summaryrefslogtreecommitdiff
path: root/external/sol/sol.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'external/sol/sol.hpp')
-rw-r--r--external/sol/sol.hpp13353
1 files changed, 13353 insertions, 0 deletions
diff --git a/external/sol/sol.hpp b/external/sol/sol.hpp
new file mode 100644
index 0000000..d30d969
--- /dev/null
+++ b/external/sol/sol.hpp
@@ -0,0 +1,13353 @@
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2016 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+// This file was generated with a script.
+// Generated 2017-03-24 01:12:07.656967 UTC
+// This header was generated with sol v2.16.0 (revision 7c29964)
+// https://github.com/ThePhD/sol2
+
+#ifndef SOL_SINGLE_INCLUDE_HPP
+#define SOL_SINGLE_INCLUDE_HPP
+
+// beginning of sol.hpp
+
+#ifndef SOL_HPP
+#define SOL_HPP
+
+#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
+#define SOL_INSIDE_UNREAL
+#endif // Unreal Engine 4 bullshit
+
+#ifdef SOL_INSIDE_UNREAL
+#ifdef check
+#define SOL_INSIDE_UNREAL_REMOVED_CHECK
+#undef check
+#endif
+#endif // Unreal Engine 4 Bullshit
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wshadow"
+#pragma GCC diagnostic ignored "-Wconversion"
+#elif defined _MSC_VER
+#pragma warning( push )
+#pragma warning( disable : 4324 ) // structure was padded due to alignment specifier
+#endif // g++
+
+// beginning of sol/state.hpp
+
+// beginning of sol/state_view.hpp
+
+// beginning of sol/error.hpp
+
+#include <stdexcept>
+#include <string>
+
+namespace sol {
+ namespace detail {
+ struct direct_error_tag {};
+ const auto direct_error = direct_error_tag{};
+ } // detail
+
+ class error : public std::runtime_error {
+ private:
+ // Because VC++ is a fuccboi
+ std::string w;
+ public:
+ error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {}
+ error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) {}
+ error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), w(str) {}
+ error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), w(std::move(str)) {}
+
+ error(const error& e) = default;
+ error(error&& e) = default;
+ error& operator=(const error& e) = default;
+ error& operator=(error&& e) = default;
+
+ virtual const char* what() const noexcept override {
+ return w.c_str();
+ }
+ };
+
+} // sol
+
+// end of sol/error.hpp
+
+// beginning of sol/table.hpp
+
+// beginning of sol/table_core.hpp
+
+// beginning of sol/proxy.hpp
+
+// beginning of sol/traits.hpp
+
+// beginning of sol/tuple.hpp
+
+#include <tuple>
+#include <cstddef>
+
+namespace sol {
+ namespace detail {
+ using swallow = std::initializer_list<int>;
+ } // detail
+
+ template<typename... Args>
+ struct types { typedef std::make_index_sequence<sizeof...(Args)> indices; static constexpr std::size_t size() { return sizeof...(Args); } };
+ namespace meta {
+ namespace detail {
+ template<typename... Args>
+ struct tuple_types_ { typedef types<Args...> type; };
+
+ template<typename... Args>
+ struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
+ } // detail
+
+ template<typename T>
+ using unqualified = std::remove_cv<std::remove_reference_t<T>>;
+
+ template<typename T>
+ using unqualified_t = typename unqualified<T>::type;
+
+ template<typename... Args>
+ using tuple_types = typename detail::tuple_types_<Args...>::type;
+
+ template<typename Arg>
+ struct pop_front_type;
+
+ template<typename Arg>
+ using pop_front_type_t = typename pop_front_type<Arg>::type;
+
+ template<typename... Args>
+ struct pop_front_type<types<Args...>> { typedef void front_type; typedef types<Args...> type; };
+
+ template<typename Arg, typename... Args>
+ struct pop_front_type<types<Arg, Args...>> { typedef Arg front_type; typedef types<Args...> type; };
+
+ template <std::size_t N, typename Tuple>
+ using tuple_element = std::tuple_element<N, unqualified_t<Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using tuple_element_t = std::tuple_element_t<N, unqualified_t<Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
+
+ } // meta
+} // sol
+
+// end of sol/tuple.hpp
+
+// beginning of sol/bind_traits.hpp
+
+namespace sol {
+ namespace meta {
+ namespace meta_detail {
+
+ template<class F>
+ struct check_deducible_signature {
+ struct nat {};
+ template<class G>
+ static auto test(int) -> decltype(&G::operator(), void());
+ template<class>
+ static auto test(...)->nat;
+
+ using type = std::is_void<decltype(test<F>(0))>;
+ };
+ } // meta_detail
+
+ template<class F>
+ struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type { };
+
+ namespace meta_detail {
+
+ template <std::size_t I, typename T>
+ struct void_tuple_element : meta::tuple_element<I, T> {};
+
+ template <std::size_t I>
+ struct void_tuple_element<I, std::tuple<>> { typedef void type; };
+
+ template <std::size_t I, typename T>
+ using void_tuple_element_t = typename void_tuple_element<I, T>::type;
+
+ template <bool has_c_variadic, typename T, typename R, typename... Args>
+ struct basic_traits {
+ private:
+ typedef std::conditional_t<std::is_void<T>::value, int, T>& first_type;
+
+ public:
+ static const bool is_member_function = std::is_void<T>::value;
+ static const bool has_c_var_arg = has_c_variadic;
+ static const std::size_t arity = sizeof...(Args);
+ static const std::size_t free_arity = sizeof...(Args)+static_cast<std::size_t>(!std::is_void<T>::value);
+ typedef types<Args...> args_list;
+ typedef std::tuple<Args...> args_tuple;
+ typedef T object_type;
+ typedef R return_type;
+ typedef tuple_types<R> returns_list;
+ typedef R(function_type)(Args...);
+ typedef std::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
+ typedef std::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
+ typedef std::conditional_t<std::is_void<T>::value, R(*)(Args...), R(*)(first_type, Args...)> free_function_pointer_type;
+ typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
+ template<std::size_t i>
+ using arg_at = void_tuple_element_t<i, args_tuple>;
+ };
+
+ template<typename Signature, bool b = has_deducible_signature<Signature>::value>
+ struct fx_traits : basic_traits<false, void, void> {};
+
+ // Free Functions
+ template<typename R, typename... Args>
+ struct fx_traits<R(Args...), false> : basic_traits<false, void, R, Args...> {
+ typedef R(*function_pointer_type)(Args...);
+ };
+
+ template<typename R, typename... Args>
+ struct fx_traits<R(*)(Args...), false> : basic_traits<false, void, R, Args...> {
+ typedef R(*function_pointer_type)(Args...);
+ };
+
+ template<typename R, typename... Args>
+ struct fx_traits<R(Args..., ...), false> : basic_traits<true, void, R, Args...> {
+ typedef R(*function_pointer_type)(Args..., ...);
+ };
+
+ template<typename R, typename... Args>
+ struct fx_traits<R(*)(Args..., ...), false> : basic_traits<true, void, R, Args...> {
+ typedef R(*function_pointer_type)(Args..., ...);
+ };
+
+ // Member Functions
+ /* C-Style Variadics */
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...), false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...);
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...), false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...);
+ };
+
+ /* Const Volatile */
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) const, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) const;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) const, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) const;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) const volatile, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) const volatile;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) const volatile, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) const volatile;
+ };
+
+ /* Member Function Qualifiers */
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) &, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) &;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) &, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) &;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) const &, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) const &;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) const &, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) const &;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) const volatile &, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) const volatile &;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) const volatile &, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) const volatile &;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) && , false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) && ;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) && , false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) && ;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) const &&, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) const &&;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) const &&, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) const &&;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args...) const volatile &&, false> : basic_traits<false, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args...) const volatile &&;
+ };
+
+ template<typename T, typename R, typename... Args>
+ struct fx_traits<R(T::*)(Args..., ...) const volatile &&, false> : basic_traits<true, T, R, Args...> {
+ typedef R(T::* function_pointer_type)(Args..., ...) const volatile &&;
+ };
+
+ template<typename Signature>
+ struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {};
+
+ template<typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
+ struct callable_traits : fx_traits<std::decay_t<Signature>> {
+
+ };
+
+ template<typename R, typename T>
+ struct callable_traits<R(T::*), true> {
+ typedef R Arg;
+ typedef T object_type;
+ using signature_type = R(T::*);
+ static const bool is_member_function = false;
+ static const std::size_t arity = 1;
+ static const std::size_t free_arity = 2;
+ typedef std::tuple<Arg> args_tuple;
+ typedef R return_type;
+ typedef types<Arg> args_list;
+ typedef types<T, Arg> free_args_list;
+ typedef meta::tuple_types<R> returns_list;
+ typedef R(function_type)(T&, R);
+ typedef R(*function_pointer_type)(T&, R);
+ typedef R(*free_function_pointer_type)(T&, R);
+ template<std::size_t i>
+ using arg_at = void_tuple_element_t<i, args_tuple>;
+ };
+ } // meta_detail
+
+ template<typename Signature>
+ struct bind_traits : meta_detail::callable_traits<Signature> {};
+
+ template<typename Signature>
+ using function_args_t = typename bind_traits<Signature>::args_list;
+
+ template<typename Signature>
+ using function_signature_t = typename bind_traits<Signature>::signature_type;
+
+ template<typename Signature>
+ using function_return_t = typename bind_traits<Signature>::return_type;
+
+ } // meta
+} // sol
+
+// end of sol/bind_traits.hpp
+
+#include <type_traits>
+#include <memory>
+#include <functional>
+
+namespace sol {
+ template<std::size_t I>
+ using index_value = std::integral_constant<std::size_t, I>;
+
+ namespace meta {
+ template<typename T>
+ struct identity { typedef T type; };
+
+ template<typename T>
+ using identity_t = typename identity<T>::type;
+
+ template<typename... Args>
+ struct is_tuple : std::false_type { };
+
+ template<typename... Args>
+ struct is_tuple<std::tuple<Args...>> : std::true_type { };
+
+ template <typename T>
+ struct is_builtin_type : std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value> {};
+
+ template<typename T>
+ struct unwrapped {
+ typedef T type;
+ };
+
+ template<typename T>
+ struct unwrapped<std::reference_wrapper<T>> {
+ typedef T type;
+ };
+
+ template<typename T>
+ using unwrapped_t = typename unwrapped<T>::type;
+
+ template <typename T>
+ struct unwrap_unqualified : unwrapped<unqualified_t<T>> {};
+
+ template <typename T>
+ using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;
+
+ template<typename T>
+ struct remove_member_pointer;
+
+ template<typename R, typename T>
+ struct remove_member_pointer<R T::*> {
+ typedef R type;
+ };
+
+ template<typename R, typename T>
+ struct remove_member_pointer<R T::* const> {
+ typedef R type;
+ };
+
+ template<typename T>
+ using remove_member_pointer_t = remove_member_pointer<T>;
+
+ template<template<typename...> class Templ, typename T>
+ struct is_specialization_of : std::false_type { };
+ template<typename... T, template<typename...> class Templ>
+ struct is_specialization_of<Templ, Templ<T...>> : std::true_type { };
+
+ template<class T, class...>
+ struct all_same : std::true_type { };
+
+ template<class T, class U, class... Args>
+ struct all_same<T, U, Args...> : std::integral_constant <bool, std::is_same<T, U>::value && all_same<T, Args...>::value> { };
+
+ template<class T, class...>
+ struct any_same : std::false_type { };
+
+ template<class T, class U, class... Args>
+ struct any_same<T, U, Args...> : std::integral_constant <bool, std::is_same<T, U>::value || any_same<T, Args...>::value> { };
+
+ template<typename T>
+ using invoke_t = typename T::type;
+
+ template<bool B>
+ using boolean = std::integral_constant<bool, B>;
+
+ template<typename T>
+ using neg = boolean<!T::value>;
+
+ template<typename Condition, typename Then, typename Else>
+ using condition = std::conditional_t<Condition::value, Then, Else>;
+
+ template<typename... Args>
+ struct all : boolean<true> {};
+
+ template<typename T, typename... Args>
+ struct all<T, Args...> : condition<T, all<Args...>, boolean<false>> {};
+
+ template<typename... Args>
+ struct any : boolean<false> {};
+
+ template<typename T, typename... Args>
+ struct any<T, Args...> : condition<T, boolean<true>, any<Args...>> {};
+
+ enum class enable_t {
+ _
+ };
+
+ constexpr const auto enabler = enable_t::_;
+
+ template<bool value, typename T = void>
+ using disable_if_t = std::enable_if_t<!value, T>;
+
+ template<typename... Args>
+ using enable = std::enable_if_t<all<Args...>::value, enable_t>;
+
+ template<typename... Args>
+ using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;
+
+ template<typename... Args>
+ using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;
+
+ template<typename V, typename... Vs>
+ struct find_in_pack_v : boolean<false> { };
+
+ template<typename V, typename Vs1, typename... Vs>
+ struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> { };
+
+ namespace meta_detail {
+ template<std::size_t I, typename T, typename... Args>
+ struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> { };
+
+ template<std::size_t I, typename T, typename T1, typename... Args>
+ struct index_in_pack<I, T, T1, Args...> : std::conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> { };
+ }
+
+ template<typename T, typename... Args>
+ struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> { };
+
+ template<typename T, typename List>
+ struct index_in : meta_detail::index_in_pack<0, T, List> { };
+
+ template<typename T, typename... Args>
+ struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> { };
+
+ template<std::size_t I, typename... Args>
+ struct at_in_pack {};
+
+ template<std::size_t I, typename... Args>
+ using at_in_pack_t = typename at_in_pack<I, Args...>::type;
+
+ template<std::size_t I, typename Arg, typename... Args>
+ struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
+
+ template<typename Arg, typename... Args>
+ struct at_in_pack<0, Arg, Args...> { typedef Arg type; };
+
+ namespace meta_detail {
+ template<std::size_t Limit, std::size_t I, template<typename...> class Pred, typename... Ts>
+ struct count_for_pack : std::integral_constant<std::size_t, 0> {};
+ template<std::size_t Limit, std::size_t I, template<typename...> class Pred, typename T, typename... Ts>
+ struct count_for_pack<Limit, I, Pred, T, Ts...> : std::conditional_t < sizeof...(Ts) == 0 || Limit < 2,
+ std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
+ count_for_pack<Limit - 1, I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>
+ > { };
+ template<std::size_t I, template<typename...> class Pred, typename... Ts>
+ struct count_2_for_pack : std::integral_constant<std::size_t, 0> {};
+ template<std::size_t I, template<typename...> class Pred, typename T, typename U, typename... Ts>
+ struct count_2_for_pack<I, Pred, T, U, Ts...> : std::conditional_t<sizeof...(Ts) == 0,
+ std::integral_constant<std::size_t, I + static_cast<std::size_t>(Pred<T>::value)>,
+ count_2_for_pack<I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>
+ > { };
+ } // meta_detail
+
+ template<template<typename...> class Pred, typename... Ts>
+ struct count_for_pack : meta_detail::count_for_pack<sizeof...(Ts), 0, Pred, Ts...> { };
+
+ template<template<typename...> class Pred, typename List>
+ struct count_for;
+
+ template<template<typename...> class Pred, typename... Args>
+ struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {};
+
+ template<std::size_t Limit, template<typename...> class Pred, typename... Ts>
+ struct count_for_to_pack : meta_detail::count_for_pack<Limit, 0, Pred, Ts...> { };
+
+ template<template<typename...> class Pred, typename... Ts>
+ struct count_2_for_pack : meta_detail::count_2_for_pack<0, Pred, Ts...> { };
+
+ template<typename... Args>
+ struct return_type {
+ typedef std::tuple<Args...> type;
+ };
+
+ template<typename T>
+ struct return_type<T> {
+ typedef T type;
+ };
+
+ template<>
+ struct return_type<> {
+ typedef void type;
+ };
+
+ template <typename... Args>
+ using return_type_t = typename return_type<Args...>::type;
+
+ namespace meta_detail {
+ template <typename> struct always_true : std::true_type {};
+ struct is_invokable_tester {
+ template <typename Fun, typename... Args>
+ always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> static test(int);
+ template <typename...>
+ std::false_type static test(...);
+ };
+ } // meta_detail
+
+ template <typename T>
+ struct is_invokable;
+ template <typename Fun, typename... Args>
+ struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {};
+
+ namespace meta_detail {
+
+ template<typename T, bool isclass = std::is_class<unqualified_t<T>>::value>
+ struct is_callable : std::is_function<std::remove_pointer_t<T>> {};
+
+ template<typename T>
+ struct is_callable<T, true> {
+ using yes = char;
+ using no = struct { char s[2]; };
+
+ struct F { void operator()(); };
+ struct Derived : T, F {};
+ template<typename U, U> struct Check;
+
+ template<typename V>
+ static no test(Check<void (F::*)(), &V::operator()>*);
+
+ template<typename>
+ static yes test(...);
+
+ static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
+ };
+
+ struct has_begin_end_impl {
+ template<typename T, typename U = unqualified_t<T>,
+ typename B = decltype(std::declval<U&>().begin()),
+ typename E = decltype(std::declval<U&>().end())>
+ static std::true_type test(int);
+
+ template<typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_key_value_pair_impl {
+ template<typename T, typename U = unqualified_t<T>,
+ typename V = typename U::value_type,
+ typename F = decltype(std::declval<V&>().first),
+ typename S = decltype(std::declval<V&>().second)>
+ static std::true_type test(int);
+
+ template<typename...>
+ static std::false_type test(...);
+ };
+
+ template <typename T, typename U = T, typename = decltype(std::declval<T&>() < std::declval<U&>())>
+ std::true_type supports_op_less_test(const T&);
+ std::false_type supports_op_less_test(...);
+ template <typename T, typename U = T, typename = decltype(std::declval<T&>() == std::declval<U&>())>
+ std::true_type supports_op_equal_test(const T&);
+ std::false_type supports_op_equal_test(...);
+ template <typename T, typename U = T, typename = decltype(std::declval<T&>() <= std::declval<U&>())>
+ std::true_type supports_op_less_equal_test(const T&);
+ std::false_type supports_op_less_equal_test(...);
+
+ } // meta_detail
+
+ template <typename T>
+ using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval<T&>()));
+ template <typename T>
+ using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval<T&>()));
+ template <typename T>
+ using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval<T&>()));
+
+ template<typename T>
+ struct is_callable : boolean<meta_detail::is_callable<T>::value> {};
+
+ template<typename T>
+ struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {};
+
+ template<typename T>
+ struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {};
+
+ template <typename T>
+ using is_string_constructible = any<std::is_same<unqualified_t<T>, const char*>, std::is_same<unqualified_t<T>, char>, std::is_same<unqualified_t<T>, std::string>, std::is_same<unqualified_t<T>, std::initializer_list<char>>>;
+
+ template <typename T>
+ using is_c_str = any<
+ std::is_same<std::decay_t<unqualified_t<T>>, const char*>,
+ std::is_same<std::decay_t<unqualified_t<T>>, char*>,
+ std::is_same<unqualified_t<T>, std::string>
+ >;
+
+ template <typename T>
+ struct is_move_only : all<
+ neg<std::is_reference<T>>,
+ neg<std::is_copy_constructible<unqualified_t<T>>>,
+ std::is_move_constructible<unqualified_t<T>>
+ > {};
+
+ template <typename T>
+ using is_not_move_only = neg<is_move_only<T>>;
+
+ namespace meta_detail {
+ template <typename T, meta::disable<meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>> = meta::enabler>
+ decltype(auto) force_tuple(T&& x) {
+ return std::forward_as_tuple(std::forward<T>(x));
+ }
+
+ template <typename T, meta::enable<meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>> = meta::enabler>
+ decltype(auto) force_tuple(T&& x) {
+ return std::forward<T>(x);
+ }
+ } // meta_detail
+
+ template <typename... X>
+ decltype(auto) tuplefy(X&&... x) {
+ return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
+ }
+ } // meta
+ namespace detail {
+ template <std::size_t I, typename Tuple>
+ decltype(auto) forward_get(Tuple&& tuple) {
+ return std::forward<meta::tuple_element_t<I, Tuple>>(std::get<I>(tuple));
+ }
+
+ template <std::size_t... I, typename Tuple>
+ auto forward_tuple_impl(std::index_sequence<I...>, Tuple&& tuple) -> decltype(std::tuple<decltype(forward_get<I>(tuple))...>(forward_get<I>(tuple)...)) {
+ return std::tuple<decltype(forward_get<I>(tuple))...>(std::move(std::get<I>(tuple))...);
+ }
+
+ template <typename Tuple>
+ auto forward_tuple(Tuple&& tuple) {
+ auto x = forward_tuple_impl(std::make_index_sequence<std::tuple_size<meta::unqualified_t<Tuple>>::value>(), std::forward<Tuple>(tuple));
+ return x;
+ }
+
+ template<typename T>
+ auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
+ return std::forward<T>(item);
+ }
+
+ template<typename T>
+ T& unwrap(std::reference_wrapper<T> arg) {
+ return arg.get();
+ }
+
+ template<typename T>
+ auto deref(T&& item) -> decltype(std::forward<T>(item)) {
+ return std::forward<T>(item);
+ }
+
+ template<typename T>
+ inline T& deref(T* item) {
+ return *item;
+ }
+
+ template<typename T, typename Dx>
+ inline std::add_lvalue_reference_t<T> deref(std::unique_ptr<T, Dx>& item) {
+ return *item;
+ }
+
+ template<typename T>
+ inline std::add_lvalue_reference_t<T> deref(std::shared_ptr<T>& item) {
+ return *item;
+ }
+
+ template<typename T, typename Dx>
+ inline std::add_lvalue_reference_t<T> deref(const std::unique_ptr<T, Dx>& item) {
+ return *item;
+ }
+
+ template<typename T>
+ inline std::add_lvalue_reference_t<T> deref(const std::shared_ptr<T>& item) {
+ return *item;
+ }
+
+ template<typename T>
+ inline T* ptr(T& val) {
+ return std::addressof(val);
+ }
+
+ template<typename T>
+ inline T* ptr(std::reference_wrapper<T> val) {
+ return std::addressof(val.get());
+ }
+
+ template<typename T>
+ inline T* ptr(T* val) {
+ return val;
+ }
+ } // detail
+} // sol
+
+// end of sol/traits.hpp
+
+// beginning of sol/object.hpp
+
+// beginning of sol/reference.hpp
+
+// beginning of sol/types.hpp
+
+// beginning of sol/optional.hpp
+
+// beginning of sol/compatibility.hpp
+
+// beginning of sol/compatibility/version.hpp
+
+#ifdef SOL_USING_CXX_LUA
+#include <lua.h>
+#include <lualib.h>
+#include <lauxlib.h>
+#else
+#include <lua.hpp>
+#endif // C++-compiler Lua
+
+#if defined(_WIN32) || defined(_MSC_VER)
+#ifndef SOL_CODECVT_SUPPORT
+#define SOL_CODECVT_SUPPORT 1
+#endif // sol codecvt support
+#elif defined(__GNUC__)
+#if __GNUC__ >= 5
+#ifndef SOL_CODECVT_SUPPORT
+#define SOL_CODECVT_SUPPORT 1
+#endif // codecvt support
+#endif // g++ 5.x.x (MinGW too)
+#else
+#endif // Windows/VC++ vs. g++ vs Others
+
+#ifdef LUAJIT_VERSION
+#ifndef SOL_LUAJIT
+#define SOL_LUAJIT
+#define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM
+#endif // sol luajit
+#endif // luajit
+
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
+#define SOL_LUA_VERSION LUA_VERSION_NUM
+#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
+#define SOL_LUA_VERSION LUA_VERSION_NUM
+#elif !defined(LUA_VERSION_NUM)
+#define SOL_LUA_VERSION 500
+#else
+#define SOL_LUA_VERSION 502
+#endif // Lua Version 502, 501 || luajit, 500
+
+#ifdef _MSC_VER
+#ifdef _DEBUG
+#ifndef NDEBUG
+#ifndef SOL_CHECK_ARGUMENTS
+#endif // Check Arguments
+#ifndef SOL_SAFE_USERTYPE
+#define SOL_SAFE_USERTYPE
+#endif // Safe Usertypes
+#endif // NDEBUG
+#endif // Debug
+
+#ifndef _CPPUNWIND
+#ifndef SOL_NO_EXCEPTIONS
+#define SOL_NO_EXCEPTIONS 1
+#endif
+#endif // Automatic Exceptions
+
+#ifndef _CPPRTTI
+#ifndef SOL_NO_RTTI
+#define SOL_NO_RTTI 1
+#endif
+#endif // Automatic RTTI
+
+#elif defined(__GNUC__) || defined(__clang__)
+
+#ifndef NDEBUG
+#ifndef __OPTIMIZE__
+#ifndef SOL_CHECK_ARGUMENTS
+#endif // Check Arguments
+#ifndef SOL_SAFE_USERTYPE
+#define SOL_SAFE_USERTYPE
+#endif // Safe Usertypes
+#endif // g++ optimizer flag
+#endif // Not Debug
+
+#ifndef __EXCEPTIONS
+#ifndef SOL_NO_EXCEPTIONS
+#define SOL_NO_EXCEPTIONS 1
+#endif
+#endif // No Exceptions
+
+#ifndef __GXX_RTTI
+#ifndef SOL_NO_RTII
+#define SOL_NO_RTTI 1
+#endif
+#endif // No RTTI
+
+#endif // vc++ || clang++/g++
+
+#ifndef SOL_SAFE_USERTYPE
+#ifdef SOL_CHECK_ARGUMENTS
+#define SOL_SAFE_USERTYPE
+#endif // Turn on Safety for all
+#endif // Safe Usertypes
+
+// end of sol/compatibility/version.hpp
+
+#ifndef SOL_NO_COMPAT
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+// beginning of sol/compatibility/5.1.0.h
+
+#ifndef SOL_5_1_0_H
+#define SOL_5_1_0_H
+
+#if SOL_LUA_VERSION == 501
+/* Lua 5.1 */
+
+#include <stddef.h>
+#include <string.h>
+#include <stdio.h>
+
+/* LuaJIT doesn't define these unofficial macros ... */
+#if !defined(LUAI_INT32)
+#include <limits.h>
+#if INT_MAX-20 < 32760
+#define LUAI_INT32 long
+#define LUAI_UINT32 unsigned long
+#elif INT_MAX > 2147483640L
+#define LUAI_INT32 int
+#define LUAI_UINT32 unsigned int
+#else
+#error "could not detect suitable lua_Unsigned datatype"
+#endif
+#endif
+
+/* LuaJIT does not have the updated error codes for thread status/function returns */
+#ifndef LUA_ERRGCMM
+#define LUA_ERRGCMM (LUA_ERRERR + 1)
+#endif // LUA_ERRGCMM
+
+/* LuaJIT does not support continuation contexts / return error codes? */
+#ifndef LUA_KCONTEXT
+#define LUA_KCONTEXT std::ptrdiff_t
+typedef LUA_KCONTEXT lua_KContext;
+typedef int(*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);
+#endif // LUA_KCONTEXT
+
+#define LUA_OPADD 0
+#define LUA_OPSUB 1
+#define LUA_OPMUL 2
+#define LUA_OPDIV 3
+#define LUA_OPMOD 4
+#define LUA_OPPOW 5
+#define LUA_OPUNM 6
+#define LUA_OPEQ 0
+#define LUA_OPLT 1
+#define LUA_OPLE 2
+
+typedef LUAI_UINT32 lua_Unsigned;
+
+typedef struct luaL_Buffer_52 {
+ luaL_Buffer b; /* make incorrect code crash! */
+ char *ptr;
+ size_t nelems;
+ size_t capacity;
+ lua_State *L2;
+} luaL_Buffer_52;
+#define luaL_Buffer luaL_Buffer_52
+
+#define lua_tounsigned(L, i) lua_tounsignedx(L, i, NULL)
+
+#define lua_rawlen(L, i) lua_objlen(L, i)
+
+inline void lua_callk(lua_State *L, int nargs, int nresults, lua_KContext, lua_KFunction) {
+ // should probably warn the user of Lua 5.1 that continuation isn't supported...
+ lua_call(L, nargs, nresults);
+}
+inline int lua_pcallk(lua_State *L, int nargs, int nresults, int errfunc, lua_KContext, lua_KFunction) {
+ // should probably warn the user of Lua 5.1 that continuation isn't supported...
+ return lua_pcall(L, nargs, nresults, errfunc);
+}
+void lua_arith(lua_State *L, int op);
+int lua_compare(lua_State *L, int idx1, int idx2, int op);
+void lua_pushunsigned(lua_State *L, lua_Unsigned n);
+lua_Unsigned luaL_checkunsigned(lua_State *L, int i);
+lua_Unsigned lua_tounsignedx(lua_State *L, int i, int *isnum);
+lua_Unsigned luaL_optunsigned(lua_State *L, int i, lua_Unsigned def);
+lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
+void lua_len(lua_State *L, int i);
+int luaL_len(lua_State *L, int i);
+const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
+void luaL_requiref(lua_State *L, char const* modname, lua_CFunction openf, int glb);
+
+#define luaL_buffinit luaL_buffinit_52
+void luaL_buffinit(lua_State *L, luaL_Buffer_52 *B);
+
+#define luaL_prepbuffsize luaL_prepbuffsize_52
+char *luaL_prepbuffsize(luaL_Buffer_52 *B, size_t s);
+
+#define luaL_addlstring luaL_addlstring_52
+void luaL_addlstring(luaL_Buffer_52 *B, const char *s, size_t l);
+
+#define luaL_addvalue luaL_addvalue_52
+void luaL_addvalue(luaL_Buffer_52 *B);
+
+#define luaL_pushresult luaL_pushresult_52
+void luaL_pushresult(luaL_Buffer_52 *B);
+
+#undef luaL_buffinitsize
+#define luaL_buffinitsize(L, B, s) \
+ (luaL_buffinit(L, B), luaL_prepbuffsize(B, s))
+
+#undef luaL_prepbuffer
+#define luaL_prepbuffer(B) \
+ luaL_prepbuffsize(B, LUAL_BUFFERSIZE)
+
+#undef luaL_addchar
+#define luaL_addchar(B, c) \
+ ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize(B, 1)), \
+ ((B)->ptr[(B)->nelems++] = (c)))
+
+#undef luaL_addsize
+#define luaL_addsize(B, s) \
+ ((B)->nelems += (s))
+
+#undef luaL_addstring
+#define luaL_addstring(B, s) \
+ luaL_addlstring(B, s, strlen(s))
+
+#undef luaL_pushresultsize
+#define luaL_pushresultsize(B, s) \
+ (luaL_addsize(B, s), luaL_pushresult(B))
+
+typedef struct kepler_lua_compat_get_string_view {
+ const char *s;
+ size_t size;
+} kepler_lua_compat_get_string_view;
+
+inline const char* kepler_lua_compat_get_string(lua_State* L, void* ud, size_t* size) {
+ kepler_lua_compat_get_string_view* ls = (kepler_lua_compat_get_string_view*) ud;
+ (void)L;
+ if (ls->size == 0) return NULL;
+ *size = ls->size;
+ ls->size = 0;
+ return ls->s;
+}
+
+#if !defined(SOL_LUAJIT) || (SOL_LUAJIT_VERSION < 20100)
+
+inline int luaL_loadbufferx(lua_State* L, const char* buff, size_t size, const char* name, const char*) {
+ kepler_lua_compat_get_string_view ls;
+ ls.s = buff;
+ ls.size = size;
+ return lua_load(L, kepler_lua_compat_get_string, &ls, name/*, mode*/);
+}
+
+#endif // LuaJIT 2.1.x beta and beyond
+
+#endif /* Lua 5.1 */
+
+#endif // SOL_5_1_0_H
+// end of sol/compatibility/5.1.0.h
+
+// beginning of sol/compatibility/5.0.0.h
+
+#ifndef SOL_5_0_0_H
+#define SOL_5_0_0_H
+
+#if SOL_LUA_VERSION < 501
+/* Lua 5.0 */
+
+#define LUA_QL(x) "'" x "'"
+#define LUA_QS LUA_QL("%s")
+
+#define luaL_Reg luaL_reg
+
+#define luaL_opt(L, f, n, d) \
+ (lua_isnoneornil(L, n) ? (d) : f(L, n))
+
+#define luaL_addchar(B,c) \
+ ((void)((B)->p < ((B)->buffer+LUAL_BUFFERSIZE) || luaL_prepbuffer(B)), \
+ (*(B)->p++ = (char)(c)))
+
+#endif // Lua 5.0
+
+#endif // SOL_5_0_0_H
+// end of sol/compatibility/5.0.0.h
+
+// beginning of sol/compatibility/5.x.x.h
+
+#ifndef SOL_5_X_X_H
+#define SOL_5_X_X_H
+
+#if SOL_LUA_VERSION < 502
+
+#define LUA_RIDX_GLOBALS LUA_GLOBALSINDEX
+
+#define LUA_OK 0
+
+#define lua_pushglobaltable(L) \
+ lua_pushvalue(L, LUA_GLOBALSINDEX)
+
+#define luaL_newlib(L, l) \
+ (lua_newtable((L)),luaL_setfuncs((L), (l), 0))
+
+void luaL_checkversion(lua_State *L);
+
+int lua_absindex(lua_State *L, int i);
+void lua_copy(lua_State *L, int from, int to);
+void lua_rawgetp(lua_State *L, int i, const void *p);
+void lua_rawsetp(lua_State *L, int i, const void *p);
+void *luaL_testudata(lua_State *L, int i, const char *tname);
+lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
+void lua_getuservalue(lua_State *L, int i);
+void lua_setuservalue(lua_State *L, int i);
+void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
+void luaL_setmetatable(lua_State *L, const char *tname);
+int luaL_getsubtable(lua_State *L, int i, const char *name);
+void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
+int luaL_fileresult(lua_State *L, int stat, const char *fname);
+
+#endif // Lua 5.1 and below
+
+#endif // SOL_5_X_X_H
+// end of sol/compatibility/5.x.x.h
+
+// beginning of sol/compatibility/5.x.x.inl
+
+#ifndef SOL_5_X_X_INL
+#define SOL_5_X_X_INL
+
+// beginning of sol/compatibility/5.2.0.h
+
+#ifndef SOL_5_2_0_H
+#define SOL_5_2_0_H
+
+#if SOL_LUA_VERSION < 503
+
+inline int lua_isinteger(lua_State* L, int idx) {
+ if (lua_type(L, idx) != LUA_TNUMBER)
+ return 0;
+ // This is a very slipshod way to do the testing
+ // but lua_totingerx doesn't play ball nicely
+ // on older versions...
+ lua_Number n = lua_tonumber(L, idx);
+ lua_Integer i = lua_tointeger(L, idx);
+ if (i != n)
+ return 0;
+ // it's DEFINITELY an integer
+ return 1;
+}
+
+#endif // SOL_LUA_VERSION == 502
+#endif // SOL_5_2_0_H
+// end of sol/compatibility/5.2.0.h
+
+#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM == 501
+
+#include <errno.h>
+
+#define PACKAGE_KEY "_sol.package"
+
+inline int lua_absindex(lua_State *L, int i) {
+ if (i < 0 && i > LUA_REGISTRYINDEX)
+ i += lua_gettop(L) + 1;
+ return i;
+}
+
+inline void lua_copy(lua_State *L, int from, int to) {
+ int abs_to = lua_absindex(L, to);
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushvalue(L, from);
+ lua_replace(L, abs_to);
+}
+
+inline void lua_rawgetp(lua_State *L, int i, const void *p) {
+ int abs_i = lua_absindex(L, i);
+ lua_pushlightuserdata(L, (void*)p);
+ lua_rawget(L, abs_i);
+}
+
+inline void lua_rawsetp(lua_State *L, int i, const void *p) {
+ int abs_i = lua_absindex(L, i);
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushlightuserdata(L, (void*)p);
+ lua_insert(L, -2);
+ lua_rawset(L, abs_i);
+}
+
+inline void *luaL_testudata(lua_State *L, int i, const char *tname) {
+ void *p = lua_touserdata(L, i);
+ luaL_checkstack(L, 2, "not enough stack slots");
+ if (p == NULL || !lua_getmetatable(L, i))
+ return NULL;
+ else {
+ int res = 0;
+ luaL_getmetatable(L, tname);
+ res = lua_rawequal(L, -1, -2);
+ lua_pop(L, 2);
+ if (!res)
+ p = NULL;
+ }
+ return p;
+}
+
+inline lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) {
+ lua_Number n = lua_tonumber(L, i);
+ if (isnum != NULL) {
+ *isnum = (n != 0 || lua_isnumber(L, i));
+ }
+ return n;
+}
+
+inline static void push_package_table(lua_State *L) {
+ lua_pushliteral(L, PACKAGE_KEY);
+ lua_rawget(L, LUA_REGISTRYINDEX);
+ if (!lua_istable(L, -1)) {
+ lua_pop(L, 1);
+ /* try to get package table from globals */
+ lua_pushliteral(L, "package");
+ lua_rawget(L, LUA_GLOBALSINDEX);
+ if (lua_istable(L, -1)) {
+ lua_pushliteral(L, PACKAGE_KEY);
+ lua_pushvalue(L, -2);
+ lua_rawset(L, LUA_REGISTRYINDEX);
+ }
+ }
+}
+
+inline void lua_getuservalue(lua_State *L, int i) {
+ luaL_checktype(L, i, LUA_TUSERDATA);
+ luaL_checkstack(L, 2, "not enough stack slots");
+ lua_getfenv(L, i);
+ lua_pushvalue(L, LUA_GLOBALSINDEX);
+ if (lua_rawequal(L, -1, -2)) {
+ lua_pop(L, 1);
+ lua_pushnil(L);
+ lua_replace(L, -2);
+ }
+ else {
+ lua_pop(L, 1);
+ push_package_table(L);
+ if (lua_rawequal(L, -1, -2)) {
+ lua_pop(L, 1);
+ lua_pushnil(L);
+ lua_replace(L, -2);
+ }
+ else
+ lua_pop(L, 1);
+ }
+}
+
+inline void lua_setuservalue(lua_State *L, int i) {
+ luaL_checktype(L, i, LUA_TUSERDATA);
+ if (lua_isnil(L, -1)) {
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushvalue(L, LUA_GLOBALSINDEX);
+ lua_replace(L, -2);
+ }
+ lua_setfenv(L, i);
+}
+
+/*
+** Adapted from Lua 5.2.0
+*/
+inline void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) {
+ luaL_checkstack(L, nup + 1, "too many upvalues");
+ for (; l->name != NULL; l++) { /* fill the table with given functions */
+ int i;
+ lua_pushstring(L, l->name);
+ for (i = 0; i < nup; i++) /* copy upvalues to the top */
+ lua_pushvalue(L, -(nup + 1));
+ lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
+ lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
+ }
+ lua_pop(L, nup); /* remove upvalues */
+}
+
+inline void luaL_setmetatable(lua_State *L, const char *tname) {
+ luaL_checkstack(L, 1, "not enough stack slots");
+ luaL_getmetatable(L, tname);
+ lua_setmetatable(L, -2);
+}
+
+inline int luaL_getsubtable(lua_State *L, int i, const char *name) {
+ int abs_i = lua_absindex(L, i);
+ luaL_checkstack(L, 3, "not enough stack slots");
+ lua_pushstring(L, name);
+ lua_gettable(L, abs_i);
+ if (lua_istable(L, -1))
+ return 1;
+ lua_pop(L, 1);
+ lua_newtable(L);
+ lua_pushstring(L, name);
+ lua_pushvalue(L, -2);
+ lua_settable(L, abs_i);
+ return 0;
+}
+
+#ifndef SOL_LUAJIT
+inline static int countlevels(lua_State *L) {
+ lua_Debug ar;
+ int li = 1, le = 1;
+ /* find an upper bound */
+ while (lua_getstack(L, le, &ar)) { li = le; le *= 2; }
+ /* do a binary search */
+ while (li < le) {
+ int m = (li + le) / 2;
+ if (lua_getstack(L, m, &ar)) li = m + 1;
+ else le = m;
+ }
+ return le - 1;
+}
+
+inline static int findfield(lua_State *L, int objidx, int level) {
+ if (level == 0 || !lua_istable(L, -1))
+ return 0; /* not found */
+ lua_pushnil(L); /* start 'next' loop */
+ while (lua_next(L, -2)) { /* for each pair in table */
+ if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
+ if (lua_rawequal(L, objidx, -1)) { /* found object? */
+ lua_pop(L, 1); /* remove value (but keep name) */
+ return 1;
+ }
+ else if (findfield(L, objidx, level - 1)) { /* try recursively */
+ lua_remove(L, -2); /* remove table (but keep name) */
+ lua_pushliteral(L, ".");
+ lua_insert(L, -2); /* place '.' between the two names */
+ lua_concat(L, 3);
+ return 1;
+ }
+ }
+ lua_pop(L, 1); /* remove value */
+ }
+ return 0; /* not found */
+}
+
+inline static int pushglobalfuncname(lua_State *L, lua_Debug *ar) {
+ int top = lua_gettop(L);
+ lua_getinfo(L, "f", ar); /* push function */
+ lua_pushvalue(L, LUA_GLOBALSINDEX);
+ if (findfield(L, top + 1, 2)) {
+ lua_copy(L, -1, top + 1); /* move name to proper place */
+ lua_pop(L, 2); /* remove pushed values */
+ return 1;
+ }
+ else {
+ lua_settop(L, top); /* remove function and global table */
+ return 0;
+ }
+}
+
+inline static void pushfuncname(lua_State *L, lua_Debug *ar) {
+ if (*ar->namewhat != '\0') /* is there a name? */
+ lua_pushfstring(L, "function " LUA_QS, ar->name);
+ else if (*ar->what == 'm') /* main? */
+ lua_pushliteral(L, "main chunk");
+ else if (*ar->what == 'C') {
+ if (pushglobalfuncname(L, ar)) {
+ lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
+ lua_remove(L, -2); /* remove name */
+ }
+ else
+ lua_pushliteral(L, "?");
+ }
+ else
+ lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
+}
+
+#define LEVELS1 12 /* size of the first part of the stack */
+#define LEVELS2 10 /* size of the second part of the stack */
+
+inline void luaL_traceback(lua_State *L, lua_State *L1,
+ const char *msg, int level) {
+ lua_Debug ar;
+ int top = lua_gettop(L);
+ int numlevels = countlevels(L1);
+ int mark = (numlevels > LEVELS1 + LEVELS2) ? LEVELS1 : 0;
+ if (msg) lua_pushfstring(L, "%s\n", msg);
+ lua_pushliteral(L, "stack traceback:");
+ while (lua_getstack(L1, level++, &ar)) {
+ if (level == mark) { /* too many levels? */
+ lua_pushliteral(L, "\n\t..."); /* add a '...' */
+ level = numlevels - LEVELS2; /* and skip to last ones */
+ }
+ else {
+ lua_getinfo(L1, "Slnt", &ar);
+ lua_pushfstring(L, "\n\t%s:", ar.short_src);
+ if (ar.currentline > 0)
+ lua_pushfstring(L, "%d:", ar.currentline);
+ lua_pushliteral(L, " in ");
+ pushfuncname(L, &ar);
+ lua_concat(L, lua_gettop(L) - top);
+ }
+ }
+ lua_concat(L, lua_gettop(L) - top);
+}
+#endif
+
+inline const lua_Number *lua_version(lua_State *L) {
+ static const lua_Number version = LUA_VERSION_NUM;
+ if (L == NULL) return &version;
+ // TODO: wonky hacks to get at the inside of the incomplete type lua_State?
