summaryrefslogtreecommitdiff
path: root/external/nettle-3.3/nettle/macros.h
diff options
context:
space:
mode:
Diffstat (limited to 'external/nettle-3.3/nettle/macros.h')
-rw-r--r--external/nettle-3.3/nettle/macros.h245
1 files changed, 245 insertions, 0 deletions
diff --git a/external/nettle-3.3/nettle/macros.h b/external/nettle-3.3/nettle/macros.h
new file mode 100644
index 0000000..af84841
--- /dev/null
+++ b/external/nettle-3.3/nettle/macros.h
@@ -0,0 +1,245 @@
+/* macros.h
+
+ Copyright (C) 2001, 2010 Niels Möller
+
+ This file is part of GNU Nettle.
+
+ GNU Nettle is free software: you can redistribute it and/or
+ modify it under the terms of either:
+
+ * the GNU Lesser General Public License as published by the Free
+ Software Foundation; either version 3 of the License, or (at your
+ option) any later version.
+
+ or
+
+ * the GNU General Public License as published by the Free
+ Software Foundation; either version 3 of the License, or (at your
+ option) any later version.
+
+ or both in parallel, as here.
+
+ GNU Nettle is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received copies of the GNU General Public License and
+ the GNU Lesser General Public License along with this program. If
+ not, see http://www.gnu.org/licenses/.
+*/
+
+#ifndef NETTLE_MACROS_H_INCLUDED
+#define NETTLE_MACROS_H_INCLUDED
+
+/* Reads a 64-bit integer, in network, big-endian, byte order */
+#define READ_UINT64(p) \
+( (((uint64_t) (p)[0]) << 56) \
+ | (((uint64_t) (p)[1]) << 48) \
+ | (((uint64_t) (p)[2]) << 40) \
+ | (((uint64_t) (p)[3]) << 32) \
+ | (((uint64_t) (p)[4]) << 24) \
+ | (((uint64_t) (p)[5]) << 16) \
+ | (((uint64_t) (p)[6]) << 8) \
+ | ((uint64_t) (p)[7]))
+
+#define WRITE_UINT64(p, i) \
+do { \
+ (p)[0] = ((i) >> 56) & 0xff; \
+ (p)[1] = ((i) >> 48) & 0xff; \
+ (p)[2] = ((i) >> 40) & 0xff; \
+ (p)[3] = ((i) >> 32) & 0xff; \
+ (p)[4] = ((i) >> 24) & 0xff; \
+ (p)[5] = ((i) >> 16) & 0xff; \
+ (p)[6] = ((i) >> 8) & 0xff; \
+ (p)[7] = (i) & 0xff; \
+} while(0)
+
+/* Reads a 32-bit integer, in network, big-endian, byte order */
+#define READ_UINT32(p) \
+( (((uint32_t) (p)[0]) << 24) \
+ | (((uint32_t) (p)[1]) << 16) \
+ | (((uint32_t) (p)[2]) << 8) \
+ | ((uint32_t) (p)[3]))
+
+#define WRITE_UINT32(p, i) \
+do { \
+ (p)[0] = ((i) >> 24) & 0xff; \
+ (p)[1] = ((i) >> 16) & 0xff; \
+ (p)[2] = ((i) >> 8) & 0xff; \
+ (p)[3] = (i) & 0xff; \
+} while(0)
+
+/* Analogous macros, for 24 and 16 bit numbers */
+#define READ_UINT24(p) \
+( (((uint32_t) (p)[0]) << 16) \
+ | (((uint32_t) (p)[1]) << 8) \
+ | ((uint32_t) (p)[2]))
+
+#define WRITE_UINT24(p, i) \
+do { \
+ (p)[0] = ((i) >> 16) & 0xff; \
+ (p)[1] = ((i) >> 8) & 0xff; \
+ (p)[2] = (i) & 0xff; \
+} while(0)
+
+#define READ_UINT16(p) \
+( (((uint32_t) (p)[0]) << 8) \
+ | ((uint32_t) (p)[1]))
+
+#define WRITE_UINT16(p, i) \
+do { \
+ (p)[0] = ((i) >> 8) & 0xff; \
+ (p)[1] = (i) & 0xff; \
+} while(0)
+
+/* And the other, little-endian, byteorder */
+#define LE_READ_UINT64(p) \
+( (((uint64_t) (p)[7]) << 56) \
+ | (((uint64_t) (p)[6]) << 48) \
+ | (((uint64_t) (p)[5]) << 40) \
+ | (((uint64_t) (p)[4]) << 32) \
+ | (((uint64_t) (p)[3]) << 24) \
+ | (((uint64_t) (p)[2]) << 16) \
+ | (((uint64_t) (p)[1]) << 8) \
+ | ((uint64_t) (p)[0]))
+
+#define LE_WRITE_UINT64(p, i) \
+do { \
+ (p)[7] = ((i) >> 56) & 0xff; \
+ (p)[6] = ((i) >> 48) & 0xff; \
+ (p)[5] = ((i) >> 40) & 0xff; \
+ (p)[4] = ((i) >> 32) & 0xff; \
+ (p)[3] = ((i) >> 24) & 0xff; \
+ (p)[2] = ((i) >> 16) & 0xff; \
+ (p)[1] = ((i) >> 8) & 0xff; \
