summaryrefslogtreecommitdiff
path: root/src/renderergl2/tr_model_iqm.cpp
diff options
context:
space:
mode:
authorIronClawTrem <louie.nutman@gmail.com>2020-02-16 03:40:06 +0000
committerIronClawTrem <louie.nutman@gmail.com>2020-02-16 03:40:06 +0000
commit425decdf7e9284d15aa726e3ae96b9942fb0e3ea (patch)
tree6c0dd7edfefff1be7b9e75fe0b3a0a85fe1595f3 /src/renderergl2/tr_model_iqm.cpp
parentccb0b2e4d6674a7a00c9bf491f08fc73b6898c54 (diff)
create tremded branch
Diffstat (limited to 'src/renderergl2/tr_model_iqm.cpp')
-rw-r--r--src/renderergl2/tr_model_iqm.cpp1196
1 files changed, 1196 insertions, 0 deletions
diff --git a/src/renderergl2/tr_model_iqm.cpp b/src/renderergl2/tr_model_iqm.cpp
new file mode 100644
index 0000000..40ce9da
--- /dev/null
+++ b/src/renderergl2/tr_model_iqm.cpp
@@ -0,0 +1,1196 @@
+/*
+===========================================================================
+Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
+Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
+Copyright (C) 2015-2019 GrangerHub
+
+This file is part of Tremulous.
+
+Tremulous is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 3 of the License,
+or (at your option) any later version.
+
+Tremulous is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Tremulous; if not, see <https://www.gnu.org/licenses/>
+
+===========================================================================
+*/
+
+#include "tr_local.h"
+
+#define LL(x) x=LittleLong(x)
+
+// 3x4 identity matrix
+static float identityMatrix[12] = {
+ 1, 0, 0, 0,
+ 0, 1, 0, 0,
+ 0, 0, 1, 0
+};
+
+static bool IQM_CheckRange( iqmHeader_t *header, int offset,
+ int count,int size ) {
+ // return true if the range specified by offset, count and size
+ // doesn't fit into the file
+ return ( count <= 0 ||
+ offset < 0 ||
+ offset > header->filesize ||
+ offset + count * size < 0 ||
+ offset + count * size > header->filesize );
+}
+// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
+// of a 4x4 matrix with the last row = (0 0 0 1)
+static void Matrix34Multiply( float *a, float *b, float *out ) {
+ out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
+ out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
+ out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
+ out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3];
+ out[ 4] = a[4] * b[0] + a[5] * b[4] + a[ 6] * b[ 8];
+ out[ 5] = a[4] * b[1] + a[5] * b[5] + a[ 6] * b[ 9];
+ out[ 6] = a[4] * b[2] + a[5] * b[6] + a[ 6] * b[10];
+ out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7];
+ out[ 8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[ 8];
+ out[ 9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[ 9];
+ out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
+ out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
+}
+static void Matrix34Multiply_OnlySetOrigin( float *a, float *b, float *out ) {
+ out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3];
+ out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7];
+ out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
+}
+static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) {
+ float unLerp = 1.0f - lerp;
+
+ mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
+ mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
+ mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
+ mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
+ mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
+ mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
+ mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
+ mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
+ mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
+ mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
+ mat[10] = a[10] * unLerp + b[10] * lerp;
+ mat[11] = a[11] * unLerp + b[11] * lerp;
+}
+static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
+ float *mat ) {
+ float xx = 2.0f * rot[0] * rot[0];
+ float yy = 2.0f * rot[1] * rot[1];
+ float zz = 2.0f * rot[2] * rot[2];
+ float xy = 2.0f * rot[0] * rot[1];
+ float xz = 2.0f * rot[0] * rot[2];
+ float yz = 2.0f * rot[1] * rot[2];
+ float wx = 2.0f * rot[3] * rot[0];
+ float wy = 2.0f * rot[3] * rot[1];
+ float wz = 2.0f * rot[3] * rot[2];
+
+ mat[ 0] = scale[0] * (1.0f - (yy + zz));
+ mat[ 1] = scale[0] * (xy - wz);
+ mat[ 2] = scale[0] * (xz + wy);
+ mat[ 3] = trans[0];
+ mat[ 4] = scale[1] * (xy + wz);
+ mat[ 5] = scale[1] * (1.0f - (xx + zz));
+ mat[ 6] = scale[1] * (yz - wx);
+ mat[ 7] = trans[1];
+ mat[ 8] = scale[2] * (xz - wy);
+ mat[ 9] = scale[2] * (yz + wx);
+ mat[10] = scale[2] * (1.0f - (xx + yy));
+ mat[11] = trans[2];
+}
+static void Matrix34Invert( float *inMat, float *outMat )
+{
+ vec3_t trans;
+ float invSqrLen, *v;
+
+ outMat[ 0] = inMat[ 0]; outMat[ 1] = inMat[ 4]; outMat[ 2] = inMat[ 8];
+ outMat[ 4] = inMat[ 1]; outMat[ 5] = inMat[ 5]; outMat[ 6] = inMat[ 9];
+ outMat[ 8] = inMat[ 2]; outMat[ 9] = inMat[ 6]; outMat[10] = inMat[10];
+
+ v = outMat + 0; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
+ v = outMat + 4; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
+ v = outMat + 8; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
+
+ trans[0] = inMat[ 3];
+ trans[1] = inMat[ 7];
+ trans[2] = inMat[11];
+
+ outMat[ 3] = -DotProduct(outMat + 0, trans);
+ outMat[ 7] = -DotProduct(outMat + 4, trans);
+ outMat[11] = -DotProduct(outMat + 8, trans);
+}
+
+/*
+=================
+R_LoadIQM
+
+Load an IQM model and compute the joint matrices for every frame.