+ //else return L->l_G->version;
+ else return &version;
+}
+
+inline static void luaL_checkversion_(lua_State *L, lua_Number ver) {
+ const lua_Number* v = lua_version(L);
+ if (v != lua_version(NULL))
+ luaL_error(L, "multiple Lua VMs detected");
+ else if (*v != ver)
+ luaL_error(L, "version mismatch: app. needs %f, Lua core provides %f",
+ ver, *v);
+ /* check conversions number -> integer types */
+ lua_pushnumber(L, -(lua_Number)0x1234);
+ if (lua_tointeger(L, -1) != -0x1234 ||
+ lua_tounsigned(L, -1) != (lua_Unsigned)-0x1234)
+ luaL_error(L, "bad conversion number->int;"
+ " must recompile Lua with proper settings");
+ lua_pop(L, 1);
+}
+
+inline void luaL_checkversion(lua_State* L) {
+ luaL_checkversion_(L, LUA_VERSION_NUM);
+}
+
+#ifndef SOL_LUAJIT
+inline int luaL_fileresult(lua_State *L, int stat, const char *fname) {
+ int en = errno; /* calls to Lua API may change this value */
+ if (stat) {
+ lua_pushboolean(L, 1);
+ return 1;
+ }
+ else {
+ char buf[1024];
+#if defined(__GLIBC__) || defined(_POSIX_VERSION)
+ strerror_r(en, buf, 1024);
+#else
+ strerror_s(buf, 1024, en);
+#endif
+ lua_pushnil(L);
+ if (fname)
+ lua_pushfstring(L, "%s: %s", fname, buf);
+ else
+ lua_pushstring(L, buf);
+ lua_pushnumber(L, (lua_Number)en);
+ return 3;
+ }
+}
+#endif // luajit
+#endif // Lua 5.0 or Lua 5.1
+
+#if SOL_LUA_VERSION == 501
+
+typedef LUAI_INT32 LUA_INT32;
+
+/********************************************************************/
+/* extract of 5.2's luaconf.h */
+/* detects proper defines for faster unsigned<->number conversion */
+/* see copyright notice at the end of this file */
+/********************************************************************/
+
+#if !defined(LUA_ANSI) && defined(_WIN32) && !defined(_WIN32_WCE)
+#define LUA_WIN /* enable goodies for regular Windows platforms */
+#endif
+
+#if defined(LUA_NUMBER_DOUBLE) && !defined(LUA_ANSI) /* { */
+
+/* Microsoft compiler on a Pentium (32 bit) ? */
+#if defined(LUA_WIN) && defined(_MSC_VER) && defined(_M_IX86) /* { */
+
+#define LUA_MSASMTRICK
+#define LUA_IEEEENDIAN 0
+#define LUA_NANTRICK
+
+/* pentium 32 bits? */
+#elif defined(__i386__) || defined(__i386) || defined(__X86__) /* }{ */
+
+#define LUA_IEEE754TRICK
+#define LUA_IEEELL
+#define LUA_IEEEENDIAN 0
+#define LUA_NANTRICK
+
+/* pentium 64 bits? */
+#elif defined(__x86_64) /* }{ */
+
+#define LUA_IEEE754TRICK
+#define LUA_IEEEENDIAN 0
+
+#elif defined(__POWERPC__) || defined(__ppc__) /* }{ */
+
+#define LUA_IEEE754TRICK
+#define LUA_IEEEENDIAN 1
+
+#else /* }{ */
+
+/* assume IEEE754 and a 32-bit integer type */
+#define LUA_IEEE754TRICK
+
+#endif /* } */
+
+#endif /* } */
+
+/********************************************************************/
+/* extract of 5.2's llimits.h */
+/* gives us lua_number2unsigned and lua_unsigned2number */
+/* see copyright notice just below this one here */
+/********************************************************************/
+
+/*********************************************************************
+* This file contains parts of Lua 5.2's source code:
+*
+* Copyright (C) 1994-2013 Lua.org, PUC-Rio.
+*
+* Permission is hereby granted, free of charge, to any person obtaining
+* a copy of this software and associated documentation files (the
+* "Software"), to deal in the Software without restriction, including
+* without limitation the rights to use, copy, modify, merge, publish,
+* distribute, sublicense, and/or sell copies of the Software, and to
+* permit persons to whom the Software is furnished to do so, subject to
+* the following conditions:
+*
+* The above copyright notice and this permission notice shall be
+* included in all copies or substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*********************************************************************/
+
+#if defined(MS_ASMTRICK) || defined(LUA_MSASMTRICK) /* { */
+/* trick with Microsoft assembler for X86 */
+
+#define lua_number2unsigned(i,n) \
+ {__int64 l; __asm {__asm fld n __asm fistp l} i = (unsigned int)l;}
+
+#elif defined(LUA_IEEE754TRICK) /* }{ */
+/* the next trick should work on any machine using IEEE754 with
+a 32-bit int type */
+
+union compat52_luai_Cast { double l_d; LUA_INT32 l_p[2]; };
+
+#if !defined(LUA_IEEEENDIAN) /* { */
+#define LUAI_EXTRAIEEE \
+ static const union compat52_luai_Cast ieeeendian = {-(33.0 + 6755399441055744.0)};
+#define LUA_IEEEENDIANLOC (ieeeendian.l_p[1] == 33)
+#else
+#define LUA_IEEEENDIANLOC LUA_IEEEENDIAN
+#define LUAI_EXTRAIEEE /* empty */
+#endif /* } */
+
+#define lua_number2int32(i,n,t) \
+ { LUAI_EXTRAIEEE \
+ volatile union compat52_luai_Cast u; u.l_d = (n) + 6755399441055744.0; \
+ (i) = (t)u.l_p[LUA_IEEEENDIANLOC]; }
+
+#define lua_number2unsigned(i,n) lua_number2int32(i, n, lua_Unsigned)
+
+#endif /* } */
+
+/* the following definitions always work, but may be slow */
+
+#if !defined(lua_number2unsigned) /* { */
+/* the following definition assures proper modulo behavior */
+#if defined(LUA_NUMBER_DOUBLE) || defined(LUA_NUMBER_FLOAT)
+#include <math.h>
+#define SUPUNSIGNED ((lua_Number)(~(lua_Unsigned)0) + 1)
+#define lua_number2unsigned(i,n) \
+ ((i)=(lua_Unsigned)((n) - floor((n)/SUPUNSIGNED)*SUPUNSIGNED))
+#else
+#define lua_number2unsigned(i,n) ((i)=(lua_Unsigned)(n))
+#endif
+#endif /* } */
+
+#if !defined(lua_unsigned2number)
+/* on several machines, coercion from unsigned to double is slow,
+so it may be worth to avoid */
+#define lua_unsigned2number(u) \
+ (((u) <= (lua_Unsigned)INT_MAX) ? (lua_Number)(int)(u) : (lua_Number)(u))
+#endif
+
+/********************************************************************/
+
+inline static void compat52_call_lua(lua_State *L, char const code[], size_t len,
+ int nargs, int nret) {
+ lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
+ if (lua_type(L, -1) != LUA_TFUNCTION) {
+ lua_pop(L, 1);
+ if (luaL_loadbuffer(L, code, len, "=none"))
+ lua_error(L);
+ lua_pushvalue(L, -1);
+ lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
+ }
+ lua_insert(L, -nargs - 1);
+ lua_call(L, nargs, nret);
+}
+
+static const char compat52_arith_code[] = {
+ "local op,a,b=...\n"
+ "if op==0 then return a+b\n"
+ "elseif op==1 then return a-b\n"
+ "elseif op==2 then return a*b\n"
+ "elseif op==3 then return a/b\n"
+ "elseif op==4 then return a%b\n"
+ "elseif op==5 then return a^b\n"
+ "elseif op==6 then return -a\n"
+ "end\n"
+};
+
+inline void lua_arith(lua_State *L, int op) {
+ if (op < LUA_OPADD || op > LUA_OPUNM)
+ luaL_error(L, "invalid 'op' argument for lua_arith");
+ luaL_checkstack(L, 5, "not enough stack slots");
+ if (op == LUA_OPUNM)
+ lua_pushvalue(L, -1);
+ lua_pushnumber(L, op);
+ lua_insert(L, -3);
+ compat52_call_lua(L, compat52_arith_code,
+ sizeof(compat52_arith_code) - 1, 3, 1);
+}
+
+static const char compat52_compare_code[] = {
+ "local a,b=...\n"
+ "return a<=b\n"
+};
+
+inline int lua_compare(lua_State *L, int idx1, int idx2, int op) {
+ int result = 0;
+ switch (op) {
+ case LUA_OPEQ:
+ return lua_equal(L, idx1, idx2);
+ case LUA_OPLT:
+ return lua_lessthan(L, idx1, idx2);
+ case LUA_OPLE:
+ luaL_checkstack(L, 5, "not enough stack slots");
+ idx1 = lua_absindex(L, idx1);
+ idx2 = lua_absindex(L, idx2);
+ lua_pushvalue(L, idx1);
+ lua_pushvalue(L, idx2);
+ compat52_call_lua(L, compat52_compare_code,
+ sizeof(compat52_compare_code) - 1, 2, 1);
+ result = lua_toboolean(L, -1);
+ lua_pop(L, 1);
+ return result;
+ default:
+ luaL_error(L, "invalid 'op' argument for lua_compare");
+ }
+ return 0;
+}
+
+inline void lua_pushunsigned(lua_State *L, lua_Unsigned n) {
+ lua_pushnumber(L, lua_unsigned2number(n));
+}
+
+inline lua_Unsigned luaL_checkunsigned(lua_State *L, int i) {
+ lua_Unsigned result;
+ lua_Number n = lua_tonumber(L, i);
+ if (n == 0 && !lua_isnumber(L, i))
+ luaL_checktype(L, i, LUA_TNUMBER);
+ lua_number2unsigned(result, n);
+ return result;
+}
+
+inline lua_Unsigned lua_tounsignedx(lua_State *L, int i, int *isnum) {
+ lua_Unsigned result;
+ lua_Number n = lua_tonumberx(L, i, isnum);
+ lua_number2unsigned(result, n);
+ return result;
+}
+
+inline lua_Unsigned luaL_optunsigned(lua_State *L, int i, lua_Unsigned def) {
+ return luaL_opt(L, luaL_checkunsigned, i, def);
+}
+
+inline lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) {
+ lua_Integer n = lua_tointeger(L, i);
+ if (isnum != NULL) {
+ *isnum = (n != 0 || lua_isnumber(L, i));
+ }
+ return n;
+}
+
+inline void lua_len(lua_State *L, int i) {
+ switch (lua_type(L, i)) {
+ case LUA_TSTRING: /* fall through */
+ case LUA_TTABLE:
+ if (!luaL_callmeta(L, i, "__len"))
+ lua_pushnumber(L, (int)lua_objlen(L, i));
+ break;
+ case LUA_TUSERDATA:
+ if (luaL_callmeta(L, i, "__len"))
+ break;
+ /* maybe fall through */
+ default:
+ luaL_error(L, "attempt to get length of a %s value",
+ lua_typename(L, lua_type(L, i)));
+ }
+}
+
+inline int luaL_len(lua_State *L, int i) {
+ int res = 0, isnum = 0;
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_len(L, i);
+ res = (int)lua_tointegerx(L, -1, &isnum);
+ lua_pop(L, 1);
+ if (!isnum)
+ luaL_error(L, "object length is not a number");
+ return res;
+}
+
+inline const char *luaL_tolstring(lua_State *L, int idx, size_t *len) {
+ if (!luaL_callmeta(L, idx, "__tostring")) {
+ int t = lua_type(L, idx);
+ switch (t) {
+ case LUA_TNIL:
+ lua_pushliteral(L, "nil");
+ break;
+ case LUA_TSTRING:
+ case LUA_TNUMBER:
+ lua_pushvalue(L, idx);
+ break;
+ case LUA_TBOOLEAN:
+ if (lua_toboolean(L, idx))
+ lua_pushliteral(L, "true");
+ else
+ lua_pushliteral(L, "false");
+ break;
+ default:
+ lua_pushfstring(L, "%s: %p", lua_typename(L, t),
+ lua_topointer(L, idx));
+ break;
+ }
+ }
+ return lua_tolstring(L, -1, len);
+}
+
+inline void luaL_requiref(lua_State *L, char const* modname,
+ lua_CFunction openf, int glb) {
+ luaL_checkstack(L, 3, "not enough stack slots");
+ lua_pushcfunction(L, openf);
+ lua_pushstring(L, modname);
+ lua_call(L, 1, 1);
+ lua_getglobal(L, "package");
+ if (lua_istable(L, -1) == 0) {
+ lua_pop(L, 1);
+ lua_createtable(L, 0, 16);
+ lua_setglobal(L, "package");
+ lua_getglobal(L, "package");
+ }
+ lua_getfield(L, -1, "loaded");
+ if (lua_istable(L, -1) == 0) {
+ lua_pop(L, 1);
+ lua_createtable(L, 0, 1);
+ lua_setfield(L, -2, "loaded");
+ lua_getfield(L, -1, "loaded");
+ }
+ lua_replace(L, -2);
+ lua_pushvalue(L, -2);
+ lua_setfield(L, -2, modname);
+ lua_pop(L, 1);
+ if (glb) {
+ lua_pushvalue(L, -1);
+ lua_setglobal(L, modname);
+ }
+}
+
+inline void luaL_buffinit(lua_State *L, luaL_Buffer_52 *B) {
+ /* make it crash if used via pointer to a 5.1-style luaL_Buffer */
+ B->b.p = NULL;
+ B->b.L = NULL;
+ B->b.lvl = 0;
+ /* reuse the buffer from the 5.1-style luaL_Buffer though! */
+ B->ptr = B->b.buffer;
+ B->capacity = LUAL_BUFFERSIZE;
+ B->nelems = 0;
+ B->L2 = L;
+}
+
+inline char *luaL_prepbuffsize(luaL_Buffer_52 *B, size_t s) {
+ if (B->capacity - B->nelems < s) { /* needs to grow */
+ char* newptr = NULL;
+ size_t newcap = B->capacity * 2;
+ if (newcap - B->nelems < s)
+ newcap = B->nelems + s;
+ if (newcap < B->capacity) /* overflow */
+ luaL_error(B->L2, "buffer too large");
+ newptr = (char*)lua_newuserdata(B->L2, newcap);
+ memcpy(newptr, B->ptr, B->nelems);
+ if (B->ptr != B->b.buffer)
+ lua_replace(B->L2, -2); /* remove old buffer */
+ B->ptr = newptr;
+ B->capacity = newcap;
+ }
+ return B->ptr + B->nelems;
+}
+
+inline void luaL_addlstring(luaL_Buffer_52 *B, const char *s, size_t l) {
+ memcpy(luaL_prepbuffsize(B, l), s, l);
+ luaL_addsize(B, l);
+}
+
+inline void luaL_addvalue(luaL_Buffer_52 *B) {
+ size_t len = 0;
+ const char *s = lua_tolstring(B->L2, -1, &len);
+ if (!s)
+ luaL_error(B->L2, "cannot convert value to string");
+ if (B->ptr != B->b.buffer)
+ lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
+ luaL_addlstring(B, s, len);
+ lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
+}
+
+inline void luaL_pushresult(luaL_Buffer_52 *B) {
+ lua_pushlstring(B->L2, B->ptr, B->nelems);
+ if (B->ptr != B->b.buffer)
+ lua_replace(B->L2, -2); /* remove userdata buffer */
+}
+
+#endif /* SOL_LUA_VERSION == 501 */
+
+#endif // SOL_5_X_X_INL
+// end of sol/compatibility/5.x.x.inl
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // SOL_NO_COMPAT
+
+// end of sol/compatibility.hpp
+
+// beginning of sol/in_place.hpp
+
+namespace sol {
+
+ namespace detail {
+ struct in_place_of {};
+ template <std::size_t I>
+ struct in_place_of_i {};
+ template <typename T>
+ struct in_place_of_t {};
+ } // detail
+
+ struct in_place_tag { struct init {}; constexpr in_place_tag(init) {} in_place_tag() = delete; };
+ constexpr inline in_place_tag in_place(detail::in_place_of) { return in_place_tag(in_place_tag::init()); }
+ template <typename T>
+ constexpr inline in_place_tag in_place(detail::in_place_of_t<T>) { return in_place_tag(in_place_tag::init()); }
+ template <std::size_t I>
+ constexpr inline in_place_tag in_place(detail::in_place_of_i<I>) { return in_place_tag(in_place_tag::init()); }
+
+ using in_place_t = in_place_tag(&)(detail::in_place_of);
+ template <typename T>
+ using in_place_type_t = in_place_tag(&)(detail::in_place_of_t<T>);
+ template <std::size_t I>
+ using in_place_index_t = in_place_tag(&)(detail::in_place_of_i<I>);
+
+} // sol
+
+// end of sol/in_place.hpp
+
+#if defined(SOL_USE_BOOST)
+#include <boost/optional.hpp>
+#else
+// beginning of sol/optional_implementation.hpp
+
+# ifndef SOL_OPTIONAL_IMPLEMENTATION_HPP
+# define SOL_OPTIONAL_IMPLEMENTATION_HPP
+
+# include <utility>
+# include <type_traits>
+# include <initializer_list>
+# include <cassert>
+# include <functional>
+# include <string>
+# include <stdexcept>
+#ifdef SOL_NO_EXCEPTIONS
+#include <cstdlib>
+#endif // Exceptions
+
+# define TR2_OPTIONAL_REQUIRES(...) typename ::std::enable_if<__VA_ARGS__::value, bool>::type = false
+
+# if defined __GNUC__ // NOTE: GNUC is also defined for Clang
+# if (__GNUC__ >= 5)
+# define TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
+# define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
+# elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)
+# define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
+# elif (__GNUC__ > 4)
+# define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
+# endif
+#
+# if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)
+# define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
+# elif (__GNUC__ > 4)
+# define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
+# endif
+#
+# if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) && (__GNUC_PATCHLEVEL__ >= 1)
+# define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
+# elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 9)
+# define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
+# elif (__GNUC__ > 4)
+# define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
+# endif
+# endif
+#
+# if defined __clang_major__
+# if (__clang_major__ == 3 && __clang_minor__ >= 5)
+# define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
+# elif (__clang_major__ > 3)
+# define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
+# endif
+# if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
+# define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
+# elif (__clang_major__ == 3 && __clang_minor__ == 4 && __clang_patchlevel__ >= 2)
+# define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
+# endif
+# endif
+#
+# if defined _MSC_VER
+# if (_MSC_VER >= 1900)
+# define TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
+# endif
+# endif
+
+# if defined __clang__
+# if (__clang_major__ > 2) || (__clang_major__ == 2) && (__clang_minor__ >= 9)
+# define OPTIONAL_HAS_THIS_RVALUE_REFS 1
+# else
+# define OPTIONAL_HAS_THIS_RVALUE_REFS 0
+# endif
+# elif defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
+# define OPTIONAL_HAS_THIS_RVALUE_REFS 1
+# elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
+# define OPTIONAL_HAS_THIS_RVALUE_REFS 1
+# else
+# define OPTIONAL_HAS_THIS_RVALUE_REFS 0
+# endif
+
+# if defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
+# define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 1
+# define OPTIONAL_CONSTEXPR_INIT_LIST constexpr
+# else
+# define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 0
+# define OPTIONAL_CONSTEXPR_INIT_LIST
+# endif
+
+# if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || (defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ && (defined __cplusplus) && (__cplusplus != 201103L))
+# define OPTIONAL_HAS_MOVE_ACCESSORS 1
+# else
+# define OPTIONAL_HAS_MOVE_ACCESSORS 0
+# endif
+
+# // In C++11 constexpr implies const, so we need to make non-const members also non-constexpr
+# if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || ((defined __cplusplus) && (__cplusplus == 201103L))
+# define OPTIONAL_MUTABLE_CONSTEXPR
+# else
+# define OPTIONAL_MUTABLE_CONSTEXPR constexpr
+# endif
+
+# if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
+#pragma warning( push )
+#pragma warning( disable : 4814 )
+#endif
+
+namespace sol {
+
+ // BEGIN workaround for missing is_trivially_destructible
+# if defined TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
+ // leave it: it is already there
+# elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
+ // leave it: it is already there
+# elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
+ // leave it: it is already there
+# elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
+ // leave it: the user doesn't want it
+# else
+ template <typename T>
+ using is_trivially_destructible = ::std::has_trivial_destructor<T>;
+# endif
+ // END workaround for missing is_trivially_destructible
+
+# if (defined TR2_OPTIONAL_GCC_4_7_AND_HIGHER___)
+ // leave it; our metafunctions are already defined.
+# elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
+ // leave it; our metafunctions are already defined.
+# elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
+ // leave it: it is already there
+# elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
+ // leave it: the user doesn't want it
+# else
+
+ template <class T>
+ struct is_nothrow_move_constructible
+ {
+ constexpr static bool value = ::std::is_nothrow_constructible<T, T&&>::value;
+ };
+
+ template <class T, class U>
+ struct is_assignable
+ {
+ template <class X, class Y>
+ constexpr static bool has_assign(...) { return false; }
+
+ template <class X, class Y, size_t S = sizeof((::std::declval<X>() = ::std::declval<Y>(), true)) >
+ // the comma operator is necessary for the cases where operator= returns void
+ constexpr static bool has_assign(bool) { return true; }
+
+ constexpr static bool value = has_assign<T, U>(true);
+ };
+
+ template <class T>
+ struct is_nothrow_move_assignable
+ {
+ template <class X, bool has_any_move_assign>
+ struct has_nothrow_move_assign {
+ constexpr static bool value = false;
+ };
+
+ template <class X>
+ struct has_nothrow_move_assign<X, true> {
+ constexpr static bool value = noexcept(::std::declval<X&>() = ::std::declval<X&&>());
+ };
+
+ constexpr static bool value = has_nothrow_move_assign<T, is_assignable<T&, T&&>::value>::value;
+ };
+ // end workaround
+
+# endif
+
+ template <class T> class optional;
+
+ // 20.5.5, optional for lvalue reference types
+ template <class T> class optional<T&>;
+
+ // workaround: std utility functions aren't constexpr yet
+ template <class T> inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type& t) noexcept
+ {
+ return static_cast<T&&>(t);
+ }
+
+ template <class T> inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type&& t) noexcept
+ {
+ static_assert(!::std::is_lvalue_reference<T>::value, "!!");
+ return static_cast<T&&>(t);
+ }
+
+ template <class T> inline constexpr typename ::std::remove_reference<T>::type&& constexpr_move(T&& t) noexcept
+ {
+ return static_cast<typename ::std::remove_reference<T>::type&&>(t);
+ }
+
+#if defined NDEBUG
+# define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
+#else
+# define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : ([]{assert(!#CHECK);}(), (EXPR)))
+#endif
+
+ namespace detail_
+ {
+
+ // static_addressof: a constexpr version of addressof
+ template <typename T>
+ struct has_overloaded_addressof
+ {
+ template <class X>
+ constexpr static bool has_overload(...) { return false; }
+
+ template <class X, size_t S = sizeof(::std::declval<X&>().operator&()) >
+ constexpr static bool has_overload(bool) { return true; }
+
+ constexpr static bool value = has_overload<T>(true);
+ };
+
+ template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)>
+ constexpr T* static_addressof(T& ref)
+ {
+ return &ref;
+ }
+
+ template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)>
+ T* static_addressof(T& ref)
+ {
+ return ::std::addressof(ref);
+ }
+
+ // the call to convert<A>(b) has return type A and converts b to type A iff b decltype(b) is implicitly convertible to A
+ template <class U>
+ constexpr U convert(U v) { return v; }
+
+ } // namespace detail_
+
+ constexpr struct trivial_init_t {} trivial_init{};
+
+ // 20.5.7, Disengaged state indicator
+ struct nullopt_t
+ {
+ struct init {};
+ constexpr explicit nullopt_t(init) {}
+ };
+ constexpr nullopt_t nullopt{ nullopt_t::init() };
+
+ // 20.5.8, class bad_optional_access
+ class bad_optional_access : public ::std::logic_error {
+ public:
+ explicit bad_optional_access(const ::std::string& what_arg) : ::std::logic_error{ what_arg } {}
+ explicit bad_optional_access(const char* what_arg) : ::std::logic_error{ what_arg } {}
+ };
+
+ template <class T>
+ struct alignas(T) optional_base {
+ char storage_[sizeof(T)];
+ bool init_;
+
+ constexpr optional_base() noexcept : storage_(), init_(false) {};
+
+ explicit optional_base(const T& v) : storage_(), init_(true) {
+ new (&storage())T(v);
+ }
+
+ explicit optional_base(T&& v) : storage_(), init_(true) {
+ new (&storage())T(constexpr_move(v));
+ }
+
+ template <class... Args> explicit optional_base(in_place_t, Args&&... args)
+ : init_(true), storage_() {
+ new (&storage())T(constexpr_forward<Args>(args)...);
+ }
+
+ template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
+ explicit optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
+ : init_(true), storage_() {
+ new (&storage())T(il, constexpr_forward<Args>(args)...);
+ }
+#if defined __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wstrict-aliasing"
+#endif
+ T& storage() {
+ return *reinterpret_cast<T*>(&storage_[0]);
+ }
+
+ constexpr const T& storage() const {
+ return *reinterpret_cast<T const*>(&storage_[0]);
+ }
+#if defined __GNUC__
+#pragma GCC diagnostic pop
+#endif
+
+ ~optional_base() { if (init_) { storage().T::~T(); } }
+ };
+
+#if defined __GNUC__ && !defined TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
+ // Sorry, GCC 4.x; you're just a piece of shit
+ template <typename T>
+ using constexpr_optional_base = optional_base<T>;
+#else
+ template <class T>
+ struct alignas(T) constexpr_optional_base {
+ char storage_[sizeof(T)];
+ bool init_;
+ constexpr constexpr_optional_base() noexcept : storage_(), init_(false) {}
+
+ explicit constexpr constexpr_optional_base(const T& v) : storage_(), init_(true) {
+ new (&storage())T(v);
+ }
+
+ explicit constexpr constexpr_optional_base(T&& v) : storage_(), init_(true) {
+ new (&storage())T(constexpr_move(v));
+ }
+
+ template <class... Args> explicit constexpr constexpr_optional_base(in_place_t, Args&&... args)
+ : init_(true), storage_() {
+ new (&storage())T(constexpr_forward<Args>(args)...);
+ }
+
+ template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
+ OPTIONAL_CONSTEXPR_INIT_LIST explicit constexpr_optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
+ : init_(true), storage_() {
+ new (&storage())T(il, constexpr_forward<Args>(args)...);
+ }
+
+#if defined __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wstrict-aliasing"
+#endif
+ T& storage() {
+ return (*reinterpret_cast<T*>(&storage_[0]));
+ }
+
+ constexpr const T& storage() const {
+ return (*reinterpret_cast<T const*>(&storage_[0]));
+ }
+#if defined __GNUC__
+#pragma GCC diagnostic pop
+#endif
+
+ ~constexpr_optional_base() = default;
+ };
+#endif
+
+ template <class T>
+ using OptionalBase = typename ::std::conditional<
+ ::std::is_trivially_destructible<T>::value,
+ constexpr_optional_base<typename ::std::remove_const<T>::type>,
+ optional_base<typename ::std::remove_const<T>::type>
+ >::type;
+
+ template <class T>
+ class optional : private OptionalBase<T>
+ {
+ static_assert(!::std::is_same<typename ::std::decay<T>::type, nullopt_t>::value, "bad T");
+ static_assert(!::std::is_same<typename ::std::decay<T>::type, in_place_t>::value, "bad T");
+
+ constexpr bool initialized() const noexcept { return OptionalBase<T>::init_; }
+ typename ::std::remove_const<T>::type* dataptr() { return ::std::addressof(OptionalBase<T>::storage()); }
+ constexpr const T* dataptr() const { return detail_::static_addressof(OptionalBase<T>::storage()); }
+
+# if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
+ constexpr const T& contained_val() const& { return OptionalBase<T>::storage(); }
+# if OPTIONAL_HAS_MOVE_ACCESSORS == 1
+ OPTIONAL_MUTABLE_CONSTEXPR T&& contained_val() && { return ::std::move(OptionalBase<T>::storage()); }
+ OPTIONAL_MUTABLE_CONSTEXPR T& contained_val() & { return OptionalBase<T>::storage(); }
+# else
+ T& contained_val() & { return OptionalBase<T>::storage(); }
+ T&& contained_val() && { return ::std::move(OptionalBase<T>::storage()); }
+# endif
+# else
+ constexpr const T& contained_val() const { return OptionalBase<T>::storage(); }
+ T& contained_val() { return OptionalBase<T>::storage(); }
+# endif
+
+ void clear() noexcept {
+ if (initialized()) dataptr()->T::~T();
+ OptionalBase<T>::init_ = false;
+ }
+
+ template <class... Args>
+ void initialize(Args&&... args) noexcept(noexcept(T(::std::forward<Args>(args)...)))
+ {
+ assert(!OptionalBase<T>::init_);
+ ::new (static_cast<void*>(dataptr())) T(::std::forward<Args>(args)...);
+ OptionalBase<T>::init_ = true;
+ }
+
+ template <class U, class... Args>
+ void initialize(::std::initializer_list<U> il, Args&&... args) noexcept(noexcept(T(il, ::std::forward<Args>(args)...)))
+ {
+ assert(!OptionalBase<T>::init_);
+ ::new (static_cast<void*>(dataptr())) T(il, ::std::forward<Args>(args)...);
+ OptionalBase<T>::init_ = true;
+ }
+
+ public:
+ typedef T value_type;
+
+ // 20.5.5.1, constructors
+ constexpr optional() noexcept : OptionalBase<T>() {};
+ constexpr optional(nullopt_t) noexcept : OptionalBase<T>() {};
+
+ optional(const optional& rhs)
+ : OptionalBase<T>()
+ {
+ if (rhs.initialized()) {
+ ::new (static_cast<void*>(dataptr())) T(*rhs);
+ OptionalBase<T>::init_ = true;
+ }
+ }
+
+ optional(const optional<T&>& rhs) : optional()
+ {
+ if (rhs) {
+ ::new (static_cast<void*>(dataptr())) T(*rhs);
+ OptionalBase<T>::init_ = true;
+ }
+ }
+
+ optional(optional&& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value)
+ : OptionalBase<T>()
+ {
+ if (rhs.initialized()) {
+ ::new (static_cast<void*>(dataptr())) T(::std::move(*rhs));
+ OptionalBase<T>::init_ = true;
+ }
+ }
+
+ constexpr optional(const T& v) : OptionalBase<T>(v) {}
+
+ constexpr optional(T&& v) : OptionalBase<T>(constexpr_move(v)) {}
+
+ template <class... Args>
+ explicit constexpr optional(in_place_t, Args&&... args)
+ : OptionalBase<T>(in_place, constexpr_forward<Args>(args)...) {}
+
+ template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
+ OPTIONAL_CONSTEXPR_INIT_LIST explicit optional(in_place_t, ::std::initializer_list<U> il, Args&&... args)
+ : OptionalBase<T>(in_place, il, constexpr_forward<Args>(args)...) {}
+
+ // 20.5.4.2, Destructor
+ ~optional() = default;
+
+ // 20.5.4.3, assignment
+ optional& operator=(nullopt_t) noexcept
+ {
+ clear();
+ return *this;
+ }
+
+ optional& operator=(const optional& rhs)
+ {
+ if (initialized() == true && rhs.initialized() == false) clear();
+ else if (initialized() == false && rhs.initialized() == true) initialize(*rhs);
+ else if (initialized() == true && rhs.initialized() == true) contained_val() = *rhs;
+ return *this;
+ }
+
+ optional& operator=(optional&& rhs)
+ noexcept(::std::is_nothrow_move_assignable<T>::value && ::std::is_nothrow_move_constructible<T>::value)
+ {
+ if (initialized() == true && rhs.initialized() == false) clear();
+ else if (initialized() == false && rhs.initialized() == true) initialize(::std::move(*rhs));
+ else if (initialized() == true && rhs.initialized() == true) contained_val() = ::std::move(*rhs);
+ return *this;
+ }
+
+ template <class U>
+ auto operator=(U&& v)
+ -> typename ::std::enable_if
+ <
+ ::std::is_same<typename ::std::decay<U>::type, T>::value,
+ optional&
+ >::type
+ {
+ if (initialized()) { contained_val() = ::std::forward<U>(v); }
+ else { initialize(::std::forward<U>(v)); }
+ return *this;
+ }
+
+ template <class... Args>
+ void emplace(Args&&... args)
+ {
+ clear();
+ initialize(::std::forward<Args>(args)...);
+ }
+
+ template <class U, class... Args>
+ void emplace(::std::initializer_list<U> il, Args&&... args)
+ {
+ clear();
+ initialize<U, Args...>(il, ::std::forward<Args>(args)...);
+ }
+
+ // 20.5.4.4, Swap
+ void swap(optional<T>& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value && noexcept(swap(::std::declval<T&>(), ::std::declval<T&>())))
+ {
+ if (initialized() == true && rhs.initialized() == false) { rhs.initialize(::std::move(**this)); clear(); }
+ else if (initialized() == false && rhs.initialized() == true) { initialize(::std::move(*rhs)); rhs.clear(); }
+ else if (initialized() == true && rhs.initialized() == true) { using ::std::swap; swap(**this, *rhs); }
+ }
+
+ // 20.5.4.5, Observers
+
+ explicit constexpr operator bool() const noexcept { return initialized(); }
+
+ constexpr T const* operator ->() const {
+ return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr());
+ }
+
+# if OPTIONAL_HAS_MOVE_ACCESSORS == 1
+
+ OPTIONAL_MUTABLE_CONSTEXPR T* operator ->() {
+ assert(initialized());
+ return dataptr();
+ }
+
+ constexpr T const& operator *() const& {
+ return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
+ }
+
+ OPTIONAL_MUTABLE_CONSTEXPR T& operator *() & {
+ assert(initialized());
+ return contained_val();
+ }
+
+ OPTIONAL_MUTABLE_CONSTEXPR T&& operator *() && {
+ assert(initialized());
+ return constexpr_move(contained_val());
+ }
+
+ constexpr T const& value() const& {
+ return initialized() ?
+ contained_val()
+#ifdef SOL_NO_EXCEPTIONS
+ // we can't abort here
+ // because there's no constexpr abort
+ : *(T*)nullptr;
+#else
+ : (throw bad_optional_access("bad optional access"), contained_val());
+#endif
+ }
+
+ OPTIONAL_MUTABLE_CONSTEXPR T& value() & {
+ return initialized() ?
+ contained_val()
+#ifdef SOL_NO_EXCEPTIONS
+ : *(T*)nullptr;
+#else
+ : (throw bad_optional_access("bad optional access"), contained_val());
+#endif
+ }
+
+ OPTIONAL_MUTABLE_CONSTEXPR T&& value() && {
+ return initialized() ?
+ contained_val()
+#ifdef SOL_NO_EXCEPTIONS
+ // we can't abort here
+ // because there's no constexpr abort
+ : std::move(*(T*)nullptr);
+#else
+ : (throw bad_optional_access("bad optional access"), contained_val());
+#endif
+ }
+
+# else
+
+ T* operator ->() {
+ assert(initialized());
+ return dataptr();
+ }
+
+ constexpr T const& operator *() const {
+ return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
+ }
+
+ T& operator *() {
+ assert(initialized());
+ return contained_val();
+ }
+
+ constexpr T const& value() const {
+ return initialized() ?
+ contained_val()
+#ifdef SOL_NO_EXCEPTIONS
+ // we can't abort here
+ // because there's no constexpr abort
+ : *(T*)nullptr;
+#else
+ : (throw bad_optional_access("bad optional access"), contained_val());
+#endif
+ }
+
+ T& value() {
+ return initialized() ?
+ contained_val()
+#ifdef SOL_NO_EXCEPTIONS
+ // we can abort here
+ // but the others are constexpr, so we can't...