+ (p)[0] = (i) & 0xff; \
+} while (0)
+
+#define LE_READ_UINT32(p) \
+( (((uint32_t) (p)[3]) << 24) \
+ | (((uint32_t) (p)[2]) << 16) \
+ | (((uint32_t) (p)[1]) << 8) \
+ | ((uint32_t) (p)[0]))
+
+#define LE_WRITE_UINT32(p, i) \
+do { \
+ (p)[3] = ((i) >> 24) & 0xff; \
+ (p)[2] = ((i) >> 16) & 0xff; \
+ (p)[1] = ((i) >> 8) & 0xff; \
+ (p)[0] = (i) & 0xff; \
+} while(0)
+
+/* Analogous macros, for 16 bit numbers */
+#define LE_READ_UINT16(p) \
+ ( (((uint32_t) (p)[1]) << 8) \
+ | ((uint32_t) (p)[0]))
+
+#define LE_WRITE_UINT16(p, i) \
+ do { \
+ (p)[1] = ((i) >> 8) & 0xff; \
+ (p)[0] = (i) & 0xff; \
+ } while(0)
+
+/* Macro to make it easier to loop over several blocks. */
+#define FOR_BLOCKS(length, dst, src, blocksize) \
+ assert( !((length) % (blocksize))); \
+ for (; (length); ((length) -= (blocksize), \
+ (dst) += (blocksize), \
+ (src) += (blocksize)) )
+
+/* The masking of the right shift is needed to allow n == 0 (using
+ just 32 - n and 64 - n results in undefined behaviour). Most uses
+ of these macros use a constant and non-zero rotation count. */
+#define ROTL32(n,x) (((x)<<(n)) | ((x)>>((-(n)&31))))
+
+#define ROTL64(n,x) (((x)<<(n)) | ((x)>>((-(n))&63)))
+
+/* Requires that size > 0 */
+#define INCREMENT(size, ctr) \
+ do { \
+ unsigned increment_i = (size) - 1; \
+ if (++(ctr)[increment_i] == 0) \
+ while (increment_i > 0 \
+ && ++(ctr)[--increment_i] == 0 ) \
+ ; \
+ } while (0)
+
+
+/* Helper macro for Merkle-Damgård hash functions. Assumes the context
+ structs includes the following fields:
+
+ uint8_t block[...]; // Buffer holding one block
+ unsigned int index; // Index into block
+*/
+
+/* Currently used by sha512 (and sha384) only. */
+#define MD_INCR(ctx) ((ctx)->count_high += !++(ctx)->count_low)
+
+/* Takes the compression function f as argument. NOTE: also clobbers
+ length and data. */
+#define MD_UPDATE(ctx, length, data, f, incr) \
+ do { \
+ if ((ctx)->index) \
+ { \
+ /* Try to fill partial block */ \
+ unsigned __md_left = sizeof((ctx)->block) - (ctx)->index; \
+ if ((length) < __md_left) \
+ { \
+ memcpy((ctx)->block + (ctx)->index, (data), (length)); \
+ (ctx)->index += (length); \
+ goto __md_done; /* Finished */ \
+ } \
+ else \
+ { \
+ memcpy((ctx)->block + (ctx)->index, (data), __md_left); \
+ \
+ f((ctx), (ctx)->block); \
+ (incr); \
+ \
+ (data) += __md_left; \
+ (length) -= __md_left; \
+ } \
+ } \
+ while ((length) >= sizeof((ctx)->block)) \
+ { \
+ f((ctx), (data)); \
+ (incr); \
+ \
+ (data) += sizeof((ctx)->block); \
+ (length) -= sizeof((ctx)->block); \
+ } \
+ memcpy ((ctx)->block, (data), (length)); \
+ (ctx)->index = (length); \
+ __md_done: \
+ ; \
+ } while (0)
+
+/* Pads the block to a block boundary with the bit pattern 1 0*,
+ leaving size octets for the length field at the end. If needed,
+ compresses the block and starts a new one. */
+#define MD_PAD(ctx, size, f) \
+ do { \
+ unsigned __md_i; \
+ __md_i = (ctx)->index; \
+ \
+ /* Set the first char of padding to 0x80. This is safe since there \
+ is always at least one byte free */ \
+ \
+ assert(__md_i < sizeof((ctx)->block)); \
+ (ctx)->block[__md_i++] = 0x80; \
+ \
+ if (__md_i > (sizeof((ctx)->block) - (size))) \
+ { /* No room for length in this block. Process it and \
+ pad with another one */ \
+ memset((ctx)->block + __md_i, 0, sizeof((ctx)->block) - __md_i); \
+ \
+ f((ctx), (ctx)->block); \
+ __md_i = 0; \
+ } \
+ memset((ctx)->block + __md_i, 0, \
+ sizeof((ctx)->block) - (size) - __md_i); \
+ \
+ } while (0)
+
+#endif /* NETTLE_MACROS_H_INCLUDED */