexposure settings + tr.autoExposureMinMax[0] = -2.0f; + tr.autoExposureMinMax[1] = 2.0f; + + // set default tone mapping settings + tr.toneMinAvgMaxLevel[0] = -8.0f; + tr.toneMinAvgMaxLevel[1] = -2.0f; + tr.toneMinAvgMaxLevel[2] = 0.0f; + + // reset last cascade sun direction so last shadow cascade is rerendered + VectorClear(tr.lastCascadeSunDirection); + + tr.worldMapLoaded = true; + + // load it + ri.FS_ReadFile( name, &buffer.v ); + if ( !buffer.b ) { + ri.Error (ERR_DROP, "RE_LoadWorldMap: %s not found", name); + } + + // clear tr.world so if the level fails to load, the next + // try will not look at the partially loaded version + tr.world = NULL; + + Com_Memset( &s_worldData, 0, sizeof( s_worldData ) ); + Q_strncpyz( s_worldData.name, name, sizeof( s_worldData.name ) ); + + Q_strncpyz( s_worldData.baseName, COM_SkipPath( s_worldData.name ), sizeof( s_worldData.name ) ); + COM_StripExtension(s_worldData.baseName, s_worldData.baseName, sizeof(s_worldData.baseName)); + + startMarker = (byte*)ri.Hunk_Alloc(0, h_low); + c_gridVerts = 0; + + header = (dheader_t *)buffer.b; + fileBase = (byte *)header; + + i = LittleLong (header->version); + if ( i != BSP_VERSION ) { + ri.Error (ERR_DROP, "RE_LoadWorldMap: %s has wrong version number (%i should be %i)", + name, i, BSP_VERSION); + } + + // swap all the lumps + for (i=0 ; i<sizeof(dheader_t)/4 ; i++) { + ((int *)header)[i] = LittleLong ( ((int *)header)[i]); + } + + // load into heap + R_LoadEntities( &header->lumps[LUMP_ENTITIES] ); + R_LoadShaders( &header->lumps[LUMP_SHADERS] ); + R_LoadLightmaps( &header->lumps[LUMP_LIGHTMAPS], &header->lumps[LUMP_SURFACES] ); + R_LoadPlanes (&header->lumps[LUMP_PLANES]); + R_LoadFogs( &header->lumps[LUMP_FOGS], &header->lumps[LUMP_BRUSHES], &header->lumps[LUMP_BRUSHSIDES] ); + R_LoadSurfaces( &header->lumps[LUMP_SURFACES], &header->lumps[LUMP_DRAWVERTS], &header->lumps[LUMP_DRAWINDEXES] ); + R_LoadMarksurfaces (&header->lumps[LUMP_LEAFSURFACES]); + R_LoadNodesAndLeafs (&header->lumps[LUMP_NODES], &header->lumps[LUMP_LEAFS]); + R_LoadSubmodels (&header->lumps[LUMP_MODELS]); + R_LoadVisibility( &header->lumps[LUMP_VISIBILITY] ); + R_LoadLightGrid( &header->lumps[LUMP_LIGHTGRID] ); + + // determine vertex light directions + R_CalcVertexLightDirs(); + + // determine which parts of the map are in sunlight + if (0) + { + world_t *w; + uint8_t *primaryLightGrid, *data; + int lightGridSize; + int i; + + w = &s_worldData; + + lightGridSize = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2]; + primaryLightGrid = (uint8_t*)ri.Malloc(lightGridSize * sizeof(*primaryLightGrid)); + + memset(primaryLightGrid, 0, lightGridSize * sizeof(*primaryLightGrid)); + + data = w->lightGridData; + for (i = 0; i < lightGridSize; i++, data += 8) + { + int lat, lng; + vec3_t gridLightDir, gridLightCol; + + // skip samples in wall + if (!(data[0]+data[1]+data[2]+data[3]+data[4]+data[5]) ) + continue; + + gridLightCol[0] = ByteToFloat(data[3]); + gridLightCol[1] = ByteToFloat(data[4]); + gridLightCol[2] = ByteToFloat(data[5]); + (void)gridLightCol; // Suppress unused-but-set-variable warning + + lat = data[7]; + lng = data[6]; + lat *= (FUNCTABLE_SIZE/256); + lng *= (FUNCTABLE_SIZE/256); + + // decode X as cos( lat ) * sin( long ) + // decode Y as sin( lat ) * sin( long ) + // decode Z as cos( long ) + + gridLightDir[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; + gridLightDir[1] = tr.sinTable[lat] * tr.sinTable[lng]; + gridLightDir[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; + + // FIXME: magic number for determining if light direction is close enough to sunlight + if (DotProduct(gridLightDir, tr.sunDirection) > 0.75f) + { + primaryLightGrid[i] = 1; + } + else + { + primaryLightGrid[i] = 255; + } + } + + if (0) + { + int i; + byte *buffer = (byte*)ri.Malloc(w->lightGridBounds[0] * w->lightGridBounds[1] * 3 + 18); + byte *out; + uint8_t *in; + char fileName[MAX_QPATH]; + + Com_Memset (buffer, 0, 18); + buffer[2] = 2; // uncompressed type + buffer[12] = w->lightGridBounds[0] & 255; + buffer[13] = w->lightGridBounds[0] >> 