+ : (std::abort(), *(T*)nullptr);
+#else
+ : (throw bad_optional_access("bad optional access"), contained_val());
+#endif
+ }
+
+# endif
+
+# if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
+
+ template <class V>
+ constexpr T value_or(V&& v) const&
+ {
+ return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
+ }
+
+# if OPTIONAL_HAS_MOVE_ACCESSORS == 1
+
+ template <class V>
+ OPTIONAL_MUTABLE_CONSTEXPR T value_or(V&& v) &&
+ {
+ return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
+ }
+
+# else
+
+ template <class V>
+ T value_or(V&& v) &&
+ {
+ return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
+ }
+
+# endif
+
+# else
+
+ template <class V>
+ constexpr T value_or(V&& v) const
+ {
+ return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
+ }
+
+# endif
+
+ };
+
+ template <class T>
+ class optional<T&>
+ {
+ static_assert(!::std::is_same<T, nullopt_t>::value, "bad T");
+ static_assert(!::std::is_same<T, in_place_t>::value, "bad T");
+ T* ref;
+
+ public:
+
+ // 20.5.5.1, construction/destruction
+ constexpr optional() noexcept : ref(nullptr) {}
+
+ constexpr optional(nullopt_t) noexcept : ref(nullptr) {}
+
+ constexpr optional(T& v) noexcept : ref(detail_::static_addressof(v)) {}
+
+ optional(T&&) = delete;
+
+ constexpr optional(const optional& rhs) noexcept : ref(rhs.ref) {}
+
+ explicit constexpr optional(in_place_t, T& v) noexcept : ref(detail_::static_addressof(v)) {}
+
+ explicit optional(in_place_t, T&&) = delete;
+
+ ~optional() = default;
+
+ // 20.5.5.2, mutation
+ optional& operator=(nullopt_t) noexcept {
+ ref = nullptr;
+ return *this;
+ }
+
+ // optional& operator=(const optional& rhs) noexcept {
+ // ref = rhs.ref;
+ // return *this;
+ // }
+
+ // optional& operator=(optional&& rhs) noexcept {
+ // ref = rhs.ref;
+ // return *this;
+ // }
+
+ template <typename U>
+ auto operator=(U&& rhs) noexcept
+ -> typename ::std::enable_if
+ <
+ ::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
+ optional&
+ >::type
+ {
+ ref = rhs.ref;
+ return *this;
+ }
+
+ template <typename U>
+ auto operator=(U&& rhs) noexcept
+ -> typename ::std::enable_if
+ <
+ !::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
+ optional&
+ >::type
+ = delete;
+
+ void emplace(T& v) noexcept {
+ ref = detail_::static_addressof(v);
+ }
+
+ void emplace(T&&) = delete;
+
+ void swap(optional<T&>& rhs) noexcept
+ {
+ ::std::swap(ref, rhs.ref);
+ }
+
+ // 20.5.5.3, observers
+ constexpr T* operator->() const {
+ return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref);
+ }
+
+ constexpr T& operator*() const {
+ return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref);
+ }
+
+ constexpr T& value() const {
+#ifdef SOL_NO_EXCEPTIONS
+ return *ref;
+#else
+ return ref ? *ref
+ : (throw bad_optional_access("bad optional access"), *ref);
+#endif // Exceptions
+ }
+
+ explicit constexpr operator bool() const noexcept {
+ return ref != nullptr;
+ }
+
+ template <typename V>
+ constexpr T& value_or(V&& v) const
+ {
+ return *this ? **this : detail_::convert<T&>(constexpr_forward<V>(v));
+ }
+ };
+
+ template <class T>
+ class optional<T&&>
+ {
+ static_assert(sizeof(T) == 0, "optional rvalue references disallowed");
+ };
+
+ // 20.5.8, Relational operators
+ template <class T> constexpr bool operator==(const optional<T>& x, const optional<T>& y)
+ {
+ return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y;
+ }
+
+ template <class T> constexpr bool operator!=(const optional<T>& x, const optional<T>& y)
+ {
+ return !(x == y);
+ }
+
+ template <class T> constexpr bool operator<(const optional<T>& x, const optional<T>& y)
+ {
+ return (!y) ? false : (!x) ? true : *x < *y;
+ }
+
+ template <class T> constexpr bool operator>(const optional<T>& x, const optional<T>& y)
+ {
+ return (y < x);
+ }
+
+ template <class T> constexpr bool operator<=(const optional<T>& x, const optional<T>& y)
+ {
+ return !(y < x);
+ }
+
+ template <class T> constexpr bool operator>=(const optional<T>& x, const optional<T>& y)
+ {
+ return !(x < y);
+ }
+
+ // 20.5.9, Comparison with nullopt
+ template <class T> constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept
+ {
+ return (!x);
+ }
+
+ template <class T> constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept
+ {
+ return (!x);
+ }
+
+ template <class T> constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept
+ {
+ return bool(x);
+ }
+
+ template <class T> constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept
+ {
+ return bool(x);
+ }
+
+ template <class T> constexpr bool operator<(const optional<T>&, nullopt_t) noexcept
+ {
+ return false;
+ }
+
+ template <class T> constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept
+ {
+ return bool(x);
+ }
+
+ template <class T> constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept
+ {
+ return (!x);
+ }
+
+ template <class T> constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept
+ {
+ return true;
+ }
+
+ template <class T> constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept
+ {
+ return bool(x);
+ }
+
+ template <class T> constexpr bool operator>(nullopt_t, const optional<T>&) noexcept
+ {
+ return false;
+ }
+
+ template <class T> constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept
+ {
+ return true;
+ }
+
+ template <class T> constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept
+ {
+ return (!x);
+ }
+
+ // 20.5.10, Comparison with T
+ template <class T> constexpr bool operator==(const optional<T>& x, const T& v)
+ {
+ return bool(x) ? *x == v : false;
+ }
+
+ template <class T> constexpr bool operator==(const T& v, const optional<T>& x)
+ {
+ return bool(x) ? v == *x : false;
+ }
+
+ template <class T> constexpr bool operator!=(const optional<T>& x, const T& v)
+ {
+ return bool(x) ? *x != v : true;
+ }
+
+ template <class T> constexpr bool operator!=(const T& v, const optional<T>& x)
+ {
+ return bool(x) ? v != *x : true;
+ }
+
+ template <class T> constexpr bool operator<(const optional<T>& x, const T& v)
+ {
+ return bool(x) ? *x < v : true;
+ }
+
+ template <class T> constexpr bool operator>(const T& v, const optional<T>& x)
+ {
+ return bool(x) ? v > *x : true;
+ }
+
+ template <class T> constexpr bool operator>(const optional<T>& x, const T& v)
+ {
+ return bool(x) ? *x > v : false;
+ }
+
+ template <class T> constexpr bool operator<(const T& v, const optional<T>& x)
+ {
+ return bool(x) ? v < *x : false;
+ }
+
+ template <class T> constexpr bool operator>=(const optional<T>& x, const T& v)
+ {
+ return bool(x) ? *x >= v : false;
+ }
+
+ template <class T> constexpr bool operator<=(const T& v, const optional<T>& x)
+ {
+ return bool(x) ? v <= *x : false;
+ }
+
+ template <class T> constexpr bool operator<=(const optional<T>& x, const T& v)
+ {
+ return bool(x) ? *x <= v : true;
+ }
+
+ template <class T> constexpr bool operator>=(const T& v, const optional<T>& x)
+ {
+ return bool(x) ? v >= *x : true;
+ }
+
+ // Comparison of optional<T&> with T
+ template <class T> constexpr bool operator==(const optional<T&>& x, const T& v)
+ {
+ return bool(x) ? *x == v : false;
+ }
+
+ template <class T> constexpr bool operator==(const T& v, const optional<T&>& x)
+ {
+ return bool(x) ? v == *x : false;
+ }
+
+ template <class T> constexpr bool operator!=(const optional<T&>& x, const T& v)
+ {
+ return bool(x) ? *x != v : true;
+ }
+
+ template <class T> constexpr bool operator!=(const T& v, const optional<T&>& x)
+ {
+ return bool(x) ? v != *x : true;
+ }
+
+ template <class T> constexpr bool operator<(const optional<T&>& x, const T& v)
+ {
+ return bool(x) ? *x < v : true;
+ }
+
+ template <class T> constexpr bool operator>(const T& v, const optional<T&>& x)
+ {
+ return bool(x) ? v > *x : true;
+ }
+
+ template <class T> constexpr bool operator>(const optional<T&>& x, const T& v)
+ {
+ return bool(x) ? *x > v : false;
+ }
+
+ template <class T> constexpr bool operator<(const T& v, const optional<T&>& x)
+ {
+ return bool(x) ? v < *x : false;
+ }
+
+ template <class T> constexpr bool operator>=(const optional<T&>& x, const T& v)
+ {
+ return bool(x) ? *x >= v : false;
+ }
+
+ template <class T> constexpr bool operator<=(const T& v, const optional<T&>& x)
+ {
+ return bool(x) ? v <= *x : false;
+ }
+
+ template <class T> constexpr bool operator<=(const optional<T&>& x, const T& v)
+ {
+ return bool(x) ? *x <= v : true;
+ }
+
+ template <class T> constexpr bool operator>=(const T& v, const optional<T&>& x)
+ {
+ return bool(x) ? v >= *x : true;
+ }
+
+ // Comparison of optional<T const&> with T
+ template <class T> constexpr bool operator==(const optional<const T&>& x, const T& v)
+ {
+ return bool(x) ? *x == v : false;
+ }
+
+ template <class T> constexpr bool operator==(const T& v, const optional<const T&>& x)
+ {
+ return bool(x) ? v == *x : false;
+ }
+
+ template <class T> constexpr bool operator!=(const optional<const T&>& x, const T& v)
+ {
+ return bool(x) ? *x != v : true;
+ }
+
+ template <class T> constexpr bool operator!=(const T& v, const optional<const T&>& x)
+ {
+ return bool(x) ? v != *x : true;
+ }
+
+ template <class T> constexpr bool operator<(const optional<const T&>& x, const T& v)
+ {
+ return bool(x) ? *x < v : true;
+ }
+
+ template <class T> constexpr bool operator>(const T& v, const optional<const T&>& x)
+ {
+ return bool(x) ? v > *x : true;
+ }
+
+ template <class T> constexpr bool operator>(const optional<const T&>& x, const T& v)
+ {
+ return bool(x) ? *x > v : false;
+ }
+
+ template <class T> constexpr bool operator<(const T& v, const optional<const T&>& x)
+ {
+ return bool(x) ? v < *x : false;
+ }
+
+ template <class T> constexpr bool operator>=(const optional<const T&>& x, const T& v)
+ {
+ return bool(x) ? *x >= v : false;
+ }
+
+ template <class T> constexpr bool operator<=(const T& v, const optional<const T&>& x)
+ {
+ return bool(x) ? v <= *x : false;
+ }
+
+ template <class T> constexpr bool operator<=(const optional<const T&>& x, const T& v)
+ {
+ return bool(x) ? *x <= v : true;
+ }
+
+ template <class T> constexpr bool operator>=(const T& v, const optional<const T&>& x)
+ {
+ return bool(x) ? v >= *x : true;
+ }
+
+ // 20.5.12, Specialized algorithms
+ template <class T>
+ void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y))) {
+ x.swap(y);
+ }
+
+ template <class T>
+ constexpr optional<typename ::std::decay<T>::type> make_optional(T&& v) {
+ return optional<typename ::std::decay<T>::type>(constexpr_forward<T>(v));
+ }
+
+ template <class X>
+ constexpr optional<X&> make_optional(::std::reference_wrapper<X> v) {
+ return optional<X&>(v.get());
+ }
+
+} // namespace
+
+namespace std
+{
+ template <typename T>
+ struct hash<sol::optional<T>> {
+ typedef typename hash<T>::result_type result_type;
+ typedef sol::optional<T> argument_type;
+
+ constexpr result_type operator()(argument_type const& arg) const {
+ return arg ? ::std::hash<T>{}(*arg) : result_type{};
+ }
+ };
+
+ template <typename T>
+ struct hash<sol::optional<T&>> {
+ typedef typename hash<T>::result_type result_type;
+ typedef sol::optional<T&> argument_type;
+
+ constexpr result_type operator()(argument_type const& arg) const {
+ return arg ? ::std::hash<T>{}(*arg) : result_type{};
+ }
+ };
+}
+
+# if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
+#pragma warning( pop )
+#endif
+
+# undef TR2_OPTIONAL_REQUIRES
+# undef TR2_OPTIONAL_ASSERTED_EXPRESSION
+
+# endif // SOL_OPTIONAL_IMPLEMENTATION_HPP
+// end of sol/optional_implementation.hpp
+
+#endif // Boost vs. Better optional
+
+namespace sol {
+
+#if defined(SOL_USE_BOOST)
+ template <typename T>
+ using optional = boost::optional<T>;
+ using nullopt_t = boost::none_t;
+ const nullopt_t nullopt = boost::none;
+#endif // Boost vs. Better optional
+
+} // sol
+
+// end of sol/optional.hpp
+
+// beginning of sol/string_shim.hpp
+
+namespace sol {
+ namespace string_detail {
+ struct string_shim {
+ std::size_t s;
+ const char* p;
+
+ string_shim(const std::string& r) : string_shim(r.data(), r.size()) {}
+ string_shim(const char* ptr) : string_shim(ptr, std::char_traits<char>::length(ptr)) {}
+ string_shim(const char* ptr, std::size_t sz) : s(sz), p(ptr) {}
+
+ static int compare(const char* lhs_p, std::size_t lhs_sz, const char* rhs_p, std::size_t rhs_sz) {
+ int result = std::char_traits<char>::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz);
+ if (result != 0)
+ return result;
+ if (lhs_sz < rhs_sz)
+ return -1;
+ if (lhs_sz > rhs_sz)
+ return 1;
+ return 0;
+ }
+
+ const char* c_str() const {
+ return p;
+ }
+
+ const char* data() const {
+ return p;
+ }
+
+ std::size_t size() const {
+ return s;
+ }
+
+ bool operator==(const string_shim& r) const {
+ return compare(p, s, r.data(), r.size()) == 0;
+ }
+
+ bool operator==(const char* r) const {
+ return compare(r, std::char_traits<char>::length(r), p, s) == 0;
+ }
+
+ bool operator==(const std::string& r) const {
+ return compare(r.data(), r.size(), p, s) == 0;
+ }
+
+ bool operator!=(const string_shim& r) const {
+ return !(*this == r);
+ }
+
+ bool operator!=(const char* r) const {
+ return !(*this == r);
+ }
+
+ bool operator!=(const std::string& r) const {
+ return !(*this == r);
+ }
+ };
+ }
+}
+
+// end of sol/string_shim.hpp
+
+#include <array>
+
+namespace sol {
+ namespace detail {
+#ifdef SOL_NO_EXCEPTIONS
+ template <lua_CFunction f>
+ int static_trampoline(lua_State* L) {
+ return f(L);
+ }
+
+ template <typename Fx, typename... Args>
+ int trampoline(lua_State* L, Fx&& f, Args&&... args) {
+ return f(L, std::forward<Args>(args)...);
+ }
+
+ inline int c_trampoline(lua_State* L, lua_CFunction f) {
+ return trampoline(L, f);
+ }
+#else
+ template <lua_CFunction f>
+ int static_trampoline(lua_State* L) {
+ try {
+ return f(L);
+ }
+ catch (const char *s) {
+ lua_pushstring(L, s);
+ }
+ catch (const std::exception& e) {
+ lua_pushstring(L, e.what());
+ }
+#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
+ catch (...) {
+ lua_pushstring(L, "caught (...) exception");
+ }
+#endif
+ return lua_error(L);
+ }
+
+ template <typename Fx, typename... Args>
+ int trampoline(lua_State* L, Fx&& f, Args&&... args) {
+ try {
+ return f(L, std::forward<Args>(args)...);
+ }
+ catch (const char *s) {
+ lua_pushstring(L, s);
+ }
+ catch (const std::exception& e) {
+ lua_pushstring(L, e.what());
+ }
+#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
+ catch (...) {
+ lua_pushstring(L, "caught (...) exception");
+ }
+#endif
+ return lua_error(L);
+ }
+
+ inline int c_trampoline(lua_State* L, lua_CFunction f) {
+ return trampoline(L, f);
+ }
+#endif // Exceptions vs. No Exceptions
+
+ template <typename T>
+ struct unique_usertype {};
+
+ template <typename T>
+ struct implicit_wrapper {
+ T& item;
+ implicit_wrapper(T* item) : item(*item) {}
+ implicit_wrapper(T& item) : item(item) {}
+ operator T& () {
+ return item;
+ }
+ operator T* () {
+ return std::addressof(item);
+ }
+ };
+ } // detail
+
+ struct lua_nil_t {};
+ const lua_nil_t lua_nil{};
+ inline bool operator==(lua_nil_t, lua_nil_t) { return true; }
+ inline bool operator!=(lua_nil_t, lua_nil_t) { return false; }
+#ifndef __OBJC__
+ typedef lua_nil_t nil_t;
+ const nil_t nil{};
+#endif
+
+ struct metatable_key_t {};
+ const metatable_key_t metatable_key = {};
+
+ struct no_metatable_t {};
+ const no_metatable_t no_metatable = {};
+
+ typedef std::remove_pointer_t<lua_CFunction> lua_r_CFunction;
+
+ template <typename T>
+ struct unique_usertype_traits {
+ typedef T type;
+ typedef T actual_type;
+ static const bool value = false;
+
+ template <typename U>
+ static bool is_null(U&&) {
+ return false;
+ }
+
+ template <typename U>
+ static auto get(U&& value) {
+ return std::addressof(detail::deref(value));
+ }
+ };
+
+ template <typename T>
+ struct unique_usertype_traits<std::shared_ptr<T>> {
+ typedef T type;
+ typedef std::shared_ptr<T> actual_type;
+ static const bool value = true;
+
+ static bool is_null(const actual_type& p) {
+ return p == nullptr;
+ }
+
+ static type* get(const actual_type& p) {
+ return p.get();
+ }
+ };
+
+ template <typename T, typename D>
+ struct unique_usertype_traits<std::unique_ptr<T, D>> {
+ typedef T type;
+ typedef std::unique_ptr<T, D> actual_type;
+ static const bool value = true;
+
+ static bool is_null(const actual_type& p) {
+ return p == nullptr;
+ }
+
+ static type* get(const actual_type& p) {
+ return p.get();
+ }
+ };
+
+ template <typename T>
+ struct non_null {};
+
+ template <typename... Args>
+ struct function_sig {};
+
+ struct upvalue_index {
+ int index;
+ upvalue_index(int idx) : index(lua_upvalueindex(idx)) {}
+ operator int() const { return index; }
+ };
+
+ struct raw_index {
+ int index;
+ raw_index(int i) : index(i) {}
+ operator int() const { return index; }
+ };
+
+ struct absolute_index {
+ int index;
+ absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) {}
+ operator int() const { return index; }
+ };
+
+ struct ref_index {
+ int index;
+ ref_index(int idx) : index(idx) {}
+ operator int() const { return index; }
+ };
+
+ struct lightuserdata_value {
+ void* value;
+ lightuserdata_value(void* data) : value(data) {}
+ operator void*() const { return value; }
+ };
+
+ struct userdata_value {
+ void* value;
+ userdata_value(void* data) : value(data) {}
+ operator void*() const { return value; }
+ };
+
+ template <typename L>
+ struct light {
+ L* value;
+
+ light(L& x) : value(std::addressof(x)) {}
+ light(L* x) : value(x) {}
+ light(void* x) : value(static_cast<L*>(x)) {}
+ operator L* () const { return value; }
+ operator L& () const { return *value; }
+ };
+
+ template <typename T>
+ auto make_light(T& l) {
+ typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
+ return light<L>(l);
+ }
+
+ template <typename U>
+ struct user {
+ U value;
+
+ user(U x) : value(std::move(x)) {}
+ operator U* () { return std::addressof(value); }
+ operator U& () { return value; }
+ operator const U& () const { return value; }
+ };
+
+ template <typename T>
+ auto make_user(T&& u) {
+ typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
+ return user<U>(std::forward<T>(u));
+ }
+
+ template <typename T>
+ struct metatable_registry_key {
+ T key;
+
+ metatable_registry_key(T key) : key(std::forward<T>(key)) {}
+ };
+
+ template <typename T>
+ auto meta_registry_key(T&& key) {
+ typedef meta::unqualified_t<T> K;
+ return metatable_registry_key<K>(std::forward<T>(key));
+ }
+
+ template <typename... Upvalues>
+ struct closure {
+ lua_CFunction c_function;
+ std::tuple<Upvalues...> upvalues;
+ closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {}
+ };
+
+ template <>
+ struct closure<> {
+ lua_CFunction c_function;
+ int upvalues;
+ closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) {}
+ };
+
+ typedef closure<> c_closure;
+
+ template <typename... Args>
+ closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
+ return closure<Args...>(f, std::forward<Args>(args)...);
+ }
+
+ template <typename Sig, typename... Ps>
+ struct function_arguments {
+ std::tuple<Ps...> arguments;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
+ function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+ };
+
+ template <typename Sig = function_sig<>, typename... Args>
+ auto as_function(Args&&... args) {
+ return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
+ }
+
+ template <typename Sig = function_sig<>, typename... Args>
+ auto as_function_reference(Args&&... args) {
+ return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
+ }
+
+ template <typename T>
+ struct as_table_t {
+ T source;
+ template <typename... Args>
+ as_table_t(Args&&... args) : source(std::forward<Args>(args)...) {}
+
+ operator std::add_lvalue_reference_t<T> () {
+ return source;
+ }
+ };
+
+ template <typename T>
+ as_table_t<T> as_table(T&& container) {
+ return as_table_t<T>(std::forward<T>(container));
+ }
+
+ struct this_state {
+ lua_State* L;
+ operator lua_State* () const {
+ return L;
+ }
+ lua_State* operator-> () const {
+ return L;
+ }
+ };
+
+ enum class call_syntax {
+ dot = 0,
+ colon = 1
+ };
+
+ enum class call_status : int {
+ ok = LUA_OK,
+ yielded = LUA_YIELD,
+ runtime = LUA_ERRRUN,
+ memory = LUA_ERRMEM,
+ handler = LUA_ERRERR,
+ gc = LUA_ERRGCMM
+ };
+
+ enum class thread_status : int {
+ ok = LUA_OK,
+ yielded = LUA_YIELD,
+ runtime = LUA_ERRRUN,
+ memory = LUA_ERRMEM,
+ gc = LUA_ERRGCMM,
+ handler = LUA_ERRERR,
+ dead = -1,
+ };
+
+ enum class load_status : int {
+ ok = LUA_OK,
+ syntax = LUA_ERRSYNTAX,
+ memory = LUA_ERRMEM,
+ gc = LUA_ERRGCMM,
+ file = LUA_ERRFILE,
+ };
+
+ enum class type : int {
+ none = LUA_TNONE,
+ lua_nil = LUA_TNIL,
+#ifndef __OBJC__
+ nil = lua_nil,
+#endif // Objective C++ Keyword
+ string = LUA_TSTRING,
+ number = LUA_TNUMBER,
+ thread = LUA_TTHREAD,
+ boolean = LUA_TBOOLEAN,
+ function = LUA_TFUNCTION,
+ userdata = LUA_TUSERDATA,
+ lightuserdata = LUA_TLIGHTUSERDATA,
+ table = LUA_TTABLE,
+ poly = none | lua_nil | string | number | thread |
+ table | boolean | function | userdata | lightuserdata
+ };
+
+ enum class meta_function {
+ construct,
+ index,
+ new_index,
+ mode,
+ call,
+ call_function = call,
+ metatable,
+ to_string,
+ length,
+ unary_minus,
+ addition,
+ subtraction,
+ multiplication,
+ division,
+ modulus,
+ power_of,
+ involution = power_of,
+ concatenation,
+ equal_to,
+ less_than,
+ less_than_or_equal_to,
+ garbage_collect,
+ floor_division,
+ bitwise_left_shift,
+ bitwise_right_shift,
+ bitwise_not,
+ bitwise_and,
+ bitwise_or,
+ bitwise_xor,
+ pairs,
+ next
+ };
+
+ typedef meta_function meta_method;
+
+ const std::array<std::string, 2> meta_variable_names = { {
+ "__index",
+ "__newindex",
+ } };
+
+ const std::array<std::string, 29> meta_function_names = { {
+ "new",
+ "__index",
+ "__newindex",
+ "__mode",
+ "__call",
+ "__mt",
+ "__tostring",
+ "__len",
+ "__unm",
+ "__add",
+ "__sub",
+ "__mul",
+ "__div",
+ "__mod",
+ "__pow",
+ "__concat",
+ "__eq",
+ "__lt",
+ "__le",
+ "__gc",
+
+ "__idiv",
+ "__shl",
+ "__shr",
+ "__bnot",
+ "__band",
+ "__bor",
+ "__bxor",
+
+ "__pairs",
+ "__next"
+ } };
+
+ inline const std::string& name_of(meta_function mf) {
+ return meta_function_names[static_cast<int>(mf)];
+ }
+
+ inline type type_of(lua_State* L, int index) {
+ return static_cast<type>(lua_type(L, index));
+ }
+
+ inline int type_panic(lua_State* L, int index, type expected, type actual) {
+ return luaL_error(L, "stack index %d, expected %s, received %s", index,
+ expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)),
+ expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(actual))
+ );
+ }
+
+ // Specify this function as the handler for lua::check if you know there's nothing wrong
+ inline int no_panic(lua_State*, int, type, type) noexcept {
+ return 0;
+ }
+
+ inline void type_error(lua_State* L, int expected, int actual) {
+ luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
+ }
+
+ inline void type_error(lua_State* L, type expected, type actual) {
+ type_error(L, static_cast<int>(expected), static_cast<int>(actual));
+ }
+
+ inline void type_assert(lua_State* L, int index, type expected, type actual) {
+ if (expected != type::poly && expected != actual) {
+ type_panic(L, index, expected, actual);
+ }
+ }
+
+ inline void type_assert(lua_State* L, int index, type expected) {
+ type actual = type_of(L, index);
+ type_assert(L, index, expected, actual);
+ }
+
+ inline std::string type_name(lua_State* L, type t) {
+ return lua_typename(L, static_cast<int>(t));
+ }
+
+ class reference;
+ class stack_reference;
+ template <typename Table, typename Key>
+ struct proxy;
+ template<typename T>
+ class usertype;
+ template <bool, typename T>
+ class basic_table_core;
+ template <bool b>
+ using table_core = basic_table_core<b, reference>;
+ template <bool b>
+ using stack_table_core = basic_table_core<b, stack_reference>;
+ typedef table_core<false> table;
+ typedef table_core<true> global_table;
+ typedef stack_table_core<false> stack_table;
+ typedef stack_table_core<true> stack_global_table;
+ template <typename T>
+ class basic_function;
+ template <typename T>
+ class basic_protected_function;
+ using protected_function = basic_protected_function<reference>;
+ using stack_protected_function = basic_protected_function<stack_reference>;
+ using unsafe_function = basic_function<reference>;
+ using safe_function = basic_protected_function<reference>;
+ using stack_unsafe_function = basic_function<stack_reference>;
+ using stack_safe_function = basic_protected_function<stack_reference>;
+#ifdef SOL_SAFE_FUNCTIONS
+ using function = protected_function;
+ using stack_function = stack_protected_function;
+#else
+ using function = unsafe_function;
+ using stack_function = stack_unsafe_function;
+#endif
+ template <typename base_t>
+ class basic_object;
+ template <typename base_t>
+ class basic_userdata;
+ template <typename base_t>
+ class basic_lightuserdata;
+ struct variadic_args;
+ using object = basic_object<reference>;
+ using stack_object = basic_object<stack_reference>;
+ using userdata = basic_userdata<reference>;
+ using stack_userdata = basic_userdata<stack_reference>;
+ using lightuserdata = basic_lightuserdata<reference>;
+ using stack_lightuserdata = basic_lightuserdata<stack_reference>;
+ class coroutine;
+ class thread;
+ struct variadic_args;
+ struct this_state;
+
+ namespace detail {
+ template <typename T, typename = void>
+ struct lua_type_of : std::integral_constant<type, type::userdata> {};
+
+ template <>
+ struct lua_type_of<std::string> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<std::wstring> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<std::u16string> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<std::u32string> : std::integral_constant<type, type::string> {};
+
+ template <std::size_t N>
+ struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {};
+
+ template <std::size_t N>
+ struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {};
+
+ template <std::size_t N>
+ struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {};
+
+ template <std::size_t N>
+ struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<char> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<const char*> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<string_detail::string_shim> : std::integral_constant<type, type::string> {};
+
+ template <>
+ struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {};
+
+ template <>
+ struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> { };
+
+ template <>
+ struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> { };
+
+ template <>
+ struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> { };
+
+ template <>
+ struct lua_type_of<sol::error> : std::integral_constant<type, type::string> { };
+
+ template <bool b, typename Base>
+ struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> { };
+
+ template <>
+ struct lua_type_of<reference> : std::integral_constant<type, type::poly> {};
+
+ template <>
+ struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {};
+
+ template <typename Base>
+ struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {};
+
+ template <typename... Args>
+ struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {};
+
+ template <typename A, typename B>
+ struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {};
+
+ template <>
+ struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {};
+
+ template <>
+ struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {};
+
+ template <>
+ struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {};
+
+ template <typename T>
+ struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {};
+
+ template <typename T>
+ struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {};
+
+ template <typename Base>
+ struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {};
+
+ template <typename Base>
+ struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {};
+
+ template <>
+ struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {};
+
+ template <>
+ struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {};
+
+ template <typename Base>
+ struct lua_type_of<basic_function<Base>> : std::integral_constant<type, type::function> {};
+
+ template <typename Base>
+ struct lua_type_of<basic_protected_function<Base>> : std::integral_constant<type, type::function> {};
+
+ template <>
+ struct lua_type_of<coroutine> : std::integral_constant<type, type::function> {};
+
+ template <>
+ struct lua_type_of<thread> : std::integral_constant<type, type::thread> {};
+
+ template <typename Signature>
+ struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {};
+
+ template <typename T>
+ struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {};
+
+ template <>
+ struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {};
+
+ template <>
+ struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {};
+
+ template <>
+ struct lua_type_of<type> : std::integral_constant<type, type::poly> {};
+
+ template <typename T>
+ struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {};
+
+ template <typename T>
+ struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {};
+
+ template <typename T>
+ struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {};
+
+ template <typename T, typename C = void>
+ struct is_container : std::false_type {};
+
+ template <typename T>
+ struct is_container<T, std::enable_if_t<meta::has_begin_end<meta::unqualified_t<T>>::value>> : std::true_type {};
+
+ template <>
+ struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {};
+
+ template <typename C, C v, template <typename...> class V, typename... Args>
+ struct accumulate : std::integral_constant<C, v> {};
+
+ template <typename C, C v, template <typename...> class V, typename T, typename... Args>
+ struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {};
+ } // detail
+
+ template <typename T>
+ struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
+
+ template <typename T>
+ struct lua_type_of : detail::lua_type_of<T> {
+ typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
+ };
+
+ template <typename T>
+ struct lua_size : std::integral_constant<int, 1> {
+ typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
+ };
+
+ template <typename A, typename B>
+ struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> { };
+
+ template <typename... Args>
+ struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> { };
+
+ namespace detail {
+ template <typename...>
+ struct void_ { typedef void type; };
+ template <typename T, typename = void>
+ struct has_internal_marker_impl : std::false_type {};
+ template <typename T>
+ struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {};
+
+ template <typename T>
+ struct has_internal_marker : has_internal_marker_impl<T> {};
+ }
+
+ template <typename T>
+ struct is_lua_primitive : std::integral_constant<bool,
+ type::userdata != lua_type_of<meta::unqualified_t<T>>::value
+ || ((type::userdata == lua_type_of<meta::unqualified_t<T>>::value)
+ && detail::has_internal_marker<lua_type_of<meta::unqualified_t<T>>>::value
+ && !detail::has_internal_marker<lua_size<meta::unqualified_t<T>>>::value)
+ || std::is_base_of<reference, meta::unqualified_t<T>>::value
+ || std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
+ || meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>::value
+ || meta::is_specialization_of<std::pair, meta::unqualified_t<T>>::value
+ > { };
+
+ template <typename T>
+ struct is_lua_reference : std::integral_constant<bool,
+ std::is_base_of<reference, meta::unqualified_t<T>>::value
+ || std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
+ || meta::is_specialization_of<proxy, meta::unqualified_t<T>>::value
+ > { };
+
+ template <typename T>
+ struct is_lua_primitive<T*> : std::true_type {};
+ template <typename T>
+ struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<user<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<light<T>> : is_lua_primitive<T*> { };
+ template <typename T>
+ struct is_lua_primitive<optional<T>> : std::true_type {};
+ template <>
+ struct is_lua_primitive<userdata_value> : std::true_type {};
+ template <>
+ struct is_lua_primitive<lightuserdata_value> : std::true_type {};
+ template <typename T>
+ struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {};
+
+ template <typename T>
+ struct is_proxy_primitive : is_lua_primitive<T> { };
+
+ template <typename T>
+ struct is_transparent_argument : std::false_type {};
+
+ template <>
+ struct is_transparent_argument<this_state> : std::true_type {};
+
+ template <>
+ struct is_transparent_argument<variadic_args> : std::true_type {};
+
+ template <typename T>
+ struct is_variadic_arguments : std::is_same<T, variadic_args> {};
+
+ template <typename Signature>
+ struct lua_bind_traits : meta::bind_traits<Signature> {
+ private:
+ typedef meta::bind_traits<Signature> base_t;
+ public:
+ typedef std::integral_constant<bool, meta::count_for<is_transparent_argument, typename base_t::args_list>::value != 0> runtime_variadics_t;
+ static const std::size_t true_arity = base_t::arity;
+ static const std::size_t arity = base_t::arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
+ static const std::size_t true_free_arity = base_t::free_arity;
+ static const std::size_t free_arity = base_t::free_arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
+ };
+
+ template <typename T>
+ struct is_table : std::false_type {};
+ template <bool x, typename T>
+ struct is_table<basic_table_core<x, T>> : std::true_type {};
+
+ template <typename T>
+ struct is_function : std::false_type {};
+ template <typename T>
+ struct is_function<basic_function<T>> : std::true_type {};
+ template <typename T>
+ struct is_function<basic_protected_function<T>> : std::true_type {};
+
+ template <typename T>
+ struct is_lightuserdata : std::false_type {};
+ template <typename T>
+ struct is_lightuserdata<basic_lightuserdata<T>> : std::true_type {};
+
+ template <typename T>
+ struct is_userdata : std::false_type {};
+ template <typename T>
+ struct is_userdata<basic_userdata<T>> : std::true_type {};
+
+ template <typename T>
+ struct is_container : detail::is_container<T>{};
+
+ template<typename T>
+ inline type type_of() {
+ return lua_type_of<meta::unqualified_t<T>>::value;
+ }
+} // sol
+
+// end of sol/types.hpp
+
+// beginning of sol/stack_reference.hpp
+
+namespace sol {
+ class stack_reference {
+ private:
+ lua_State* L = nullptr;
+ int index = 0;
+
+ protected:
+ int registry_index() const noexcept {
+ return LUA_NOREF;
+ }
+
+ public:
+ stack_reference() noexcept = default;
+ stack_reference(lua_nil_t) noexcept : stack_reference() {};
+ stack_reference(lua_State* L, int i) noexcept : L(L), index(lua_absindex(L, i)) {}
+ stack_reference(lua_State* L, absolute_index i) noexcept : L(L), index(i) {}
+ stack_reference(lua_State* L, raw_index i) noexcept : L(L), index(i) {}
+ stack_reference(lua_State* L, ref_index i) noexcept = delete;
+ stack_reference(stack_reference&& o) noexcept = default;
+ stack_reference& operator=(stack_reference&&) noexcept = default;
+ stack_reference(const stack_reference&) noexcept = default;
+ stack_reference& operator=(const stack_reference&) noexcept = default;
+
+ int push() const noexcept {
+ return push(lua_state());
+ }
+
+ int push(lua_State* Ls) const noexcept {
+ lua_pushvalue(lua_state(), index);
+ if (Ls != lua_state()) {
+ lua_xmove(lua_state(), Ls, 1);
+ }
+ return 1;
+ }
+
+ void pop() const noexcept {
+ pop(lua_state());
+ }
+
+ void pop(lua_State* Ls, int n = 1) const noexcept {
+ lua_pop(Ls, n);
+ }
+
+ int stack_index() const noexcept {
+ return index;
+ }
+
+ type get_type() const noexcept {
+ int result = lua_type(L, index);
+ return static_cast<type>(result);
+ }
+
+ lua_State* lua_state() const noexcept {
+ return L;
+ }
+
+ bool valid() const noexcept {
+ type t = get_type();
+ return t != type::lua_nil && t != type::none;
+ }
+ };
+
+ inline bool operator== (const stack_reference& l, const stack_reference& r) {
+ return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0;
+ }
+
+ inline bool operator!= (const stack_reference& l, const stack_reference& r) {
+ return !operator==(l, r);
+ }
+} // sol
+
+// end of sol/stack_reference.hpp
+
+namespace sol {
+ namespace stack {
+ template <bool top_level>
+ struct push_popper_n {
+ lua_State* L;
+ int t;
+ push_popper_n(lua_State* luastate, int x) : L(luastate), t(x) { }
+ ~push_popper_n() { lua_pop(L, t); }
+ };
+ template <>
+ struct push_popper_n<true> {
+ push_popper_n(lua_State*, int) { }
+ };
+ template <bool top_level, typename T>
+ struct push_popper {
+ T t;
+ push_popper(T x) : t(x) { t.push(); }
+ ~push_popper() { t.pop(); }
+ };
+ template <typename T>
+ struct push_popper<true, T> {
+ push_popper(T) {}
+ ~push_popper() {}
+ };
+ template <bool top_level = false, typename T>
+ push_popper<top_level, T> push_pop(T&& x) {
+ return push_popper<top_level, T>(std::forward<T>(x));
+ }
+ template <bool top_level = false>
+ push_popper_n<top_level> pop_n(lua_State* L, int x) {
+ return push_popper_n<top_level>(L, x);
+ }
+ } // stack
+
+ namespace detail {
+ struct global_tag { } const global_{};
+ } // detail
+
+ class reference {
+ private:
+ lua_State* luastate = nullptr; // non-owning
+ int ref = LUA_NOREF;
+
+ int copy() const noexcept {
+ if (ref == LUA_NOREF)
+ return LUA_NOREF;
+ push();
+ return luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ }
+
+ protected:
+ reference(lua_State* L, detail::global_tag) noexcept : luastate(L) {
+ lua_pushglobaltable(lua_state());
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ }
+
+ int stack_index() const noexcept {
+ return -1;
+ }
+
+ void deref() const noexcept {
+ luaL_unref(lua_state(), LUA_REGISTRYINDEX, ref);
+ }
+
+ public:
+ reference() noexcept = default;
+ reference(lua_nil_t) noexcept : reference() {}
+ reference(const stack_reference& r) noexcept : reference(r.lua_state(), r.stack_index()) {}
+ reference(stack_reference&& r) noexcept : reference(r.lua_state(), r.stack_index()) {}
+ reference(lua_State* L, int index = -1) noexcept : luastate(L) {
+ lua_pushvalue(lua_state(), index);
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ }
+ reference(lua_State* L, ref_index index) noexcept : luastate(L) {
+ lua_rawgeti(L, LUA_REGISTRYINDEX, index.index);
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ }
+
+ ~reference() noexcept {
+ deref();
+ }
+
+ reference(reference&& o) noexcept {
+ luastate = o.luastate;
+ ref = o.ref;
+
+ o.luastate = nullptr;
+ o.ref = LUA_NOREF;
+ }
+
+ reference& operator=(reference&& o) noexcept {
+ if (valid()) {
+ deref();
+ }
+ luastate = o.luastate;
+ ref = o.ref;
+
+ o.luastate = nullptr;
+ o.ref = LUA_NOREF;
+
+ return *this;
+ }
+
+ reference(const reference& o) noexcept {
+ luastate = o.luastate;
+ ref = o.copy();
+ }
+
+ reference& operator=(const reference& o) noexcept {
+ luastate = o.luastate;
+ deref();
+ ref = o.copy();
+ return *this;
+ }
+
+ int push() const noexcept {
+ return push(lua_state());
+ }
+
+ int push(lua_State* Ls) const noexcept {
+ lua_rawgeti(Ls, LUA_REGISTRYINDEX, ref);
+ return 1;
+ }
+
+ void pop() const noexcept {
+ pop(lua_state());
+ }
+
+ void pop(lua_State* Ls, int n = 1) const noexcept {
+ lua_pop(Ls, n);
+ }
+
+ int registry_index() const noexcept {
+ return ref;
+ }
+
+ bool valid() const noexcept {
+ return !(ref == LUA_NOREF || ref == LUA_REFNIL);
+ }
+
+ explicit operator bool() const noexcept {
+ return valid();
+ }
+
+ type get_type() const noexcept {
+ auto pp = stack::push_pop(*this);
+ int result = lua_type(lua_state(), -1);
+ return static_cast<type>(result);
+ }
+
+ lua_State* lua_state() const noexcept {
+ return luastate;
+ }
+ };
+
+ inline bool operator== (const reference& l, const reference& r) {
+ auto ppl = stack::push_pop(l);
+ auto ppr = stack::push_pop(r);
+ return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
+ }
+
+ inline bool operator!= (const reference& l, const reference& r) {
+ return !operator==(l, r);
+ }
+} // sol
+
+// end of sol/reference.hpp
+
+// beginning of sol/stack.hpp
+
+// beginning of sol/stack_core.hpp
+
+// beginning of sol/userdata.hpp
+
+namespace sol {
+ template <typename base_t>
+ class basic_userdata : public base_t {
+ public:
+ basic_userdata() noexcept = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
+ basic_userdata(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!is_userdata<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ type_assert(base_t::lua_state(), -1, type::userdata);
+ }
+#endif // Safety
+ }
+ basic_userdata(const basic_userdata&) = default;
+ basic_userdata(basic_userdata&&) = default;
+ basic_userdata& operator=(const basic_userdata&) = default;
+ basic_userdata& operator=(basic_userdata&&) = default;
+ basic_userdata(const stack_reference& r) : basic_userdata(r.lua_state(), r.stack_index()) {}
+ basic_userdata(stack_reference&& r) : basic_userdata(r.lua_state(), r.stack_index()) {}
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ basic_userdata(lua_State* L, T&& r) : basic_userdata(L, sol::ref_index(r.registry_index())) {}
+ basic_userdata(lua_State* L, int index = -1) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ type_assert(L, index, type::userdata);
+#endif // Safety
+ }
+ basic_userdata(lua_State* L, ref_index index) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ type_assert(L, -1, type::userdata);
+#endif // Safety
+ }
+ };
+
+ template <typename base_t>
+ class basic_lightuserdata : public base_t {
+ public:
+ basic_lightuserdata() noexcept = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
+ basic_lightuserdata(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!is_userdata<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ type_assert(base_t::lua_state(), -1, type::lightuserdata);
+ }
+#endif // Safety
+ }
+ basic_lightuserdata(const basic_lightuserdata&) = default;
+ basic_lightuserdata(basic_lightuserdata&&) = default;
+ basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
+ basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
+ basic_lightuserdata(const stack_reference& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {}
+ basic_lightuserdata(stack_reference&& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {}
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ basic_lightuserdata(lua_State* L, T&& r) : basic_lightuserdata(L, sol::ref_index(r.registry_index())) {}
+ basic_lightuserdata(lua_State* L, int index = -1) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ type_assert(L, index, type::lightuserdata);
+#endif // Safety
+ }
+ basic_lightuserdata(lua_State* L, ref_index index) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ type_assert(L, -1, type::lightuserdata);
+#endif // Safety
+ }
+ };
+
+} // sol
+
+// end of sol/userdata.hpp
+
+// beginning of sol/tie.hpp
+
+namespace sol {
+
+ namespace detail {
+ template <typename T>
+ struct is_speshul : std::false_type {};
+ }
+
+ template <typename T>
+ struct tie_size : std::tuple_size<T> {};
+
+ template <typename T>
+ struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {};
+
+ template <typename... Tn>
+ struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
+ private:
+ typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;
+
+ template <typename T>
+ void set(std::false_type, T&& target) {
+ std::get<0>(*this) = std::forward<T>(target);
+ }
+
+ template <typename T>
+ void set(std::true_type, T&& target) {
+ typedef tie_size<meta::unqualified_t<T>> value_size;
+ typedef tie_size<std::tuple<Tn...>> tie_size;
+ typedef std::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
+ typedef std::make_index_sequence<indices_size::value> indices;
+ set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
+ }
+
+ template <std::size_t... I, typename T>
+ void set_extra(std::true_type, std::index_sequence<I...>, T&& target) {
+ using std::get;
+ (void)detail::swallow{ 0,
+ (get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)...
+ , 0 };
+ }
+
+ template <std::size_t... I, typename T>
+ void set_extra(std::false_type, std::index_sequence<I...>, T&& target) {
+ using std::get;
+ (void)detail::swallow{ 0,
+ (get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)...
+ , 0 };
+ }
+
+ public:
+ using base_t::base_t;
+
+ template <typename T>
+ tie_t& operator= (T&& value) {
+ typedef is_tieable<meta::unqualified_t<T>> tieable;
+ set(tieable(), std::forward<T>(value));
+ return *this;
+ }
+
+ };
+
+ template <typename... Tn>
+ struct tie_size< tie_t<Tn...> > : std::tuple_size< std::tuple<Tn...> > { };
+
+ namespace adl_barrier_detail {
+ template <typename... Tn>
+ inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) {
+ return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
+ }
+ }
+
+ using namespace adl_barrier_detail;
+
+} // sol
+
+// end of sol/tie.hpp
+
+// beginning of sol/stack_guard.hpp
+
+namespace sol {
+ namespace detail {
+ inline void stack_fail(int, int) {
+#ifndef SOL_NO_EXCEPTIONS
+ throw error(detail::direct_error, "imbalanced stack after operation finish");
+#else
+ // Lol, what do you want, an error printout? :3c
+ // There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
+ // hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
+#endif // No Exceptions
+ }
+ } // detail
+
+ struct stack_guard {
+ lua_State* L;
+ int top;
+ std::function<void(int, int)> on_mismatch;
+
+ stack_guard(lua_State* L) : stack_guard(L, lua_gettop(L)) {}
+ stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) : L(L), top(top), on_mismatch(std::move(fx)) {}
+ bool check_stack(int modification = 0) const {
+ int bottom = lua_gettop(L) + modification;
+ if (top == bottom) {
+ return true;
+ }
+ on_mismatch(top, bottom);
+ return false;
+ }
+ ~stack_guard() {
+ check_stack();
+ }
+ };
+} // sol
+
+// end of sol/stack_guard.hpp
+
+#include <vector>
+
+namespace sol {
+ namespace detail {
+ struct as_reference_tag {};
+ template <typename T>
+ struct as_pointer_tag {};
+ template <typename T>
+ struct as_value_tag {};
+
+ using special_destruct_func = void(*)(void*);
+
+ template <typename T, typename Real>
+ inline void special_destruct(void* memory) {
+ T** pointerpointer = static_cast<T**>(memory);
+ special_destruct_func* dx = static_cast<special_destruct_func*>(static_cast<void*>(pointerpointer + 1));
+ Real* target = static_cast<Real*>(static_cast<void*>(dx + 1));
+ target->~Real();
+ }
+
+ template <typename T>
+ inline int unique_destruct(lua_State* L) {
+ void* memory = lua_touserdata(L, 1);
+ T** pointerpointer = static_cast<T**>(memory);
+ special_destruct_func& dx = *static_cast<special_destruct_func*>(static_cast<void*>(pointerpointer + 1));
+ (dx)(memory);
+ return 0;
+ }
+
+ template <typename T>
+ inline int user_alloc_destroy(lua_State* L) {
+ void* rawdata = lua_touserdata(L, 1);
+ T* data = static_cast<T*>(rawdata);
+ std::allocator<T> alloc;
+ alloc.destroy(data);
+ return 0;
+ }
+
+ template <typename T>
+ inline int usertype_alloc_destroy(lua_State* L) {
+ void* rawdata = lua_touserdata(L, 1);
+ T** pdata = static_cast<T**>(rawdata);
+ T* data = *pdata;
+ std::allocator<T> alloc{};
+ alloc.destroy(data);
+ return 0;
+ }
+
+ template <typename T>
+ void reserve(T&, std::size_t) {}
+
+ template <typename T, typename Al>
+ void reserve(std::vector<T, Al>& arr, std::size_t hint) {
+ arr.reserve(hint);
+ }
+
+ template <typename T, typename Tr, typename Al>
+ void reserve(std::basic_string<T, Tr, Al>& arr, std::size_t hint) {
+ arr.reserve(hint);
+ }
+ } // detail
+
+ namespace stack {
+
+ template<typename T, bool global = false, bool raw = false, typename = void>
+ struct field_getter;
+ template <typename T, bool global = false, bool raw = false, typename = void>
+ struct probe_field_getter;
+ template<typename T, bool global = false, bool raw = false, typename = void>
+ struct field_setter;
+ template<typename T, typename = void>
+ struct getter;
+ template<typename T, typename = void>
+ struct popper;
+ template<typename T, typename = void>
+ struct pusher;
+ template<typename T, type = lua_type_of<T>::value, typename = void>
+ struct checker;
+ template<typename T, typename = void>
+ struct check_getter;
+
+ struct probe {
+ bool success;
+ int levels;
+
+ probe(bool s, int l) : success(s), levels(l) {}
+
+ operator bool() const { return success; };
+ };
+
+ struct record {
+ int last;
+ int used;
+
+ record() : last(), used() {}
+ void use(int count) {
+ last = count;
+ used += count;
+ }
+ };
+
+ namespace stack_detail {
+ template <typename T>
+ struct strip {
+ typedef T type;
+ };
+ template <typename T>
+ struct strip<std::reference_wrapper<T>> {
+ typedef T& type;
+ };
+ template <typename T>
+ struct strip<user<T>> {
+ typedef T& type;
+ };
+ template <typename T>
+ struct strip<non_null<T>> {
+ typedef T type;
+ };
+ template <typename T>
+ using strip_t = typename strip<T>::type;
+ const bool default_check_arguments =
+#ifdef SOL_CHECK_ARGUMENTS
+ true;
+#else
+ false;
+#endif
+ template<typename T>
+ inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
+ return getter<meta::unqualified_t<T>>{}.get(L, index, tracking);
+ }
+ } // stack_detail
+
+ inline bool maybe_indexable(lua_State* L, int index = -1) {
+ type t = type_of(L, index);
+ return t == type::userdata || t == type::table;
+ }
+
+ template<typename T, typename... Args>
+ inline int push(lua_State* L, T&& t, Args&&... args) {
+ return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+
+ // overload allows to use a pusher of a specific type, but pass in any kind of args
+ template<typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
+ inline int push(lua_State* L, Arg&& arg, Args&&... args) {
+ return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ template<typename T, typename... Args>
+ inline int push_reference(lua_State* L, T&& t, Args&&... args) {
+ typedef meta::all<
+ std::is_lvalue_reference<T>,
+ meta::neg<std::is_const<T>>,
+ meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
+ meta::neg<is_unique_usertype<meta::unqualified_t<T>>>
+ > use_reference_tag;
+ return pusher<std::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+
+ inline int multi_push(lua_State*) {
+ // do nothing
+ return 0;
+ }
+
+ template<typename T, typename... Args>
+ inline int multi_push(lua_State* L, T&& t, Args&&... args) {
+ int pushcount = push(L, std::forward<T>(t));
+ void(sol::detail::swallow{ (pushcount += sol::stack::push(L, std::forward<Args>(args)), 0)... });
+ return pushcount;
+ }
+
+ inline int multi_push_reference(lua_State*) {
+ // do nothing
+ return 0;
+ }
+
+ template<typename T, typename... Args>
+ inline int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
+ int pushcount = push_reference(L, std::forward<T>(t));
+ void(sol::detail::swallow{ (pushcount += sol::stack::push_reference(L, std::forward<Args>(args)), 0)... });
+ return pushcount;
+ }
+
+ template <typename T, typename Handler>
+ bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ typedef meta::unqualified_t<T> Tu;
+ checker<Tu> c;
+ // VC++ has a bad warning here: shut it up
+ (void)c;
+ return c.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T, typename Handler>
+ bool check(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return check<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return check<T>(L, index, handler);
+ }
+
+ template<typename T, typename Handler>
+ inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return check_getter<meta::unqualified_t<T>>{}.get(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template<typename T, typename Handler>
+ inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return check_get<T>(L, index, handler, tracking);
+ }
+
+ template<typename T>
+ inline decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return check_get<T>(L, index, handler);
+ }
+
+ namespace stack_detail {
+
+#ifdef SOL_CHECK_ARGUMENTS
+ template <typename T>
+ inline auto tagged_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
+ auto op = check_get<T>(L, index, type_panic, tracking);
+ return *std::move(op);
+ }
+#else
+ template <typename T>
+ inline decltype(auto) tagged_get(types<T>, lua_State* L, int index, record& tracking) {
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+#endif
+
+ template <typename T>
+ inline decltype(auto) tagged_get(types<optional<T>>, lua_State* L, int index, record& tracking) {
+ return stack_detail::unchecked_get<optional<T>>(L, index, tracking);
+ }
+
+ template <bool b>
+ struct check_types {
+ template <typename T, typename... Args, typename Handler>
+ static bool check(types<T, Args...>, lua_State* L, int firstargument, Handler&& handler, record& tracking) {
+ if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
+ return false;
+ return check(types<Args...>(), L, firstargument, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename Handler>
+ static bool check(types<>, lua_State*, int, Handler&&, record&) {
+ return true;
+ }
+ };
+
+ template <>
+ struct check_types<false> {
+ template <typename... Args, typename Handler>
+ static bool check(types<Args...>, lua_State*, int, Handler&&, record&) {
+ return true;
+ }
+ };
+
+ } // stack_detail
+
+ template <bool b, typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return stack_detail::check_types<b>{}.check(types<meta::unqualified_t<Args>...>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <bool b, typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return multi_check<b, Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <bool b, typename... Args>
+ bool multi_check(lua_State* L, int index) {
+ auto handler = no_panic;
+ return multi_check<b, Args...>(L, index, handler);
+ }
+
+ template <typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return multi_check<true, Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler) {
+ return multi_check<true, Args...>(L, index, std::forward<Handler>(handler));
+ }
+
+ template <typename... Args>
+ bool multi_check(lua_State* L, int index) {
+ return multi_check<true, Args...>(L, index);
+ }
+
+ template<typename T>
+ inline decltype(auto) get(lua_State* L, int index, record& tracking) {
+ return stack_detail::tagged_get(types<T>(), L, index, tracking);
+ }
+
+ template<typename T>
+ inline decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ record tracking{};
+ return get<T>(L, index, tracking);
+ }
+
+ template<typename T>
+ inline decltype(auto) pop(lua_State* L) {
+ return popper<meta::unqualified_t<T>>{}.pop(L);
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ void get_field(lua_State* L, Key&& key) {
+ field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ void get_field(lua_State* L, Key&& key, int tableindex) {
+ field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, typename Key>
+ void raw_get_field(lua_State* L, Key&& key) {
+ get_field<global, true>(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, typename Key>
+ void raw_get_field(lua_State* L, Key&& key, int tableindex) {
+ get_field<global, true>(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ probe probe_get_field(lua_State* L, Key&& key) {
+ return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
+ return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, typename Key>
+ probe probe_raw_get_field(lua_State* L, Key&& key) {
+ return probe_get_field<global, true>(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, typename Key>
+ probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
+ return probe_get_field<global, true>(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, bool raw = false, typename Key, typename Value>
+ void set_field(lua_State* L, Key&& key, Value&& value) {
+ field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global = false, bool raw = false, typename Key, typename Value>
+ void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
+ field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
+ }
+
+ template <bool global = false, typename Key, typename Value>
+ void raw_set_field(lua_State* L, Key&& key, Value&& value) {
+ set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global = false, typename Key, typename Value>
+ void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
+ set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
+ }
+ } // stack
+} // sol
+
+// end of sol/stack_core.hpp
+
+// beginning of sol/stack_check.hpp
+
+// beginning of sol/usertype_traits.hpp
+
+// beginning of sol/demangle.hpp
+
+#include <cctype>
+#include <locale>
+
+namespace sol {
+ namespace detail {
+#if defined(__GNUC__) || defined(__clang__)
+ template <typename T, class seperator_mark = int>
+ inline std::string ctti_get_type_name() {
+ const static std::array<std::string, 2> removals = { { "{anonymous}", "(anonymous namespace)" } };
+ std::string name = __PRETTY_FUNCTION__;
+ std::size_t start = name.find_first_of('[');
+ start = name.find_first_of('=', start);
+ std::size_t end = name.find_last_of(']');
+ if (end == std::string::npos)
+ end = name.size();
+ if (start == std::string::npos)
+ start = 0;
+ if (start < name.size() - 1)
+ start += 1;
+ name = name.substr(start, end - start);
+ start = name.rfind("seperator_mark");
+ if (start != std::string::npos) {
+ name.erase(start - 2, name.length());
+ }
+ while (!name.empty() && std::isblank(name.front())) name.erase(name.begin());
+ while (!name.empty() && std::isblank(name.back())) name.pop_back();
+
+ for (std::size_t r = 0; r < removals.size(); ++r) {
+ auto found = name.find(removals[r]);
+ while (found != std::string::npos) {
+ name.erase(found, removals[r].size());
+ found = name.find(removals[r]);
+ }
+ }
+
+ return name;
+ }
+#elif defined(_MSC_VER)
+ template <typename T>
+ inline std::string ctti_get_type_name() {
+ const static std::array<std::string, 7> removals = { { "public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'" } };
+ std::string name = __FUNCSIG__;
+ std::size_t start = name.find("get_type_name");
+ if (start == std::string::npos)
+ start = 0;
+ else
+ start += 13;
+ if (start < name.size() - 1)
+ start += 1;
+ std::size_t end = name.find_last_of('>');
+ if (end == std::string::npos)
+ end = name.size();
+ name = name.substr(start, end - start);
+ if (name.find("struct", 0) == 0)
+ name.replace(0, 6, "", 0);
+ if (name.find("class", 0) == 0)
+ name.replace(0, 5, "", 0);
+ while (!name.empty() && std::isblank(name.front())) name.erase(name.begin());
+ while (!name.empty() && std::isblank(name.back())) name.pop_back();
+
+ for (std::size_t r = 0; r < removals.size(); ++r) {
+ auto found = name.find(removals[r]);
+ while (found != std::string::npos) {
+ name.erase(found, removals[r].size());
+ found = name.find(removals[r]);
+ }
+ }
+
+ return name;
+ }
+#else
+#error Compiler not supported for demangling
+#endif // compilers
+
+ template <typename T>
+ inline std::string demangle_once() {
+ std::string realname = ctti_get_type_name<T>();
+ return realname;
+ }
+
+ template <typename T>
+ inline std::string short_demangle_once() {
+ std::string realname = ctti_get_type_name<T>();
+ // This isn't the most complete but it'll do for now...?