+=================
+*/
+bool R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_name ) {
+ iqmHeader_t *header;
+ iqmVertexArray_t *vertexarray;
+ iqmTriangle_t *triangle;
+ iqmMesh_t *mesh;
+ iqmJoint_t *joint;
+ iqmPose_t *pose;
+ iqmBounds_t *bounds;
+ unsigned short *framedata;
+ char *str;
+ int i, j;
+ float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f};
+ float *mat, *matInv;
+ size_t size, joint_names;
+ iqmData_t *iqmData;
+ srfIQModel_t *surface;
+ char meshName[MAX_QPATH];
+ byte blendIndexesType, blendWeightsType;
+
+ if( filesize < sizeof(iqmHeader_t) ) {
+ return false;
+ }
+
+ header = (iqmHeader_t *)buffer;
+ if( Q_strncmp( header->magic, IQM_MAGIC, sizeof(header->magic) ) ) {
+ return false;
+ }
+
+ LL( header->version );
+ if( header->version != IQM_VERSION ) {
+ ri.Printf(PRINT_WARNING, "R_LoadIQM: %s is a unsupported IQM version (%d), only version %d is supported.\n",
+ mod_name, header->version, IQM_VERSION);
+ return false;
+ }
+
+ LL( header->filesize );
+ if( header->filesize > filesize || header->filesize > 16<<20 ) {
+ return false;
+ }
+
+ LL( header->flags );
+ LL( header->num_text );
+ LL( header->ofs_text );
+ LL( header->num_meshes );
+ LL( header->ofs_meshes );
+ LL( header->num_vertexarrays );
+ LL( header->num_vertexes );
+ LL( header->ofs_vertexarrays );
+ LL( header->num_triangles );
+ LL( header->ofs_triangles );
+ LL( header->ofs_adjacency );
+ LL( header->num_joints );
+ LL( header->ofs_joints );
+ LL( header->num_poses );
+ LL( header->ofs_poses );
+ LL( header->num_anims );
+ LL( header->ofs_anims );
+ LL( header->num_frames );
+ LL( header->num_framechannels );
+ LL( header->ofs_frames );
+ LL( header->ofs_bounds );
+ LL( header->num_comment );
+ LL( header->ofs_comment );
+ LL( header->num_extensions );
+ LL( header->ofs_extensions );
+
+ // check ioq3 joint limit
+ if ( header->num_joints > IQM_MAX_JOINTS ) {
+ ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %d joints (%d).\n",
+ mod_name, IQM_MAX_JOINTS, header->num_joints);
+ return false;
+ }
+
+ blendIndexesType = blendWeightsType = IQM_UBYTE;
+
+ // check and swap vertex arrays
+ if( IQM_CheckRange( header, header->ofs_vertexarrays,
+ header->num_vertexarrays,
+ sizeof(iqmVertexArray_t) ) ) {
+ return false;
+ }
+ vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
+ for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
+ int n, *intPtr;
+
+ if( vertexarray->size <= 0 || vertexarray->size > 4 ) {
+ return false;
+ }
+
+ // total number of values
+ n = header->num_vertexes * vertexarray->size;
+
+ switch( vertexarray->format ) {
+ case IQM_BYTE:
+ case IQM_UBYTE:
+ // 1 byte, no swapping necessary
+ if( IQM_CheckRange( header, vertexarray->offset,
+ n, sizeof(byte) ) ) {
+ return false;
+ }
+ break;
+ case IQM_INT:
+ case IQM_UINT:
+ case IQM_FLOAT:
+ // 4-byte swap
+ if( IQM_CheckRange( header, vertexarray->offset,
+ n, sizeof(float) ) ) {
+ return false;
+ }
+ intPtr = (int *)((byte *)header + vertexarray->offset);
+ for( j = 0; j < n; j++, intPtr++ ) {
+ LL( *intPtr );
+ }
+ break;
+ default:
+ // not supported
+ return false;
+ break;
+ }
+
+ switch( vertexarray->type ) {
+ case IQM_POSITION:
+ case IQM_NORMAL:
+ if( vertexarray->format != IQM_FLOAT ||
+ vertexarray->size != 3 ) {
+ return false;
+ }
+ break;
+ case IQM_TANGENT:
+ if( vertexarray->format != IQM_FLOAT ||
+ vertexarray->size != 4 ) {
+ return false;
+ }
+ break;
+ case IQM_TEXCOORD:
+ if( vertexarray->format != IQM_FLOAT ||
+ vertexarray->size != 2 ) {
+ return false;
+ }
+ break;
+ case IQM_BLENDINDEXES:
+ if( (vertexarray->format != IQM_INT &&
+ vertexarray->format != IQM_UBYTE) ||
+ vertexarray->size != 4 ) {
+ return false;
+ }
+ blendIndexesType = vertexarray->format;
+ break;
+ case IQM_BLENDWEIGHTS:
+ if( (vertexarray->format != IQM_FLOAT &&
+ vertexarray->format != IQM_UBYTE) ||
+ vertexarray->size != 4 ) {
+ return false;
+ }
+ blendWeightsType = vertexarray->format;
+ break;
+ case IQM_COLOR:
+ if( vertexarray->format != IQM_UBYTE ||
+ vertexarray->size != 4 ) {
+ return false;
+ }
+ break;
+ }
+ }
+
+ // check and swap triangles
+ if( IQM_CheckRange( header, header->ofs_triangles,
+ header->num_triangles, sizeof(iqmTriangle_t) ) ) {
+ return false;
+ }
+ triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
+ for( i = 0; i < header->num_triangles; i++, triangle++ ) {
+ LL( triangle->vertex[0] );
+ LL( triangle->vertex[1] );
+ LL( triangle->vertex[2] );
+
+ if( triangle->vertex[0] > header->num_vertexes ||
+ triangle->vertex[1] > header->num_vertexes ||
+ triangle->vertex[2] > header->num_vertexes ) {
+ return false;
+ }
+ }
+
+ // check and swap meshes
+ if( IQM_CheckRange( header, header->ofs_meshes,
+ header->num_meshes, sizeof(iqmMesh_t) ) ) {
+ return false;
+ }
+ mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
+ for( i = 0; i < header->num_meshes; i++, mesh++) {
+ LL( mesh->name );
+ LL( mesh->material );
+ LL( mesh->first_vertex );
+ LL( mesh->num_vertexes );
+ LL( mesh->first_triangle );
+ LL( mesh->num_triangles );
+
+ if ( mesh->name < header->num_text ) {
+ Q_strncpyz( meshName, (char*)header + header->ofs_text + mesh->name, sizeof (meshName) );
+ } else {
+ meshName[0] = '\0';
+ }
+
+ // check ioq3 limits
+ if ( mesh->num_vertexes >= SHADER_MAX_VERTEXES )
+ {
+ ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %i verts on %s (%i).\n",
+ mod_name, SHADER_MAX_VERTEXES - 1, meshName[0] ? meshName : "a surface",
+ mesh->num_vertexes );
+ return false;
+ }
+ if ( mesh->num_triangles*3 >= SHADER_MAX_INDEXES )
+ {
+ ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %i triangles on %s (%i).\n",
+ mod_name, ( SHADER_MAX_INDEXES / 3 ) - 1, meshName[0] ? meshName : "a surface",
+ mesh->num_triangles );
+ return false;
+ }
+
+ if( mesh->first_vertex >= header->num_vertexes ||
+ mesh->first_vertex + mesh->num_vertexes > header->num_vertexes ||
+ mesh->first_triangle >= header->num_triangles ||
+ mesh->first_triangle + mesh->num_triangles > header->num_triangles ||
+ mesh->name >= header->num_text ||
+ mesh->material >= header->num_text ) {
+ return false;
+ }
+ }
+
+ if( header->num_poses != header->num_joints && header->num_poses != 0 ) {
+ ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has %d poses and %d joints, must have the same number or 0 poses\n",
+ mod_name, header->num_poses, header->num_joints );
+ return false;
+ }
+
+ joint_names = 0;
+
+ if ( header->num_joints )
+ {
+ // check and swap joints
+ if( IQM_CheckRange( header, header->ofs_joints,
+ header->num_joints, sizeof(iqmJoint_t) ) ) {
+ return false;
+ }
+ joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
+ for( i = 0; i < header->num_joints; i++, joint++ ) {
+ LL( joint->name );
+ LL( joint->parent );
+ LL( joint->translate[0] );
+ LL( joint->translate[1] );
+ LL( joint->translate[2] );
+ LL( joint->rotate[0] );
+ LL( joint->rotate[1] );
+ LL( joint->rotate[2] );
+ LL( joint->rotate[3] );
+ LL( joint->scale[0] );
+ LL( joint->scale[1] );
+ LL( joint->scale[2] );
+
+ if( joint->parent < -1 ||
+ joint->parent >= (int)header->num_joints ||
+ joint->name >= (int)header->num_text ) {
+ return false;
+ }
+ joint_names += strlen( (char *)header + header->ofs_text +
+ joint->name ) + 1;
+ }
+ }
+
+ if ( header->num_poses )
+ {
+ // check and swap poses
+ if( IQM_CheckRange( header, header->ofs_poses,
+ header->num_poses, sizeof(iqmPose_t) ) ) {
+ return false;
+ }
+ pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
+ for( i = 0; i < header->num_poses; i++, pose++ ) {
+ LL( pose->parent );
+ LL( pose->mask );
+ LL( pose->channeloffset[0] );
+ LL( pose->channeloffset[1] );
+ LL( pose->channeloffset[2] );
+ LL( pose->channeloffset[3] );
+ LL( pose->channeloffset[4] );
+ LL( pose->channeloffset[5] );
+ LL( pose->channeloffset[6] );
+ LL( pose->channeloffset[7] );
+ LL( pose->channeloffset[8] );
+ LL( pose->channeloffset[9] );
+ LL( pose->channelscale[0] );
+ LL( pose->channelscale[1] );
+ LL( pose->channelscale[2] );
+ LL( pose->channelscale[3] );
+ LL( pose->channelscale[4] );
+ LL( pose->channelscale[5] );
+ LL( pose->channelscale[6] );
+ LL( pose->channelscale[7] );
+ LL( pose->channelscale[8] );
+ LL( pose->channelscale[9] );
+ }
+ }
+
+ if (header->ofs_bounds)
+ {
+ // check and swap model bounds
+ if(IQM_CheckRange(header, header->ofs_bounds,
+ header->num_frames, sizeof(*bounds)))
+ {
+ return false;
+ }
+ bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
+ for(i = 0; i < header->num_frames; i++)
+ {
+ LL(bounds->bbmin[0]);