8; + buffer[14] = w->lightGridBounds[1] & 255; + buffer[15] = w->lightGridBounds[1] >> 8; + buffer[16] = 24; // pixel size + + in = primaryLightGrid; + for (i = 0; i < w->lightGridBounds[2]; i++) + { + int j; + + sprintf(fileName, "primarylg%d.tga", i); + + out = buffer + 18; + for (j = 0; j < w->lightGridBounds[0] * w->lightGridBounds[1]; j++) + { + if (*in == 1) + { + *out++ = 255; + *out++ = 255; + *out++ = 255; + } + else if (*in == 255) + { + *out++ = 64; + *out++ = 64; + *out++ = 64; + } + else + { + *out++ = 0; + *out++ = 0; + *out++ = 0; + } + in++; + } + + ri.FS_WriteFile(fileName, buffer, w->lightGridBounds[0] * w->lightGridBounds[1] * 3 + 18); + } + + ri.Free(buffer); + } + + for (i = 0; i < w->numWorldSurfaces; i++) + { + msurface_t *surf = w->surfaces + i; + cullinfo_t *ci = &surf->cullinfo; + + if(ci->type & CULLINFO_PLANE) + { + if (DotProduct(ci->plane.normal, tr.sunDirection) <= 0.0f) + { + //ri.Printf(PRINT_ALL, "surface %d is not oriented towards sunlight\n", i); + continue; + } + } + + if(ci->type & CULLINFO_BOX) + { + int ibounds[2][3], x, y, z, goodSamples, numSamples; + vec3_t lightOrigin; + + VectorSubtract( ci->bounds[0], w->lightGridOrigin, lightOrigin ); + + ibounds[0][0] = floor(lightOrigin[0] * w->lightGridInverseSize[0]); + ibounds[0][1] = floor(lightOrigin[1] * w->lightGridInverseSize[1]); + ibounds[0][2] = floor(lightOrigin[2] * w->lightGridInverseSize[2]); + + VectorSubtract( ci->bounds[1], w->lightGridOrigin, lightOrigin ); + + ibounds[1][0] = ceil(lightOrigin[0] * w->lightGridInverseSize[0]); + ibounds[1][1] = ceil(lightOrigin[1] * w->lightGridInverseSize[1]); + ibounds[1][2] = ceil(lightOrigin[2] * w->lightGridInverseSize[2]); + + ibounds[0][0] = CLAMP(ibounds[0][0], 0, w->lightGridSize[0]); + ibounds[0][1] = CLAMP(ibounds[0][1], 0, w->lightGridSize[1]); + ibounds[0][2] = CLAMP(ibounds[0][2], 0, w->lightGridSize[2]); + + ibounds[1][0] = CLAMP(ibounds[1][0], 0, w->lightGridSize[0]); + ibounds[1][1] = CLAMP(ibounds[1][1], 0, w->lightGridSize[1]); + ibounds[1][2] = CLAMP(ibounds[1][2], 0, w->lightGridSize[2]); + + /* + ri.Printf(PRINT_ALL, "surf %d bounds (%f %f %f)-(%f %f %f) ibounds (%d %d %d)-(%d %d %d)\n", i, + ci->bounds[0][0], ci->bounds[0][1], ci->bounds[0][2], + ci->bounds[1][0], ci->bounds[1][1], ci->bounds[1][2], + ibounds[0][0], ibounds[0][1], ibounds[0][2], + ibounds[1][0], ibounds[1][1], ibounds[1][2]); + */ + + goodSamples = 0; + numSamples = 0; + for (x = ibounds[0][0]; x <= ibounds[1][0]; x++) + { + for (y = ibounds[0][1]; y <= ibounds[1][1]; y++) + { + for (z = ibounds[0][2]; z <= ibounds[1][2]; z++) + { + uint8_t primaryLight = primaryLightGrid[x * 8 + y * 8 * w->lightGridBounds[0] + z * 8 * w->lightGridBounds[0] * w->lightGridBounds[2]]; + + if (primaryLight == 0) + continue; + + numSamples++; + + if (primaryLight == 1) + goodSamples++; + } + } + } + + // FIXME: magic number for determining whether object is mostly in sunlight + if (goodSamples > numSamples * 0.75f) + { + //ri.Printf(PRINT_ALL, "surface %d is in sunlight\n", i); + //surf->primaryLight = 1; + } + } + } + + ri.Free(primaryLightGrid); + } + + // load cubemaps + if (r_cubeMapping->integer) + { + // Try loading an env.json file first + R_LoadEnvironmentJson(s_worldData.baseName); + + if (!tr.numCubemaps) + { + R_LoadCubemapEntities("misc_cubemap"); + } + + if (!tr.numCubemaps) + { + // location names are an assured way to get an even distribution + R_LoadCubemapEntities("target_location"); + } + + if (!tr.numCubemaps) + { + // try misc_models + R_LoadCubemapEntities("misc_model"); + } + + if (tr.numCubemaps) + { + R_AssignCubemapsToWorldSurfaces(); + } + } + + s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker; + + // only set tr.world now that we know the entire level has loaded properly + tr.world = &s_worldData; + + // make sure the VAO glState entry is safe + R_BindNullVao(); + + // Render or load all cubemaps + if (r_cubeMapping->integer && tr.numCubemaps && glRefConfig.framebufferObject) + { + R_LoadCubemaps(); + R_RenderMissingCubemaps(); + } + + ri.FS_FreeFile( buffer.v ); +} |