+ static const std::array<std::string, 10> ops = { { "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" } };
+ int level = 0;
+ std::ptrdiff_t idx = 0;
+ for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
+ if (level == 0 && realname[idx] == ':') {
+ break;
+ }
+ bool isleft = realname[idx] == '<';
+ bool isright = realname[idx] == '>';
+ if (!isleft && !isright)
+ continue;
+ bool earlybreak = false;
+ for (const auto& op : ops) {
+ std::size_t nisop = realname.rfind(op, idx);
+ if (nisop == std::string::npos)
+ continue;
+ std::size_t nisopidx = idx - op.size() + 1;
+ if (nisop == nisopidx) {
+ idx = static_cast<std::ptrdiff_t>(nisopidx);
+ earlybreak = true;
+ }
+ break;
+ }
+ if (earlybreak) {
+ continue;
+ }
+ level += isleft ? -1 : 1;
+ }
+ if (idx > 0) {
+ realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
+ }
+ return realname;
+ }
+
+ template <typename T>
+ inline const std::string& demangle() {
+ static const std::string d = demangle_once<T>();
+ return d;
+ }
+
+ template <typename T>
+ inline const std::string& short_demangle() {
+ static const std::string d = short_demangle_once<T>();
+ return d;
+ }
+ } // detail
+} // sol
+
+// end of sol/demangle.hpp
+
+namespace sol {
+
+ template<typename T>
+ struct usertype_traits {
+ static const std::string& name() {
+ static const std::string& n = detail::short_demangle<T>();
+ return n;
+ }
+ static const std::string& qualified_name() {
+ static const std::string& q_n = detail::demangle<T>();
+ return q_n;
+ }
+ static const std::string& metatable() {
+ static const std::string m = std::string("sol.").append(detail::demangle<T>());
+ return m;
+ }
+ static const std::string& user_metatable() {
+ static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
+ return u_m;
+ }
+ static const std::string& user_gc_metatable() {
+ static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
+ return u_g_m;
+ }
+ static const std::string& gc_table() {
+ static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
+ return g_t;
+ }
+ };
+
+}
+
+// end of sol/usertype_traits.hpp
+
+// beginning of sol/inheritance.hpp
+
+#include <atomic>
+
+namespace sol {
+ template <typename... Args>
+ struct base_list { };
+ template <typename... Args>
+ using bases = base_list<Args...>;
+
+ typedef bases<> base_classes_tag;
+ const auto base_classes = base_classes_tag();
+
+ namespace detail {
+
+ template <typename T>
+ struct has_derived {
+ static bool value;
+ };
+
+ template <typename T>
+ bool has_derived<T>::value = false;
+
+ inline std::size_t unique_id() {
+ static std::atomic<std::size_t> x(0);
+ return ++x;
+ }
+
+ template <typename T>
+ struct id_for {
+ static const std::size_t value;
+ };
+
+ template <typename T>
+ const std::size_t id_for<T>::value = unique_id();
+
+ inline decltype(auto) base_class_check_key() {
+ static const auto& key = "class_check";
+ return key;
+ }
+
+ inline decltype(auto) base_class_cast_key() {
+ static const auto& key = "class_cast";
+ return key;
+ }
+
+ inline decltype(auto) base_class_index_propogation_key() {
+ static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
+ return key;
+ }
+
+ inline decltype(auto) base_class_new_index_propogation_key() {
+ static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
+ return key;
+ }
+
+ template <typename T, typename... Bases>
+ struct inheritance {
+ static bool type_check_bases(types<>, std::size_t) {
+ return false;
+ }
+
+ template <typename Base, typename... Args>
+ static bool type_check_bases(types<Base, Args...>, std::size_t ti) {
+ return ti == id_for<Base>::value || type_check_bases(types<Args...>(), ti);
+ }
+
+ static bool type_check(std::size_t ti) {
+ return ti == id_for<T>::value || type_check_bases(types<Bases...>(), ti);
+ }
+
+ static void* type_cast_bases(types<>, T*, std::size_t) {
+ return nullptr;
+ }
+
+ template <typename Base, typename... Args>
+ static void* type_cast_bases(types<Base, Args...>, T* data, std::size_t ti) {
+ // Make sure to convert to T first, and then dynamic cast to the proper type
+ return ti != id_for<Base>::value ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
+ }
+
+ static void* type_cast(void* voiddata, std::size_t ti) {
+ T* data = static_cast<T*>(voiddata);
+ return static_cast<void*>(ti != id_for<T>::value ? type_cast_bases(types<Bases...>(), data, ti) : data);
+ }
+ };
+
+ using inheritance_check_function = decltype(&inheritance<void>::type_check);
+ using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
+
+ } // detail
+} // sol
+
+// end of sol/inheritance.hpp
+
+#include <utility>
+
+namespace sol {
+ namespace stack {
+ namespace stack_detail {
+ template <typename T, bool poptable = true>
+ inline bool check_metatable(lua_State* L, int index = -2) {
+ const auto& metakey = usertype_traits<T>::metatable();
+ luaL_getmetatable(L, &metakey[0]);
+ const type expectedmetatabletype = static_cast<type>(lua_type(L, -1));
+ if (expectedmetatabletype != type::lua_nil) {
+ if (lua_rawequal(L, -1, index) == 1) {
+ lua_pop(L, 1 + static_cast<int>(poptable));
+ return true;
+ }
+ }
+ lua_pop(L, 1);
+ return false;
+ }
+
+ template <type expected, int(*check_func)(lua_State*, int)>
+ struct basic_check {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ bool success = check_func(L, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, expected, type_of(L, index));
+ }
+ return success;
+ }
+ };
+ } // stack_detail
+
+ template <typename T, type expected, typename>
+ struct checker {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ const type indextype = type_of(L, index);
+ bool success = expected == indextype;
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, expected, indextype);
+ }
+ return success;
+ }
+ };
+
+ template<typename T>
+ struct checker<T, type::number, std::enable_if_t<std::is_integral<T>::value>> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ bool success = lua_isinteger(L, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, type::number, type_of(L, index));
+ }
+ return success;
+ }
+ };
+
+ template<typename T>
+ struct checker<T, type::number, std::enable_if_t<std::is_floating_point<T>::value>> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ bool success = lua_isnumber(L, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, type::number, type_of(L, index));
+ }
+ return success;
+ }
+ };
+
+ template <type expected, typename C>
+ struct checker<lua_nil_t, expected, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ bool success = lua_isnil(L, index);
+ if (success) {
+ tracking.use(1);
+ return success;
+ }
+ tracking.use(0);
+ success = lua_isnone(L, index);
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, expected, type_of(L, index));
+ }
+ return success;
+ }
+ };
+
+ template <type expected, typename C>
+ struct checker<nullopt_t, expected, C> : checker<lua_nil_t> {};
+
+ template <typename C>
+ struct checker<this_state, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State*, int, Handler&&, record& tracking) {
+ tracking.use(0);
+ return true;
+ }
+ };
+
+ template <typename C>
+ struct checker<variadic_args, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State*, int, Handler&&, record& tracking) {
+ tracking.use(0);
+ return true;
+ }
+ };
+
+ template <typename C>
+ struct checker<type, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State*, int, Handler&&, record& tracking) {
+ tracking.use(0);
+ return true;
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<T, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ bool success = !lua_isnone(L, index);
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, type::none, type_of(L, index));
+ }
+ return success;
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<T, type::lightuserdata, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L, index);
+ bool success = t == type::userdata || t == type::lightuserdata;
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, type::lightuserdata, t);
+ }
+ return success;
+ }
+ };
+
+ template <typename C>
+ struct checker<userdata_value, type::userdata, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L, index);
+ bool success = t == type::userdata;
+ if (!success) {
+ // expected type, actual type
+ handler(L, index, type::userdata, t);
+ }
+ return success;
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<user<T>, type::userdata, C> : checker<user<T>, type::lightuserdata, C> {};
+
+ template <typename T, typename C>
+ struct checker<non_null<T>, type::userdata, C> : checker<T, lua_type_of<T>::value, C> {};
+
+ template <typename C>
+ struct checker<lua_CFunction, type::function, C> : stack_detail::basic_check<type::function, lua_iscfunction> {};
+ template <typename C>
+ struct checker<std::remove_pointer_t<lua_CFunction>, type::function, C> : checker<lua_CFunction, type::function, C> {};
+ template <typename C>
+ struct checker<c_closure, type::function, C> : checker<lua_CFunction, type::function, C> {};
+
+ template <typename T, typename C>
+ struct checker<T, type::function, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L, index);
+ if (t == type::lua_nil || t == type::none || t == type::function) {
+ // allow for lua_nil to be returned
+ return true;
+ }
+ if (t != type::userdata && t != type::table) {
+ handler(L, index, type::function, t);
+ return false;
+ }
+ // Do advanced check for call-style userdata?
+ static const auto& callkey = name_of(meta_function::call);
+ if (lua_getmetatable(L, index) == 0) {
+ // No metatable, no __call key possible
+ handler(L, index, type::function, t);
+ return false;
+ }
+ if (lua_isnoneornil(L, -1)) {
+ lua_pop(L, 1);
+ handler(L, index, type::function, t);
+ return false;
+ }
+ lua_getfield(L, -1, &callkey[0]);
+ if (lua_isnoneornil(L, -1)) {
+ lua_pop(L, 2);
+ handler(L, index, type::function, t);
+ return false;
+ }
+ // has call, is definitely a function
+ lua_pop(L, 2);
+ return true;
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<T, type::table, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L, index);
+ if (t == type::table) {
+ return true;
+ }
+ if (t != type::userdata) {
+ handler(L, index, type::function, t);
+ return false;
+ }
+ return true;
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<detail::as_value_tag<T>, type::userdata, C> {
+ template <typename U, typename Handler>
+ static bool check(types<U>, lua_State* L, type indextype, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ if (indextype != type::userdata) {
+ handler(L, index, type::userdata, indextype);
+ return false;
+ }
+ if (meta::any<std::is_same<T, lightuserdata_value>, std::is_same<T, userdata_value>, std::is_same<T, userdata>, std::is_same<T, lightuserdata>>::value)
+ return true;
+ if (lua_getmetatable(L, index) == 0) {
+ return true;
+ }
+ int metatableindex = lua_gettop(L);
+ if (stack_detail::check_metatable<U>(L, metatableindex))
+ return true;
+ if (stack_detail::check_metatable<U*>(L, metatableindex))
+ return true;
+ if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex))
+ return true;
+ bool success = false;
+ if (detail::has_derived<T>::value) {
+ auto pn = stack::pop_n(L, 1);
+ lua_pushstring(L, &detail::base_class_check_key()[0]);
+ lua_rawget(L, metatableindex);
+ if (type_of(L, -1) != type::lua_nil) {
+ void* basecastdata = lua_touserdata(L, -1);
+ detail::inheritance_check_function ic = (detail::inheritance_check_function)basecastdata;
+ success = ic(detail::id_for<T>::value);
+ }
+ }
+ if (!success) {
+ lua_pop(L, 1);
+ handler(L, index, type::userdata, indextype);
+ return false;
+ }
+ lua_pop(L, 1);
+ return true;
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<T, type::userdata, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ const type indextype = type_of(L, index);
+ return checker<detail::as_value_tag<T>, type::userdata, C>{}.check(types<T>(), L, indextype, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template <typename T, typename C>
+ struct checker<T*, type::userdata, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ const type indextype = type_of(L, index);
+ // Allow lua_nil to be transformed to nullptr
+ if (indextype == type::lua_nil) {
+ tracking.use(1);
+ return true;
+ }
+ return checker<meta::unqualified_t<T>, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template<typename T>
+ struct checker<T, type::userdata, std::enable_if_t<is_unique_usertype<T>::value>> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return checker<typename unique_usertype_traits<T>::type, type::userdata>{}.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template<typename T, typename C>
+ struct checker<std::reference_wrapper<T>, type::userdata, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return checker<T, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template<typename... Args, typename C>
+ struct checker<std::tuple<Args...>, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template<typename A, typename B, typename C>
+ struct checker<std::pair<A, B>, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template<typename T, typename C>
+ struct checker<optional<T>, type::poly, C> {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&&, record& tracking) {
+ type t = type_of(L, index);
+ if (t == type::none) {
+ tracking.use(0);
+ return true;
+ }
+ if (t == type::lua_nil) {
+ tracking.use(1);
+ return true;
+ }
+ return stack::check<T>(L, index, no_panic, tracking);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/stack_check.hpp
+
+// beginning of sol/stack_get.hpp
+
+// beginning of sol/overload.hpp
+
+namespace sol {
+ template <typename... Functions>
+ struct overload_set {
+ std::tuple<Functions...> functions;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
+ overload_set (Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+ overload_set(const overload_set&) = default;
+ overload_set(overload_set&&) = default;
+ overload_set& operator=(const overload_set&) = default;
+ overload_set& operator=(overload_set&&) = default;
+ };
+
+ template <typename... Args>
+ decltype(auto) overload(Args&&... args) {
+ return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
+ }
+}
+
+// end of sol/overload.hpp
+
+#ifdef SOL_CODECVT_SUPPORT
+#include <codecvt>
+#endif
+
+namespace sol {
+ namespace stack {
+
+ template<typename T, typename>
+ struct getter {
+ static T& get(lua_State* L, int index, record& tracking) {
+ return getter<sol::detail::as_value_tag<T>>{}.get(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<T>(lua_tonumber(L, index));
+ }
+ };
+
+ template<typename T>
+ struct getter<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_signed<T>>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<T>(lua_tointeger(L, index));
+ }
+ };
+
+ template<typename T>
+ struct getter<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_unsigned<T>>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<T>(lua_tointeger(L, index));
+ }
+ };
+
+ template<typename T>
+ struct getter<T, std::enable_if_t<std::is_enum<T>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<T>(lua_tointegerx(L, index, nullptr));
+ }
+ };
+
+ template<typename T>
+ struct getter<as_table_t<T>, std::enable_if_t<!meta::has_key_value_pair<meta::unqualified_t<T>>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ typedef typename T::value_type V;
+ tracking.use(1);
+
+ index = lua_absindex(L, index);
+ T arr;
+ get_field<false, true>(L, static_cast<lua_Integer>(-1), index);
+ int isnum;
+ std::size_t sizehint = static_cast<std::size_t>(lua_tointegerx(L, -1, &isnum));
+ if (isnum != 0) {
+ detail::reserve(arr, sizehint);
+ }
+ lua_pop(L, 1);
+#if SOL_LUA_VERSION >= 503
+ // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
+ for (lua_Integer i = 0; ; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
+ for (int vi = 0; vi < lua_size<V>::value; ++vi) {
+ type t = static_cast<type>(lua_geti(L, index, i + vi));
+ if (t == type::lua_nil) {
+ if (i == 0) {
+ continue;
+ }
+ else {
+ lua_pop(L, (vi + 1));
+ return arr;
+ }
+ }
+ }
+ arr.push_back(stack::get<V>(L, -lua_size<V>::value));
+ }
+#else
+ // Zzzz slower but necessary thanks to the lower version API and missing functions qq
+ for (lua_Integer i = 0; ; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
+ for (int vi = 0; vi < lua_size<V>::value; ++vi) {
+ lua_pushinteger(L, i);
+ lua_gettable(L, index);
+ type t = type_of(L, -1);
+ if (t == type::lua_nil) {
+ if (i == 0) {
+ continue;
+ }
+ else {
+ lua_pop(L, (vi + 1));
+ return arr;
+ }
+ }
+ }
+ arr.push_back(stack::get<V>(L, -1));
+ }
+#endif
+ return arr;
+ }
+ };
+
+ template<typename T>
+ struct getter<as_table_t<T>, std::enable_if_t<meta::has_key_value_pair<meta::unqualified_t<T>>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ typedef typename T::value_type P;
+ typedef typename P::first_type K;
+ typedef typename P::second_type V;
+ tracking.use(1);
+
+ T associative;
+ index = lua_absindex(L, index);
+ lua_pushnil(L);
+ while (lua_next(L, index) != 0) {
+ decltype(auto) key = stack::check_get<K>(L, -2);
+ if (!key) {
+ lua_pop(L, 1);
+ continue;
+ }
+ associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
+ lua_pop(L, 1);
+ }
+ return associative;
+ }
+ };
+
+ template<typename T>
+ struct getter<T, std::enable_if_t<std::is_base_of<reference, T>::value || std::is_base_of<stack_reference, T>::value>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return T(L, index);
+ }
+ };
+
+ template<>
+ struct getter<userdata_value> {
+ static userdata_value get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return userdata_value(lua_touserdata(L, index));
+ }
+ };
+
+ template<>
+ struct getter<lightuserdata_value> {
+ static lightuserdata_value get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lightuserdata_value(lua_touserdata(L, index));
+ }
+ };
+
+ template<typename T>
+ struct getter<light<T>> {
+ static light<T> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return light<T>(static_cast<T*>(lua_touserdata(L, index)));
+ }
+ };
+
+ template<typename T>
+ struct getter<user<T>> {
+ static T& get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return *static_cast<T*>(lua_touserdata(L, index));
+ }
+ };
+
+ template<typename T>
+ struct getter<user<T*>> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<T*>(lua_touserdata(L, index));
+ }
+ };
+
+ template<>
+ struct getter<type> {
+ static type get(lua_State *L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<type>(lua_type(L, index));
+ }
+ };
+
+ template<>
+ struct getter<bool> {
+ static bool get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_toboolean(L, index) != 0;
+ }
+ };
+
+ template<>
+ struct getter<std::string> {
+ static std::string get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ std::size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ return std::string( str, len );
+ }
+ };
+
+ template <>
+ struct getter<string_detail::string_shim> {
+ string_detail::string_shim get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t len;
+ const char* p = lua_tolstring(L, index, &len);
+ return string_detail::string_shim(p, len);
+ }
+ };
+
+ template<>
+ struct getter<const char*> {
+ static const char* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_tostring(L, index);
+ }
+ };
+
+ template<>
+ struct getter<char> {
+ static char get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ return len > 0 ? str[0] : '\0';
+ }
+ };
+
+#ifdef SOL_CODECVT_SUPPORT
+ template<>
+ struct getter<std::wstring> {
+ static std::wstring get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ if (len < 1)
+ return std::wstring();
+ if (sizeof(wchar_t) == 2) {
+ static std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> convert;
+ std::wstring r = convert.from_bytes(str, str + len);
+#ifdef __MINGW32__
+ // Fuck you, MinGW, and fuck you libstdc++ for introducing this absolutely asinine bug
+ // https://sourceforge.net/p/mingw-w64/bugs/538/
+ // http://chat.stackoverflow.com/transcript/message/32271369#32271369
+ for (auto& c : r) {
+ uint8_t* b = reinterpret_cast<uint8_t*>(&c);
+ std::swap(b[0], b[1]);
+ }
+#endif
+ return r;
+ }
+ static std::wstring_convert<std::codecvt_utf8<wchar_t>> convert;
+ std::wstring r = convert.from_bytes(str, str + len);
+ return r;
+ }
+ };
+
+ template<>
+ struct getter<std::u16string> {
+ static std::u16string get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ if (len < 1)
+ return std::u16string();
+#ifdef _MSC_VER
+ static std::wstring_convert<std::codecvt_utf8_utf16<int16_t>, int16_t> convert;
+ auto intd = convert.from_bytes(str, str + len);
+ std::u16string r(intd.size(), '\0');
+ std::memcpy(&r[0], intd.data(), intd.size() * sizeof(char16_t));
+#else
+ static std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> convert;
+ std::u16string r = convert.from_bytes(str, str + len);
+#endif // VC++ is a shit
+ return r;
+ }
+ };
+
+ template<>
+ struct getter<std::u32string> {
+ static std::u32string get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ if (len < 1)
+ return std::u32string();
+#ifdef _MSC_VER
+ static std::wstring_convert<std::codecvt_utf8<int32_t>, int32_t> convert;
+ auto intd = convert.from_bytes(str, str + len);
+ std::u32string r(intd.size(), '\0');
+ std::memcpy(&r[0], intd.data(), r.size() * sizeof(char32_t));
+#else
+ static std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
+ std::u32string r = convert.from_bytes(str, str + len);
+#endif // VC++ is a shit
+ return r;
+ }
+ };
+
+ template<>
+ struct getter<wchar_t> {
+ static wchar_t get(lua_State* L, int index, record& tracking) {
+ auto str = getter<std::wstring>{}.get(L, index, tracking);
+ return str.size() > 0 ? str[0] : wchar_t(0);
+ }
+ };
+
+ template<>
+ struct getter<char16_t> {
+ static char16_t get(lua_State* L, int index, record& tracking) {
+ auto str = getter<std::u16string>{}.get(L, index, tracking);
+ return str.size() > 0 ? str[0] : char16_t(0);
+ }
+ };
+
+ template<>
+ struct getter<char32_t> {
+ static char32_t get(lua_State* L, int index, record& tracking) {
+ auto str = getter<std::u32string>{}.get(L, index, tracking);
+ return str.size() > 0 ? str[0] : char32_t(0);
+ }
+ };
+#endif // codecvt header support
+
+ template<>
+ struct getter<meta_function> {
+ static meta_function get(lua_State *L, int index, record& tracking) {
+ tracking.use(1);
+ const char* name = getter<const char*>{}.get(L, index, tracking);
+ for (std::size_t i = 0; i < meta_function_names.size(); ++i)
+ if (meta_function_names[i] == name)
+ return static_cast<meta_function>(i);
+ return meta_function::construct;
+ }
+ };
+
+ template<>
+ struct getter<lua_nil_t> {
+ static lua_nil_t get(lua_State*, int, record& tracking) {
+ tracking.use(1);
+ return lua_nil;
+ }
+ };
+
+ template<>
+ struct getter<std::nullptr_t> {
+ static std::nullptr_t get(lua_State*, int, record& tracking) {
+ tracking.use(1);
+ return nullptr;
+ }
+ };
+
+ template<>
+ struct getter<nullopt_t> {
+ static nullopt_t get(lua_State*, int, record& tracking) {
+ tracking.use(1);
+ return nullopt;
+ }
+ };
+
+ template<>
+ struct getter<this_state> {
+ static this_state get(lua_State* L, int, record& tracking) {
+ tracking.use(0);
+ return this_state{ L };
+ }
+ };
+
+ template<>
+ struct getter<lua_CFunction> {
+ static lua_CFunction get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_tocfunction(L, index);
+ }
+ };
+
+ template<>
+ struct getter<c_closure> {
+ static c_closure get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return c_closure(lua_tocfunction(L, index), -1);
+ }
+ };
+
+ template<>
+ struct getter<error> {
+ static error get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t sz = 0;
+ const char* err = lua_tolstring(L, index, &sz);
+ if (err == nullptr) {
+ return error(detail::direct_error, "");
+ }
+ return error(detail::direct_error, std::string(err, sz));
+ }
+ };
+
+ template<>
+ struct getter<void*> {
+ static void* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_touserdata(L, index);
+ }
+ };
+
+ template<typename T>
+ struct getter<detail::as_value_tag<T>> {
+ static T* get_no_lua_nil(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ void** pudata = static_cast<void**>(lua_touserdata(L, index));
+ void* udata = *pudata;
+ return get_no_lua_nil_from(L, udata, index, tracking);
+ }
+
+ static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) {
+ if (detail::has_derived<T>::value && luaL_getmetafield(L, index, &detail::base_class_cast_key()[0]) != 0) {
+ void* basecastdata = lua_touserdata(L, -1);
+ detail::inheritance_cast_function ic = (detail::inheritance_cast_function)basecastdata;
+ // use the casting function to properly adjust the pointer for the desired T
+ udata = ic(udata, detail::id_for<T>::value);
+ lua_pop(L, 1);
+ }
+ T* obj = static_cast<T*>(udata);
+ return obj;
+ }
+
+ static T& get(lua_State* L, int index, record& tracking) {
+ return *get_no_lua_nil(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<detail::as_pointer_tag<T>> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ type t = type_of(L, index);
+ if (t == type::lua_nil) {
+ tracking.use(1);
+ return nullptr;
+ }
+ return getter<detail::as_value_tag<T>>::get_no_lua_nil(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<non_null<T*>> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ return getter<detail::as_value_tag<T>>::get_no_lua_nil(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<T&> {
+ static T& get(lua_State* L, int index, record& tracking) {
+ return getter<detail::as_value_tag<T>>::get(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<std::reference_wrapper<T>> {
+ static T& get(lua_State* L, int index, record& tracking) {
+ return getter<T&>{}.get(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<T*> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ return getter<detail::as_pointer_tag<T>>::get(L, index, tracking);
+ }
+ };
+
+ template<typename T>
+ struct getter<T, std::enable_if_t<is_unique_usertype<T>::value>> {
+ typedef typename unique_usertype_traits<T>::type P;
+ typedef typename unique_usertype_traits<T>::actual_type Real;
+
+ static Real& get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ P** pref = static_cast<P**>(lua_touserdata(L, index));
+ detail::special_destruct_func* fx = static_cast<detail::special_destruct_func*>(static_cast<void*>(pref + 1));
+ Real* mem = static_cast<Real*>(static_cast<void*>(fx + 1));
+ return *mem;
+ }
+ };
+
+ template<typename... Args>
+ struct getter<std::tuple<Args...>> {
+ typedef std::tuple<decltype(stack::get<Args>(nullptr, 0))...> R;
+
+ template <typename... TArgs>
+ static R apply(std::index_sequence<>, lua_State*, int, record&, TArgs&&... args) {
+ // Fuck you too, VC++
+ return R{std::forward<TArgs>(args)...};
+ }
+
+ template <std::size_t I, std::size_t... Ix, typename... TArgs>
+ static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, TArgs&&... args) {
+ // Fuck you too, VC++
+ typedef std::tuple_element_t<I, std::tuple<Args...>> T;
+ return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<TArgs>(args)..., stack::get<T>(L, index + tracking.used, tracking));
+ }
+
+ static R get(lua_State* L, int index, record& tracking) {
+ return apply(std::make_index_sequence<sizeof...(Args)>(), L, index, tracking);
+ }
+ };
+
+ template<typename A, typename B>
+ struct getter<std::pair<A, B>> {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking)};
+ }
+ };
+
+ } // stack
+} // sol
+
+// end of sol/stack_get.hpp
+
+// beginning of sol/stack_check_get.hpp
+
+namespace sol {
+ namespace stack {
+ template <typename T, typename>
+ struct check_getter {
+ typedef decltype(stack_detail::unchecked_get<T>(nullptr, 0, std::declval<record&>())) R;
+
+ template <typename Handler>
+ static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ if (!check<T>(L, index, std::forward<Handler>(handler))) {
+ tracking.use(static_cast<int>(!lua_isnone(L, index)));
+ return nullopt;
+ }
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct check_getter<optional<T>> {
+ template <typename Handler>
+ static decltype(auto) get(lua_State* L, int index, Handler&&, record& tracking) {
+ return check_get<T>(L, index, no_panic, tracking);
+ }
+ };
+
+ template <typename T>
+ struct check_getter<T, std::enable_if_t<std::is_integral<T>::value && lua_type_of<T>::value == type::number>> {
+ template <typename Handler>
+ static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ int isnum = 0;
+ lua_Integer value = lua_tointegerx(L, index, &isnum);
+ if (isnum == 0) {
+ type t = type_of(L, index);
+ tracking.use(static_cast<int>(t != type::none));
+ handler(L, index, type::number, t);
+ return nullopt;
+ }
+ tracking.use(1);
+ return static_cast<T>(value);
+ }
+ };
+
+ template <typename T>
+ struct check_getter<T, std::enable_if_t<std::is_enum<T>::value && !meta::any_same<T, meta_function, type>::value>> {
+ template <typename Handler>
+ static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ int isnum = 0;
+ lua_Integer value = lua_tointegerx(L, index, &isnum);
+ if (isnum == 0) {
+ type t = type_of(L, index);
+ tracking.use(static_cast<int>(t != type::none));
+ handler(L, index, type::number, t);
+ return nullopt;
+ }
+ tracking.use(1);
+ return static_cast<T>(value);
+ }
+ };
+
+ template <typename T>
+ struct check_getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
+ template <typename Handler>
+ static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ int isnum = 0;
+ lua_Number value = lua_tonumberx(L, index, &isnum);
+ if (isnum == 0) {
+ type t = type_of(L, index);
+ tracking.use(static_cast<int>(t != type::none));
+ handler(L, index, type::number, t);
+ return nullopt;
+ }
+ tracking.use(1);
+ return static_cast<T>(value);
+ }
+ };
+
+ template <typename T>
+ struct getter<optional<T>> {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ return check_get<T>(L, index, no_panic, tracking);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/stack_check_get.hpp
+
+// beginning of sol/stack_push.hpp
+
+// beginning of sol/raii.hpp
+
+namespace sol {
+ namespace detail {
+ struct default_construct {
+ template<typename T, typename... Args>
+ static void construct(T&& obj, Args&&... args) {
+ std::allocator<meta::unqualified_t<T>> alloc{};
+ alloc.construct(obj, std::forward<Args>(args)...);
+ }
+
+ template<typename T, typename... Args>
+ void operator()(T&& obj, Args&&... args) const {
+ construct(std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+ };
+
+ struct default_destruct {
+ template<typename T>
+ static void destroy(T&& obj) {
+ std::allocator<meta::unqualified_t<T>> alloc{};
+ alloc.destroy(obj);
+ }
+
+ template<typename T>
+ void operator()(T&& obj) const {
+ destroy(std::forward<T>(obj));
+ }
+ };
+
+ struct deleter {
+ template <typename T>
+ void operator()(T* p) const {
+ delete p;
+ }
+ };
+
+ template <typename T, typename Dx, typename... Args>
+ inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) {
+ return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
+ }
+
+ template <typename Tag, typename T>
+ struct tagged {
+ T value;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
+ tagged(Arg&& arg, Args&&... args) : value(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+ };
+ } // detail
+
+ template <typename... Args>
+ struct constructor_list {};
+
+ template<typename... Args>
+ using constructors = constructor_list<Args...>;
+
+ const auto default_constructor = constructors<types<>>{};
+
+ struct no_construction {};
+ const auto no_constructor = no_construction{};
+
+ struct call_construction {};
+ const auto call_constructor = call_construction{};
+
+ template <typename... Functions>
+ struct constructor_wrapper {
+ std::tuple<Functions...> functions;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
+ constructor_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+ };
+
+ template <typename... Functions>
+ inline auto initializers(Functions&&... functions) {
+ return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
+ }
+
+ template <typename... Functions>
+ struct factory_wrapper {
+ std::tuple<Functions...> functions;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
+ factory_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+ };
+
+ template <typename... Functions>
+ inline auto factories(Functions&&... functions) {
+ return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
+ }
+
+ template <typename Function>
+ struct destructor_wrapper {
+ Function fx;
+ destructor_wrapper(Function f) : fx(std::move(f)) {}
+ };
+
+ template <>
+ struct destructor_wrapper<void> {};
+
+ const destructor_wrapper<void> default_destructor{};
+
+ template <typename Fx>
+ inline auto destructor(Fx&& fx) {
+ return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
+ }
+
+} // sol
+
+// end of sol/raii.hpp
+
+#ifdef SOL_CODECVT_SUPPORT
+#endif
+
+namespace sol {
+ namespace stack {
+ template <typename T>
+ struct pusher<detail::as_value_tag<T>> {
+ template <typename F, typename... Args>
+ static int push_fx(lua_State* L, F&& f, Args&&... args) {
+ // Basically, we store all user-data like this:
+ // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
+ // data in the first sizeof(T*) bytes, and then however many bytes it takes to
+ // do the actual object. Things that are std::ref or plain T* are stored as
+ // just the sizeof(T*), and nothing else.
+ T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
+ T*& referencereference = *pointerpointer;
+ T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
+ referencereference = allocationtarget;
+ std::allocator<T> alloc{};
+ alloc.construct(allocationtarget, std::forward<Args>(args)...);
+ f();
+ return 1;
+ }
+
+ template <typename K, typename... Args>
+ static int push_keyed(lua_State* L, K&& k, Args&&... args) {
+ return push_fx(L, [&L, &k]() {
+ luaL_newmetatable(L, &k[0]);
+ lua_setmetatable(L, -2);
+ }, std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T>
+ struct pusher<detail::as_pointer_tag<T>> {
+ template <typename F>
+ static int push_fx(lua_State* L, F&& f, T* obj) {
+ if (obj == nullptr)
+ return stack::push(L, lua_nil);
+ T** pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
+ *pref = obj;
+ f();
+ return 1;
+ }
+
+ template <typename K>
+ static int push_keyed(lua_State* L, K&& k, T* obj) {
+ return push_fx(L, [&L, &k]() {
+ luaL_newmetatable(L, &k[0]);
+ lua_setmetatable(L, -2);
+ }, obj);
+ }
+
+ static int push(lua_State* L, T* obj) {
+ return push_keyed(L, usertype_traits<meta::unqualified_t<T>*>::metatable(), obj);
+ }
+ };
+
+ template <>
+ struct pusher<detail::as_reference_tag> {
+ template <typename T>
+ static int push(lua_State* L, T&& obj) {
+ return stack::push(L, detail::ptr(obj));
+ }
+ };
+
+ template<typename T, typename>
+ struct pusher {
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ return pusher<detail::as_value_tag<T>>{}.push(L, std::forward<Args>(args)...);
+ }
+ };
+
+ template<typename T>
+ struct pusher<T*, meta::disable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<meta::any<std::is_base_of<reference, meta::unqualified_t<T>>, std::is_base_of<stack_reference, meta::unqualified_t<T>>>>>::value>> {
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ return pusher<detail::as_pointer_tag<T>>{}.push(L, std::forward<Args>(args)...);
+ }
+ };
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<is_unique_usertype<T>::value>> {
+ typedef typename unique_usertype_traits<T>::type P;
+ typedef typename unique_usertype_traits<T>::actual_type Real;
+
+ template <typename Arg, meta::enable<std::is_base_of<Real, meta::unqualified_t<Arg>>> = meta::enabler>
+ static int push(lua_State* L, Arg&& arg) {
+ if (unique_usertype_traits<T>::is_null(arg))
+ return stack::push(L, lua_nil);
+ return push_deep(L, std::forward<Arg>(arg));
+ }
+
+ template <typename Arg0, typename Arg1, typename... Args>
+ static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args) {
+ return push_deep(L, std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static int push_deep(lua_State* L, Args&&... args) {
+ P** pref = static_cast<P**>(lua_newuserdata(L, sizeof(P*) + sizeof(detail::special_destruct_func) + sizeof(Real)));
+ detail::special_destruct_func* fx = static_cast<detail::special_destruct_func*>(static_cast<void*>(pref + 1));
+ Real* mem = static_cast<Real*>(static_cast<void*>(fx + 1));
+ *fx = detail::special_destruct<P, Real>;
+ detail::default_construct::construct(mem, std::forward<Args>(args)...);
+ *pref = unique_usertype_traits<T>::get(*mem);
+ if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<P>>::metatable()[0]) == 1) {
+ set_field(L, "__gc", detail::unique_destruct<P>);
+ }
+ lua_setmetatable(L, -2);
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<std::reference_wrapper<T>> {
+ static int push(lua_State* L, const std::reference_wrapper<T>& t) {
+ return stack::push(L, std::addressof(detail::deref(t.get())));
+ }
+ };
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<std::is_floating_point<T>::value>> {
+ static int push(lua_State* L, const T& value) {
+ lua_pushnumber(L, value);
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_signed<T>>::value>> {
+ static int push(lua_State* L, const T& value) {
+ lua_pushinteger(L, static_cast<lua_Integer>(value));
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<std::is_enum<T>::value>> {
+ static int push(lua_State* L, const T& value) {
+ if (std::is_same<char, T>::value) {
+ return stack::push(L, static_cast<int>(value));
+ }
+ return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
+ }
+ };
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_unsigned<T>>::value>> {
+ static int push(lua_State* L, const T& value) {
+ lua_pushinteger(L, static_cast<lua_Integer>(value));
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<as_table_t<T>, std::enable_if_t<!meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>::value>> {
+ static int push(lua_State* L, const as_table_t<T>& tablecont) {
+ auto& cont = detail::deref(detail::unwrap(tablecont.source));
+ lua_createtable(L, static_cast<int>(cont.size()), 0);
+ int tableindex = lua_gettop(L);
+ std::size_t index = 1;
+ for (const auto& i : cont) {
+#if SOL_LUA_VERSION >= 503
+ int p = stack::push(L, i);
+ for (int pi = 0; pi < p; ++pi) {
+ lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
+ }
+#else
+ lua_pushinteger(L, static_cast<lua_Integer>(index));
+ int p = stack::push(L, i);
+ if (p == 1) {
+ ++index;
+ lua_settable(L, tableindex);
+ }
+ else {
+ int firstindex = tableindex + 1 + 1;
+ for (int pi = 0; pi < p; ++pi) {
+ stack::push(L, index);
+ lua_pushvalue(L, firstindex);
+ lua_settable(L, tableindex);
+ ++index;
+ ++firstindex;
+ }
+ lua_pop(L, 1 + p);
+ }
+#endif
+ }
+ // TODO: figure out a better way to do this...?