+ LL(bounds->bbmin[1]);
+ LL(bounds->bbmin[2]);
+ LL(bounds->bbmax[0]);
+ LL(bounds->bbmax[1]);
+ LL(bounds->bbmax[2]);
+
+ bounds++;
+ }
+ }
+
+ // allocate the model and copy the data
+ size = sizeof(iqmData_t);
+ size += header->num_meshes * sizeof( srfIQModel_t );
+ size += header->num_joints * 12 * sizeof( float ); // joint mats
+ size += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats
+ if(header->ofs_bounds)
+ size += header->num_frames * 6 * sizeof(float); // model bounds
+ size += header->num_vertexes * 3 * sizeof(float); // positions
+ size += header->num_vertexes * 2 * sizeof(float); // texcoords
+ size += header->num_vertexes * 3 * sizeof(float); // normals
+ size += header->num_vertexes * 4 * sizeof(float); // tangents
+ size += header->num_vertexes * 4 * sizeof(byte); // blendIndexes
+ size += header->num_vertexes * 4 * sizeof(byte); // colors
+ size += header->num_joints * sizeof(int); // parents
+ size += header->num_triangles * 3 * sizeof(int); // triangles
+ size += joint_names; // joint names
+
+ // blendWeights
+ if (blendWeightsType == IQM_FLOAT) {
+ size += header->num_vertexes * 4 * sizeof(float);
+ } else {
+ size += header->num_vertexes * 4 * sizeof(byte);
+ }
+
+ mod->type = MOD_IQM;
+ iqmData = (iqmData_t *)ri.Hunk_Alloc( size, h_low );
+ mod->modelData = iqmData;
+
+ // fill header
+ iqmData->num_vertexes = header->num_vertexes;
+ iqmData->num_triangles = header->num_triangles;
+ iqmData->num_frames = header->num_frames;
+ iqmData->num_surfaces = header->num_meshes;
+ iqmData->num_joints = header->num_joints;
+ iqmData->num_poses = header->num_poses;
+ iqmData->blendWeightsType = blendWeightsType;
+ iqmData->surfaces = (srfIQModel_t *)(iqmData + 1);
+ iqmData->jointMats = (float *) (iqmData->surfaces + iqmData->num_surfaces);
+ iqmData->poseMats = iqmData->jointMats + 12 * header->num_joints;
+ if(header->ofs_bounds)
+ {
+ iqmData->bounds = iqmData->poseMats + 12 * header->num_poses * header->num_frames;
+ iqmData->positions = iqmData->bounds + 6 * header->num_frames;
+ }
+ else
+ iqmData->positions = iqmData->poseMats + 12 * header->num_poses * header->num_frames;
+ iqmData->texcoords = iqmData->positions + 3 * header->num_vertexes;
+ iqmData->normals = iqmData->texcoords + 2 * header->num_vertexes;
+ iqmData->tangents = iqmData->normals + 3 * header->num_vertexes;
+ iqmData->blendIndexes = (byte *)(iqmData->tangents + 4 * header->num_vertexes);
+
+ if(blendWeightsType == IQM_FLOAT) {
+ iqmData->blendWeights.f = (float *)(iqmData->blendIndexes + 4 * header->num_vertexes);
+ iqmData->colors = (byte *)(iqmData->blendWeights.f + 4 * header->num_vertexes);
+ } else {
+ iqmData->blendWeights.b = iqmData->blendIndexes + 4 * header->num_vertexes;
+ iqmData->colors = iqmData->blendWeights.b + 4 * header->num_vertexes;
+ }
+
+ iqmData->jointParents = (int *)(iqmData->colors + 4 * header->num_vertexes);
+ iqmData->triangles = iqmData->jointParents + header->num_joints;
+ iqmData->names = (char *)(iqmData->triangles + 3 * header->num_triangles);
+
+ if ( header->num_joints == 0 )
+ iqmData->jointMats = NULL;
+
+ if ( header->num_poses == 0 )
+ iqmData->poseMats = NULL;
+
+ // calculate joint matrices and their inverses
+ // joint inverses are needed only until the pose matrices are calculated
+ mat = iqmData->jointMats;
+ matInv = jointInvMats;
+ joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
+ for( i = 0; i < header->num_joints; i++, joint++ ) {
+ float baseFrame[12], invBaseFrame[12];
+
+ JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
+ Matrix34Invert( baseFrame, invBaseFrame );
+
+ if ( joint->parent >= 0 )
+ {
+ Matrix34Multiply( iqmData->jointMats + 12 * joint->parent, baseFrame, mat );
+ mat += 12;
+ Matrix34Multiply( invBaseFrame, jointInvMats + 12 * joint->parent, matInv );
+ matInv += 12;
+ }
+ else
+ {
+ Com_Memcpy( mat, baseFrame, sizeof(baseFrame) );
+ mat += 12;
+ Com_Memcpy( matInv, invBaseFrame, sizeof(invBaseFrame) );
+ matInv += 12;
+ }
+ }
+
+ // calculate pose matrices
+ framedata = (unsigned short *)((byte *)header + header->ofs_frames);
+ mat = iqmData->poseMats;
+ for( i = 0; i < header->num_frames; i++ ) {
+ pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
+ for( j = 0; j < header->num_poses; j++, pose++ ) {
