diff options
Diffstat (limited to 'external/nettle-3.3/nettle/rsa-sign.c')
-rw-r--r-- | external/nettle-3.3/nettle/rsa-sign.c | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/external/nettle-3.3/nettle/rsa-sign.c b/external/nettle-3.3/nettle/rsa-sign.c new file mode 100644 index 0000000..5cae041 --- /dev/null +++ b/external/nettle-3.3/nettle/rsa-sign.c @@ -0,0 +1,144 @@ +/* rsa-sign.c + + Creating RSA signatures. + + Copyright (C) 2001, 2003 Niels Möller + + This file is part of GNU Nettle. + + GNU Nettle is free software: you can redistribute it and/or + modify it under the terms of either: + + * the GNU Lesser General Public License as published by the Free + Software Foundation; either version 3 of the License, or (at your + option) any later version. + + or + + * the GNU General Public License as published by the Free + Software Foundation; either version 3 of the License, or (at your + option) any later version. + + or both in parallel, as here. + + GNU Nettle is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + General Public License for more details. + + You should have received copies of the GNU General Public License and + the GNU Lesser General Public License along with this program. If + not, see http://www.gnu.org/licenses/. +*/ + +#if HAVE_CONFIG_H +# include "config.h" +#endif + +#include "rsa.h" + +#include "bignum.h" + +void +rsa_private_key_init(struct rsa_private_key *key) +{ + mpz_init(key->d); + mpz_init(key->p); + mpz_init(key->q); + mpz_init(key->a); + mpz_init(key->b); + mpz_init(key->c); + + /* Not really necessary, but it seems cleaner to initialize all the + * storage. */ + key->size = 0; +} + +void +rsa_private_key_clear(struct rsa_private_key *key) +{ + mpz_clear(key->d); + mpz_clear(key->p); + mpz_clear(key->q); + mpz_clear(key->a); + mpz_clear(key->b); + mpz_clear(key->c); +} + +int +rsa_private_key_prepare(struct rsa_private_key *key) +{ + mpz_t n; + + /* The size of the product is the sum of the sizes of the factors, + * or sometimes one less. It's possible but tricky to compute the + * size without computing the full product. */ + + mpz_init(n); + mpz_mul(n, key->p, key->q); + + key->size = _rsa_check_size(n); + + mpz_clear(n); + + return (key->size > 0); +} + +/* Computing an rsa root. */ +void +rsa_compute_root(const struct rsa_private_key *key, + mpz_t x, const mpz_t m) +{ + mpz_t xp; /* modulo p */ + mpz_t xq; /* modulo q */ + + mpz_init(xp); mpz_init(xq); + + /* Compute xq = m^d % q = (m%q)^b % q */ + mpz_fdiv_r(xq, m, key->q); + mpz_powm_sec(xq, xq, key->b, key->q); + + /* Compute xp = m^d % p = (m%p)^a % p */ + mpz_fdiv_r(xp, m, key->p); + mpz_powm_sec(xp, xp, key->a, key->p); + + /* Set xp' = (xp - xq) c % p. */ + mpz_sub(xp, xp, xq); + mpz_mul(xp, xp, key->c); + mpz_fdiv_r(xp, xp, key->p); + + /* Finally, compute x = xq + q xp' + * + * To prove that this works, note that + * + * xp = x + i p, + * xq = x + j q, + * c q = 1 + k p + * + * for some integers i, j and k. Now, for some integer l, + * + * xp' = (xp - xq) c + l p + * = (x + i p - (x + j q)) c + l p + * = (i p - j q) c + l p + * = (i c + l) p - j (c q) + * = (i c + l) p - j (1 + kp) + * = (i c + l - j k) p - j + * + * which shows that xp' = -j (mod p). We get + * + * xq + q xp' = x + j q + (i c + l - j k) p q - j q + * = x + (i c + l - j k) p q + * + * so that + * + * xq + q xp' = x (mod pq) + * + * We also get 0 <= xq + q xp' < p q, because + * + * 0 <= xq < q and 0 <= xp' < p. + */ + mpz_mul(x, key->q, xp); + mpz_add(x, x, xq); + + mpz_clear(xp); mpz_clear(xq); +} |