+ //set_field(L, -1, cont.size());
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<as_table_t<T>, std::enable_if_t<meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>::value>> {
+ static int push(lua_State* L, const as_table_t<T>& tablecont) {
+ auto& cont = detail::deref(detail::unwrap(tablecont.source));
+ lua_createtable(L, static_cast<int>(cont.size()), 0);
+ int tableindex = lua_gettop(L);
+ for (const auto& pair : cont) {
+ set_field(L, pair.first, pair.second, tableindex);
+ }
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<std::is_base_of<reference, T>::value || std::is_base_of<stack_reference, T>::value>> {
+ static int push(lua_State* L, const T& ref) {
+ return ref.push(L);
+ }
+
+ static int push(lua_State* L, T&& ref) {
+ return ref.push(L);
+ }
+ };
+
+ template<>
+ struct pusher<bool> {
+ static int push(lua_State* L, bool b) {
+ lua_pushboolean(L, b);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<lua_nil_t> {
+ static int push(lua_State* L, lua_nil_t) {
+ lua_pushnil(L);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<metatable_key_t> {
+ static int push(lua_State* L, metatable_key_t) {
+ lua_pushlstring(L, "__mt", 4);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<std::remove_pointer_t<lua_CFunction>> {
+ static int push(lua_State* L, lua_CFunction func, int n = 0) {
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<lua_CFunction> {
+ static int push(lua_State* L, lua_CFunction func, int n = 0) {
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<c_closure> {
+ static int push(lua_State* L, c_closure cc) {
+ lua_pushcclosure(L, cc.c_function, cc.upvalues);
+ return 1;
+ }
+ };
+
+ template<typename Arg, typename... Args>
+ struct pusher<closure<Arg, Args...>> {
+ template <std::size_t... I, typename T>
+ static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
+ int pushcount = multi_push(L, detail::forward_get<I>(c.upvalues)...);
+ return stack::push(L, c_closure(c.c_function, pushcount));
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& c) {
+ return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
+ }
+ };
+
+ template<>
+ struct pusher<void*> {
+ static int push(lua_State* L, void* userdata) {
+ lua_pushlightuserdata(L, userdata);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<lightuserdata_value> {
+ static int push(lua_State* L, lightuserdata_value userdata) {
+ lua_pushlightuserdata(L, userdata);
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<light<T>> {
+ static int push(lua_State* L, light<T> l) {
+ lua_pushlightuserdata(L, static_cast<void*>(l.value));
+ return 1;
+ }
+ };
+
+ template<typename T>
+ struct pusher<user<T>> {
+ template <bool with_meta = true, typename Key, typename... Args>
+ static int push_with(lua_State* L, Key&& name, Args&&... args) {
+ // A dumb pusher
+ void* rawdata = lua_newuserdata(L, sizeof(T));
+ T* data = static_cast<T*>(rawdata);
+ std::allocator<T> alloc;
+ alloc.construct(data, std::forward<Args>(args)...);
+ if (with_meta) {
+ lua_CFunction cdel = detail::user_alloc_destroy<T>;
+ // Make sure we have a plain GC set for this data
+ if (luaL_newmetatable(L, name) != 0) {
+ lua_pushcclosure(L, cdel, 0);
+ lua_setfield(L, -2, "__gc");
+ }
+ lua_setmetatable(L, -2);
+ }
+ return 1;
+ }
+
+ template <typename Arg, typename... Args, meta::disable<meta::any_same<meta::unqualified_t<Arg>, no_metatable_t, metatable_key_t>> = meta::enabler>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static int push(lua_State* L, no_metatable_t, Args&&... args) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, std::forward<Args>(args)...);
+ }
+
+ template <typename Key, typename... Args>
+ static int push(lua_State* L, metatable_key_t, Key&& key, Args&&... args) {
+ const auto name = &key[0];
+ return push_with<true>(L, name, std::forward<Args>(args)...);
+ }
+
+ static int push(lua_State* L, const user<T>& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, u.value);
+ }
+
+ static int push(lua_State* L, user<T>&& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, std::move(u.value));
+ }
+
+ static int push(lua_State* L, no_metatable_t, const user<T>& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, u.value);
+ }
+
+ static int push(lua_State* L, no_metatable_t, user<T>&& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, std::move(u.value));
+ }
+ };
+
+ template<>
+ struct pusher<userdata_value> {
+ static int push(lua_State* L, userdata_value data) {
+ void** ud = static_cast<void**>(lua_newuserdata(L, sizeof(void*)));
+ *ud = data.value;
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<const char*> {
+ static int push_sized(lua_State* L, const char* str, std::size_t len) {
+ lua_pushlstring(L, str, len);
+ return 1;
+ }
+
+ static int push(lua_State* L, const char* str) {
+ if (str == nullptr)
+ return stack::push(L, lua_nil);
+ return push_sized(L, str, std::char_traits<char>::length(str));
+ }
+
+ static int push(lua_State* L, const char* strb, const char* stre) {
+ return push_sized(L, strb, stre - strb);
+ }
+
+ static int push(lua_State* L, const char* str, std::size_t len) {
+ return push_sized(L, str, len);
+ }
+ };
+
+ template<size_t N>
+ struct pusher<char[N]> {
+ static int push(lua_State* L, const char(&str)[N]) {
+ lua_pushlstring(L, str, N - 1);
+ return 1;
+ }
+
+ static int push(lua_State* L, const char(&str)[N], std::size_t sz) {
+ lua_pushlstring(L, str, sz);
+ return 1;
+ }
+ };
+
+ template <>
+ struct pusher<char> {
+ static int push(lua_State* L, char c) {
+ const char str[2] = { c, '\0' };
+ return stack::push(L, str, 1);
+ }
+ };
+
+ template<>
+ struct pusher<std::string> {
+ static int push(lua_State* L, const std::string& str) {
+ lua_pushlstring(L, str.c_str(), str.size());
+ return 1;
+ }
+
+ static int push(lua_State* L, const std::string& str, std::size_t sz) {
+ lua_pushlstring(L, str.c_str(), sz);
+ return 1;
+ }
+ };
+
+ template<>
+ struct pusher<meta_function> {
+ static int push(lua_State* L, meta_function m) {
+ const std::string& str = name_of(m);
+ lua_pushlstring(L, str.c_str(), str.size());
+ return 1;
+ }
+ };
+
+#ifdef SOL_CODECVT_SUPPORT
+ template<>
+ struct pusher<const wchar_t*> {
+ static int push(lua_State* L, const wchar_t* wstr) {
+ return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
+ }
+
+ static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
+ return push(L, wstr, wstr + sz);
+ }
+
+ static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
+ if (sizeof(wchar_t) == 2) {
+ static std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> convert;
+ std::string u8str = convert.to_bytes(strb, stre);
+ return stack::push(L, u8str);
+ }
+ static std::wstring_convert<std::codecvt_utf8<wchar_t>> convert;
+ std::string u8str = convert.to_bytes(strb, stre);
+ return stack::push(L, u8str);
+ }
+ };
+
+ template<>
+ struct pusher<const char16_t*> {
+ static int push(lua_State* L, const char16_t* u16str) {
+ return push(L, u16str, std::char_traits<char16_t>::length(u16str));
+ }
+
+ static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
+ return push(L, u16str, u16str + sz);
+ }
+
+ static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
+#ifdef _MSC_VER
+ static std::wstring_convert<std::codecvt_utf8_utf16<int16_t>, int16_t> convert;
+ std::string u8str = convert.to_bytes(reinterpret_cast<const int16_t*>(strb), reinterpret_cast<const int16_t*>(stre));
+#else
+ static std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> convert;
+ std::string u8str = convert.to_bytes(strb, stre);
+#endif // VC++ is a shit
+ return stack::push(L, u8str);
+ }
+ };
+
+ template<>
+ struct pusher<const char32_t*> {
+ static int push(lua_State* L, const char32_t* u32str) {
+ return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
+ }
+
+ static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
+ return push(L, u32str, u32str + sz);
+ }
+
+ static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
+#ifdef _MSC_VER
+ static std::wstring_convert<std::codecvt_utf8<int32_t>, int32_t> convert;
+ std::string u8str = convert.to_bytes(reinterpret_cast<const int32_t*>(strb), reinterpret_cast<const int32_t*>(stre));
+#else
+ static std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
+ std::string u8str = convert.to_bytes(strb, stre);
+#endif // VC++ is a shit
+ return stack::push(L, u8str);
+ }
+ };
+
+ template<size_t N>
+ struct pusher<wchar_t[N]> {
+ static int push(lua_State* L, const wchar_t(&str)[N]) {
+ return push(L, str, N - 1);
+ }
+
+ static int push(lua_State* L, const wchar_t(&str)[N], std::size_t sz) {
+ return stack::push<const wchar_t*>(L, str, str + sz);
+ }
+ };
+
+ template<size_t N>
+ struct pusher<char16_t[N]> {
+ static int push(lua_State* L, const char16_t(&str)[N]) {
+ return push(L, str, N - 1);
+ }
+
+ static int push(lua_State* L, const char16_t(&str)[N], std::size_t sz) {
+ return stack::push<const char16_t*>(L, str, str + sz);
+ }
+ };
+
+ template<size_t N>
+ struct pusher<char32_t[N]> {
+ static int push(lua_State* L, const char32_t(&str)[N]) {
+ return push(L, str, N - 1);
+ }
+
+ static int push(lua_State* L, const char32_t(&str)[N], std::size_t sz) {
+ return stack::push<const char32_t*>(L, str, str + sz);
+ }
+ };
+
+ template <>
+ struct pusher<wchar_t> {
+ static int push(lua_State* L, wchar_t c) {
+ const wchar_t str[2] = { c, '\0' };
+ return stack::push(L, str, 1);
+ }
+ };
+
+ template <>
+ struct pusher<char16_t> {
+ static int push(lua_State* L, char16_t c) {
+ const char16_t str[2] = { c, '\0' };
+ return stack::push(L, str, 1);
+ }
+ };
+
+ template <>
+ struct pusher<char32_t> {
+ static int push(lua_State* L, char32_t c) {
+ const char32_t str[2] = { c, '\0' };
+ return stack::push(L, str, 1);
+ }
+ };
+
+ template<>
+ struct pusher<std::wstring> {
+ static int push(lua_State* L, const std::wstring& wstr) {
+ return push(L, wstr.data(), wstr.size());
+ }
+
+ static int push(lua_State* L, const std::wstring& wstr, std::size_t sz) {
+ return stack::push(L, wstr.data(), wstr.data() + sz);
+ }
+ };
+
+ template<>
+ struct pusher<std::u16string> {
+ static int push(lua_State* L, const std::u16string& u16str) {
+ return push(L, u16str, u16str.size());
+ }
+
+ static int push(lua_State* L, const std::u16string& u16str, std::size_t sz) {
+ return stack::push(L, u16str.data(), u16str.data() + sz);
+ }
+ };
+
+ template<>
+ struct pusher<std::u32string> {
+ static int push(lua_State* L, const std::u32string& u32str) {
+ return push(L, u32str, u32str.size());
+ }
+
+ static int push(lua_State* L, const std::u32string& u32str, std::size_t sz) {
+ return stack::push(L, u32str.data(), u32str.data() + sz);
+ }
+ };
+#endif // codecvt Header Support
+
+ template<typename... Args>
+ struct pusher<std::tuple<Args...>> {
+ template <std::size_t... I, typename T>
+ static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
+ int pushcount = 0;
+ (void)detail::swallow{ 0, (pushcount += stack::push(L,
+ detail::forward_get<I>(t)
+ ), 0)... };
+ return pushcount;
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
+ }
+ };
+
+ template<typename A, typename B>
+ struct pusher<std::pair<A, B>> {
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ int pushcount = stack::push(L, detail::forward_get<0>(t));
+ pushcount += stack::push(L, detail::forward_get<1>(t));
+ return pushcount;
+ }
+ };
+
+ template<typename O>
+ struct pusher<optional<O>> {
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ if (t == nullopt) {
+ return stack::push(L, nullopt);
+ }
+ return stack::push(L, t.value());
+ }
+ };
+
+ template<>
+ struct pusher<nullopt_t> {
+ static int push(lua_State* L, nullopt_t) {
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template<>
+ struct pusher<std::nullptr_t> {
+ static int push(lua_State* L, std::nullptr_t) {
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template<>
+ struct pusher<this_state> {
+ static int push(lua_State*, const this_state&) {
+ return 0;
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/stack_push.hpp
+
+// beginning of sol/stack_pop.hpp
+
+namespace sol {
+ namespace stack {
+ template <typename T, typename>
+ struct popper {
+ inline static decltype(auto) pop(lua_State* L) {
+ record tracking{};
+ decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
+ lua_pop(L, tracking.used);
+ return r;
+ }
+ };
+
+ template <typename T>
+ struct popper<T, std::enable_if_t<std::is_base_of<stack_reference, meta::unqualified_t<T>>::value>> {
+ static_assert(meta::neg<std::is_base_of<stack_reference, meta::unqualified_t<T>>>::value, "You cannot pop something that derives from stack_reference: it will not remain on the stack and thusly will go out of scope!");
+ };
+ } // stack
+} // sol
+
+// end of sol/stack_pop.hpp
+
+// beginning of sol/stack_field.hpp
+
+namespace sol {
+ namespace stack {
+ template <typename T, bool, bool, typename>
+ struct field_getter {
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int tableindex = -2) {
+ push(L, std::forward<Key>(key));
+ lua_gettable(L, tableindex);
+ }
+ };
+
+ template <typename T, bool global, typename C>
+ struct field_getter<T, global, true, C> {
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int tableindex = -2) {
+ push(L, std::forward<Key>(key));
+ lua_rawget(L, tableindex);
+ }
+ };
+
+ template <bool b, bool raw, typename C>
+ struct field_getter<metatable_key_t, b, raw, C> {
+ void get(lua_State* L, metatable_key_t, int tableindex = -1) {
+ if (lua_getmetatable(L, tableindex) == 0)
+ push(L, lua_nil);
+ }
+ };
+
+ template <typename T, bool raw>
+ struct field_getter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int = -1) {
+ lua_getglobal(L, &key[0]);
+ }
+ };
+
+ template <typename T>
+ struct field_getter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int tableindex = -1) {
+ lua_getfield(L, tableindex, &key[0]);
+ }
+ };
+
+#if SOL_LUA_VERSION >= 503
+ template <typename T>
+ struct field_getter<T, false, false, std::enable_if_t<std::is_integral<T>::value>> {
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int tableindex = -1) {
+ lua_geti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+ };
+#endif // Lua 5.3.x
+
+#if SOL_LUA_VERSION >= 502
+ template <typename C>
+ struct field_getter<void*, false, true, C> {
+ void get(lua_State* L, void* key, int tableindex = -1) {
+ lua_rawgetp(L, tableindex, key);
+ }
+ };
+#endif // Lua 5.3.x
+
+ template <typename T>
+ struct field_getter<T, false, true, std::enable_if_t<std::is_integral<T>::value>> {
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int tableindex = -1) {
+ lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+ };
+
+ template <typename... Args, bool b, bool raw, typename C>
+ struct field_getter<std::tuple<Args...>, b, raw, C> {
+ template <std::size_t... I, typename Keys>
+ void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) {
+ get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
+ void(detail::swallow{ (get_field<false, raw>(L, detail::forward_get<I>(keys)), 0)... });
+ reference saved(L, -1);
+ lua_pop(L, static_cast<int>(sizeof...(I)));
+ saved.push();
+ }
+
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys) {
+ apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
+ }
+
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys, int tableindex) {
+ apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
+ }
+ };
+
+ template <typename A, typename B, bool b, bool raw, typename C>
+ struct field_getter<std::pair<A, B>, b, raw, C> {
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys, int tableindex) {
+ get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
+ get_field<false, raw>(L, detail::forward_get<1>(keys));
+ reference saved(L, -1);
+ lua_pop(L, static_cast<int>(2));
+ saved.push();
+ }
+
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys) {
+ get_field<b, raw>(L, detail::forward_get<0>(keys));
+ get_field<false, raw>(L, detail::forward_get<1>(keys));
+ reference saved(L, -1);
+ lua_pop(L, static_cast<int>(2));
+ saved.push();
+ }
+ };
+
+ template <typename T, bool, bool, typename>
+ struct field_setter {
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) {
+ push(L, std::forward<Key>(key));
+ push(L, std::forward<Value>(value));
+ lua_settable(L, tableindex);
+ }
+ };
+
+ template <typename T, bool b, typename C>
+ struct field_setter<T, b, true, C> {
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) {
+ push(L, std::forward<Key>(key));
+ push(L, std::forward<Value>(value));
+ lua_rawset(L, tableindex);
+ }
+ };
+
+ template <bool b, bool raw, typename C>
+ struct field_setter<metatable_key_t, b, raw, C> {
+ template <typename Value>
+ void set(lua_State* L, metatable_key_t, Value&& value, int tableindex = -2) {
+ push(L, std::forward<Value>(value));
+ lua_setmetatable(L, tableindex);
+ }
+ };
+
+ template <typename T, bool raw>
+ struct field_setter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int = -2) {
+ push(L, std::forward<Value>(value));
+ lua_setglobal(L, &key[0]);
+ }
+ };
+
+ template <typename T>
+ struct field_setter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
+ push(L, std::forward<Value>(value));
+ lua_setfield(L, tableindex, &key[0]);
+ }
+ };
+
+#if SOL_LUA_VERSION >= 503
+ template <typename T>
+ struct field_setter<T, false, false, std::enable_if_t<std::is_integral<T>::value>> {
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
+ push(L, std::forward<Value>(value));
+ lua_seti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+ };
+#endif // Lua 5.3.x
+
+ template <typename T>
+ struct field_setter<T, false, true, std::enable_if_t<std::is_integral<T>::value>> {
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
+ push(L, std::forward<Value>(value));
+ lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+ };
+
+#if SOL_LUA_VERSION >= 502
+ template <typename C>
+ struct field_setter<void*, false, true, C> {
+ template <typename Key, typename Value>
+ void set(lua_State* L, void* key, Value&& value, int tableindex = -2) {
+ push(L, std::forward<Value>(value));
+ lua_rawsetp(L, tableindex, key);
+ }
+ };
+#endif // Lua 5.2.x
+
+ template <typename... Args, bool b, bool raw, typename C>
+ struct field_setter<std::tuple<Args...>, b, raw, C> {
+ template <bool g, std::size_t I, typename Key, typename Value>
+ void apply(std::index_sequence<I>, lua_State* L, Key&& keys, Value&& value, int tableindex) {
+ I < 1 ?
+ set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value), tableindex) :
+ set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value));
+ }
+
+ template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
+ void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
+ I0 < 1 ? get_field<g, raw>(L, detail::forward_get<I0>(keys), tableindex) : get_field<g, raw>(L, detail::forward_get<I0>(keys), -1);
+ apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
+ }
+
+ template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
+ void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
+ apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
+ lua_pop(L, static_cast<int>(sizeof...(I)));
+ }
+
+ template <typename Keys, typename Value>
+ void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) {
+ top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
+ }
+ };
+
+ template <typename A, typename B, bool b, bool raw, typename C>
+ struct field_setter<std::pair<A, B>, b, raw, C> {
+ template <typename Keys, typename Value>
+ void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) {
+ get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
+ set_field<false, raw>(L, detail::forward_get<1>(keys), std::forward<Value>(value));
+ lua_pop(L, 1);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/stack_field.hpp
+
+// beginning of sol/stack_probe.hpp
+
+namespace sol {
+ namespace stack {
+ template <typename T, bool b, bool raw, typename>
+ struct probe_field_getter {
+ template <typename Key>
+ probe get(lua_State* L, Key&& key, int tableindex = -2) {
+ if (!b && !maybe_indexable(L, tableindex)) {
+ return probe(false, 0);
+ }
+ get_field<b, raw>(L, std::forward<Key>(key), tableindex);
+ return probe(!check<lua_nil_t>(L), 1);
+ }
+ };
+
+ template <typename A, typename B, bool b, bool raw, typename C>
+ struct probe_field_getter<std::pair<A, B>, b, raw, C> {
+ template <typename Keys>
+ probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
+ if (!b && !maybe_indexable(L, tableindex)) {
+ return probe(false, 0);
+ }
+ get_field<b, raw>(L, std::get<0>(keys), tableindex);
+ if (!maybe_indexable(L)) {
+ return probe(false, 1);
+ }
+ get_field<false, raw>(L, std::get<1>(keys), tableindex);
+ return probe(!check<lua_nil_t>(L), 2);
+ }
+ };
+
+ template <typename... Args, bool b, bool raw, typename C>
+ struct probe_field_getter<std::tuple<Args...>, b, raw, C> {
+ template <std::size_t I, typename Keys>
+ probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
+ get_field < I < 1 && b, raw>(L, std::get<I>(keys), tableindex);
+ return probe(!check<lua_nil_t>(L), sofar);
+ }
+
+ template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
+ probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
+ get_field < I < 1 && b, raw>(L, std::get<I>(keys), tableindex);
+ if (!maybe_indexable(L)) {
+ return probe(false, sofar);
+ }
+ return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
+ }
+
+ template <typename Keys>
+ probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
+ if (!b && !maybe_indexable(L, tableindex)) {
+ return probe(false, 0);
+ }
+ return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/stack_probe.hpp
+
+#include <cstring>
+
+namespace sol {
+ namespace stack {
+ namespace stack_detail {
+ template<typename T>
+ inline int push_as_upvalues(lua_State* L, T& item) {
+ typedef std::decay_t<T> TValue;
+ const static std::size_t itemsize = sizeof(TValue);
+ const static std::size_t voidsize = sizeof(void*);
+ const static std::size_t voidsizem1 = voidsize - 1;
+ const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
+ typedef std::array<void*, data_t_count> data_t;
+
+ data_t data{ {} };
+ std::memcpy(&data[0], std::addressof(item), itemsize);
+ int pushcount = 0;
+ for (auto&& v : data) {
+ pushcount += push(L, lightuserdata_value(v));
+ }
+ return pushcount;
+ }
+
+ template<typename T>
+ inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 1) {
+ const static std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
+ typedef std::array<void*, data_t_count> data_t;
+ data_t voiddata{ {} };
+ for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
+ voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++));
+ }
+ return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
+ }
+
+ struct evaluator {
+ template <typename Fx, typename... Args>
+ static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) {
+ return std::forward<Fx>(fx)(std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
+ static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) {
+ return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
+ }
+ };
+
+ template <bool checkargs = default_check_arguments, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
+ inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+#ifndef _MSC_VER
+ static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
+#endif // This compiler make me so fucking sad
+ multi_check<checkargs, Args...>(L, start, type_panic);
+ record tracking{};
+ return evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template <bool checkargs = default_check_arguments, std::size_t... I, typename... Args, typename Fx, typename... FxArgs>
+ inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+#ifndef _MSC_VER
+ static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
+#endif // This compiler make me so fucking sad
+ multi_check<checkargs, Args...>(L, start, type_panic);
+ record tracking{};
+ evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ } // stack_detail
+
+ template <typename T>
+ int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
+ push(L, std::forward<T>(arg));
+ return luaL_ref(L, tableindex);
+ }
+
+ inline void remove(lua_State* L, int index, int count) {
+ if (count < 1)
+ return;
+ int top = lua_gettop(L);
+ if (index == -1 || top == index) {
+ // Slice them right off the top
+ lua_pop(L, static_cast<int>(count));
+ return;
+ }
+
+ // Remove each item one at a time using stack operations
+ // Probably slower, maybe, haven't benchmarked,
+ // but necessary
+ if (index < 0) {
+ index = lua_gettop(L) + (index + 1);
+ }
+ int last = index + count;
+ for (int i = index; i < last; ++i) {
+ lua_remove(L, index);
+ }
+ }
+
+ template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
+ inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+ typedef std::make_index_sequence<sizeof...(Args)> args_indices;
+ return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
+ inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
+ inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+ typedef std::make_index_sequence<sizeof...(Args)> args_indices;
+ stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
+ inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
+ inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ return call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
+ inline void call_from_top(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+
+ template<bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
+ inline int call_into_lua(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ lua_settop(L, 0);
+ return 0;
+ }
+
+ template<bool check_args = stack_detail::default_check_arguments, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::neg<std::is_void<Ret0>>::value>>
+ inline int call_into_lua(types<Ret0, Ret...>, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ lua_settop(L, 0);
+ return push_reference(L, std::forward<decltype(r)>(r));
+ }
+
+ template<bool check_args = stack_detail::default_check_arguments, typename Fx, typename... FxArgs>
+ inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ typedef lua_bind_traits<meta::unqualified_t<Fx>> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef typename traits_type::returns_list returns_list;
+ return call_into_lua(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ }
+
+ inline call_syntax get_call_syntax(lua_State* L, const std::string& key, int index) {
+ if (lua_gettop(L) == 0) {
+ return call_syntax::dot;
+ }
+ luaL_getmetatable(L, key.c_str());
+ auto pn = pop_n(L, 1);
+ if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
+ return call_syntax::dot;
+ }
+ return call_syntax::colon;
+ }
+
+ inline void script(lua_State* L, const std::string& code) {
+ if (luaL_dostring(L, code.c_str())) {
+ lua_error(L);
+ }
+ }
+
+ inline void script_file(lua_State* L, const std::string& filename) {
+ if (luaL_dofile(L, filename.c_str())) {
+ lua_error(L);
+ }
+ }
+
+ inline void luajit_exception_handler(lua_State* L, int(*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
+#ifdef SOL_LUAJIT
+ lua_pushlightuserdata(L, (void*)handler);
+ auto pn = pop_n(L, 1);
+ luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
+#else
+ (void)L;
+ (void)handler;
+#endif
+ }
+
+ inline void luajit_exception_off(lua_State* L) {
+#ifdef SOL_LUAJIT
+ luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
+#else
+ (void)L;
+#endif
+ }
+ } // stack
+} // sol
+
+// end of sol/stack.hpp
+
+// beginning of sol/as_args.hpp
+
+namespace sol {
+ template <typename T>
+ struct to_args_t {
+ T src;
+ };
+
+ template <typename Source>
+ auto as_args(Source&& source) {
+ return to_args_t<Source>{ std::forward<Source>(source) };
+ }
+
+ namespace stack {
+ template <typename T>
+ struct pusher<to_args_t<T>> {
+ int push(lua_State* L, const to_args_t<T>& e) {
+ int p = 0;
+ for (const auto& i : e.src) {
+ p += stack::push(L, i);
+ }
+ return p;
+ }
+ };
+ }
+} // sol
+
+// end of sol/as_args.hpp
+
+// beginning of sol/variadic_args.hpp
+
+// beginning of sol/stack_proxy.hpp
+
+// beginning of sol/function.hpp
+
+// beginning of sol/function_result.hpp
+
+// beginning of sol/proxy_base.hpp
+
+namespace sol {
+ template <typename Super>
+ struct proxy_base {
+ operator std::string() const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.template get<std::string>();
+ }
+
+ template<typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
+ operator T () const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.template get<T>();
+ }
+
+ template<typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
+ operator T& () const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.template get<T&>();
+ }
+ };
+} // sol
+
+// end of sol/proxy_base.hpp
+
+#include <cstdint>
+
+namespace sol {
+ struct function_result : public proxy_base<function_result> {
+ private:
+ lua_State* L;
+ int index;
+ int returncount;
+
+ public:
+ function_result() = default;
+ function_result(lua_State* Ls, int idx = -1, int retnum = 0) : L(Ls), index(idx), returncount(retnum) {
+
+ }
+ function_result(const function_result&) = default;
+ function_result& operator=(const function_result&) = default;
+ function_result(function_result&& o) : L(o.L), index(o.index), returncount(o.returncount) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ }
+ function_result& operator=(function_result&& o) {
+ L = o.L;
+ index = o.index;
+ returncount = o.returncount;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ return *this;
+ }
+
+ template<typename T>
+ decltype(auto) get() const {
+ return stack::get<T>(L, index);
+ }
+
+ call_status status() const noexcept {
+ return call_status::ok;
+ }
+
+ bool valid() const noexcept {
+ return status() == call_status::ok || status() == call_status::yielded;
+ }
+
+ lua_State* lua_state() const { return L; };
+ int stack_index() const { return index; };
+
+ ~function_result() {
+ lua_pop(L, returncount);
+ }
+ };
+} // sol
+
+// end of sol/function_result.hpp
+
+// beginning of sol/function_types.hpp
+
+// beginning of sol/function_types_core.hpp
+
+// beginning of sol/wrapper.hpp
+
+namespace sol {
+
+ template <typename F, typename = void>
+ struct wrapper {
+ typedef lua_bind_traits<F> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef typename traits_type::args_list free_args_list;
+ typedef typename traits_type::returns_list returns_list;
+
+ template <typename... Args>
+ static decltype(auto) call(F& f, Args&&... args) {
+ return f(std::forward<Args>(args)...);
+ }
+
+ struct caller {
+ template <typename... Args>
+ decltype(auto) operator()(F& fx, Args&&... args) const {
+ return call(fx, std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename F>
+ struct wrapper<F, std::enable_if_t<std::is_function<meta::unqualified_t<std::remove_pointer_t<F>>>::value>> {
+ typedef lua_bind_traits<F> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef typename traits_type::args_list free_args_list;
+ typedef typename traits_type::returns_list returns_list;
+
+ template <F fx, typename... Args>
+ static decltype(auto) invoke(Args&&... args) {
+ return fx(std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static decltype(auto) call(F& fx, Args&&... args) {
+ return fx(std::forward<Args>(args)...);
+ }
+
+ struct caller {
+ template <typename... Args>
+ decltype(auto) operator()(F& fx, Args&&... args) const {
+ return call(fx, std::forward<Args>(args)...);
+ }
+ };
+
+ template <F fx>
+ struct invoker {
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) const {
+ return invoke<fx>(std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename F>
+ struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
+ typedef lua_bind_traits<F> traits_type;
+ typedef typename traits_type::object_type object_type;
+ typedef typename traits_type::return_type return_type;
+ typedef typename traits_type::args_list args_list;
+ typedef types<object_type&, return_type> free_args_list;
+ typedef typename traits_type::returns_list returns_list;
+
+ template <F fx, typename... Args>
+ static decltype(auto) invoke(object_type& mem, Args&&... args) {
+ return (mem.*fx)(std::forward<Args>(args)...);
+ }
+
+ template <typename Fx>
+ static decltype(auto) call(Fx&& fx, object_type& mem) {
+ return (mem.*fx);
+ }
+
+ template <typename Fx, typename Arg, typename... Args>
+ static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) {
+ (mem.*fx) = std::forward<Arg>(arg);
+ }
+
+ struct caller {
+ template <typename Fx, typename... Args>
+ decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const {
+ return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
+ }
+ };
+
+ template <F fx>
+ struct invoker {
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) const {
+ return invoke<fx>(std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename F, typename R, typename O, typename... FArgs>
+ struct member_function_wrapper {
+ typedef O object_type;
+ typedef lua_bind_traits<F> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef types<object_type&, FArgs...> free_args_list;
+ typedef meta::tuple_types<R> returns_list;
+
+ template <F fx, typename... Args>
+ static R invoke(O& mem, Args&&... args) {
+ return (mem.*fx)(std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename... Args>
+ static R call(Fx&& fx, O& mem, Args&&... args) {
+ return (mem.*fx)(std::forward<Args>(args)...);
+ }
+
+ struct caller {
+ template <typename Fx, typename... Args>
+ decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const {
+ return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
+ }
+ };
+
+ template <F fx>
+ struct invoker {
+ template <typename... Args>
+ decltype(auto) operator()(O& mem, Args&&... args) const {
+ return invoke<fx>(mem, std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...)> : public member_function_wrapper<R(O:: *)(Args...), R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) const> : public member_function_wrapper<R(O:: *)(Args...) const, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) const volatile> : public member_function_wrapper<R(O:: *)(Args...) const volatile, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) &> : public member_function_wrapper<R(O:: *)(Args...) &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) const &> : public member_function_wrapper<R(O:: *)(Args...) const &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) const volatile &> : public member_function_wrapper<R(O:: *)(Args...) const volatile &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args..., ...) &> : public member_function_wrapper<R(O:: *)(Args..., ...) &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args..., ...) const &> : public member_function_wrapper<R(O:: *)(Args..., ...) const &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args..., ...) const volatile &> : public member_function_wrapper<R(O:: *)(Args..., ...) const volatile &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) && > : public member_function_wrapper<R(O:: *)(Args...) &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) const &&> : public member_function_wrapper<R(O:: *)(Args...) const &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args...) const volatile &&> : public member_function_wrapper<R(O:: *)(Args...) const volatile &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args..., ...) && > : public member_function_wrapper<R(O:: *)(Args..., ...) &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args..., ...) const &&> : public member_function_wrapper<R(O:: *)(Args..., ...) const &, R, O, Args...> {
+
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R(O:: *)(Args..., ...) const volatile &&> : public member_function_wrapper<R(O:: *)(Args..., ...) const volatile &, R, O, Args...> {
+
+ };
+
+} // sol
+
+// end of sol/wrapper.hpp
+
+namespace sol {
+ namespace function_detail {
+ template <typename Fx>
+ inline int call(lua_State* L) {
+ Fx& fx = stack::get<user<Fx>>(L, upvalue_index(1));
+ return fx(L);
+ }
+ } // function_detail
+} // sol
+
+// end of sol/function_types_core.hpp
+
+// beginning of sol/function_types_templated.hpp
+
+// beginning of sol/call.hpp
+
+// beginning of sol/protect.hpp
+
+namespace sol {
+
+ template <typename T>
+ struct protect_t {
+ T value;
+
+ template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
+ protect_t(Arg&& arg, Args&&... args) : value(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+
+ protect_t(const protect_t&) = default;
+ protect_t(protect_t&&) = default;
+ protect_t& operator=(const protect_t&) = default;
+ protect_t& operator=(protect_t&&) = default;
+
+ };
+
+ template <typename T>
+ auto protect(T&& value) {
+ return protect_t<std::decay_t<T>>(std::forward<T>(value));
+ }
+
+} // sol
+
+// end of sol/protect.hpp
+
+// beginning of sol/property.hpp
+
+namespace sol {
+
+ struct no_prop { };
+
+ template <typename R, typename W>
+ struct property_wrapper {
+ typedef std::integral_constant<bool, !std::is_void<R>::value> can_read;
+ typedef std::integral_constant<bool, !std::is_void<W>::value> can_write;
+ typedef std::conditional_t<can_read::value, R, no_prop> Read;
+ typedef std::conditional_t<can_write::value, W, no_prop> Write;
+ Read read;
+ Write write;
+
+ template <typename Rx, typename Wx>
+ property_wrapper(Rx&& r, Wx&& w) : read(std::forward<Rx>(r)), write(std::forward<Wx>(w)) {}
+ };
+
+ namespace property_detail {
+ template <typename R, typename W>
+ inline decltype(auto) property(std::true_type, R&& read, W&& write) {
+ return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
+ }
+ template <typename W, typename R>
+ inline decltype(auto) property(std::false_type, W&& write, R&& read) {
+ return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
+ }
+ template <typename R>
+ inline decltype(auto) property(std::true_type, R&& read) {
+ return property_wrapper<std::decay_t<R>, void>(std::forward<R>(read), no_prop());
+ }
+ template <typename W>
+ inline decltype(auto) property(std::false_type, W&& write) {
+ return property_wrapper<void, std::decay_t<W>>(no_prop(), std::forward<W>(write));
+ }
+ } // property_detail
+
+ template <typename F, typename G>
+ inline decltype(auto) property(F&& f, G&& g) {
+ typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
+ typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
+ return property_detail::property(meta::boolean<(left_traits::free_arity < right_traits::free_arity)>(), std::forward<F>(f), std::forward<G>(g));
+ }
+
+ template <typename F>
+ inline decltype(auto) property(F&& f) {
+ typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
+ return property_detail::property(meta::boolean<(left_traits::free_arity < 2)>(), std::forward<F>(f));
+ }
+
+ template <typename F>
+ inline decltype(auto) readonly_property(F&& f) {
+ return property_detail::property(std::true_type(), std::forward<F>(f));
+ }
+
+ // Allow someone to make a member variable readonly (const)
+ template <typename R, typename T>
+ inline auto readonly(R T::* v) {
+ typedef const R C;
+ return static_cast<C T::*>(v);
+ }
+
+ template <typename T>
+ struct var_wrapper {
+ T value;
+ template <typename... Args>
+ var_wrapper(Args&&... args) : value(std::forward<Args>(args)...) {}
+ var_wrapper(const var_wrapper&) = default;
+ var_wrapper(var_wrapper&&) = default;
+ var_wrapper& operator=(const var_wrapper&) = default;
+ var_wrapper& operator=(var_wrapper&&) = default;
+ };
+
+ template <typename V>
+ inline auto var(V&& v) {
+ typedef meta::unqualified_t<V> T;
+ return var_wrapper<T>(std::forward<V>(v));
+ }
+
+} // sol
+
+// end of sol/property.hpp
+
+namespace sol {
+ namespace function_detail {
+ inline int no_construction_error(lua_State* L) {
+ return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
+ }
+ }
+
+ namespace call_detail {
+
+ template <typename R, typename W>
+ inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
+ return f.read;
+ }
+
+ template <typename R, typename W>
+ inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
+ return f.write;
+ }
+
+ template <typename T, typename List>
+ struct void_call : void_call<T, meta::function_args_t<List>> {};
+
+ template <typename T, typename... Args>
+ struct void_call<T, types<Args...>> {
+ static void call(Args...) {}
+ };
+
+ template <typename T>
+ struct constructor_match {
+ T* obj;
+
+ constructor_match(T* o) : obj(o) {}
+
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
+ detail::default_construct func{};
+ return stack::call_into_lua<stack::stack_detail::default_check_arguments>(r, a, L, start, func, obj);
+ }
+ };
+
+ namespace overload_detail {
+ template <std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
+ return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
+ }
+
+ template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if (meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
+ return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
+ return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ stack::record tracking{};
+ if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
+ return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if (meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
+ return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
+ return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if (meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
+ return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
+ return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ stack::record tracking{};
+ if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
+ return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ } // overload_detail
+
+ template <typename... Functions, typename Match, typename... Args>
+ inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ return overload_detail::overload_match_arity_single(types<Functions...>(), std::make_index_sequence<sizeof...(Functions)>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename... Functions, typename Match, typename... Args>
+ inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
+ int fxarity = lua_gettop(L) - (start - 1);
+ return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename... TypeLists, typename Match, typename... Args>
+ inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ // use same overload resolution matching as all other parts of the framework
+ return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename... TypeLists>
+ inline int construct(lua_State* L) {
+ static const auto& meta = usertype_traits<T>::metatable();
+ int argcount = lua_gettop(L);
+ call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1) : call_syntax::dot;
+ argcount -= static_cast<int>(syntax);
+
+ T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
+ T*& referencepointer = *pointerpointer;
+ T* obj = reinterpret_cast<T*>(pointerpointer + 1);
+ referencepointer = obj;
+ reference userdataref(L, -1);
+ userdataref.pop();
+
+ construct_match<T, TypeLists...>(constructor_match<T>(obj), L, argcount, 1 + static_cast<int>(syntax));
+
+ userdataref.push();
+ luaL_getmetatable(L, &meta[0]);
+ if (type_of(L, -1) == type::lua_nil) {
+ lua_pop(L, 1);
+ return luaL_error(L, "sol: unable to get usertype metatable");
+ }
+
+ lua_setmetatable(L, -2);
+ return 1;
+ }
+
+ template <typename F, bool is_index, bool is_variable, bool checked, int boost, typename = void>
+ struct agnostic_lua_call_wrapper {
+ template <typename Fx, typename... Args>
+ static int call(lua_State* L, Fx&& f, Args&&... args) {
+ typedef wrapper<meta::unqualified_t<F>> wrap;
+ typedef typename wrap::returns_list returns_list;
+ typedef typename wrap::free_args_list args_list;
+ typedef typename wrap::caller caller;
+ return stack::call_into_lua<checked>(returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<var_wrapper<T>, true, is_variable, checked, boost, C> {
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ return stack::push_reference(L, detail::unwrap(f.value));
+ }
+ };
+
+ template <typename T, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<var_wrapper<T>, false, is_variable, checked, boost, C> {
+ template <typename V>
+ static int call_assign(std::true_type, lua_State* L, V&& f) {
+ detail::unwrap(f.value) = stack::get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
+ return 0;
+ }
+
+ template <typename... Args>
+ static int call_assign(std::false_type, lua_State* L, Args&&...) {
+ return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
+ }
+
+ template <typename... Args>
+ static int call_const(std::false_type, lua_State* L, Args&&... args) {
+ typedef meta::unwrapped_t<T> R;
+ return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static int call_const(std::true_type, lua_State* L, Args&&...) {
+ return luaL_error(L, "sol: cannot write to a readonly (const) variable");
+ }
+
+ template <typename V>
+ static int call(lua_State* L, V&& f) {
+ return call_const(std::is_const<meta::unwrapped_t<T>>(), L, f);
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<lua_r_CFunction, is_index, is_variable, checked, boost, C> {
+ static int call(lua_State* L, lua_r_CFunction f) {
+ return f(L);
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, C> {
+ static int call(lua_State* L, lua_CFunction f) {
+ return f(L);
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<no_prop, is_index, is_variable, checked, boost, C> {
+ static int call(lua_State* L, const no_prop&) {
+ return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, C> {
+ static int call(lua_State* L, const no_construction&) {
+ return function_detail::no_construction_error(L);
+ }
+ };
+
+ template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, C> {
+ static int call(lua_State*, const bases<Args...>&) {
+ // Uh. How did you even call this, lul
+ return 0;
+ }
+ };
+
+ template <typename T, typename F, bool is_index, bool is_variable, bool checked = stack::stack_detail::default_check_arguments, int boost = 0, typename = void>
+ struct lua_call_wrapper : agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost> {};
+
+ template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost>
+ struct lua_call_wrapper<T, F, is_index, is_variable, checked, boost, std::enable_if_t<std::is_member_function_pointer<F>::value>> {
+ typedef wrapper<meta::unqualified_t<F>> wrap;
+ typedef typename wrap::object_type object_type;
+
+ template <typename Fx>
+ static int call(lua_State* L, Fx&& f, object_type& o) {
+ typedef typename wrap::returns_list returns_list;
+ typedef typename wrap::args_list args_list;
+ typedef typename wrap::caller caller;
+ return stack::call_into_lua<checked>(returns_list(), args_list(), L, boost + ( is_variable ? 3 : 2 ), caller(), std::forward<Fx>(f), o);
+ }
+
+ template <typename Fx>
+ static int call(lua_State* L, Fx&& f) {
+ typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
+#ifdef SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ return luaL_error(L, "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are preceeded by the actual object with '.' syntax)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call(L, std::forward<Fx>(f), *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+ return call(L, std::forward<Fx>(f), o);
+#endif // Safety
+ }
+ };
+
+ template <typename T, typename F, bool is_variable, bool checked, int boost>