+ vec3_t translate;
+ vec4_t rotate;
+ vec3_t scale;
+ float mat1[12], mat2[12];
+
+ translate[0] = pose->channeloffset[0];
+ if( pose->mask & 0x001)
+ translate[0] += *framedata++ * pose->channelscale[0];
+ translate[1] = pose->channeloffset[1];
+ if( pose->mask & 0x002)
+ translate[1] += *framedata++ * pose->channelscale[1];
+ translate[2] = pose->channeloffset[2];
+ if( pose->mask & 0x004)
+ translate[2] += *framedata++ * pose->channelscale[2];
+
+ rotate[0] = pose->channeloffset[3];
+ if( pose->mask & 0x008)
+ rotate[0] += *framedata++ * pose->channelscale[3];
+ rotate[1] = pose->channeloffset[4];
+ if( pose->mask & 0x010)
+ rotate[1] += *framedata++ * pose->channelscale[4];
+ rotate[2] = pose->channeloffset[5];
+ if( pose->mask & 0x020)
+ rotate[2] += *framedata++ * pose->channelscale[5];
+ rotate[3] = pose->channeloffset[6];
+ if( pose->mask & 0x040)
+ rotate[3] += *framedata++ * pose->channelscale[6];
+
+ scale[0] = pose->channeloffset[7];
+ if( pose->mask & 0x080)
+ scale[0] += *framedata++ * pose->channelscale[7];
+ scale[1] = pose->channeloffset[8];
+ if( pose->mask & 0x100)
+ scale[1] += *framedata++ * pose->channelscale[8];
+ scale[2] = pose->channeloffset[9];
+ if( pose->mask & 0x200)
+ scale[2] += *framedata++ * pose->channelscale[9];
+
+ // construct transformation matrix
+ JointToMatrix( rotate, scale, translate, mat1 );
+
+ if( pose->parent >= 0 ) {
+ Matrix34Multiply( iqmData->jointMats + 12 * pose->parent,
+ mat1, mat2 );
+ } else {
+ Com_Memcpy( mat2, mat1, sizeof(mat1) );
+ }
+
+ Matrix34Multiply( mat2, jointInvMats + 12 * j, mat );
+ mat += 12;
+ }
+ }
+
+ // register shaders
+ // overwrite the material offset with the shader index
+ mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
+ surface = iqmData->surfaces;
+ str = (char *)header + header->ofs_text;
+ for( i = 0; i < header->num_meshes; i++, mesh++, surface++ ) {
+ surface->surfaceType = SF_IQM;
+ Q_strncpyz(surface->name, str + mesh->name, sizeof (surface->name));
+ Q_strlwr(surface->name); // lowercase the surface name so skin compares are faster
+ surface->shader = R_FindShader( str + mesh->material, LIGHTMAP_NONE, true );
+ if( surface->shader->defaultShader )
+ surface->shader = tr.defaultShader;
+ surface->data = iqmData;
+ surface->first_vertex = mesh->first_vertex;
+ surface->num_vertexes = mesh->num_vertexes;
+ surface->first_triangle = mesh->first_triangle;
+ surface->num_triangles = mesh->num_triangles;
+ }
+
+ // copy vertexarrays and indexes
+ vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
+ for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
+ int n;
+
+ // total number of values
+ n = header->num_vertexes * vertexarray->size;
+
+ switch( vertexarray->type ) {
+ case IQM_POSITION:
+ Com_Memcpy( iqmData->positions,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(float) );
+ break;
+ case IQM_NORMAL:
+ Com_Memcpy( iqmData->normals,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(float) );
+ break;
+ case IQM_TANGENT:
+ Com_Memcpy( iqmData->tangents,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(float) );
+ break;
+ case IQM_TEXCOORD:
+ Com_Memcpy( iqmData->texcoords,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(float) );
+ break;
+ case IQM_BLENDINDEXES:
+ if( blendIndexesType == IQM_INT ) {
+ int *data = (int*)((byte*)header + vertexarray->offset);
+ for ( j = 0; j < n; j++ ) {
+ iqmData->blendIndexes[j] = (byte)data[j];
+ }
+ } else {
+ Com_Memcpy( iqmData->blendIndexes,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(byte) );
+ }
+ break;
+ case IQM_BLENDWEIGHTS:
+ if( blendWeightsType == IQM_FLOAT ) {
+ Com_Memcpy( iqmData->blendWeights.f,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(float) );
+ } else {
+ Com_Memcpy( iqmData->blendWeights.b,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(byte) );
+ }
+ break;
+ case IQM_COLOR:
+ Com_Memcpy( iqmData->colors,
+ (byte *)header + vertexarray->offset,
+ n * sizeof(byte) );
+ break;
+ }
+ }
+
+ // copy joint parents
+ joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
+ for( i = 0; i < header->num_joints; i++, joint++ ) {
+ iqmData->jointParents[i] = joint->parent;
+ }
+
+ // copy triangles
+ triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
+ for( i = 0; i < header->num_triangles; i++, triangle++ ) {
+ iqmData->triangles[3*i+0] = triangle->vertex[0];
+ iqmData->triangles[3*i+1] = triangle->vertex[1];
+ iqmData->triangles[3*i+2] = triangle->vertex[2];
+ }
+
+ // copy joint names
+ str = iqmData->names;
+ joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
+ for( i = 0; i < header->num_joints; i++, joint++ ) {
+ char *name = (char *)header + header->ofs_text +
+ joint->name;
+ int len = strlen( name ) + 1;
+ Com_Memcpy( str, name, len );
+ str += len;
+ }
+
+ // copy model bounds
+ if(header->ofs_bounds)
+ {
+ mat = iqmData->bounds;
+ bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
+ for(i = 0; i < header->num_frames; i++)
+ {
+ mat[0] = bounds->bbmin[0];
+ mat[1] = bounds->bbmin[1];
+ mat[2] = bounds->bbmin[2];
+ mat[3] = bounds->bbmax[0];
+ mat[4] = bounds->bbmax[1];
+ mat[5] = bounds->bbmax[2];
+
+ mat += 6;
+ bounds++;
+ }
+ }
+
+ return true;
+}
+
+/*
+=============
+R_CullIQM
+=============
+*/
+static int R_CullIQM( iqmData_t *data, trRefEntity_t *ent ) {
+ vec3_t bounds[2];
+ vec_t *oldBounds, *newBounds;
+ int i;
+
+ if (!data->bounds) {
+ tr.pc.c_box_cull_md3_clip++;
+ return CULL_CLIP;
+ }
+
+ // compute bounds pointers
+ oldBounds = data->bounds + 6*ent->e.oldframe;
+ newBounds = data->bounds + 6*ent->e.frame;
+
+ // calculate a bounding box in the current coordinate system
+ for (i = 0 ; i < 3 ; i++) {
+ bounds[0][i] = oldBounds[i] < newBounds[i] ? oldBounds[i] : newBounds[i];
+ bounds[1][i] = oldBounds[i+3] > newBounds[i+3] ? oldBounds[i+3] : newBounds[i+3];
+ }
+
+ switch ( R_CullLocalBox( bounds ) )
+ {
+ case CULL_IN:
+ tr.pc.c_box_cull_md3_in++;
+ return CULL_IN;
+ case CULL_CLIP:
+ tr.pc.c_box_cull_md3_clip++;
+ return CULL_CLIP;
+ case CULL_OUT:
+ default:
+ tr.pc.c_box_cull_md3_out++;
+ return CULL_OUT;
+ }
+}
+
+/*
+=================
+R_ComputeIQMFogNum
+
+=================
+*/
+int R_ComputeIQMFogNum( iqmData_t *data, trRefEntity_t *ent ) {
+ int i, j;
+ fog_t *fog;
+ const vec_t *bounds;
+ const vec_t defaultBounds[6] = { -8, -8, -8, 8, 8, 8 };
+ vec3_t diag, center;
+ vec3_t localOrigin;
+ vec_t radius;
+
+ if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
+ return 0;
+ }
+
+ // FIXME: non-normalized axis issues
+ if (data->bounds) {
+ bounds = data->bounds + 6*ent->e.frame;
+ } else {
+ bounds = defaultBounds;
+ }
+ VectorSubtract( bounds+3, bounds, diag );
+ VectorMA( bounds, 0.5f, diag, center );
+ VectorAdd( ent->e.origin, center, localOrigin );
+ radius = 0.5f * VectorLength( diag );
+
+ for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
+ fog = &tr.world->fogs[i];
+ for ( j = 0 ; j < 3 ; j++ ) {
+ if ( localOrigin[j] - radius >= fog->bounds[1][j] ) {
+ break;
+ }
+ if ( localOrigin[j] + radius <= fog->bounds[0][j] ) {
+ break;
+ }
+ }
+ if ( j == 3 ) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+/*
+=================
+R_AddIQMSurfaces
+
+Add all surfaces of this model
+=================
+*/
+void R_AddIQMSurfaces( trRefEntity_t *ent ) {
+ iqmData_t *data;
+ srfIQModel_t *surface;
+ int i, j;
+ bool personalModel;
+ int cull;
+ int fogNum;
+ int cubemapIndex;
+ shader_t *shader;
+ skin_t *skin;
+
+ data = (iqmData_t*)tr.currentModel->modelData;
+ surface = data->surfaces;
+
+ // don't add third_person objects if not in a portal
+ personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !(tr.viewParms.isPortal
+ || (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW)));
+
+
+ if ( ent->e.renderfx & RF_WRAP_FRAMES ) {
+ ent->e.frame %= data->num_frames;
+ ent->e.oldframe %= data->num_frames;
+ }
+
+ //
+ // Validate the frames so there is no chance of a crash.
+ // This will write directly into the entity structure, so
+ // when the surfaces are rendered, they don't need to be
+ // range checked again.
+ //
+ if ( (ent->e.frame >= data->num_frames)
+ || (ent->e.frame < 0)
+ || (ent->e.oldframe >= data->num_frames)
+ || (ent->e.oldframe < 0) ) {
+ ri.Printf( PRINT_DEVELOPER, "R_AddIQMSurfaces: no such frame %d to %d for '%s'\n",
+ ent->e.oldframe, ent->e.frame,
+ tr.currentModel->name );
+ ent->e.frame = 0;
+ ent->e.oldframe = 0;
+ }
+
+ //
+ // cull the entire model if merged bounding box of both frames
+ // is outside the view frustum.