+ struct lua_call_wrapper<T, F, false, is_variable, checked, boost, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
+ typedef lua_bind_traits<F> traits_type;
+ typedef wrapper<meta::unqualified_t<F>> wrap;
+ typedef typename wrap::object_type object_type;
+
+ template <typename V>
+ static int call_assign(std::true_type, lua_State* L, V&& f, object_type& o) {
+ typedef typename wrap::args_list args_list;
+ typedef typename wrap::caller caller;
+ return stack::call_into_lua<checked>(types<void>(), args_list(), L, boost + ( is_variable ? 3 : 2 ), caller(), f, o);
+ }
+
+ template <typename V>
+ static int call_assign(std::true_type, lua_State* L, V&& f) {
+ typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
+#ifdef SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call_assign(std::true_type(), L, f, *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+ return call_assign(std::true_type(), L, f, o);
+#endif // Safety
+ }
+
+ template <typename... Args>
+ static int call_assign(std::false_type, lua_State* L, Args&&...) {
+ return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
+ }
+
+ template <typename... Args>
+ static int call_const(std::false_type, lua_State* L, Args&&... args) {
+ typedef typename traits_type::return_type R;
+ return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static int call_const(std::true_type, lua_State* L, Args&&...) {
+ return luaL_error(L, "sol: cannot write to a readonly (const) variable");
+ }
+
+ template <typename V>
+ static int call(lua_State* L, V&& f) {
+ return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f));
+ }
+
+ template <typename V>
+ static int call(lua_State* L, V&& f, object_type& o) {
+ return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f), o);
+ }
+ };
+
+ template <typename T, typename F, bool is_variable, bool checked, int boost>
+ struct lua_call_wrapper<T, F, true, is_variable, checked, boost, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
+ typedef lua_bind_traits<F> traits_type;
+ typedef wrapper<meta::unqualified_t<F>> wrap;
+ typedef typename wrap::object_type object_type;
+
+ template <typename V>
+ static int call(lua_State* L, V&& f, object_type& o) {
+ typedef typename wrap::returns_list returns_list;
+ typedef typename wrap::caller caller;
+ return stack::call_into_lua<checked>(returns_list(), types<>(), L, boost + ( is_variable ? 3 : 2 ), caller(), std::forward<V>(f), o);
+ }
+
+ template <typename V>
+ static int call(lua_State* L, V&& f) {
+ typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
+#ifdef SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call(L, f, *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+ return call(L, f, o);
+#endif // Safety
+ }
+ };
+
+ template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, C> {
+ typedef constructor_list<Args...> F;
+
+ static int call(lua_State* L, F&) {
+ const auto& metakey = usertype_traits<T>::metatable();
+ int argcount = lua_gettop(L);
+ call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1) : call_syntax::dot;
+ argcount -= static_cast<int>(syntax);
+
+ T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
+ reference userdataref(L, -1);
+ T*& referencepointer = *pointerpointer;
+ T* obj = reinterpret_cast<T*>(pointerpointer + 1);
+ referencepointer = obj;
+
+ construct_match<T, Args...>(constructor_match<T>(obj), L, argcount, boost + 1 + static_cast<int>(syntax));
+
+ userdataref.push();
+ luaL_getmetatable(L, &metakey[0]);
+ if (type_of(L, -1) == type::lua_nil) {
+ lua_pop(L, 1);
+ return luaL_error(L, "sol: unable to get usertype metatable");
+ }
+
+ lua_setmetatable(L, -2);
+ return 1;
+ }
+ };
+
+ template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, C> {
+ typedef constructor_wrapper<Cxs...> F;
+
+ struct onmatch {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
+ const auto& metakey = usertype_traits<T>::metatable();
+ T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
+ reference userdataref(L, -1);
+ T*& referencepointer = *pointerpointer;
+ T* obj = reinterpret_cast<T*>(pointerpointer + 1);
+ referencepointer = obj;
+
+ auto& func = std::get<I>(f.functions);
+ stack::call_into_lua<checked>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj));
+
+ userdataref.push();
+ luaL_getmetatable(L, &metakey[0]);
+ if (type_of(L, -1) == type::lua_nil) {
+ lua_pop(L, 1);
+ std::string err = "sol: unable to get usertype metatable for ";
+ err += usertype_traits<T>::name();
+ return luaL_error(L, err.c_str());
+ }
+ lua_setmetatable(L, -2);
+
+ return 1;
+ }
+ };
+
+ static int call(lua_State* L, F& f) {
+ call_syntax syntax = stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1);
+ int syntaxval = static_cast<int>(syntax);
+ int argcount = lua_gettop(L) - syntaxval;
+ return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
+ }
+
+ };
+
+ template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost>
+ struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, std::enable_if_t<std::is_void<Fx>::value>> {
+ typedef destructor_wrapper<Fx> F;
+
+ static int call(lua_State* L, const F&) {
+ return detail::usertype_alloc_destroy<T>(L);
+ }
+ };
+
+ template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost>
+ struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, std::enable_if_t<!std::is_void<Fx>::value>> {
+ typedef destructor_wrapper<Fx> F;
+
+ static int call(lua_State* L, const F& f) {
+ T& obj = stack::get<T>(L);
+ f.fx(detail::implicit_wrapper<T>(obj));
+ return 0;
+ }
+ };
+
+ template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, C> {
+ typedef overload_set<Fs...> F;
+
+ struct on_match {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
+ auto& f = std::get<I>(fx.functions);
+ return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
+ }
+ };
+
+ static int call(lua_State* L, F& fx) {
+ return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
+ }
+ };
+
+ template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, C> {
+ typedef factory_wrapper<Fs...> F;
+
+ struct on_match {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
+ auto& f = std::get<I>(fx.functions);
+ return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
+ }
+ };
+
+ static int call(lua_State* L, F& fx) {
+ return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
+ }
+ };
+
+ template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, C> {
+ typedef std::conditional_t<is_index, R, W> P;
+ typedef meta::unqualified_t<P> U;
+ typedef lua_bind_traits<U> traits_type;
+
+ template <typename F>
+ static int self_call(lua_State* L, F&& f) {
+ typedef wrapper<U> wrap;
+ typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
+ typedef meta::pop_front_type_t<typename traits_type::free_args_list> args_list;
+ typedef T Ta;
+#ifdef SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+#else
+ object_type* o = static_cast<object_type*>(stack::get<non_null<Ta*>>(L, 1));
+#endif // Safety
+ typedef typename wrap::returns_list returns_list;
+ typedef typename wrap::caller caller;
+ return stack::call_into_lua<checked>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, *o);
+ }
+
+ template <typename F, typename... Args>
+ static int defer_call(std::false_type, lua_State* L, F&& f, Args&&... args) {
+ return self_call(L, pick(meta::boolean<is_index>(), f), std::forward<Args>(args)...);
+ }
+
+ template <typename F, typename... Args>
+ static int defer_call(std::true_type, lua_State* L, F&& f, Args&&... args) {
+ auto& p = pick(meta::boolean<is_index>(), std::forward<F>(f));
+ return lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost>{}.call(L, p, std::forward<Args>(args)...);
+ }
+
+ template <typename F, typename... Args>
+ static int call(lua_State* L, F&& f, Args&&... args) {
+ typedef meta::any<
+ std::is_void<U>,
+ std::is_same<U, no_prop>,
+ meta::is_specialization_of<var_wrapper, U>,
+ meta::is_specialization_of<constructor_wrapper, U>,
+ meta::is_specialization_of<constructor_list, U>,
+ std::is_member_pointer<U>
+ > is_specialized;
+ return defer_call(is_specialized(), L, std::forward<F>(f), std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, C> {
+ typedef protect_t<V> F;
+
+ template <typename... Args>
+ static int call(lua_State* L, F& fx, Args&&... args) {
+ return lua_call_wrapper<T, V, is_index, is_variable, true, boost>{}.call(L, fx.value, std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, typename C>
+ struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, C> {
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ return lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, stack::stack_detail::default_check_arguments, boost>{}.call(L, std::get<0>(f.arguments));
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, int boost = 0, typename Fx, typename... Args>
+ inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
+ return lua_call_wrapper<T, meta::unqualified_t<Fx>, is_index, is_variable, stack::stack_detail::default_check_arguments, boost>{}.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename T, bool is_index, bool is_variable, typename F>
+ inline int call_user(lua_State* L) {
+ auto& fx = stack::get<user<F>>(L, upvalue_index(1));
+ return call_wrapped<T, is_index, is_variable>(L, fx);
+ }
+
+ template <typename T, typename = void>
+ struct is_var_bind : std::false_type {};
+
+ template <typename T>
+ struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {};
+
+ template <>
+ struct is_var_bind<no_prop> : std::true_type {};
+
+ template <typename R, typename W>
+ struct is_var_bind<property_wrapper<R, W>> : std::true_type {};
+
+ template <typename T>
+ struct is_var_bind<var_wrapper<T>> : std::true_type {};
+ } // call_detail
+
+ template <typename T>
+ struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {};
+
+ template <typename T>
+ struct is_function_binding : meta::neg<is_variable_binding<T>> {};
+
+} // sol
+
+// end of sol/call.hpp
+
+namespace sol {
+ namespace function_detail {
+ template <typename F, F fx>
+ inline int call_wrapper_variable(std::false_type, lua_State* L) {
+ typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef meta::tuple_types<typename traits_type::return_type> return_type;
+ return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
+ }
+
+ template <typename R, typename V, V, typename T>
+ inline int call_set_assignable(std::false_type, T&&, lua_State* L) {
+ return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
+ }
+
+ template <typename R, typename V, V variable, typename T>
+ inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) {
+ (mem.*variable) = stack::get<R>(L, 2);
+ return 0;
+ }
+
+ template <typename R, typename V, V, typename T>
+ inline int call_set_variable(std::false_type, lua_State* L, T&&) {
+ return luaL_error(L, "cannot write to a const variable");
+ }
+
+ template <typename R, typename V, V variable, typename T>
+ inline int call_set_variable(std::true_type, lua_State* L, T&& mem) {
+ return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
+ }
+
+ template <typename V, V variable>
+ inline int call_wrapper_variable(std::true_type, lua_State* L) {
+ typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
+ typedef typename traits_type::object_type T;
+ typedef typename traits_type::return_type R;
+ auto& mem = stack::get<T>(L, 1);
+ switch (lua_gettop(L)) {
+ case 1: {
+ decltype(auto) r = (mem.*variable);
+ stack::push_reference(L, std::forward<decltype(r)>(r));
+ return 1; }
+ case 2:
+ return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
+ default:
+ return luaL_error(L, "incorrect number of arguments to member variable function call");
+ }
+ }
+
+ template <typename F, F fx>
+ inline int call_wrapper_function(std::false_type, lua_State* L) {
+ return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
+ }
+
+ template <typename F, F fx>
+ inline int call_wrapper_function(std::true_type, lua_State* L) {
+ return call_detail::call_wrapped<void, false, false>(L, fx);
+ }
+
+ template <typename F, F fx>
+ int call_wrapper_entry(lua_State* L) {
+ return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
+ }
+
+ template <typename... Fxs>
+ struct c_call_matcher {
+ template <typename Fx, std::size_t I, typename R, typename... Args>
+ int operator()(types<Fx>, index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const {
+ typedef meta::at_in_pack_t<I, Fxs...> target;
+ return target::call(L);
+ }
+ };
+
+ } // function_detail
+
+ template <typename F, F fx>
+ inline int c_call(lua_State* L) {
+#ifdef __clang__
+ return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
+#else
+ return detail::static_trampoline<(&function_detail::call_wrapper_entry<F, fx>)>(L);
+#endif // fuck you clang :c
+ }
+
+ template <typename F, F f>
+ struct wrap {
+ typedef F type;
+
+ static int call(lua_State* L) {
+ return c_call<type, f>(L);
+ }
+ };
+
+ template <typename... Fxs>
+ inline int c_call(lua_State* L) {
+ if (sizeof...(Fxs) < 2) {
+ return meta::at_in_pack_t<0, Fxs...>::call(L);
+ }
+ else {
+ return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
+ }
+ }
+
+} // sol
+
+// end of sol/function_types_templated.hpp
+
+// beginning of sol/function_types_stateless.hpp
+
+namespace sol {
+ namespace function_detail {
+ template<typename Function>
+ struct upvalue_free_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L) {
+ auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
+ function_type* fx = udata.first;
+ return call_detail::call_wrapped<void, true, false>(L, fx);
+ }
+
+ static int call(lua_State* L) {
+ return detail::static_trampoline<(&real_call)>(L);
+ }
+
+ int operator()(lua_State* L) {
+ return call(L);
+ }
+ };
+
+ template<typename T, typename Function>
+ struct upvalue_member_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L) {
+ // Layout:
+ // idx 1...n: verbatim data of member function pointer
+ // idx n + 1: is the object's void pointer
+ // We don't need to store the size, because the other side is templated
+ // with the same member function pointer type
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
+ auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
+ function_type& memfx = memberdata.first;
+ auto& item = *objdata.first;
+ return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
+ }
+
+ static int call(lua_State* L) {
+ return detail::static_trampoline<(&real_call)>(L);
+ }
+
+ int operator()(lua_State* L) {
+ return call(L);
+ }
+ };
+
+ template<typename T, typename Function>
+ struct upvalue_member_variable {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L) {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ // idx n + 1: is the object's void pointer
+ // We don't need to store the size, because the other side is templated
+ // with the same member function pointer type
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
+ auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
+ auto& mem = *objdata.first;
+ function_type& var = memberdata.first;
+ switch (lua_gettop(L)) {
+ case 0:
+ return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
+ case 1:
+ return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ static int call(lua_State* L) {
+ return detail::static_trampoline<(&real_call)>(L);
+ }
+
+ int operator()(lua_State* L) {
+ return call(L);
+ }
+ };
+
+ template<typename T, typename Function>
+ struct upvalue_this_member_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L) {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
+ function_type& memfx = memberdata.first;
+ return call_detail::call_wrapped<T, false, false>(L, memfx);
+ }
+
+ static int call(lua_State* L) {
+ return detail::static_trampoline<(&real_call)>(L);
+ }
+
+ int operator()(lua_State* L) {
+ return call(L);
+ }
+ };
+
+ template<typename T, typename Function>
+ struct upvalue_this_member_variable {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L) {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
+ function_type& var = memberdata.first;
+ switch (lua_gettop(L)) {
+ case 1:
+ return call_detail::call_wrapped<T, true, false>(L, var);
+ case 2:
+ return call_detail::call_wrapped<T, false, false>(L, var);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ static int call(lua_State* L) {
+ return detail::static_trampoline<(&real_call)>(L);
+ }
+
+ int operator()(lua_State* L) {
+ return call(L);
+ }
+ };
+ } // function_detail
+} // sol
+
+// end of sol/function_types_stateless.hpp
+
+// beginning of sol/function_types_stateful.hpp
+
+namespace sol {
+ namespace function_detail {
+ template<typename Func>
+ struct functor_function {
+ typedef meta::unwrapped_t<meta::unqualified_t<Func>> Function;
+ Function fx;
+
+ template<typename... Args>
+ functor_function(Function f, Args&&... args) : fx(std::move(f), std::forward<Args>(args)...) {}
+
+ int call(lua_State* L) {
+ return call_detail::call_wrapped<void, true, false>(L, fx);
+ }
+
+ int operator()(lua_State* L) {
+ auto f = [&](lua_State*) -> int { return this->call(L); };
+ return detail::trampoline(L, f);
+ }
+ };
+
+ template<typename T, typename Function>
+ struct member_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef meta::function_return_t<function_type> return_type;
+ typedef meta::function_args_t<function_type> args_lists;
+ function_type invocation;
+ T member;
+
+ template<typename... Args>
+ member_function(function_type f, Args&&... args) : invocation(std::move(f)), member(std::forward<Args>(args)...) {}
+
+ int call(lua_State* L) {
+ return call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member)));
+ }
+
+ int operator()(lua_State* L) {
+ auto f = [&](lua_State*) -> int { return this->call(L); };
+ return detail::trampoline(L, f);
+ }
+ };
+
+ template<typename T, typename Function>
+ struct member_variable {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef typename meta::bind_traits<function_type>::return_type return_type;
+ typedef typename meta::bind_traits<function_type>::args_list args_lists;
+ function_type var;
+ T member;
+ typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;
+
+ template<typename... Args>
+ member_variable(function_type v, Args&&... args) : var(std::move(v)), member(std::forward<Args>(args)...) {}
+
+ int call(lua_State* L) {
+ M mem = detail::unwrap(detail::deref(member));
+ switch (lua_gettop(L)) {
+ case 0:
+ return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
+ case 1:
+ return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ int operator()(lua_State* L) {
+ auto f = [&](lua_State*) -> int { return this->call(L); };
+ return detail::trampoline(L, f);
+ }
+ };
+ } // function_detail
+} // sol
+
+// end of sol/function_types_stateful.hpp
+
+// beginning of sol/function_types_overloaded.hpp
+
+namespace sol {
+ namespace function_detail {
+ template <int start_skew = 0, typename... Functions>
+ struct overloaded_function {
+ typedef std::tuple<Functions...> overload_list;
+ typedef std::make_index_sequence<sizeof...(Functions)> indices;
+ overload_list overloads;
+
+ overloaded_function(overload_list set)
+ : overloads(std::move(set)) {}
+
+ overloaded_function(Functions... fxs)
+ : overloads(fxs...) {
+
+ }
+
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int call(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int) {
+ auto& func = std::get<I>(overloads);
+ return call_detail::call_wrapped<void, true, false, start_skew>(L, func);
+ }
+
+ int operator()(lua_State* L) {
+ auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); };
+ return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew);
+ }
+ };
+ } // function_detail
+} // sol
+
+// end of sol/function_types_overloaded.hpp
+
+// beginning of sol/resolve.hpp
+
+namespace sol {
+
+#ifndef __clang__
+ // constexpr is fine for not-clang
+
+ namespace detail {
+ template<typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
+ inline constexpr auto resolve_i(types<R(Args...)>, F&&)->R(meta::unqualified_t<F>::*)(Args...) {
+ using Sig = R(Args...);
+ typedef meta::unqualified_t<F> Fu;
+ return static_cast<Sig Fu::*>(&Fu::operator());
+ }
+
+ template<typename F, typename U = meta::unqualified_t<F>>
+ inline constexpr auto resolve_f(std::true_type, F&& f)
+ -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
+ return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
+ }
+
+ template<typename F>
+ inline constexpr void resolve_f(std::false_type, F&&) {
+ static_assert(meta::has_deducible_signature<F>::value,
+ "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
+ }
+
+ template<typename F, typename U = meta::unqualified_t<F>>
+ inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
+ return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
+ }
+
+ template<typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
+ inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
+ return resolve_i(types<R(Args...)>(), std::forward<F>(f));
+ }
+
+ template<typename Sig, typename C>
+ inline constexpr Sig C::* resolve_v(std::false_type, Sig C::* mem_func_ptr) {
+ return mem_func_ptr;
+ }
+
+ template<typename Sig, typename C>
+ inline constexpr Sig C::* resolve_v(std::true_type, Sig C::* mem_variable_ptr) {
+ return mem_variable_ptr;
+ }
+ } // detail
+
+ template<typename... Args, typename R>
+ inline constexpr auto resolve(R fun_ptr(Args...))->R(*)(Args...) {
+ return fun_ptr;
+ }
+
+ template<typename Sig>
+ inline constexpr Sig* resolve(Sig* fun_ptr) {
+ return fun_ptr;
+ }
+
+ template<typename... Args, typename R, typename C>
+ inline constexpr auto resolve(R(C::*mem_ptr)(Args...))->R(C::*)(Args...) {
+ return mem_ptr;
+ }
+
+ template<typename Sig, typename C>
+ inline constexpr Sig C::* resolve(Sig C::* mem_ptr) {
+ return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
+ }
+
+ template<typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
+ inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
+ return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
+ }
+#else
+
+ // Clang has distinct problems with constexpr arguments,
+ // so don't use the constexpr versions inside of clang.
+
+ namespace detail {
+ template<typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
+ inline auto resolve_i(types<R(Args...)>, F&&)->R(meta::unqualified_t<F>::*)(Args...) {
+ using Sig = R(Args...);
+ typedef meta::unqualified_t<F> Fu;
+ return static_cast<Sig Fu::*>(&Fu::operator());
+ }
+
+ template<typename F, typename U = meta::unqualified_t<F>>
+ inline auto resolve_f(std::true_type, F&& f)
+ -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
+ return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
+ }
+
+ template<typename F>
+ inline void resolve_f(std::false_type, F&&) {
+ static_assert(meta::has_deducible_signature<F>::value,
+ "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
+ }
+
+ template<typename F, typename U = meta::unqualified_t<F>>
+ inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
+ return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
+ }
+
+ template<typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
+ inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
+ return resolve_i(types<R(Args...)>(), std::forward<F>(f));
+ }
+
+ template<typename Sig, typename C>
+ inline Sig C::* resolve_v(std::false_type, Sig C::* mem_func_ptr) {
+ return mem_func_ptr;
+ }
+
+ template<typename Sig, typename C>
+ inline Sig C::* resolve_v(std::true_type, Sig C::* mem_variable_ptr) {
+ return mem_variable_ptr;
+ }
+ } // detail
+
+ template<typename... Args, typename R>
+ inline auto resolve(R fun_ptr(Args...))->R(*)(Args...) {
+ return fun_ptr;
+ }
+
+ template<typename Sig>
+ inline Sig* resolve(Sig* fun_ptr) {
+ return fun_ptr;
+ }
+
+ template<typename... Args, typename R, typename C>
+ inline auto resolve(R(C::*mem_ptr)(Args...))->R(C::*)(Args...) {
+ return mem_ptr;
+ }
+
+ template<typename Sig, typename C>
+ inline Sig C::* resolve(Sig C::* mem_ptr) {
+ return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
+ }
+
+ template<typename... Sig, typename F>
+ inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
+ return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
+ }
+
+#endif
+
+} // sol
+
+// end of sol/resolve.hpp
+
+namespace sol {
+ namespace function_detail {
+ template<typename T>
+ struct class_indicator {};
+
+ struct call_indicator {};
+ }
+ namespace stack {
+ template<typename... Sigs>
+ struct pusher<function_sig<Sigs...>> {
+ template <typename... Sig, typename Fx, typename... Args>
+ static void select_convertible(std::false_type, types<Sig...>, lua_State* L, Fx&& fx, Args&&... args) {
+ typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
+ typedef function_detail::functor_function<clean_fx> F;
+ set_fx<F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename R, typename... A, typename Fx, typename... Args>
+ static void select_convertible(std::true_type, types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) {
+ using fx_ptr_t = R(*)(A...);
+ fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
+ select_function(std::true_type(), L, fxptr, std::forward<Args>(args)...);
+ }
+
+ template <typename R, typename... A, typename Fx, typename... Args>
+ static void select_convertible(types<R(A...)> t, lua_State* L, Fx&& fx, Args&&... args) {
+ typedef std::decay_t<meta::unwrap_unqualified_t<Fx>> raw_fx_t;
+ typedef R(*fx_ptr_t)(A...);
+ typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
+ select_convertible(is_convertible(), t, L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename... Args>
+ static void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) {
+ typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
+ select_convertible(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename T, typename... Args>
+ static void select_reference_member_variable(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
+ typedef function_detail::member_variable<meta::unwrap_unqualified_t<T>, clean_fx> F;
+ set_fx<F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename T, typename... Args>
+ static void select_reference_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ typedef std::decay_t<Fx> dFx;
+ dFx memfxptr(std::forward<Fx>(fx));
+ auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
+ lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>>::call;
+
+ int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
+ upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <typename Fx, typename... Args>
+ static void select_member_variable(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
+ select_convertible(types<Sigs...>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<function_detail::class_indicator, meta::unqualified_t<T>>> = meta::enabler>
+ static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ typedef meta::boolean<meta::is_specialization_of<std::reference_wrapper, meta::unqualified_t<T>>::value || std::is_pointer<T>::value> is_reference;
+ select_reference_member_variable(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename C>
+ static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) {
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::call;
+ int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <typename Fx>
+ static void select_member_variable(std::true_type, lua_State* L, Fx&& fx) {
+ typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::call;
+ int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <typename Fx, typename T, typename... Args>
+ static void select_reference_member_function(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ typedef std::decay_t<Fx> clean_fx;
+ typedef function_detail::member_function<meta::unwrap_unqualified_t<T>, clean_fx> F;
+ set_fx<F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename T, typename... Args>
+ static void select_reference_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ typedef std::decay_t<Fx> dFx;
+ dFx memfxptr(std::forward<Fx>(fx));
+ auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
+ lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>>::call;
+
+ int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
+ upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <typename Fx, typename... Args>
+ static void select_member_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
+ select_member_variable(std::is_member_object_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<function_detail::class_indicator, meta::unqualified_t<T>>> = meta::enabler>
+ static void select_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ typedef meta::boolean<meta::is_specialization_of<std::reference_wrapper, meta::unqualified_t<T>>::value || std::is_pointer<T>::value> is_reference;
+ select_reference_member_function(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename C>
+ static void select_member_function(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) {
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx>::call;
+ int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <typename Fx>
+ static void select_member_function(std::true_type, lua_State* L, Fx&& fx) {
+ typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx>::call;
+ int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <typename Fx, typename... Args>
+ static void select_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
+ select_member_function(std::is_member_function_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename... Args>
+ static void select_function(std::true_type, lua_State* L, Fx&& fx, Args&&... args) {
+ std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
+ lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::call;
+
+ int upvalues = stack::stack_detail::push_as_upvalues(L, target);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ static void select_function(std::true_type, lua_State* L, lua_CFunction f) {
+ stack::push(L, f);
+ }
+
+ template <typename Fx, typename... Args>
+ static void select(lua_State* L, Fx&& fx, Args&&... args) {
+ select_function(std::is_function<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename... Args>
+ static void set_fx(lua_State* L, Args&&... args) {
+ lua_CFunction freefunc = function_detail::call<meta::unqualified_t<Fx>>;
+
+ stack::push<user<Fx>>(L, std::forward<Args>(args)...);
+ stack::push(L, c_closure(freefunc, 1));
+ }
+
+ template<typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ // Set will always place one thing (function) on the stack
+ select(L, std::forward<Args>(args)...);
+ return 1;
+ }
+ };
+
+ template<typename T, typename... Args>
+ struct pusher<function_arguments<T, Args...>> {
+ template <std::size_t... I, typename FP>
+ static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
+ return stack::push<T>(L, detail::forward_get<I>(fp.arguments)...);
+ }
+
+ static int push(lua_State* L, const function_arguments<T, Args...>& fp) {
+ return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
+ }
+
+ static int push(lua_State* L, function_arguments<T, Args...>&& fp) {
+ return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
+ }
+ };
+
+ template<typename Signature>
+ struct pusher<std::function<Signature>> {
+ static int push(lua_State* L, std::function<Signature> fx) {
+ return pusher<function_sig<Signature>>{}.push(L, std::move(fx));
+ }
+ };
+
+ template<typename Signature>
+ struct pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> {
+ template <typename F, typename... Args>
+ static int push(lua_State* L, F&& f, Args&&... args) {
+ return pusher<function_sig<>>{}.push(L, std::forward<F>(f), std::forward<Args>(args)...);
+ }
+ };
+
+ template<typename Signature>
+ struct pusher<Signature, std::enable_if_t<meta::all<std::is_function<Signature>, meta::neg<std::is_same<Signature, lua_CFunction>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>>::value>> {
+ template <typename F>
+ static int push(lua_State* L, F&& f) {
+ return pusher<function_sig<>>{}.push(L, std::forward<F>(f));
+ }
+ };
+
+ template<typename... Functions>
+ struct pusher<overload_set<Functions...>> {
+ static int push(lua_State* L, overload_set<Functions...>&& set) {
+ typedef function_detail::overloaded_function<0, Functions...> F;
+ pusher<function_sig<>>{}.set_fx<F>(L, std::move(set.functions));
+ return 1;
+ }
+
+ static int push(lua_State* L, const overload_set<Functions...>& set) {
+ typedef function_detail::overloaded_function<0, Functions...> F;
+ pusher<function_sig<>>{}.set_fx<F>(L, set.functions);
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct pusher<protect_t<T>> {
+ static int push(lua_State* L, protect_t<T>&& pw) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>>;
+ int closures = stack::push<user<protect_t<T>>>(L, std::move(pw.value));
+ return stack::push(L, c_closure(cf, closures));
+ }
+
+ static int push(lua_State* L, const protect_t<T>& pw) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>>;
+ int closures = stack::push<user<protect_t<T>>>(L, pw.value);
+ return stack::push(L, c_closure(cf, closures));
+ }
+ };
+
+ template <typename F, typename G>
+ struct pusher<property_wrapper<F, G>, std::enable_if_t<!std::is_void<F>::value && !std::is_void<G>::value>> {
+ static int push(lua_State* L, property_wrapper<F, G>&& pw) {
+ return stack::push(L, sol::overload(std::move(pw.read), std::move(pw.write)));
+ }
+ static int push(lua_State* L, const property_wrapper<F, G>& pw) {
+ return stack::push(L, sol::overload(pw.read, pw.write));
+ }
+ };
+
+ template <typename F>
+ struct pusher<property_wrapper<F, void>> {
+ static int push(lua_State* L, property_wrapper<F, void>&& pw) {
+ return stack::push(L, std::move(pw.read));
+ }
+ static int push(lua_State* L, const property_wrapper<F, void>& pw) {
+ return stack::push(L, pw.read);
+ }
+ };
+
+ template <typename F>
+ struct pusher<property_wrapper<void, F>> {
+ static int push(lua_State* L, property_wrapper<void, F>&& pw) {
+ return stack::push(L, std::move(pw.write));
+ }
+ static int push(lua_State* L, const property_wrapper<void, F>& pw) {
+ return stack::push(L, pw.write);
+ }
+ };
+
+ template <typename T>
+ struct pusher<var_wrapper<T>> {
+ static int push(lua_State* L, var_wrapper<T>&& vw) {
+ return stack::push(L, std::move(vw.value));
+ }
+ static int push(lua_State* L, const var_wrapper<T>& vw) {
+ return stack::push(L, vw.value);
+ }
+ };
+
+ template <typename... Functions>
+ struct pusher<factory_wrapper<Functions...>> {
+ static int push(lua_State* L, const factory_wrapper<Functions...>& fw) {
+ typedef function_detail::overloaded_function<0, Functions...> F;
+ pusher<function_sig<>>{}.set_fx<F>(L, fw.functions);
+ return 1;
+ }
+
+ static int push(lua_State* L, factory_wrapper<Functions...>&& fw) {
+ typedef function_detail::overloaded_function<0, Functions...> F;
+ pusher<function_sig<>>{}.set_fx<F>(L, std::move(fw.functions));
+ return 1;
+ }
+
+ static int push(lua_State* L, const factory_wrapper<Functions...>& set, function_detail::call_indicator) {
+ typedef function_detail::overloaded_function<1, Functions...> F;
+ pusher<function_sig<>>{}.set_fx<F>(L, set.functions);
+ return 1;
+ }
+
+ static int push(lua_State* L, factory_wrapper<Functions...>&& set, function_detail::call_indicator) {
+ typedef function_detail::overloaded_function<1, Functions...> F;
+ pusher<function_sig<>>{}.set_fx<F>(L, std::move(set.functions));
+ return 1;
+ }
+ };
+
+ template <>
+ struct pusher<no_construction> {
+ static int push(lua_State* L, no_construction) {
+ lua_CFunction cf = &function_detail::no_construction_error;
+ return stack::push(L, cf);
+ }
+
+ static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
+ return push(L, c);
+ }
+ };
+
+ template <typename T, typename... Lists>
+ struct pusher<detail::tagged<T, constructor_list<Lists...>>> {
+ static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) {
+ lua_CFunction cf = call_detail::construct<T, Lists...>;
+ return stack::push(L, cf);
+ }
+ };
+
+ template <typename T, typename... Fxs>
+ struct pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
+ template <typename C>
+ static int push(lua_State* L, C&& c) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>>;
+ int closures = stack::push<user<constructor_wrapper<Fxs...>>>(L, std::forward<C>(c));
+ return stack::push(L, c_closure(cf, closures));
+ }
+ };
+
+ template <typename T>
+ struct pusher<detail::tagged<T, destructor_wrapper<void>>> {
+ static int push(lua_State* L, destructor_wrapper<void>) {
+ lua_CFunction cf = detail::usertype_alloc_destroy<T>;
+ return stack::push(L, cf);
+ }
+ };
+
+ template <typename T, typename Fx>
+ struct pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
+ static int push(lua_State* L, destructor_wrapper<Fx> c) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>>;
+ int closures = stack::push<user<T>>(L, std::move(c));
+ return stack::push(L, c_closure(cf, closures));
+ }
+ };
+
+ } // stack
+} // sol
+
+// end of sol/function_types.hpp
+
+namespace sol {
+ template <typename base_t>
+ class basic_function : public base_t {
+ private:
+ void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const {
+ lua_callk(base_t::lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), 0, nullptr);
+ }
+
+ template<std::size_t... I, typename... Ret>
+ auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const {
+ luacall(n, lua_size<std::tuple<Ret...>>::value);
+ return stack::pop<std::tuple<Ret...>>(base_t::lua_state());
+ }
+
+ template<std::size_t I, typename Ret>
+ Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const {
+ luacall(n, lua_size<Ret>::value);
+ return stack::pop<Ret>(base_t::lua_state());
+ }
+
+ template <std::size_t I>
+ void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
+ luacall(n, 0);
+ }
+
+ function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const {
+ int stacksize = lua_gettop(base_t::lua_state());
+ int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
+ luacall(n, LUA_MULTRET);
+ int poststacksize = lua_gettop(base_t::lua_state());
+ int returncount = poststacksize - (firstreturn - 1);
+ return function_result(base_t::lua_state(), firstreturn, returncount);
+ }
+
+ public:
+ basic_function() = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
+ basic_function(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!is_function<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ stack::check<basic_function>(base_t::lua_state(), -1, type_panic);
+ }
+#endif // Safety
+ }
+ basic_function(const basic_function&) = default;
+ basic_function& operator=(const basic_function&) = default;
+ basic_function(basic_function&&) = default;
+ basic_function& operator=(basic_function&&) = default;
+ basic_function(const stack_reference& r) : basic_function(r.lua_state(), r.stack_index()) {}
+ basic_function(stack_reference&& r) : basic_function(r.lua_state(), r.stack_index()) {}
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ basic_function(lua_State* L, T&& r) : basic_function(L, sol::ref_index(r.registry_index())) {}
+ basic_function(lua_State* L, int index = -1) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ stack::check<basic_function>(L, index, type_panic);
+#endif // Safety
+ }
+ basic_function(lua_State* L, ref_index index) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ stack::check<basic_function>(L, -1, type_panic);
+#endif // Safety
+ }
+
+ template<typename... Args>
+ function_result operator()(Args&&... args) const {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) operator()(types<Ret...>, Args&&... args) const {
+ return call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) const {
+ base_t::push();
+ int pushcount = stack::multi_push_reference(base_t::lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
+ }
+ };
+
+ namespace stack {
+ template<typename Signature>
+ struct getter<std::function<Signature>> {
+ typedef meta::bind_traits<Signature> fx_t;
+ typedef typename fx_t::args_list args_lists;
+ typedef meta::tuple_types<typename fx_t::return_type> return_types;
+
+ template<typename... Args, typename... Ret>
+ static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index) {
+ sol::function f(L, index);
+ auto fx = [f, L, index](Args&&... args) -> meta::return_type_t<Ret...> {
+ return f.call<Ret...>(std::forward<Args>(args)...);
+ };
+ return std::move(fx);
+ }
+
+ template<typename... FxArgs>
+ static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index) {
+ sol::function f(L, index);
+ auto fx = [f, L, index](FxArgs&&... args) -> void {
+ f(std::forward<FxArgs>(args)...);
+ };
+ return std::move(fx);
+ }
+
+ template<typename... FxArgs>
+ static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index) {
+ return get_std_func(types<void>(), t, L, index);
+ }
+
+ static std::function<Signature> get(lua_State* L, int index, record& tracking) {
+ tracking.last = 1;
+ tracking.used += 1;
+ type t = type_of(L, index);
+ if (t == type::none || t == type::lua_nil) {
+ return nullptr;
+ }
+ return get_std_func(return_types(), args_lists(), L, index);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/function.hpp
+
+// beginning of sol/protected_function.hpp
+
+// beginning of sol/protected_function_result.hpp
+
+namespace sol {
+ struct protected_function_result : public proxy_base<protected_function_result> {
+ private:
+ lua_State* L;
+ int index;
+ int returncount;
+ int popcount;
+ call_status err;
+
+ template <typename T>
+ decltype(auto) tagged_get(types<sol::optional<T>>) const {
+ if (!valid()) {
+ return sol::optional<T>(nullopt);
+ }
+ return stack::get<sol::optional<T>>(L, index);
+ }
+
+ template <typename T>
+ decltype(auto) tagged_get(types<T>) const {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!valid()) {
+ type_panic(L, index, type_of(L, index), type::none);
+ }
+#endif // Check Argument Safety
+ return stack::get<T>(L, index);
+ }
+
+ optional<error> tagged_get(types<optional<error>>) const {
+ if (valid()) {
+ return nullopt;
+ }
+ return error(detail::direct_error, stack::get<std::string>(L, index));
+ }
+
+ error tagged_get(types<error>) const {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (valid()) {
+ type_panic(L, index, type_of(L, index), type::none);
+ }
+#endif // Check Argument Safety
+ return error(detail::direct_error, stack::get<std::string>(L, index));
+ }
+
+ public:
+ protected_function_result() = default;
+ protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept : L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) {
+
+ }
+ protected_function_result(const protected_function_result&) = default;
+ protected_function_result& operator=(const protected_function_result&) = default;
+ protected_function_result(protected_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ o.popcount = 0;
+ o.err = call_status::runtime;
+ }
+ protected_function_result& operator=(protected_function_result&& o) noexcept {
+ L = o.L;
+ index = o.index;
+ returncount = o.returncount;
+ popcount = o.popcount;
+ err = o.err;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ o.popcount = 0;
+ o.err = call_status::runtime;
+ return *this;
+ }
+
+ call_status status() const noexcept {
+ return err;
+ }
+
+ bool valid() const noexcept {
+ return status() == call_status::ok || status() == call_status::yielded;
+ }
+
+ template<typename T>
+ decltype(auto) get() const {
+ return tagged_get(types<meta::unqualified_t<T>>());
+ }
+
+ lua_State* lua_state() const noexcept { return L; };
+ int stack_index() const noexcept { return index; };
+
+ ~protected_function_result() {
+ stack::remove(L, index, popcount);
+ }
+ };
+} // sol
+
+// end of sol/protected_function_result.hpp
+
+#include <algorithm>
+
+namespace sol {
+ namespace detail {
+ inline reference& handler_storage() {
+ static sol::reference h;
+ return h;
+ }
+
+ struct handler {
+ const reference& target;
+ int stackindex;
+ handler(const reference& target) : target(target), stackindex(0) {
+ if (target.valid()) {
+ stackindex = lua_gettop(target.lua_state()) + 1;
+ target.push();
+ }
+ }
+ bool valid() const { return stackindex != 0; }
+ ~handler() {
+ if (valid()) {
+ lua_remove(target.lua_state(), stackindex);
+ }
+ }
+ };
+ }
+
+ template <typename base_t>
+ class basic_protected_function : public base_t {
+ public:
+ static reference& get_default_handler() {
+ return detail::handler_storage();
+ }
+
+ static void set_default_handler(const reference& ref) {
+ detail::handler_storage() = ref;
+ }
+
+ static void set_default_handler(reference&& ref) {
+ detail::handler_storage() = std::move(ref);
+ }
+
+ private:
+ call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::handler& h) const {
+ return static_cast<call_status>(lua_pcallk(base_t::lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex, 0, nullptr));
+ }
+
+ template<std::size_t... I, typename... Ret>
+ auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::handler& h) const {
+ luacall(n, sizeof...(Ret), h);
+ return stack::pop<std::tuple<Ret...>>(base_t::lua_state());
+ }
+
+ template<std::size_t I, typename Ret>
+ Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::handler& h) const {
+ luacall(n, 1, h);
+ return stack::pop<Ret>(base_t::lua_state());
+ }
+
+ template <std::size_t I>
+ void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::handler& h) const {
+ luacall(n, 0, h);
+ }
+
+ protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::handler& h) const {
+ int stacksize = lua_gettop(base_t::lua_state());
+ int poststacksize = stacksize;
+ int firstreturn = 1;
+ int returncount = 0;
+ call_status code = call_status::ok;
+#ifndef SOL_NO_EXCEPTIONS
+ auto onexcept = [&](const char* error) {
+ h.stackindex = 0;
+ if (h.target.valid()) {
+ h.target.push();
+ stack::push(base_t::lua_state(), error);
+ lua_call(base_t::lua_state(), 1, 1);
+ }
+ else {
+ stack::push(base_t::lua_state(), error);
+ }
+ };
+ try {
+#endif // No Exceptions
+ firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid())));
+ code = luacall(n, LUA_MULTRET, h);
+ poststacksize = lua_gettop(base_t::lua_state()) - static_cast<int>(h.valid());
+ returncount = poststacksize - (firstreturn - 1);
+#ifndef SOL_NO_EXCEPTIONS
+ }
+ // Handle C++ errors thrown from C++ functions bound inside of lua
+ catch (const char* error) {
+ onexcept(error);
+ firstreturn = lua_gettop(base_t::lua_state());
+ return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+ catch (const std::exception& error) {
+ onexcept(error.what());
+ firstreturn = lua_gettop(base_t::lua_state());
+ return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+ catch (...) {
+ onexcept("caught (...) unknown error during protected_function call");
+ firstreturn = lua_gettop(base_t::lua_state());
+ return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+#endif // No Exceptions
+ return protected_function_result(base_t::lua_state(), firstreturn, returncount, returncount, code);
+ }
+
+ public:
+ reference error_handler;
+
+ basic_protected_function() = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
+ basic_protected_function(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!is_function<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ stack::check<basic_protected_function>(base_t::lua_state(), -1, type_panic);
+ }
+#endif // Safety
+ }
+ basic_protected_function(const basic_protected_function&) = default;
+ basic_protected_function& operator=(const basic_protected_function&) = default;