+ //
+ cull = R_CullIQM ( data, ent );
+ if ( cull == CULL_OUT ) {
+ return;
+ }
+
+ //
+ // set up lighting now that we know we aren't culled
+ //
+ if ( !personalModel || r_shadows->integer > 1 ) {
+ R_SetupEntityLighting( &tr.refdef, ent );
+ }
+
+ //
+ // see if we are in a fog volume
+ //
+ fogNum = R_ComputeIQMFogNum( data, ent );
+
+ cubemapIndex = R_CubemapForPoint(ent->e.origin);
+
+ for ( i = 0 ; i < data->num_surfaces ; i++ ) {
+ if(ent->e.customShader)
+ shader = R_GetShaderByHandle( ent->e.customShader );
+ else if(ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins)
+ {
+ skin = R_GetSkinByHandle(ent->e.customSkin);
+ shader = tr.defaultShader;
+
+ for(j = 0; j < skin->numSurfaces; j++)
+ {
+ if (!strcmp(skin->surfaces[j].name, surface->name))
+ {
+ shader = skin->surfaces[j].shader;
+ break;
+ }
+ }
+ } else {
+ shader = surface->shader;
+ }
+
+ // we will add shadows even if the main object isn't visible in the view
+
+ // stencil shadows can't do personal models unless I polyhedron clip
+ if ( !personalModel
+ && r_shadows->integer == 2
+ && fogNum == 0
+ && !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
+ && shader->sort == SS_OPAQUE ) {
+ R_AddDrawSurf( (surfaceType_t*)surface, tr.shadowShader, 0, 0, 0, 0 );
+ }
+
+ // projection shadows work fine with personal models
+ if ( r_shadows->integer == 3
+ && fogNum == 0
+ && (ent->e.renderfx & RF_SHADOW_PLANE )
+ && shader->sort == SS_OPAQUE ) {
+ R_AddDrawSurf( (surfaceType_t*)surface, tr.projectionShadowShader, 0, 0, 0, 0 );
+ }
+
+ if( !personalModel ) {
+ R_AddDrawSurf( (surfaceType_t*)surface, shader, fogNum, 0, 0, cubemapIndex );
+ }
+
+ surface++;
+ }
+}
+
+
+static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
+ float backlerp, float *mat ) {
+ float *mat1, *mat2;
+ int *joint = data->jointParents;
+ int i;
+
+ if ( data->num_poses == 0 ) {
+ for( i = 0; i < data->num_joints; i++, joint++ ) {
+ if( *joint >= 0 ) {
+ Matrix34Multiply( mat + 12 * *joint,
+ identityMatrix, mat + 12*i );
+ } else {
+ Com_Memcpy( mat + 12*i, identityMatrix, 12 * sizeof(float) );
+ }
+ }
+ return;
+ }
+
+ if ( oldframe == frame ) {
+ mat1 = data->poseMats + 12 * data->num_poses * frame;
+ for( i = 0; i < data->num_poses; i++, joint++ ) {
+ if( *joint >= 0 ) {
+ Matrix34Multiply( mat + 12 * *joint,
+ mat1 + 12*i, mat + 12*i );
+ } else {
+ Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
+ }
+ }
+ } else {
+ mat1 = data->poseMats + 12 * data->num_poses * frame;
+ mat2 = data->poseMats + 12 * data->num_poses * oldframe;
+
+ for( i = 0; i < data->num_poses; i++, joint++ ) {
+ if( *joint >= 0 ) {
+ float tmpMat[12];
+ InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
+ backlerp, tmpMat );
+ Matrix34Multiply( mat + 12 * *joint,
+ tmpMat, mat + 12*i );
+
+ } else {
+ InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
+ backlerp, mat );
+ }
+ }
+ }
+}
+
+static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
+ float backlerp, float *mat ) {
+ float *mat1;
+ int i;
+
+ ComputePoseMats( data, frame, oldframe, backlerp, mat );
+
+ for( i = 0; i < data->num_joints; i++ ) {
+ float outmat[12];
+ mat1 = mat + 12 * i;
+
+ Com_Memcpy(outmat, mat1, sizeof(outmat));
+
+ Matrix34Multiply_OnlySetOrigin( outmat, data->jointMats + 12 * i, mat1 );
+ }
+}
+
+
+/*
+=================
+RB_AddIQMSurfaces
+
+Compute vertices for this model surface
+=================
+*/
+void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
+ srfIQModel_t *surf = (srfIQModel_t *)surface;
+ iqmData_t *data = surf->data;
+ float jointMats[IQM_MAX_JOINTS * 12];
+ int i;
+
+ vec4_t *outXYZ;
+ int16_t *outNormal;
+ int16_t *outTangent;
+ vec2_t *outTexCoord;
+ uint16_t *outColor;
+
+ int frame = data->num_frames ? backEnd.currentEntity->e.frame % data->num_frames : 0;
+ int oldframe = data->num_frames ? backEnd.currentEntity->e.oldframe % data->num_frames : 0;
+ float backlerp = backEnd.currentEntity->e.backlerp;
+
+ int *tri;
+ glIndex_t *ptr;
+ glIndex_t base;
+
+ RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );
+
+ outXYZ = &tess.xyz[tess.numVertexes];
+ outNormal = tess.normal[tess.numVertexes];
+ outTangent = tess.tangent[tess.numVertexes];
+ outTexCoord = &tess.texCoords[tess.numVertexes];
+ outColor = tess.color[tess.numVertexes];
+
+ // compute interpolated joint matrices
+ if ( data->num_poses > 0 ) {
+ ComputePoseMats( data, frame, oldframe, backlerp, jointMats );
+ }
+
+ // transform vertexes and fill other data
+ for( i = 0; i < surf->num_vertexes;
+ i++, outXYZ++, outNormal+=4, outTexCoord++, outColor+=4 ) {
+ int j, k;
+ float vtxMat[12];
+ float nrmMat[9];
+ int vtx = i + surf->first_vertex;
+ float blendWeights[4];
+ int numWeights;
+
+ for ( numWeights = 0; numWeights < 4; numWeights++ ) {
+ if ( data->blendWeightsType == IQM_FLOAT )
+ blendWeights[numWeights] = data->blendWeights.f[4*vtx + numWeights];
+ else
+ blendWeights[numWeights] = (float)data->blendWeights.b[4*vtx + numWeights] / 255.0f;
+
+ if ( blendWeights[numWeights] <= 0 )
+ break;
+ }
+
+ if ( data->num_poses == 0 || numWeights == 0 ) {
+ // no blend joint, use identity matrix.