+ basic_protected_function(basic_protected_function&&) = default;
+ basic_protected_function& operator=(basic_protected_function&&) = default;
+ basic_protected_function(const basic_function<base_t>& b, reference eh = get_default_handler()) : base_t(b), error_handler(std::move(eh)) {}
+ basic_protected_function(basic_function<base_t>&& b, reference eh = get_default_handler()) : base_t(std::move(b)), error_handler(std::move(eh)) {}
+ basic_protected_function(const stack_reference& r, reference eh = get_default_handler()) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {}
+ basic_protected_function(stack_reference&& r, reference eh = get_default_handler()) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {}
+ template <typename Super>
+ basic_protected_function(proxy_base<Super>&& p, reference eh = get_default_handler()) : basic_protected_function(p.operator basic_function<base_t>(), std::move(eh)) {}
+ template <typename Super>
+ basic_protected_function(const proxy_base<Super>& p, reference eh = get_default_handler()) : basic_protected_function(static_cast<basic_function<base_t>>(p), std::move(eh)) {}
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ basic_protected_function(lua_State* L, T&& r, reference eh) : basic_protected_function(L, sol::ref_index(r.registry_index()), std::move(eh)) {}
+ basic_protected_function(lua_State* L, int index = -1, reference eh = get_default_handler()) : base_t(L, index), error_handler(std::move(eh)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ stack::check<basic_protected_function>(L, index, type_panic);
+#endif // Safety
+ }
+ basic_protected_function(lua_State* L, ref_index index, reference eh = get_default_handler()) : base_t(L, index), error_handler(std::move(eh)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ stack::check<basic_protected_function>(L, -1, type_panic);
+#endif // Safety
+ }
+
+ template<typename... Args>
+ protected_function_result operator()(Args&&... args) const {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) operator()(types<Ret...>, Args&&... args) const {
+ return call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) const {
+ detail::handler h(error_handler);
+ base_t::push();
+ int pushcount = stack::multi_push_reference(base_t::lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
+ }
+ };
+} // sol
+
+// end of sol/protected_function.hpp
+
+namespace sol {
+ struct stack_proxy : public proxy_base<stack_proxy> {
+ private:
+ lua_State* L;
+ int index;
+
+ public:
+ stack_proxy() : L(nullptr), index(0) {}
+ stack_proxy(lua_State* L, int index) : L(L), index(index) {}
+
+ template<typename T>
+ decltype(auto) get() const {
+ return stack::get<T>(L, stack_index());
+ }
+
+ int push() const {
+ return push(L);
+ }
+
+ int push(lua_State* Ls) const {
+ lua_pushvalue(Ls, index);
+ return 1;
+ }
+
+ lua_State* lua_state() const { return L; }
+ int stack_index() const { return index; }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ return get<function>().template call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct getter<stack_proxy> {
+ static stack_proxy get(lua_State* L, int index = -1) {
+ return stack_proxy(L, index);
+ }
+ };
+
+ template <>
+ struct pusher<stack_proxy> {
+ static int push(lua_State*, const stack_proxy& ref) {
+ return ref.push();
+ }
+ };
+ } // stack
+
+ namespace detail {
+ template <>
+ struct is_speshul<function_result> : std::true_type {};
+ template <>
+ struct is_speshul<protected_function_result> : std::true_type {};
+
+ template <std::size_t I, typename... Args, typename T>
+ stack_proxy get(types<Args...>, index_value<0>, index_value<I>, const T& fr) {
+ return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
+ }
+
+ template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
+ stack_proxy get(types<Arg, Args...>, index_value<N>, index_value<I>, const T& fr) {
+ return get(types<Args...>(), index_value<N - 1>(), index_value<I + lua_size<Arg>::value>(), fr);
+ }
+ }
+
+ template <>
+ struct tie_size<function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
+
+ template <std::size_t I>
+ stack_proxy get(const function_result& fr) {
+ return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
+ }
+
+ template <std::size_t I, typename... Args>
+ stack_proxy get(types<Args...> t, const function_result& fr) {
+ return detail::get(t, index_value<I>(), index_value<0>(), fr);
+ }
+
+ template <>
+ struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
+
+ template <std::size_t I>
+ stack_proxy get(const protected_function_result& fr) {
+ return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
+ }
+
+ template <std::size_t I, typename... Args>
+ stack_proxy get(types<Args...> t, const protected_function_result& fr) {
+ return detail::get(t, index_value<I>(), index_value<0>(), fr);
+ }
+} // sol
+
+// end of sol/stack_proxy.hpp
+
+#include <limits>
+#include <iterator>
+
+namespace sol {
+ template <bool is_const>
+ struct va_iterator : std::iterator<std::random_access_iterator_tag, std::conditional_t<is_const, const stack_proxy, stack_proxy>, std::ptrdiff_t, std::conditional_t<is_const, const stack_proxy*, stack_proxy*>, std::conditional_t<is_const, const stack_proxy, stack_proxy>> {
+ typedef std::iterator<std::random_access_iterator_tag, std::conditional_t<is_const, const stack_proxy, stack_proxy>, std::ptrdiff_t, std::conditional_t<is_const, const stack_proxy*, stack_proxy*>, std::conditional_t<is_const, const stack_proxy, stack_proxy>> base_t;
+ typedef typename base_t::reference reference;
+ typedef typename base_t::pointer pointer;
+ typedef typename base_t::value_type value_type;
+ typedef typename base_t::difference_type difference_type;
+ typedef typename base_t::iterator_category iterator_category;
+ lua_State* L;
+ int index;
+ int stacktop;
+ stack_proxy sp;
+
+ va_iterator() : L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()) {}
+ va_iterator(lua_State* luastate, int idx, int topidx) : L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) {}
+
+ reference operator*() {
+ return stack_proxy(L, index);
+ }
+
+ pointer operator->() {
+ sp = stack_proxy(L, index);
+ return &sp;
+ }
+
+ va_iterator& operator++ () {
+ ++index;
+ return *this;
+ }
+
+ va_iterator operator++ (int) {
+ auto r = *this;
+ this->operator ++();
+ return r;
+ }
+
+ va_iterator& operator-- () {
+ --index;
+ return *this;
+ }
+
+ va_iterator operator-- (int) {
+ auto r = *this;
+ this->operator --();
+ return r;
+ }
+
+ va_iterator& operator+= (difference_type idx) {
+ index += static_cast<int>(idx);
+ return *this;
+ }
+
+ va_iterator& operator-= (difference_type idx) {
+ index -= static_cast<int>(idx);
+ return *this;
+ }
+
+ difference_type operator- (const va_iterator& r) const {
+ return index - r.index;
+ }
+
+ va_iterator operator+ (difference_type idx) const {
+ va_iterator r = *this;
+ r += idx;
+ return r;
+ }
+
+ reference operator[](difference_type idx) {
+ return stack_proxy(L, index + static_cast<int>(idx));
+ }
+
+ bool operator==(const va_iterator& r) const {
+ if (stacktop == (std::numeric_limits<int>::max)()) {
+ return r.index == r.stacktop;
+ }
+ else if (r.stacktop == (std::numeric_limits<int>::max)()) {
+ return index == stacktop;
+ }
+ return index == r.index;
+ }
+
+ bool operator != (const va_iterator& r) const {
+ return !(this->operator==(r));
+ }
+
+ bool operator < (const va_iterator& r) const {
+ return index < r.index;
+ }
+
+ bool operator > (const va_iterator& r) const {
+ return index > r.index;
+ }
+
+ bool operator <= (const va_iterator& r) const {
+ return index <= r.index;
+ }
+
+ bool operator >= (const va_iterator& r) const {
+ return index >= r.index;
+ }
+ };
+
+ template <bool is_const>
+ inline va_iterator<is_const> operator+(typename va_iterator<is_const>::difference_type n, const va_iterator<is_const>& r) {
+ return r + n;
+ }
+
+ struct variadic_args {
+ private:
+ lua_State* L;
+ int index;
+ int stacktop;
+
+ public:
+ typedef stack_proxy reference_type;
+ typedef stack_proxy value_type;
+ typedef stack_proxy* pointer;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::size_t size_type;
+ typedef va_iterator<false> iterator;
+ typedef va_iterator<true> const_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ variadic_args() = default;
+ variadic_args(lua_State* luastate, int stackindex = -1) : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) {}
+ variadic_args(const variadic_args&) = default;
+ variadic_args& operator=(const variadic_args&) = default;
+ variadic_args(variadic_args&& o) : L(o.L), index(o.index), stacktop(o.stacktop) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.stacktop = 0;
+ }
+ variadic_args& operator=(variadic_args&& o) {
+ L = o.L;
+ index = o.index;
+ stacktop = o.stacktop;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.stacktop = 0;
+ return *this;
+ }
+
+ iterator begin() { return iterator(L, index, stacktop + 1); }
+ iterator end() { return iterator(L, stacktop + 1, stacktop + 1); }
+ const_iterator begin() const { return const_iterator(L, index, stacktop + 1); }
+ const_iterator end() const { return const_iterator(L, stacktop + 1, stacktop + 1); }
+ const_iterator cbegin() const { return begin(); }
+ const_iterator cend() const { return end(); }
+
+ reverse_iterator rbegin() { return std::reverse_iterator<iterator>(begin()); }
+ reverse_iterator rend() { return std::reverse_iterator<iterator>(end()); }
+ const_reverse_iterator rbegin() const { return std::reverse_iterator<const_iterator>(begin()); }
+ const_reverse_iterator rend() const { return std::reverse_iterator<const_iterator>(end()); }
+ const_reverse_iterator crbegin() const { return std::reverse_iterator<const_iterator>(cbegin()); }
+ const_reverse_iterator crend() const { return std::reverse_iterator<const_iterator>(cend()); }
+
+ int push() const {
+ return push(L);
+ }
+
+ int push(lua_State* target) const {
+ int pushcount = 0;
+ for (int i = index; i <= stacktop; ++i) {
+ lua_pushvalue(L, i);
+ pushcount += 1;
+ }
+ if (target != L) {
+ lua_xmove(L, target, pushcount);
+ }
+ return pushcount;
+ }
+
+ template<typename T>
+ decltype(auto) get(difference_type start = 0) const {
+ return stack::get<T>(L, index + static_cast<int>(start));
+ }
+
+ stack_proxy operator[](difference_type start) const {
+ return stack_proxy(L, index + static_cast<int>(start));
+ }
+
+ lua_State* lua_state() const { return L; };
+ int stack_index() const { return index; };
+ int leftover_count() const { return stacktop - (index - 1); }
+ int top() const { return stacktop; }
+ };
+
+ namespace stack {
+ template <>
+ struct getter<variadic_args> {
+ static variadic_args get(lua_State* L, int index, record& tracking) {
+ tracking.last = 0;
+ return variadic_args(L, index);
+ }
+ };
+
+ template <>
+ struct pusher<variadic_args> {
+ static int push(lua_State* L, const variadic_args& ref) {
+ return ref.push(L);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/variadic_args.hpp
+
+namespace sol {
+
+ template <typename R = reference, bool should_pop = !std::is_base_of<stack_reference, R>::value, typename T>
+ R make_reference(lua_State* L, T&& value) {
+ int backpedal = stack::push(L, std::forward<T>(value));
+ R r = stack::get<R>(L, -backpedal);
+ if (should_pop) {
+ lua_pop(L, backpedal);
+ }
+ return r;
+ }
+
+ template <typename T, typename R = reference, bool should_pop = !std::is_base_of<stack_reference, R>::value, typename... Args>
+ R make_reference(lua_State* L, Args&&... args) {
+ int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
+ R r = stack::get<R>(L, -backpedal);
+ if (should_pop) {
+ lua_pop(L, backpedal);
+ }
+ return r;
+ }
+
+ template <typename base_t>
+ class basic_object : public base_t {
+ private:
+ template<typename T>
+ decltype(auto) as_stack(std::true_type) const {
+ return stack::get<T>(base_t::lua_state(), base_t::stack_index());
+ }
+
+ template<typename T>
+ decltype(auto) as_stack(std::false_type) const {
+ base_t::push();
+ return stack::pop<T>(base_t::lua_state());
+ }
+
+ template<typename T>
+ bool is_stack(std::true_type) const {
+ return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic);
+ }
+
+ template<typename T>
+ bool is_stack(std::false_type) const {
+ int r = base_t::registry_index();
+ if (r == LUA_REFNIL)
+ return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
+ if (r == LUA_NOREF)
+ return false;
+ auto pp = stack::push_pop(*this);
+ return stack::check<T>(base_t::lua_state(), -1, no_panic);
+ }
+
+ template <bool invert_and_pop = false>
+ basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept : base_t(L, index) {
+ if (invert_and_pop) {
+ lua_pop(L, -index);
+ }
+ }
+
+ public:
+ basic_object() noexcept = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
+ basic_object(T&& r) : base_t(std::forward<T>(r)) {}
+ basic_object(lua_nil_t r) : base_t(r) {}
+ basic_object(const basic_object&) = default;
+ basic_object(basic_object&&) = default;
+ basic_object(const stack_reference& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {}
+ basic_object(stack_reference&& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {}
+ template <typename Super>
+ basic_object(const proxy_base<Super>& r) noexcept : basic_object(r.operator basic_object()) {}
+ template <typename Super>
+ basic_object(proxy_base<Super>&& r) noexcept : basic_object(r.operator basic_object()) {}
+ basic_object(lua_State* L, int index = -1) noexcept : base_t(L, index) {}
+ basic_object(lua_State* L, ref_index index) noexcept : base_t(L, index) {}
+ template <typename T, typename... Args>
+ basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept : basic_object(std::integral_constant<bool, !std::is_base_of<stack_reference, base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) {}
+ template <typename T, typename... Args>
+ basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept : basic_object(L, in_place<T>, std::forward<T>(arg), std::forward<Args>(args)...) {}
+ basic_object& operator=(const basic_object&) = default;
+ basic_object& operator=(basic_object&&) = default;
+ basic_object& operator=(const base_t& b) { base_t::operator=(b); return *this; }
+ basic_object& operator=(base_t&& b) { base_t::operator=(std::move(b)); return *this; }
+ template <typename Super>
+ basic_object& operator=(const proxy_base<Super>& r) { this->operator=(r.operator basic_object()); return *this; }
+ template <typename Super>
+ basic_object& operator=(proxy_base<Super>&& r) { this->operator=(r.operator basic_object()); return *this; }
+
+ template<typename T>
+ decltype(auto) as() const {
+ return as_stack<T>(std::is_same<base_t, stack_reference>());
+ }
+
+ template<typename T>
+ bool is() const {
+ return is_stack<T>(std::is_same<base_t, stack_reference>());
+ }
+ };
+
+ template <typename T>
+ object make_object(lua_State* L, T&& value) {
+ return make_reference<object, true>(L, std::forward<T>(value));
+ }
+
+ template <typename T, typename... Args>
+ object make_object(lua_State* L, Args&&... args) {
+ return make_reference<T, object, true>(L, std::forward<Args>(args)...);
+ }
+
+ inline bool operator==(const object& lhs, const lua_nil_t&) {
+ return !lhs.valid();
+ }
+
+ inline bool operator==(const lua_nil_t&, const object& rhs) {
+ return !rhs.valid();
+ }
+
+ inline bool operator!=(const object& lhs, const lua_nil_t&) {
+ return lhs.valid();
+ }
+
+ inline bool operator!=(const lua_nil_t&, const object& rhs) {
+ return rhs.valid();
+ }
+} // sol
+
+// end of sol/object.hpp
+
+namespace sol {
+ template<typename Table, typename Key>
+ struct proxy : public proxy_base<proxy<Table, Key>> {
+ private:
+ typedef meta::condition<meta::is_specialization_of<std::tuple, Key>, Key, std::tuple<meta::condition<std::is_array<meta::unqualified_t<Key>>, Key&, meta::unqualified_t<Key>>>> key_type;
+
+ template<typename T, std::size_t... I>
+ decltype(auto) tuple_get(std::index_sequence<I...>) const {
+ return tbl.template traverse_get<T>(std::get<I>(key)...);
+ }
+
+ template<std::size_t... I, typename T>
+ void tuple_set(std::index_sequence<I...>, T&& value) {
+ tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
+ }
+
+ public:
+ Table tbl;
+ key_type key;
+
+ template<typename T>
+ proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {}
+
+ template<typename T>
+ proxy& set(T&& item) {
+ tuple_set(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>(), std::forward<T>(item));
+ return *this;
+ }
+
+ template<typename... Args>
+ proxy& set_function(Args&&... args) {
+ tbl.set_function(key, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename U, meta::enable<meta::neg<is_lua_reference<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
+ proxy& operator=(U&& other) {
+ return set_function(std::forward<U>(other));
+ }
+
+ template<typename U, meta::disable<meta::neg<is_lua_reference<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
+ proxy& operator=(U&& other) {
+ return set(std::forward<U>(other));
+ }
+
+ template<typename T>
+ decltype(auto) get() const {
+ return tuple_get<T>(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>());
+ }
+
+ template<typename T>
+ decltype(auto) get_or(T&& otherwise) const {
+ typedef decltype(get<T>()) U;
+ sol::optional<U> option = get<sol::optional<U>>();
+ if (option) {
+ return static_cast<U>(option.value());
+ }
+ return static_cast<U>(std::forward<T>(otherwise));
+ }
+
+ template<typename T, typename D>
+ decltype(auto) get_or(D&& otherwise) const {
+ sol::optional<T> option = get<sol::optional<T>>();
+ if (option) {
+ return static_cast<T>(option.value());
+ }
+ return static_cast<T>(std::forward<D>(otherwise));
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) const {
+ auto keys = meta::tuplefy(key, std::forward<K>(k));
+ return proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ return get<function>().template call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ bool valid() const {
+ auto pp = stack::push_pop(tbl);
+ auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(tbl.lua_state(), key, lua_gettop(tbl.lua_state()));
+ lua_pop(tbl.lua_state(), p.levels);
+ return p;
+ }
+ };
+
+ template<typename Table, typename Key, typename T>
+ inline bool operator==(T&& left, const proxy<Table, Key>& right) {
+ typedef decltype(stack::get<T>(nullptr, 0)) U;
+ return right.template get<optional<U>>() == left;
+ }
+
+ template<typename Table, typename Key, typename T>
+ inline bool operator==(const proxy<Table, Key>& right, T&& left) {
+ typedef decltype(stack::get<T>(nullptr, 0)) U;
+ return right.template get<optional<U>>() == left;
+ }
+
+ template<typename Table, typename Key, typename T>
+ inline bool operator!=(T&& left, const proxy<Table, Key>& right) {
+ typedef decltype(stack::get<T>(nullptr, 0)) U;
+ return right.template get<optional<U>>() == left;
+ }
+
+ template<typename Table, typename Key, typename T>
+ inline bool operator!=(const proxy<Table, Key>& right, T&& left) {
+ typedef decltype(stack::get<T>(nullptr, 0)) U;
+ return right.template get<optional<U>>() == left;
+ }
+
+ template<typename Table, typename Key>
+ inline bool operator==(lua_nil_t, const proxy<Table, Key>& right) {
+ return !right.valid();
+ }
+
+ template<typename Table, typename Key>
+ inline bool operator==(const proxy<Table, Key>& right, lua_nil_t) {
+ return !right.valid();
+ }
+
+ template<typename Table, typename Key>
+ inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right) {
+ return right.valid();
+ }
+
+ template<typename Table, typename Key>
+ inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t) {
+ return right.valid();
+ }
+
+ namespace stack {
+ template <typename Table, typename Key>
+ struct pusher<proxy<Table, Key>> {
+ static int push(lua_State* L, const proxy<Table, Key>& p) {
+ sol::reference r = p;
+ return r.push(L);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/proxy.hpp
+
+// beginning of sol/usertype.hpp
+
+// beginning of sol/usertype_metatable.hpp
+
+// beginning of sol/deprecate.hpp
+
+#ifndef SOL_DEPRECATED
+ #ifdef _MSC_VER
+ #define SOL_DEPRECATED __declspec(deprecated)
+ #elif __GNUC__
+ #define SOL_DEPRECATED __attribute__((deprecated))
+ #else
+ #define SOL_DEPRECATED [[deprecated]]
+ #endif // compilers
+#endif // SOL_DEPRECATED
+
+namespace sol {
+ namespace detail {
+ template <typename T>
+ struct SOL_DEPRECATED deprecate_type {
+ using type = T;
+ };
+ } // detail
+} // sol
+
+// end of sol/deprecate.hpp
+
+#include <unordered_map>
+#include <cstdio>
+
+namespace sol {
+ namespace usertype_detail {
+ typedef void(*base_walk)(lua_State*, bool&, int&, string_detail::string_shim&);
+ typedef int(*member_search)(lua_State*, void*, int);
+
+ struct call_information {
+ member_search first;
+ member_search second;
+ int runtime_target;
+
+ call_information(member_search first, member_search second) : call_information(first, second, -1) {}
+ call_information(member_search first, member_search second, int runtimetarget) : first(first), second(second), runtime_target(runtimetarget) {}
+ };
+
+ typedef std::unordered_map<std::string, call_information> mapping_t;
+ }
+
+ struct usertype_metatable_core {
+ usertype_detail::mapping_t mapping;
+ lua_CFunction indexfunc;
+ lua_CFunction newindexfunc;
+ std::vector<object> runtime;
+ bool mustindex;
+
+ usertype_metatable_core(lua_CFunction ifx, lua_CFunction nifx) :
+ mapping(), indexfunc(ifx),
+ newindexfunc(nifx), runtime(), mustindex(false)
+ {
+
+ }
+
+ usertype_metatable_core(const usertype_metatable_core&) = default;
+ usertype_metatable_core(usertype_metatable_core&&) = default;
+ usertype_metatable_core& operator=(const usertype_metatable_core&) = default;
+ usertype_metatable_core& operator=(usertype_metatable_core&&) = default;
+
+ };
+
+ namespace usertype_detail {
+ const lua_Integer toplevel_magic = static_cast<lua_Integer>(0x00020001);
+
+ struct add_destructor_tag {};
+ struct check_destructor_tag {};
+ struct verified_tag {} const verified{};
+
+ template <typename T>
+ struct is_non_factory_constructor : std::false_type {};
+
+ template <typename... Args>
+ struct is_non_factory_constructor<constructors<Args...>> : std::true_type {};
+
+ template <typename... Args>
+ struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {};
+
+ template <>
+ struct is_non_factory_constructor<no_construction> : std::true_type {};
+
+ template <typename T>
+ struct is_constructor : is_non_factory_constructor<T> {};
+
+ template <typename... Args>
+ struct is_constructor<factory_wrapper<Args...>> : std::true_type {};
+
+ template <typename... Args>
+ using has_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
+
+ template <typename T>
+ struct is_destructor : std::false_type {};
+
+ template <typename Fx>
+ struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
+
+ template <typename... Args>
+ using has_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
+
+ struct no_comp {
+ template <typename A, typename B>
+ bool operator()(A&&, B&&) const {
+ return false;
+ }
+ };
+
+ inline bool is_indexer(string_detail::string_shim s) {
+ return s == name_of(meta_function::index) || s == name_of(meta_function::new_index);
+ }
+
+ inline bool is_indexer(meta_function mf) {
+ return mf == meta_function::index || mf == meta_function::new_index;
+ }
+
+ inline bool is_indexer(call_construction) {
+ return false;
+ }
+
+ inline bool is_indexer(base_classes_tag) {
+ return false;
+ }
+
+ inline auto make_shim(string_detail::string_shim s) {
+ return s;
+ }
+
+ inline auto make_shim(call_construction) {
+ return string_detail::string_shim(name_of(meta_function::call_function));
+ }
+
+ inline auto make_shim(meta_function mf) {
+ return string_detail::string_shim(name_of(mf));
+ }
+
+ inline auto make_shim(base_classes_tag) {
+ return string_detail::string_shim(detail::base_class_cast_key());
+ }
+
+ template <typename Arg>
+ inline std::string make_string(Arg&& arg) {
+ string_detail::string_shim s = make_shim(arg);
+ return std::string(s.c_str(), s.size());
+ }
+
+ template <typename N>
+ inline luaL_Reg make_reg(N&& n, lua_CFunction f) {
+ luaL_Reg l{ make_shim(std::forward<N>(n)).c_str(), f };
+ return l;
+ }
+
+ struct registrar {
+ registrar() = default;
+ registrar(const registrar&) = default;
+ registrar(registrar&&) = default;
+ registrar& operator=(const registrar&) = default;
+ registrar& operator=(registrar&&) = default;
+ virtual int push_um(lua_State* L) = 0;
+ virtual ~registrar() {}
+ };
+
+ inline int runtime_object_call(lua_State* L, void*, int runtimetarget) {
+ usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(2));
+ std::vector<object>& runtime = umc.runtime;
+ return stack::push(L, runtime[runtimetarget]);
+ }
+
+ template <bool is_index>
+ inline int indexing_fail(lua_State* L) {
+ if (is_index) {
+#if 0//def SOL_SAFE_USERTYPE
+ auto maybeaccessor = stack::get<optional<string_detail::string_shim>>(L, is_index ? -1 : -2);
+ string_detail::string_shim accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)"));
+ return luaL_error(L, "sol: attempt to index (get) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.c_str());
+#else
+ // With runtime extensibility, we can't hard-error things. They have to return nil, like regular table types, unfortunately...
+ return stack::push(L, lua_nil);
+#endif
+ }
+ else {
+ auto maybeaccessor = stack::get<optional<string_detail::string_shim>>(L, is_index ? -1 : -2);
+ string_detail::string_shim accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)"));
+ return luaL_error(L, "sol: attempt to index (set) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.c_str());
+ }
+ }
+
+ template <typename T, bool is_simple>
+ inline int metatable_newindex(lua_State* L) {
+ int isnum = 0;
+ lua_Integer magic = lua_tointegerx(L, upvalue_index(4), &isnum);
+ if (isnum != 0 && magic == toplevel_magic) {
+ auto non_simple = [&L]() {
+ if (is_simple)
+ return;
+ usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(2));
+ bool mustindex = umc.mustindex;
+ if (!mustindex)
+ return;
+ std::string accessor = stack::get<std::string>(L, 2);
+ mapping_t& mapping = umc.mapping;
+ std::vector<object>& runtime = umc.runtime;
+ int target = static_cast<int>(runtime.size());
+ auto preexistingit = mapping.find(accessor);
+ if (preexistingit == mapping.cend()) {
+ runtime.emplace_back(L, 3);
+ mapping.emplace_hint(mapping.cend(), accessor, call_information(&runtime_object_call, &runtime_object_call, target));
+ }
+ else {
+ target = preexistingit->second.runtime_target;
+ runtime[target] = sol::object(L, 3);
+ preexistingit->second = call_information(&runtime_object_call, &runtime_object_call, target);
+ }
+ };
+ non_simple();
+ for (std::size_t i = 0; i < 4; lua_pop(L, 1), ++i) {
+ const char* metakey = nullptr;
+ switch (i) {
+ case 0:
+ metakey = &usertype_traits<T*>::metatable()[0];
+ break;
+ case 1:
+ metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
+ break;
+ case 2:
+ metakey = &usertype_traits<T>::user_metatable()[0];
+ break;
+ case 3:
+ default:
+ metakey = &usertype_traits<T>::metatable()[0];
+ break;
+ }
+ luaL_getmetatable(L, metakey);
+ int tableindex = lua_gettop(L);
+ if (type_of(L, tableindex) == type::lua_nil) {
+ continue;
+ }
+ stack::set_field<false, true>(L, stack_reference(L, 2), stack_reference(L, 3), tableindex);
+ }
+ lua_settop(L, 0);
+ return 0;
+ }
+ return indexing_fail<false>(L);
+ }
+
+ template <bool is_index, typename Base>
+ static void walk_single_base(lua_State* L, bool& found, int& ret, string_detail::string_shim&) {
+ if (found)
+ return;
+ const char* metakey = &usertype_traits<Base>::metatable()[0];
+ const char* gcmetakey = &usertype_traits<Base>::gc_table()[0];
+ const char* basewalkkey = is_index ? detail::base_class_index_propogation_key() : detail::base_class_new_index_propogation_key();
+
+ luaL_getmetatable(L, metakey);
+ if (type_of(L, -1) == type::lua_nil) {
+ lua_pop(L, 1);
+ return;
+ }
+
+ stack::get_field(L, basewalkkey);
+ if (type_of(L, -1) == type::lua_nil) {
+ lua_pop(L, 2);
+ return;
+ }
+ lua_CFunction basewalkfunc = stack::pop<lua_CFunction>(L);
+ lua_pop(L, 1);
+
+ stack::get_field<true>(L, gcmetakey);
+ int value = basewalkfunc(L);
+ if (value > -1) {
+ found = true;
+ ret = value;
+ }
+ }
+
+ template <bool is_index, typename... Bases>
+ static void walk_all_bases(lua_State* L, bool& found, int& ret, string_detail::string_shim& accessor) {
+ (void)L;
+ (void)found;
+ (void)ret;
+ (void)accessor;
+ (void)detail::swallow{ 0, (walk_single_base<is_index, Bases>(L, found, ret, accessor), 0)... };
+ }
+
+ template <typename T, typename Op>
+ inline int operator_wrap(lua_State* L) {
+ auto maybel = stack::check_get<T>(L, 1);
+ if (maybel) {
+ auto mayber = stack::check_get<T>(L, 2);
+ if (mayber) {
+ auto& l = *maybel;
+ auto& r = *mayber;
+ if (std::is_same<no_comp, Op>::value) {
+ return stack::push(L, detail::ptr(l) == detail::ptr(r));
+ }
+ else {
+ Op op;
+ return stack::push(L, (detail::ptr(l) == detail::ptr(r)) || op(detail::deref(l), detail::deref(r)));
+ }
+ }
+ }
+ return stack::push(L, false);
+ }
+
+ template <typename T, typename Op, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler>
+ inline void make_reg_op(Regs& l, int& index, const char* name) {
+ l[index] = { name, &operator_wrap<T, Op> };
+ ++index;
+ }
+
+ template <typename T, typename Op, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler>
+ inline void make_reg_op(Regs&, int&, const char*) {
+ // Do nothing if there's no support
+ }
+ } // usertype_detail
+
+ template <typename T>
+ struct clean_type {
+ typedef std::conditional_t<std::is_array<meta::unqualified_t<T>>::value, T&, std::decay_t<T>> type;
+ };
+
+ template <typename T>
+ using clean_type_t = typename clean_type<T>::type;
+
+ template <typename T, typename IndexSequence, typename... Tn>
+ struct usertype_metatable : usertype_detail::registrar {};
+
+ template <typename T, std::size_t... I, typename... Tn>
+ struct usertype_metatable<T, std::index_sequence<I...>, Tn...> : usertype_metatable_core, usertype_detail::registrar {
+ typedef std::make_index_sequence<sizeof...(I) * 2> indices;
+ typedef std::index_sequence<I...> half_indices;
+ typedef std::array<luaL_Reg, sizeof...(Tn) / 2 + 1 + 3> regs_t;
+ typedef std::tuple<Tn...> RawTuple;
+ typedef std::tuple<clean_type_t<Tn> ...> Tuple;
+ template <std::size_t Idx>
+ struct check_binding : is_variable_binding<meta::unqualified_tuple_element_t<Idx, Tuple>> {};
+ Tuple functions;
+ lua_CFunction destructfunc;
+ lua_CFunction callconstructfunc;
+ lua_CFunction indexbase;
+ lua_CFunction newindexbase;
+ usertype_detail::base_walk indexbaseclasspropogation;
+ usertype_detail::base_walk newindexbaseclasspropogation;
+ void* baseclasscheck;
+ void* baseclasscast;
+ bool secondarymeta;
+ bool hasequals;
+ bool hasless;
+ bool haslessequals;
+
+ template <std::size_t Idx, meta::enable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
+ lua_CFunction make_func() const {
+ return std::get<Idx + 1>(functions);
+ }
+
+ template <std::size_t Idx, meta::disable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
+ lua_CFunction make_func() const {
+ const auto& name = std::get<Idx>(functions);
+ return (usertype_detail::make_shim(name) == "__newindex") ? &call<Idx + 1, false> : &call<Idx + 1, true>;
+ }
+
+ static bool contains_variable() {
+ typedef meta::any<check_binding<(I * 2 + 1)>...> has_variables;
+ return has_variables::value;
+ }
+
+ bool contains_index() const {
+ bool idx = false;
+ (void)detail::swallow{ 0, ((idx |= usertype_detail::is_indexer(std::get<I * 2>(functions))), 0) ... };
+ return idx;
+ }
+
+ int finish_regs(regs_t& l, int& index) {
+ if (!hasless) {
+ const char* name = name_of(meta_function::less_than).c_str();
+ usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(l, index, name);
+ }
+ if (!haslessequals) {
+ const char* name = name_of(meta_function::less_than_or_equal_to).c_str();
+ usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(l, index, name);
+ }
+ if (!hasequals) {
+ const char* name = name_of(meta_function::equal_to).c_str();
+ usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(l, index, name);
+ }
+ if (destructfunc != nullptr) {
+ l[index] = { name_of(meta_function::garbage_collect).c_str(), destructfunc };
+ ++index;
+ }
+ return index;
+ }
+
+ template <std::size_t Idx, typename F>
+ void make_regs(regs_t&, int&, call_construction, F&&) {
+ callconstructfunc = call<Idx + 1>;
+ secondarymeta = true;
+ }
+
+ template <std::size_t, typename... Bases>
+ void make_regs(regs_t&, int&, base_classes_tag, bases<Bases...>) {
+ if (sizeof...(Bases) < 1) {
+ return;
+ }
+ mustindex = true;
+ (void)detail::swallow{ 0, ((detail::has_derived<Bases>::value = true), 0)... };
+
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
+ baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
+ baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
+ indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
+ newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
+ }
+
+ template <std::size_t Idx, typename N, typename F, typename = std::enable_if_t<!meta::any_same<meta::unqualified_t<N>, base_classes_tag, call_construction>::value>>
+ void make_regs(regs_t& l, int& index, N&& n, F&&) {
+ if (is_variable_binding<meta::unqualified_t<F>>::value) {
+ return;
+ }
+ luaL_Reg reg = usertype_detail::make_reg(std::forward<N>(n), make_func<Idx>());
+ // Returnable scope
+ // That would be a neat keyword for C++
+ // returnable { ... };
+ if (reg.name == name_of(meta_function::equal_to)) {
+ hasequals = true;
+ }
+ if (reg.name == name_of(meta_function::less_than)) {
+ hasless = true;
+ }
+ if (reg.name == name_of(meta_function::less_than_or_equal_to)) {
+ haslessequals = true;
+ }
+ if (reg.name == name_of(meta_function::garbage_collect)) {
+ destructfunc = reg.func;
+ return;
+ }
+ else if (reg.name == name_of(meta_function::index)) {
+ indexfunc = reg.func;
+ mustindex = true;
+ return;
+ }
+ else if (reg.name == name_of(meta_function::new_index)) {
+ newindexfunc = reg.func;
+ mustindex = true;
+ return;
+ }
+ l[index] = reg;
+ ++index;
+ }
+
+ template <typename... Args, typename = std::enable_if_t<sizeof...(Args) == sizeof...(Tn)>>
+ usertype_metatable(Args&&... args) : usertype_metatable_core(&usertype_detail::indexing_fail<true>, &usertype_detail::metatable_newindex<T, false>), usertype_detail::registrar(),
+ functions(std::forward<Args>(args)...),
+ destructfunc(nullptr), callconstructfunc(nullptr),
+ indexbase(&core_indexing_call<true>), newindexbase(&core_indexing_call<false>),
+ indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(usertype_detail::walk_all_bases<false>),
+ baseclasscheck(nullptr), baseclasscast(nullptr),
+ secondarymeta(contains_variable()),
+ hasequals(false), hasless(false), haslessequals(false) {
+ std::initializer_list<typename usertype_detail::mapping_t::value_type> ilist{ {
+ std::pair<std::string, usertype_detail::call_information>( usertype_detail::make_string(std::get<I * 2>(functions)),
+ usertype_detail::call_information(&usertype_metatable::real_find_call<I * 2, I * 2 + 1, false>,
+ &usertype_metatable::real_find_call<I * 2, I * 2 + 1, true>)
+ )
+ }... };
+ this->mapping.insert(ilist);
+ for (const auto& n : meta_function_names) {
+ this->mapping.erase(n);
+ }
+ this->mustindex = contains_variable() || contains_index();
+ }
+
+ usertype_metatable(const usertype_metatable&) = default;
+ usertype_metatable(usertype_metatable&&) = default;
+ usertype_metatable& operator=(const usertype_metatable&) = default;
+ usertype_metatable& operator=(usertype_metatable&&) = default;
+
+ template <std::size_t I0, std::size_t I1, bool is_index>
+ static int real_find_call(lua_State* L, void* um, int) {
+ auto& f = *static_cast<usertype_metatable*>(um);
+ if (is_variable_binding<decltype(std::get<I1>(f.functions))>::value) {
+ return real_call_with<I1, is_index, true>(L, f);
+ }
+ int upvalues = stack::push(L, light<usertype_metatable>(f));
+ auto cfunc = &call<I1, is_index>;
+ return stack::push(L, c_closure(cfunc, upvalues));
+ }
+
+ template <bool is_index>
+ static int real_meta_call(lua_State* L, void* um, int) {
+ auto& f = *static_cast<usertype_metatable*>(um);
+ return is_index ? f.indexfunc(L) : f.newindexfunc(L);
+ }
+
+ template <bool is_index, bool toplevel = false>
+ static int core_indexing_call(lua_State* L) {
+ usertype_metatable& f = toplevel ? stack::get<light<usertype_metatable>>(L, upvalue_index(1)) : stack::pop<light<usertype_metatable>>(L);
+ static const int keyidx = -2 + static_cast<int>(is_index);
+ if (toplevel && stack::get<type>(L, keyidx) != type::string) {
+ return is_index ? f.indexfunc(L) : f.newindexfunc(L);
+ }
+ std::string name = stack::get<std::string>(L, keyidx);
+ auto memberit = f.mapping.find(name);
+ if (memberit != f.mapping.cend()) {
+ const usertype_detail::call_information& ci = memberit->second;
+ const usertype_detail::member_search& member = is_index ? ci.second : ci.first;
+ return (member)(L, static_cast<void*>(&f), ci.runtime_target);
+ }
+ string_detail::string_shim accessor = name;
+ int ret = 0;
+ bool found = false;
+ // Otherwise, we need to do propagating calls through the bases
+ if (is_index)
+ f.indexbaseclasspropogation(L, found, ret, accessor);
+ else
+ f.newindexbaseclasspropogation(L, found, ret, accessor);
+ if (found) {
+ return ret;
+ }
+ return toplevel ? (is_index ? f.indexfunc(L) : f.newindexfunc(L)) : -1;
+ }
+
+ static int real_index_call(lua_State* L) {
+ return core_indexing_call<true, true>(L);
+ }
+
+ static int real_new_index_call(lua_State* L) {
+ return core_indexing_call<false, true>(L);
+ }
+
+ template <std::size_t Idx, bool is_index = true, bool is_variable = false>
+ static int real_call(lua_State* L) {
+ usertype_metatable& f = stack::get<light<usertype_metatable>>(L, upvalue_index(1));
+ return real_call_with<Idx, is_index, is_variable>(L, f);
+ }
+
+ template <std::size_t Idx, bool is_index = true, bool is_variable = false>
+ static int real_call_with(lua_State* L, usertype_metatable& um) {
+ typedef meta::unqualified_tuple_element_t<Idx - 1, Tuple> K;
+ typedef meta::unqualified_tuple_element_t<Idx, Tuple> F;
+ static const int boost =
+ !usertype_detail::is_non_factory_constructor<F>::value
+ && std::is_same<K, call_construction>::value ?
+ 1 : 0;
+ auto& f = std::get<Idx>(um.functions);
+ return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
+ }
+
+ template <std::size_t Idx, bool is_index = true, bool is_variable = false>
+ static int call(lua_State* L) {
+ return detail::static_trampoline<(&real_call<Idx, is_index, is_variable>)>(L);
+ }
+
+ template <std::size_t Idx, bool is_index = true, bool is_variable = false>
+ static int call_with(lua_State* L) {
+ return detail::static_trampoline<(&real_call_with<Idx, is_index, is_variable>)>(L);
+ }
+
+ static int index_call(lua_State* L) {
+ return detail::static_trampoline<(&real_index_call)>(L);
+ }
+
+ static int new_index_call(lua_State* L) {
+ return detail::static_trampoline<(&real_new_index_call)>(L);
+ }
+
+ virtual int push_um(lua_State* L) override {
+ return stack::push(L, std::move(*this));
+ }
+
+ ~usertype_metatable() override {
+
+ }
+ };
+
+ namespace stack {
+
+ template <typename T, std::size_t... I, typename... Args>
+ struct pusher<usertype_metatable<T, std::index_sequence<I...>, Args...>> {
+ typedef usertype_metatable<T, std::index_sequence<I...>, Args...> umt_t;
+ typedef typename umt_t::regs_t regs_t;
+
+ static umt_t& make_cleanup(lua_State* L, umt_t&& umx) {
+ // ensure some sort of uniqueness
+ static int uniqueness = 0;
+ std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
+ // std::to_string doesn't exist in android still, with NDK, so this bullshit
+ // is necessary
+ // thanks, Android :v
+ int appended = snprintf(nullptr, 0, "%d", uniqueness);
+ std::size_t insertionpoint = uniquegcmetakey.length() - 1;
+ uniquegcmetakey.append(appended, '\0');
+ char* uniquetarget = &uniquegcmetakey[insertionpoint];
+ snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
+ ++uniqueness;
+
+ const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
+ // Make sure userdata's memory is properly in lua first,
+ // otherwise all the light userdata we make later will become invalid
+ stack::push<user<umt_t>>(L, metatable_key, uniquegcmetakey, std::move(umx));
+ // Create the top level thing that will act as our deleter later on
+ stack_reference umt(L, -1);
+ stack::set_field<true>(L, gcmetakey, umt);
+ umt.pop();
+
+ stack::get_field<true>(L, gcmetakey);
+ return stack::pop<light<umt_t>>(L);
+ }
+
+ static int push(lua_State* L, umt_t&& umx) {
+
+ umt_t& um = make_cleanup(L, std::move(umx));
+ usertype_metatable_core& umc = um;
+ regs_t value_table{ {} };
+ int lastreg = 0;
+ (void)detail::swallow{ 0, (um.template make_regs<(I * 2)>(value_table, lastreg, std::get<(I * 2)>(um.functions), std::get<(I * 2 + 1)>(um.functions)), 0)... };
+ um.finish_regs(value_table, lastreg);
+ value_table[lastreg] = { nullptr, nullptr };
+ regs_t ref_table = value_table;
+ regs_t unique_table = value_table;
+ bool hasdestructor = !value_table.empty() && name_of(meta_function::garbage_collect) == value_table[lastreg - 1].name;
+ if (hasdestructor) {
+ ref_table[lastreg - 1] = { nullptr, nullptr };
+ unique_table[lastreg - 1] = { value_table[lastreg - 1].name, detail::unique_destruct<T> };
+ }
+
+ // Now use um
+ const bool& mustindex = umc.mustindex;
+ for (std::size_t i = 0; i < 3; ++i) {
+ // Pointer types, AKA "references" from C++
+ const char* metakey = nullptr;
+ luaL_Reg* metaregs = nullptr;
+ switch (i) {
+ case 0:
+ metakey = &usertype_traits<T*>::metatable()[0];
+ metaregs = ref_table.data();
+ break;
+ case 1:
+ metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
+ metaregs = unique_table.data();
+ break;
+ case 2:
+ default:
+ metakey = &usertype_traits<T>::metatable()[0];
+ metaregs = value_table.data();
+ break;
+ }
+ luaL_newmetatable(L, metakey);
+ stack_reference t(L, -1);
+ stack::push(L, make_light(um));
+ luaL_setfuncs(L, metaregs, 1);
+
+ if (um.baseclasscheck != nullptr) {
+ stack::set_field(L, detail::base_class_check_key(), um.baseclasscheck, t.stack_index());
+ }
+ if (um.baseclasscast != nullptr) {
+ stack::set_field(L, detail::base_class_cast_key(), um.baseclasscast, t.stack_index());
+ }
+
+ stack::set_field(L, detail::base_class_index_propogation_key(), make_closure(um.indexbase, make_light(um), make_light(umc)), t.stack_index());
+ stack::set_field(L, detail::base_class_new_index_propogation_key(), make_closure(um.newindexbase, make_light(um), make_light(umc)), t.stack_index());
+
+ if (mustindex) {
+ // Basic index pushing: specialize
+ // index and newindex to give variables and stuff
+ stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um), make_light(umc)), t.stack_index());
+ stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um), make_light(umc)), t.stack_index());
+ }
+ else {
+ // If there's only functions, we can use the fast index version
+ stack::set_field(L, meta_function::index, t, t.stack_index());
+ }
+ // metatable on the metatable
+ // for call constructor purposes and such
+ lua_createtable(L, 0, 3);
+ stack_reference metabehind(L, -1);
+ if (um.callconstructfunc != nullptr) {
+ stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, make_light(um), make_light(umc)), metabehind.stack_index());
+ }
+ if (um.secondarymeta) {
+ stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um), make_light(umc)), metabehind.stack_index());
+ stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um), make_light(umc)), metabehind.stack_index());
+ }
+ stack::set_field(L, metatable_key, metabehind, t.stack_index());
+ metabehind.pop();
+ // We want to just leave the table
+ // in the registry only, otherwise we return it
+ t.pop();
+ }
+
+ // Now for the shim-table that actually gets assigned to the name
+ luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
+ stack_reference t(L, -1);
+ stack::push(L, make_light(um));
+ luaL_setfuncs(L, value_table.data(), 1);
+ {
+ lua_createtable(L, 0, 3);
+ stack_reference metabehind(L, -1);
+ if (um.callconstructfunc != nullptr) {
+ stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, make_light(um), make_light(umc)), metabehind.stack_index());
+ }
+
+ stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um), make_light(umc), 0, usertype_detail::toplevel_magic), metabehind.stack_index());
+ stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um), make_light(umc), 0, usertype_detail::toplevel_magic), metabehind.stack_index());
+
+ stack::set_field(L, metatable_key, metabehind, t.stack_index());
+ metabehind.pop();
+ }
+
+ return 1;
+ }
+ };
+
+ } // stack
+
+} // sol
+
+// end of sol/usertype_metatable.hpp
+
+// beginning of sol/simple_usertype_metatable.hpp
+
+namespace sol {
+
+ namespace usertype_detail {
+ struct variable_wrapper {
+ virtual int index(lua_State* L) = 0;
+ virtual int new_index(lua_State* L) = 0;
+ virtual ~variable_wrapper() {};
+ };
+
+ template <typename T, typename F>
+ struct callable_binding : variable_wrapper {
+ F fx;
+
+ template <typename Arg>
+ callable_binding(Arg&& arg) : fx(std::forward<Arg>(arg)) {}
+
+ virtual int index(lua_State* L) override {
+ return call_detail::call_wrapped<T, true, true>(L, fx);
+ }
+
+ virtual int new_index(lua_State* L) override {
+ return call_detail::call_wrapped<T, false, true>(L, fx);
+ }
+ };
+
+ typedef std::unordered_map<std::string, std::unique_ptr<variable_wrapper>> variable_map;
+ typedef std::unordered_map<std::string, object> function_map;
+
+ struct simple_map {
+ const char* metakey;
+ variable_map variables;
+ function_map functions;
+ base_walk indexbaseclasspropogation;
+ base_walk newindexbaseclasspropogation;
+
+ simple_map(const char* mkey, base_walk index, base_walk newindex, variable_map&& vars, function_map&& funcs) : metakey(mkey), variables(std::move(vars)), functions(std::move(funcs)), indexbaseclasspropogation(index), newindexbaseclasspropogation(newindex) {}
+ };
+
+ template <bool is_index, bool toplevel = false>
+ inline int simple_core_indexing_call(lua_State* L) {
+ simple_map& sm = toplevel ? stack::get<user<simple_map>>(L, upvalue_index(1)) : stack::pop<user<simple_map>>(L);
+ variable_map& variables = sm.variables;
+ function_map& functions = sm.functions;
+ static const int keyidx = -2 + static_cast<int>(is_index);
+ if (toplevel) {
+ if (stack::get<type>(L, keyidx) != type::string) {
+ lua_CFunction indexingfunc = is_index ? stack::get<lua_CFunction>(L, upvalue_index(2)) : stack::get<lua_CFunction>(L, upvalue_index(3));
+ return indexingfunc(L);
+ }
+ }
+ string_detail::string_shim accessor = stack::get<string_detail::string_shim>(L, keyidx);
+ std::string accessorkey = accessor.c_str();
+ auto vit = variables.find(accessorkey);
+ if (vit != variables.cend()) {
+ auto& varwrap = *(vit->second);
+ if (is_index) {
+ return varwrap.index(L);
+ }
+ return varwrap.new_index(L);
+ }
+ auto fit = functions.find(accessorkey);
+ if (fit != functions.cend()) {
+ auto& func = (fit->second);
+ return stack::push(L, func);
+ }
+ // Check table storage first for a method that works
+ luaL_getmetatable(L, sm.metakey);
+ if (type_of(L, -1) != type::lua_nil) {
+ stack::get_field<false, true>(L, accessor.c_str(), lua_gettop(L));
+ if (type_of(L, -1) != type::lua_nil) {
+ // Woo, we found it?