+ Com_Memcpy( vtxMat, identityMatrix, 12 * sizeof (float) );
+ } else {
+ // compute the vertex matrix by blending the up to
+ // four blend weights
+ Com_Memset( vtxMat, 0, 12 * sizeof (float) );
+ for( j = 0; j < numWeights; j++ ) {
+ for( k = 0; k < 12; k++ ) {
+ vtxMat[k] += blendWeights[j] * jointMats[12*data->blendIndexes[4*vtx + j] + k];
+ }
+ }
+ }
+
+ // compute the normal matrix as transpose of the adjoint
+ // of the vertex matrix
+ nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
+ nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
+ nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
+ nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
+ nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
+ nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
+ nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
+ nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
+ nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
+
+ (*outTexCoord)[0] = data->texcoords[2*vtx + 0];
+ (*outTexCoord)[1] = data->texcoords[2*vtx + 1];
+
+ (*outXYZ)[0] =
+ vtxMat[ 0] * data->positions[3*vtx+0] +
+ vtxMat[ 1] * data->positions[3*vtx+1] +
+ vtxMat[ 2] * data->positions[3*vtx+2] +
+ vtxMat[ 3];
+ (*outXYZ)[1] =
+ vtxMat[ 4] * data->positions[3*vtx+0] +
+ vtxMat[ 5] * data->positions[3*vtx+1] +
+ vtxMat[ 6] * data->positions[3*vtx+2] +
+ vtxMat[ 7];
+ (*outXYZ)[2] =
+ vtxMat[ 8] * data->positions[3*vtx+0] +
+ vtxMat[ 9] * data->positions[3*vtx+1] +
+ vtxMat[10] * data->positions[3*vtx+2] +
+ vtxMat[11];
+ (*outXYZ)[3] = 1.0f;
+
+ {
+ vec3_t normal;
+ vec4_t tangent;
+
+ normal[0] = DotProduct(&nrmMat[0], &data->normals[3*vtx]);
+ normal[1] = DotProduct(&nrmMat[3], &data->normals[3*vtx]);
+ normal[2] = DotProduct(&nrmMat[6], &data->normals[3*vtx]);
+
+ R_VaoPackNormal(outNormal, normal);
+
+ tangent[0] = DotProduct(&nrmMat[0], &data->tangents[4*vtx]);
+ tangent[1] = DotProduct(&nrmMat[3], &data->tangents[4*vtx]);
+ tangent[2] = DotProduct(&nrmMat[6], &data->tangents[4*vtx]);
+ tangent[3] = data->tangents[4*vtx+3];
+
+ R_VaoPackTangent(outTangent, tangent);
+ outTangent+=4;
+ }
+
+ outColor[0] = data->colors[4*vtx+0] * 257;
+ outColor[1] = data->colors[4*vtx+1] * 257;
+ outColor[2] = data->colors[4*vtx+2] * 257;
+ outColor[3] = data->colors[4*vtx+3] * 257;
+ }
+
+ tri = data->triangles + 3 * surf->first_triangle;
+ ptr = &tess.indexes[tess.numIndexes];
+ base = tess.numVertexes;
+
+ for( i = 0; i < surf->num_triangles; i++ ) {
+ *ptr++ = base + (*tri++ - surf->first_vertex);
+ *ptr++ = base + (*tri++ - surf->first_vertex);
+ *ptr++ = base + (*tri++ - surf->first_vertex);
+ }
+
+ tess.numIndexes += 3 * surf->num_triangles;
+ tess.numVertexes += surf->num_vertexes;
+}
+
+int R_IQMLerpTag( orientation_t *tag, iqmData_t *data,
+ int startFrame, int endFrame,
+ float frac, const char *tagName ) {
+ float jointMats[IQM_MAX_JOINTS * 12];
+ int joint;
+ char *names = data->names;
+
+ // get joint number by reading the joint names
+ for( joint = 0; joint < data->num_joints; joint++ ) {
+ if( !strcmp( tagName, names ) )
+ break;
+ names += strlen( names ) + 1;
+ }
+ if( joint >= data->num_joints ) {
+ AxisClear( tag->axis );
+ VectorClear( tag->origin );
+ return false;
+ }
+
+ ComputeJointMats( data, startFrame, endFrame, frac, jointMats );
+
+ tag->axis[0][0] = jointMats[12 * joint + 0];
+ tag->axis[1][0] = jointMats[12 * joint + 1];
+ tag->axis[2][0] = jointMats[12 * joint + 2];
+ tag->origin[0] = jointMats[12 * joint + 3];
+ tag->axis[0][1] = jointMats[12 * joint + 4];
+ tag->axis[1][1] = jointMats[12 * joint + 5];
+ tag->axis[2][1] = jointMats[12 * joint + 6];
+ tag->origin[1] = jointMats[12 * joint + 7];
+ tag->axis[0][2] = jointMats[12 * joint + 8];
+ tag->axis[1][2] = jointMats[12 * joint + 9];
+ tag->axis[2][2] = jointMats[12 * joint + 10];
+ tag->origin[2] = jointMats[12 * joint + 11];
+
+ return true;
+}