+ lua_remove(L, -2);
+ return 1;
+ }
+ lua_pop(L, 1);
+ }
+ lua_pop(L, 1);
+
+ int ret = 0;
+ bool found = false;
+ // Otherwise, we need to do propagating calls through the bases
+ if (is_index) {
+ sm.indexbaseclasspropogation(L, found, ret, accessor);
+ }
+ else {
+ sm.newindexbaseclasspropogation(L, found, ret, accessor);
+ }
+ if (found) {
+ return ret;
+ }
+ if (toplevel) {
+ lua_CFunction indexingfunc = is_index ? stack::get<lua_CFunction>(L, upvalue_index(2)) : stack::get<lua_CFunction>(L, upvalue_index(3));
+ return indexingfunc(L);
+ }
+ return -1;
+ }
+
+ inline int simple_real_index_call(lua_State* L) {
+ return simple_core_indexing_call<true, true>(L);
+ }
+
+ inline int simple_real_new_index_call(lua_State* L) {
+ return simple_core_indexing_call<false, true>(L);
+ }
+
+ inline int simple_index_call(lua_State* L) {
+ return detail::static_trampoline<(&simple_real_index_call)>(L);
+ }
+
+ inline int simple_new_index_call(lua_State* L) {
+ return detail::static_trampoline<(&simple_real_new_index_call)>(L);
+ }
+ }
+
+ struct simple_tag {} const simple{};
+
+ template <typename T>
+ struct simple_usertype_metatable : usertype_detail::registrar {
+ public:
+ usertype_detail::function_map registrations;
+ usertype_detail::variable_map varmap;
+ object callconstructfunc;
+ lua_CFunction indexfunc;
+ lua_CFunction newindexfunc;
+ lua_CFunction indexbase;
+ lua_CFunction newindexbase;
+ usertype_detail::base_walk indexbaseclasspropogation;
+ usertype_detail::base_walk newindexbaseclasspropogation;
+ void* baseclasscheck;
+ void* baseclasscast;
+ bool mustindex;
+ bool secondarymeta;
+
+ template <typename N>
+ void insert(N&& n, object&& o) {
+ std::string key = usertype_detail::make_string(std::forward<N>(n));
+ auto hint = registrations.find(key);
+ if (hint == registrations.cend()) {
+ registrations.emplace_hint(hint, std::move(key), std::move(o));
+ return;
+ }
+ hint->second = std::move(o);
+ }
+
+ template <typename N, typename F, typename... Args>
+ void insert_prepare(std::true_type, lua_State* L, N&&, F&& f, Args&&... args) {
+ object o = make_object<F>(L, std::forward<F>(f), function_detail::call_indicator(), std::forward<Args>(args)...);
+ callconstructfunc = std::move(o);
+ }
+
+ template <typename N, typename F, typename... Args>
+ void insert_prepare(std::false_type, lua_State* L, N&& n, F&& f, Args&&... args) {
+ object o = make_object<F>(L, std::forward<F>(f), std::forward<Args>(args)...);
+ insert(std::forward<N>(n), std::move(o));
+ }
+
+ template <typename N, typename F>
+ void add_member_function(std::true_type, lua_State* L, N&& n, F&& f) {
+ insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f), function_detail::class_indicator<T>());
+ }
+
+ template <typename N, typename F>
+ void add_member_function(std::false_type, lua_State* L, N&& n, F&& f) {
+ insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f));
+ }
+
+ template <typename N, typename F, meta::enable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
+ void add_function(lua_State* L, N&& n, F&& f) {
+ object o = make_object(L, as_function_reference(std::forward<F>(f)));
+ if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
+ callconstructfunc = std::move(o);
+ return;
+ }
+ insert(std::forward<N>(n), std::move(o));
+ }
+
+ template <typename N, typename F, meta::disable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
+ void add_function(lua_State* L, N&& n, F&& f) {
+ add_member_function(std::is_member_pointer<meta::unwrap_unqualified_t<F>>(), L, std::forward<N>(n), std::forward<F>(f));
+ }
+
+ template <typename N, typename F, meta::disable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
+ void add(lua_State* L, N&& n, F&& f) {
+ add_function(L, std::forward<N>(n), std::forward<F>(f));
+ }
+
+ template <typename N, typename F, meta::enable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
+ void add(lua_State*, N&& n, F&& f) {
+ mustindex = true;
+ secondarymeta = true;
+ std::string key = usertype_detail::make_string(std::forward<N>(n));
+ auto o = std::make_unique<usertype_detail::callable_binding<T, std::decay_t<F>>>(std::forward<F>(f));
+ auto hint = varmap.find(key);
+ if (hint == varmap.cend()) {
+ varmap.emplace_hint(hint, std::move(key), std::move(o));
+ return;
+ }
+ hint->second = std::move(o);
+ }
+
+ template <typename N, typename... Fxs>
+ void add(lua_State* L, N&& n, constructor_wrapper<Fxs...> c) {
+ object o(L, in_place<detail::tagged<T, constructor_wrapper<Fxs...>>>, std::move(c));
+ if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
+ callconstructfunc = std::move(o);
+ return;
+ }
+ insert(std::forward<N>(n), std::move(o));
+ }
+
+ template <typename N, typename... Lists>
+ void add(lua_State* L, N&& n, constructor_list<Lists...> c) {
+ object o(L, in_place<detail::tagged<T, constructor_list<Lists...>>>, std::move(c));
+ if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
+ callconstructfunc = std::move(o);
+ return;
+ }
+ insert(std::forward<N>(n), std::move(o));
+ }
+
+ template <typename N>
+ void add(lua_State* L, N&& n, destructor_wrapper<void> c) {
+ object o(L, in_place<detail::tagged<T, destructor_wrapper<void>>>, std::move(c));
+ if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
+ callconstructfunc = std::move(o);
+ return;
+ }
+ insert(std::forward<N>(n), std::move(o));
+ }
+
+ template <typename N, typename Fx>
+ void add(lua_State* L, N&& n, destructor_wrapper<Fx> c) {
+ object o(L, in_place<detail::tagged<T, destructor_wrapper<Fx>>>, std::move(c));
+ if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
+ callconstructfunc = std::move(o);
+ return;
+ }
+ insert(std::forward<N>(n), std::move(o));
+ }
+
+ template <typename... Bases>
+ void add(lua_State*, base_classes_tag, bases<Bases...>) {
+ static_assert(sizeof(usertype_detail::base_walk) <= sizeof(void*), "size of function pointer is greater than sizeof(void*); cannot work on this platform. Please file a bug report.");
+ if (sizeof...(Bases) < 1) {
+ return;
+ }
+ mustindex = true;
+ (void)detail::swallow{ 0, ((detail::has_derived<Bases>::value = true), 0)... };
+
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
+ baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
+ baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
+ indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
+ newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
+ }
+
+ private:
+ template<std::size_t... I, typename Tuple>
+ simple_usertype_metatable(usertype_detail::verified_tag, std::index_sequence<I...>, lua_State* L, Tuple&& args)
+ : callconstructfunc(lua_nil),
+ indexfunc(&usertype_detail::indexing_fail<true>), newindexfunc(&usertype_detail::metatable_newindex<T, true>),
+ indexbase(&usertype_detail::simple_core_indexing_call<true>), newindexbase(&usertype_detail::simple_core_indexing_call<false>),
+ indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(&usertype_detail::walk_all_bases<false>),
+ baseclasscheck(nullptr), baseclasscast(nullptr),
+ mustindex(false), secondarymeta(false) {
+ (void)detail::swallow{ 0,
+ (add(L, detail::forward_get<I * 2>(args), detail::forward_get<I * 2 + 1>(args)),0)...
+ };
+ }
+
+ template<typename... Args>
+ simple_usertype_metatable(lua_State* L, usertype_detail::verified_tag v, Args&&... args) : simple_usertype_metatable(v, std::make_index_sequence<sizeof...(Args) / 2>(), L, std::forward_as_tuple(std::forward<Args>(args)...)) {}
+
+ template<typename... Args>
+ simple_usertype_metatable(lua_State* L, usertype_detail::add_destructor_tag, Args&&... args) : simple_usertype_metatable(L, usertype_detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) {}
+
+ template<typename... Args>
+ simple_usertype_metatable(lua_State* L, usertype_detail::check_destructor_tag, Args&&... args) : simple_usertype_metatable(L, meta::condition<meta::all<std::is_destructible<T>, meta::neg<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
+
+ public:
+ simple_usertype_metatable(lua_State* L) : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>>, decltype(default_constructor), usertype_detail::check_destructor_tag>()) {}
+
+ template<typename Arg, typename... Args, meta::disable_any<
+ meta::any_same<meta::unqualified_t<Arg>,
+ usertype_detail::verified_tag,
+ usertype_detail::add_destructor_tag,
+ usertype_detail::check_destructor_tag
+ >,
+ meta::is_specialization_of<constructors, meta::unqualified_t<Arg>>,
+ meta::is_specialization_of<constructor_wrapper, meta::unqualified_t<Arg>>
+ > = meta::enabler>
+ simple_usertype_metatable(lua_State* L, Arg&& arg, Args&&... args) : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Arg>(arg), std::forward<Args>(args)...) {}
+
+ template<typename... Args, typename... CArgs>
+ simple_usertype_metatable(lua_State* L, constructors<CArgs...> constructorlist, Args&&... args) : simple_usertype_metatable(L, usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
+
+ template<typename... Args, typename... Fxs>
+ simple_usertype_metatable(lua_State* L, constructor_wrapper<Fxs...> constructorlist, Args&&... args) : simple_usertype_metatable(L, usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
+
+ simple_usertype_metatable(const simple_usertype_metatable&) = default;
+ simple_usertype_metatable(simple_usertype_metatable&&) = default;
+ simple_usertype_metatable& operator=(const simple_usertype_metatable&) = default;
+ simple_usertype_metatable& operator=(simple_usertype_metatable&&) = default;
+
+ virtual int push_um(lua_State* L) override {
+ return stack::push(L, std::move(*this));
+ }
+ };
+
+ namespace stack {
+ template <typename T>
+ struct pusher<simple_usertype_metatable<T>> {
+ typedef simple_usertype_metatable<T> umt_t;
+
+ static usertype_detail::simple_map& make_cleanup(lua_State* L, umt_t& umx) {
+ static int uniqueness = 0;
+ std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
+ // std::to_string doesn't exist in android still, with NDK, so this bullshit
+ // is necessary
+ // thanks, Android :v
+ int appended = snprintf(nullptr, 0, "%d", uniqueness);
+ std::size_t insertionpoint = uniquegcmetakey.length() - 1;
+ uniquegcmetakey.append(appended, '\0');
+ char* uniquetarget = &uniquegcmetakey[insertionpoint];
+ snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
+ ++uniqueness;
+
+ const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
+ stack::push<user<usertype_detail::simple_map>>(L, metatable_key, uniquegcmetakey, &usertype_traits<T>::metatable()[0],
+ umx.indexbaseclasspropogation, umx.newindexbaseclasspropogation,
+ std::move(umx.varmap), std::move(umx.registrations)
+ );
+ stack_reference stackvarmap(L, -1);
+ stack::set_field<true>(L, gcmetakey, stackvarmap);
+ stackvarmap.pop();
+
+ stack::get_field<true>(L, gcmetakey);
+ usertype_detail::simple_map& varmap = stack::pop<light<usertype_detail::simple_map>>(L);
+ return varmap;
+ }
+
+ static int push(lua_State* L, umt_t&& umx) {
+ auto& varmap = make_cleanup(L, umx);
+ bool hasequals = false;
+ bool hasless = false;
+ bool haslessequals = false;
+ auto register_kvp = [&](std::size_t i, stack_reference& t, const std::string& first, object& second) {
+ if (first == name_of(meta_function::equal_to)) {
+ hasequals = true;
+ }
+ else if (first == name_of(meta_function::less_than)) {
+ hasless = true;
+ }
+ else if (first == name_of(meta_function::less_than_or_equal_to)) {
+ haslessequals = true;
+ }
+ else if (first == name_of(meta_function::index)) {
+ umx.indexfunc = second.template as<lua_CFunction>();
+ }
+ else if (first == name_of(meta_function::new_index)) {
+ umx.newindexfunc = second.template as<lua_CFunction>();
+ }
+ switch (i) {
+ case 0:
+ if (first == name_of(meta_function::garbage_collect)) {
+ return;
+ }
+ break;
+ case 1:
+ if (first == name_of(meta_function::garbage_collect)) {
+ stack::set_field(L, first, detail::unique_destruct<T>, t.stack_index());
+ return;
+ }
+ break;
+ case 2:
+ default:
+ break;
+ }
+ stack::set_field(L, first, second, t.stack_index());
+ };
+ for (std::size_t i = 0; i < 3; ++i) {
+ // Pointer types, AKA "references" from C++
+ const char* metakey = nullptr;
+ switch (i) {
+ case 0:
+ metakey = &usertype_traits<T*>::metatable()[0];
+ break;
+ case 1:
+ metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
+ break;
+ case 2:
+ default:
+ metakey = &usertype_traits<T>::metatable()[0];
+ break;
+ }
+ luaL_newmetatable(L, metakey);
+ stack_reference t(L, -1);
+ for (auto& kvp : varmap.functions) {
+ auto& first = std::get<0>(kvp);
+ auto& second = std::get<1>(kvp);
+ register_kvp(i, t, first, second);
+ }
+ luaL_Reg opregs[4]{};
+ int opregsindex = 0;
+ if (!hasless) {
+ const char* name = name_of(meta_function::less_than).c_str();
+ usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(opregs, opregsindex, name);
+ }
+ if (!haslessequals) {
+ const char* name = name_of(meta_function::less_than_or_equal_to).c_str();
+ usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(opregs, opregsindex, name);
+ }
+ if (!hasequals) {
+ const char* name = name_of(meta_function::equal_to).c_str();
+ usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(opregs, opregsindex, name);
+ }
+ t.push();
+ luaL_setfuncs(L, opregs, 0);
+ t.pop();
+
+ if (umx.baseclasscheck != nullptr) {
+ stack::set_field(L, detail::base_class_check_key(), umx.baseclasscheck, t.stack_index());
+ }
+ if (umx.baseclasscast != nullptr) {
+ stack::set_field(L, detail::base_class_cast_key(), umx.baseclasscast, t.stack_index());
+ }
+
+ // Base class propagation features
+ stack::set_field(L, detail::base_class_index_propogation_key(), umx.indexbase, t.stack_index());
+ stack::set_field(L, detail::base_class_new_index_propogation_key(), umx.newindexbase, t.stack_index());
+
+ if (umx.mustindex) {
+ // use indexing function
+ stack::set_field(L, meta_function::index,
+ make_closure(&usertype_detail::simple_index_call,
+ make_light(varmap),
+ umx.indexfunc,
+ umx.newindexfunc
+ ), t.stack_index());
+ stack::set_field(L, meta_function::new_index,
+ make_closure(&usertype_detail::simple_new_index_call,
+ make_light(varmap),
+ umx.indexfunc,
+ umx.newindexfunc
+ ), t.stack_index());
+ }
+ else {
+ // Metatable indexes itself
+ stack::set_field(L, meta_function::index, t, t.stack_index());
+ }
+ // metatable on the metatable
+ // for call constructor purposes and such
+ lua_createtable(L, 0, 2 * static_cast<int>(umx.secondarymeta) + static_cast<int>(umx.callconstructfunc.valid()));
+ stack_reference metabehind(L, -1);
+ if (umx.callconstructfunc.valid()) {
+ stack::set_field(L, sol::meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
+ }
+ if (umx.secondarymeta) {
+ stack::set_field(L, meta_function::index,
+ make_closure(&usertype_detail::simple_index_call,
+ make_light(varmap),
+ umx.indexfunc,
+ umx.newindexfunc
+ ), metabehind.stack_index());
+ stack::set_field(L, meta_function::new_index,
+ make_closure(&usertype_detail::simple_new_index_call,
+ make_light(varmap),
+ umx.indexfunc,
+ umx.newindexfunc
+ ), metabehind.stack_index());
+ }
+ stack::set_field(L, metatable_key, metabehind, t.stack_index());
+ metabehind.pop();
+
+ t.pop();
+ }
+
+ // Now for the shim-table that actually gets pushed
+ luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
+ stack_reference t(L, -1);
+ for (auto& kvp : varmap.functions) {
+ auto& first = std::get<0>(kvp);
+ auto& second = std::get<1>(kvp);
+ register_kvp(2, t, first, second);
+ }
+ {
+ lua_createtable(L, 0, 2 + static_cast<int>(umx.callconstructfunc.valid()));
+ stack_reference metabehind(L, -1);
+ if (umx.callconstructfunc.valid()) {
+ stack::set_field(L, sol::meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
+ }
+ // use indexing function
+ stack::set_field(L, meta_function::index,
+ make_closure(&usertype_detail::simple_index_call,
+ make_light(varmap),
+ umx.indexfunc,
+ umx.newindexfunc,
+ usertype_detail::toplevel_magic
+ ), metabehind.stack_index());
+ stack::set_field(L, meta_function::new_index,
+ make_closure(&usertype_detail::simple_new_index_call,
+ make_light(varmap),
+ umx.indexfunc,
+ umx.newindexfunc,
+ usertype_detail::toplevel_magic
+ ), metabehind.stack_index());
+ stack::set_field(L, metatable_key, metabehind, t.stack_index());
+ metabehind.pop();
+ }
+
+ // Don't pop the table when we're done;
+ // return it
+ return 1;
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/simple_usertype_metatable.hpp
+
+// beginning of sol/container_usertype_metatable.hpp
+
+namespace sol {
+
+ namespace detail {
+
+ template <typename T>
+ struct has_find {
+ private:
+ typedef std::array<char, 1> one;
+ typedef std::array<char, 2> two;
+
+ template <typename C> static one test(decltype(&C::find));
+ template <typename C> static two test(...);
+
+ public:
+ static const bool value = sizeof(test<T>(0)) == sizeof(char);
+ };
+
+ template <typename T>
+ struct has_push_back {
+ private:
+ typedef std::array<char, 1> one;
+ typedef std::array<char, 2> two;
+
+ template <typename C> static one test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C> static two test(...);
+
+ public:
+ static const bool value = sizeof(test<T>(0)) == sizeof(char);
+ };
+
+ template <typename T>
+ struct has_clear {
+ private:
+ typedef std::array<char, 1> one;
+ typedef std::array<char, 2> two;
+
+ template <typename C> static one test(decltype(&C::clear));
+ template <typename C> static two test(...);
+
+ public:
+ static const bool value = sizeof(test<T>(0)) == sizeof(char);
+ };
+
+ template <typename T>
+ struct has_insert {
+ private:
+ typedef std::array<char, 1> one;
+ typedef std::array<char, 2> two;
+
+ template <typename C> static one test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C> static two test(...);
+
+ public:
+ static const bool value = sizeof(test<T>(0)) == sizeof(char);
+ };
+
+ template <typename T>
+ T& get_first(const T& t) {
+ return std::forward<T>(t);
+ }
+
+ template <typename A, typename B>
+ decltype(auto) get_first(const std::pair<A, B>& t) {
+ return t.first;
+ }
+
+ template <typename C, typename I, meta::enable<has_find<meta::unqualified_t<C>>> = meta::enabler>
+ auto find(C& c, I&& i) {
+ return c.find(std::forward<I>(i));
+ }
+
+ template <typename C, typename I, meta::disable<has_find<meta::unqualified_t<C>>> = meta::enabler>
+ auto find(C& c, I&& i) {
+ using std::begin;
+ using std::end;
+ return std::find_if(begin(c), end(c), [&i](auto&& x) {
+ return i == get_first(x);
+ });
+ }
+
+ }
+
+ template <typename Raw, typename C = void>
+ struct container_usertype_metatable {
+ typedef meta::has_key_value_pair<meta::unqualified_t<Raw>> is_associative;
+ typedef meta::unqualified_t<Raw> T;
+ typedef typename T::iterator I;
+ typedef std::conditional_t<is_associative::value, typename T::value_type, std::pair<std::size_t, typename T::value_type>> KV;
+ typedef typename KV::first_type K;
+ typedef typename KV::second_type V;
+ typedef std::remove_reference_t<decltype(*std::declval<I&>())> IR;
+
+ struct iter {
+ T& source;
+ I it;
+
+ iter(T& source, I it) : source(source), it(std::move(it)) {}
+ };
+
+ static auto& get_src(lua_State* L) {
+#ifdef SOL_SAFE_USERTYPE
+ auto p = stack::check_get<T*>(L, 1);
+ if (!p || p.value() == nullptr) {
+ luaL_error(L, "sol: 'self' argument is not the proper type (pass 'self' as first argument with ':' or call on proper type)");
+ }
+ return *p.value();
+#else
+ return stack::get<T>(L, 1);
+#endif // Safe getting with error
+ }
+
+ static int real_index_call_associative(std::true_type, lua_State* L) {
+ auto k = stack::check_get<K>(L, 2);
+ if (k) {
+ auto& src = get_src(L);
+ using std::end;
+ auto it = detail::find(src, *k);
+ if (it != end(src)) {
+ auto& v = *it;
+ return stack::push_reference(L, v.second);
+ }
+ }
+ else {
+ auto maybename = stack::check_get<string_detail::string_shim>(L, 2);
+ if (maybename) {
+ auto& name = *maybename;
+ if (name == "add") {
+ return stack::push(L, &add_call);
+ }
+ else if (name == "insert") {
+ return stack::push(L, &insert_call);
+ }
+ else if (name == "clear") {
+ return stack::push(L, &clear_call);
+ }
+ }
+ }
+ return stack::push(L, lua_nil);
+ }
+
+ static int real_index_call_associative(std::false_type, lua_State* L) {
+ auto& src = get_src(L);
+ auto maybek = stack::check_get<K>(L, 2);
+ if (maybek) {
+ using std::begin;
+ auto it = begin(src);
+ K k = *maybek;
+ if (k > src.size() || k < 1) {
+ return stack::push(L, lua_nil);
+ }
+ --k;
+ std::advance(it, k);
+ return stack::push_reference(L, *it);
+ }
+ else {
+ auto maybename = stack::check_get<string_detail::string_shim>(L, 2);
+ if (maybename) {
+ auto& name = *maybename;
+ if (name == "add") {
+ return stack::push(L, &add_call);
+ }
+ else if (name == "insert") {
+ return stack::push(L, &insert_call);
+ }
+ else if (name == "clear") {
+ return stack::push(L, &clear_call);
+ }
+ }
+ }
+
+ return stack::push(L, lua_nil);
+ }
+
+ static int real_index_call(lua_State* L) {
+ return real_index_call_associative(is_associative(), L);
+ }
+
+ static int real_new_index_call_const(std::false_type, std::false_type, lua_State* L) {
+ return luaL_error(L, "sol: cannot write to a const value type or an immutable iterator (e.g., std::set)");
+ }
+
+ static int real_new_index_call_const(std::false_type, std::true_type, lua_State* L) {
+ return luaL_error(L, "sol: cannot write to a const value type or an immutable iterator (e.g., std::set)");
+ }
+
+ static int real_new_index_call_const(std::true_type, std::true_type, lua_State* L) {
+ auto& src = get_src(L);
+ auto k = stack::check_get<K>(L, 2);
+ if (k) {
+ using std::end;
+ auto it = detail::find(src, *k);
+ if (it != end(src)) {
+ auto& v = *it;
+ v.second = stack::get<V>(L, 3);
+ }
+ else {
+ src.insert(it, { std::move(*k), stack::get<V>(L, 3) });
+ }
+ }
+ return 0;
+ }
+
+ static int real_new_index_call_const(std::true_type, std::false_type, lua_State* L) {
+ auto& src = get_src(L);
+#ifdef SOL_SAFE_USERTYPE
+ auto maybek = stack::check_get<K>(L, 2);
+ if (!maybek) {
+ return 0;
+ }
+ K k = *maybek;
+#else
+ K k = stack::get<K>(L, 2);
+#endif
+ using std::begin;
+ auto it = begin(src);
+ if (k == src.size()) {
+ real_add_call_push(std::integral_constant<bool, detail::has_push_back<T>::value>(), L, src, 1);
+ return 0;
+ }
+ --k;
+ std::advance(it, k);
+ *it = stack::get<V>(L, 3);
+ return 0;
+ }
+
+ static int real_new_index_call(lua_State* L) {
+ return real_new_index_call_const(meta::neg<meta::any<std::is_const<V>, std::is_const<IR>>>(), is_associative(), L);
+ }
+
+ static int real_pairs_next_call_assoc(std::true_type, lua_State* L) {
+ using std::end;
+ iter& i = stack::get<user<iter>>(L, 1);
+ auto& source = i.source;
+ auto& it = i.it;
+ if (it == end(source)) {
+ return 0;
+ }
+ int p = stack::multi_push_reference(L, it->first, it->second);
+ std::advance(it, 1);
+ return p;
+ }
+
+ static int real_pairs_call_assoc(std::true_type, lua_State* L) {
+ auto& src = get_src(L);
+ using std::begin;
+ stack::push(L, pairs_next_call);
+ stack::push<user<iter>>(L, src, begin(src));
+ stack::push(L, 1);
+ return 3;
+ }
+
+ static int real_pairs_next_call_assoc(std::false_type, lua_State* L) {
+ using std::end;
+ iter& i = stack::get<user<iter>>(L, 1);
+ auto& source = i.source;
+ auto& it = i.it;
+ K k = stack::get<K>(L, 2);
+ if (it == end(source)) {
+ return 0;
+ }
+ int p = stack::multi_push_reference(L, k + 1, *it);
+ std::advance(it, 1);
+ return p;
+ }
+
+ static int real_pairs_call_assoc(std::false_type, lua_State* L) {
+ auto& src = get_src(L);
+ using std::begin;
+ stack::push(L, pairs_next_call);
+ stack::push<user<iter>>(L, src, begin(src));
+ stack::push(L, 0);
+ return 3;
+ }
+
+ static int real_pairs_next_call(lua_State* L) {
+ return real_pairs_next_call_assoc(is_associative(), L);
+ }
+
+ static int real_pairs_call(lua_State* L) {
+ return real_pairs_call_assoc(is_associative(), L);
+ }
+
+ static int real_length_call(lua_State*L) {
+ auto& src = get_src(L);
+ return stack::push(L, src.size());
+ }
+
+ static int real_add_call_insert(std::true_type, lua_State*L, T& src, int boost = 0) {
+ using std::end;
+ src.insert(end(src), stack::get<V>(L, 2 + boost));
+ return 0;
+ }
+
+ static int real_add_call_insert(std::false_type, lua_State*L, T&, int = 0) {
+ static const std::string& s = detail::demangle<T>();
+ return luaL_error(L, "sol: cannot call insert on type %s", s.c_str());
+ }
+
+ static int real_add_call_push(std::true_type, lua_State*L, T& src, int boost = 0) {
+ src.push_back(stack::get<V>(L, 2 + boost));
+ return 0;
+ }
+
+ static int real_add_call_push(std::false_type, lua_State*L, T& src, int boost = 0) {
+ return real_add_call_insert(std::integral_constant<bool, detail::has_insert<T>::value>(), L, src, boost);
+ }
+
+ static int real_add_call_associative(std::true_type, lua_State* L) {
+ return real_insert_call(L);
+ }
+
+ static int real_add_call_associative(std::false_type, lua_State* L) {
+ auto& src = get_src(L);
+ return real_add_call_push(std::integral_constant<bool, detail::has_push_back<T>::value>(), L, src);
+ }
+
+ static int real_add_call_capable(std::true_type, lua_State* L) {
+ return real_add_call_associative(is_associative(), L);
+ }
+
+ static int real_add_call_capable(std::false_type, lua_State* L) {
+ static const std::string& s = detail::demangle<T>();
+ return luaL_error(L, "sol: cannot call add on type %s", s.c_str());
+ }
+
+ static int real_add_call(lua_State* L) {
+ return real_add_call_capable(std::integral_constant<bool, detail::has_push_back<T>::value || detail::has_insert<T>::value>(), L);
+ }
+
+ static int real_insert_call_capable(std::false_type, std::false_type, lua_State*L) {
+ static const std::string& s = detail::demangle<T>();
+ return luaL_error(L, "sol: cannot call insert on type %s", s.c_str());
+ }
+
+ static int real_insert_call_capable(std::false_type, std::true_type, lua_State*L) {
+ return real_insert_call_capable(std::false_type(), std::false_type(), L);
+ }
+
+ static int real_insert_call_capable(std::true_type, std::false_type, lua_State* L) {
+ using std::begin;
+ auto& src = get_src(L);
+ src.insert(std::next(begin(src), stack::get<K>(L, 2)), stack::get<V>(L, 3));
+ return 0;
+ }
+
+ static int real_insert_call_capable(std::true_type, std::true_type, lua_State* L) {
+ return real_new_index_call(L);
+ }
+
+ static int real_insert_call(lua_State*L) {
+ return real_insert_call_capable(std::integral_constant<bool, detail::has_insert<T>::value>(), is_associative(), L);
+ }
+
+ static int real_clear_call_capable(std::false_type, lua_State* L) {
+ static const std::string& s = detail::demangle<T>();
+ return luaL_error(L, "sol: cannot call clear on type %s", s.c_str());
+ }
+
+ static int real_clear_call_capable(std::true_type, lua_State* L) {
+ auto& src = get_src(L);
+ src.clear();
+ return 0;
+ }
+
+ static int real_clear_call(lua_State*L) {
+ return real_clear_call_capable(std::integral_constant<bool, detail::has_clear<T>::value>(), L);
+ }
+
+ static int add_call(lua_State*L) {
+ return detail::static_trampoline<(&real_add_call)>(L);
+ }
+
+ static int insert_call(lua_State*L) {
+ return detail::static_trampoline<(&real_insert_call)>(L);
+ }
+
+ static int clear_call(lua_State*L) {
+ return detail::static_trampoline<(&real_clear_call)>(L);
+ }
+
+ static int length_call(lua_State*L) {
+ return detail::static_trampoline<(&real_length_call)>(L);
+ }
+
+ static int pairs_next_call(lua_State*L) {
+ return detail::static_trampoline<(&real_pairs_next_call)>(L);
+ }
+
+ static int pairs_call(lua_State*L) {
+ return detail::static_trampoline<(&real_pairs_call)>(L);
+ }
+
+ static int index_call(lua_State*L) {
+ return detail::static_trampoline<(&real_index_call)>(L);
+ }
+
+ static int new_index_call(lua_State*L) {
+ return detail::static_trampoline<(&real_new_index_call)>(L);
+ }
+ };
+
+ namespace stack {
+ namespace stack_detail {
+ template <typename T>
+ inline auto container_metatable() {
+ typedef container_usertype_metatable<std::remove_pointer_t<T>> meta_cumt;
+ std::array<luaL_Reg, 10> reg = { {
+ { "__index", &meta_cumt::index_call },
+ { "__newindex", &meta_cumt::new_index_call },
+ { "__pairs", &meta_cumt::pairs_call },
+ { "__ipairs", &meta_cumt::pairs_call },
+ { "__len", &meta_cumt::length_call },
+ { "clear", &meta_cumt::clear_call },
+ { "insert", &meta_cumt::insert_call },
+ { "add", &meta_cumt::add_call },
+ std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destroy<T> },
+ { nullptr, nullptr }
+ } };
+ return reg;
+ }
+
+ template <typename T>
+ inline auto container_metatable_behind() {
+ typedef container_usertype_metatable<std::remove_pointer_t<T>> meta_cumt;
+ std::array<luaL_Reg, 3> reg = { {
+ { "__index", &meta_cumt::index_call },
+ { "__newindex", &meta_cumt::new_index_call },
+ { nullptr, nullptr }
+ } };
+ return reg;
+ }
+
+ template <typename T>
+ struct metatable_setup {
+ lua_State* L;
+
+ metatable_setup(lua_State* L) : L(L) {}
+
+ void operator()() {
+ static const auto reg = container_metatable<T>();
+ static const auto containerreg = container_metatable_behind<T>();
+ static const char* metakey = &usertype_traits<T>::metatable()[0];
+
+ if (luaL_newmetatable(L, metakey) == 1) {
+ stack_reference metatable(L, -1);
+ luaL_setfuncs(L, reg.data(), 0);
+
+ lua_createtable(L, 0, static_cast<int>(containerreg.size()));
+ stack_reference metabehind(L, -1);
+ luaL_setfuncs(L, containerreg.data(), 0);
+
+ stack::set_field(L, metatable_key, metabehind, metatable.stack_index());
+ metabehind.pop();
+ }
+ lua_setmetatable(L, -2);
+ }
+ };
+ }
+
+ template<typename T>
+ struct pusher<T, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<meta::any<std::is_base_of<reference, meta::unqualified_t<T>>, std::is_base_of<stack_reference, meta::unqualified_t<T>>>>>::value>> {
+ static int push(lua_State* L, const T& cont) {
+ stack_detail::metatable_setup<T> fx(L);
+ return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, cont);
+ }
+
+ static int push(lua_State* L, T&& cont) {
+ stack_detail::metatable_setup<T> fx(L);
+ return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, std::move(cont));
+ }
+ };
+
+ template<typename T>
+ struct pusher<T*, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<meta::any<std::is_base_of<reference, meta::unqualified_t<T>>, std::is_base_of<stack_reference, meta::unqualified_t<T>>>>>::value>> {
+ static int push(lua_State* L, T* cont) {
+ stack_detail::metatable_setup<meta::unqualified_t<std::remove_pointer_t<T>>*> fx(L);
+ return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont);
+ }
+ };
+ } // stack
+
+} // sol
+
+// end of sol/container_usertype_metatable.hpp
+
+namespace sol {
+
+ template<typename T>
+ class usertype {
+ private:
+ std::unique_ptr<usertype_detail::registrar, detail::deleter> metatableregister;
+
+ template<typename... Args>
+ usertype(usertype_detail::verified_tag, Args&&... args) : metatableregister(detail::make_unique_deleter<usertype_metatable<T, std::make_index_sequence<sizeof...(Args) / 2>, Args...>, detail::deleter>(std::forward<Args>(args)...)) {}
+
+ template<typename... Args>
+ usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) {}
+
+ template<typename... Args>
+ usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(meta::condition<meta::all<std::is_destructible<T>, meta::neg<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
+
+ public:
+
+ template<typename... Args>
+ usertype(Args&&... args) : usertype(meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Args>(args)...) {}
+
+ template<typename... Args, typename... CArgs>
+ usertype(constructors<CArgs...> constructorlist, Args&&... args) : usertype(usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
+
+ template<typename... Args, typename... Fxs>
+ usertype(constructor_wrapper<Fxs...> constructorlist, Args&&... args) : usertype(usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
+
+ template<typename... Args>
+ usertype(simple_tag, lua_State* L, Args&&... args) : metatableregister(detail::make_unique_deleter<simple_usertype_metatable<T>, detail::deleter>(L, std::forward<Args>(args)...)) {}
+
+ usertype_detail::registrar* registrar_data() {
+ return metatableregister.get();
+ }
+
+ int push(lua_State* L) {
+ int r = metatableregister->push_um(L);
+ metatableregister = nullptr;
+ return r;
+ }
+ };
+
+ template<typename T>
+ class simple_usertype : public usertype<T> {
+ private:
+ typedef usertype<T> base_t;
+ lua_State* state;
+
+ public:
+ template<typename... Args>
+ simple_usertype(lua_State* L, Args&&... args) : base_t(simple, L, std::forward<Args>(args)...), state(L) {}
+
+ template <typename N, typename F>
+ void set(N&& n, F&& f) {
+ auto meta = static_cast<simple_usertype_metatable<T>*>(base_t::registrar_data());
+ meta->add(state, n, f);
+ }
+ };
+
+ namespace stack {
+ template<typename T>
+ struct pusher<usertype<T>> {
+ static int push(lua_State* L, usertype<T>& user) {
+ return user.push(L);
+ }
+ };
+ } // stack
+} // sol
+
+// end of sol/usertype.hpp
+
+// beginning of sol/table_iterator.hpp
+
+namespace sol {
+
+ template <typename reference_type>
+ class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> {
+ private:
+ typedef std::iterator<std::input_iterator_tag, std::pair<object, object>> base_t;
+ public:
+ typedef object key_type;
+ typedef object mapped_type;
+ typedef base_t::value_type value_type;
+ typedef base_t::iterator_category iterator_category;
+ typedef base_t::difference_type difference_type;
+ typedef base_t::pointer pointer;
+ typedef base_t::reference reference;
+ typedef const value_type& const_reference;
+
+ private:
+ std::pair<object, object> kvp;
+ reference_type ref;
+ int tableidx = 0;
+ int keyidx = 0;
+ std::ptrdiff_t idx = 0;
+
+ public:
+
+ basic_table_iterator() : keyidx(-1), idx(-1) {
+
+ }
+
+ basic_table_iterator(reference_type x) : ref(std::move(x)) {
+ ref.push();
+ tableidx = lua_gettop(ref.lua_state());
+ stack::push(ref.lua_state(), lua_nil);
+ this->operator++();
+ if (idx == -1) {
+ return;
+ }
+ --idx;
+ }
+
+ basic_table_iterator& operator++() {
+ if (idx == -1)
+ return *this;
+
+ if (lua_next(ref.lua_state(), tableidx) == 0) {
+ idx = -1;
+ keyidx = -1;
+ return *this;
+ }
+ ++idx;
+ kvp.first = object(ref.lua_state(), -2);
+ kvp.second = object(ref.lua_state(), -1);
+ lua_pop(ref.lua_state(), 1);
+ // leave key on the stack
+ keyidx = lua_gettop(ref.lua_state());
+ return *this;
+ }
+
+ basic_table_iterator operator++(int) {
+ auto saved = *this;
+ this->operator++();
+ return saved;
+ }
+
+ reference operator*() {
+ return kvp;
+ }
+
+ const_reference operator*() const {
+ return kvp;
+ }
+
+ bool operator== (const basic_table_iterator& right) const {
+ return idx == right.idx;
+ }
+
+ bool operator!= (const basic_table_iterator& right) const {
+ return idx != right.idx;
+ }
+
+ ~basic_table_iterator() {
+ if (keyidx != -1) {
+ stack::remove(ref.lua_state(), keyidx, 1);
+ }
+ if (ref.valid()) {
+ stack::remove(ref.lua_state(), tableidx, 1);
+ }
+ }
+ };
+
+} // sol
+
+// end of sol/table_iterator.hpp
+
+namespace sol {
+ namespace detail {
+ template <std::size_t n>
+ struct clean { lua_State* L; clean(lua_State* luastate) : L(luastate) {} ~clean() { lua_pop(L, static_cast<int>(n)); } };
+ struct ref_clean { lua_State* L; int& n; ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) {} ~ref_clean() { lua_pop(L, static_cast<int>(n)); } };
+ inline int fail_on_newindex(lua_State* L) {
+ return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
+ }
+ }
+
+ template <bool top_level, typename base_t>
+ class basic_table_core : public base_t {
+ friend class state;
+ friend class state_view;
+
+ template <typename... Args>
+ using is_global = meta::all<meta::boolean<top_level>, meta::is_c_str<Args>...>;
+
+ template<typename Fx>
+ void for_each(std::true_type, Fx&& fx) const {
+ auto pp = stack::push_pop(*this);
+ stack::push(base_t::lua_state(), lua_nil);
+ while (lua_next(base_t::lua_state(), -2)) {
+ sol::object key(base_t::lua_state(), -2);
+ sol::object value(base_t::lua_state(), -1);
+ std::pair<sol::object&, sol::object&> keyvalue(key, value);
+ auto pn = stack::pop_n(base_t::lua_state(), 1);
+ fx(keyvalue);
+ }
+ }
+
+ template<typename Fx>
+ void for_each(std::false_type, Fx&& fx) const {
+ auto pp = stack::push_pop(*this);
+ stack::push(base_t::lua_state(), lua_nil);
+ while (lua_next(base_t::lua_state(), -2)) {
+ sol::object key(base_t::lua_state(), -2);
+ sol::object value(base_t::lua_state(), -1);
+ auto pn = stack::pop_n(base_t::lua_state(), 1);
+ fx(key, value);
+ }
+ }
+
+ template<typename Ret0, typename Ret1, typename... Ret, std::size_t... I, typename Keys>
+ auto tuple_get(types<Ret0, Ret1, Ret...>, std::index_sequence<0, 1, I...>, Keys&& keys) const
+ -> decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) {
+ typedef decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) Tup;
+ return Tup(
+ traverse_get_optional<top_level, Ret0>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret0>>(), detail::forward_get<0>(keys)),
+ traverse_get_optional<top_level, Ret1>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret1>>(), detail::forward_get<1>(keys)),
+ traverse_get_optional<top_level, Ret>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys))...
+ );
+ }
+
+ template<typename Ret, std::size_t I, typename Keys>
+ decltype(auto) tuple_get(types<Ret>, std::index_sequence<I>, Keys&& keys) const {
+ return traverse_get_optional<top_level, Ret>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys));
+ }
+
+ template<typename Pairs, std::size_t... I>
+ void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
+ auto pp = stack::push_pop<top_level && (is_global<decltype(detail::forward_get<I * 2>(pairs))...>::value)>(*this);
+ void(detail::swallow{ (stack::set_field<top_level>(base_t::lua_state(),
+ detail::forward_get<I * 2>(pairs),
+ detail::forward_get<I * 2 + 1>(pairs),
+ lua_gettop(base_t::lua_state())
+ ), 0)... });
+ }
+
+ template <bool global, typename T, typename Key>
+ decltype(auto) traverse_get_deep(Key&& key) const {
+ stack::get_field<global>(base_t::lua_state(), std::forward<Key>(key));
+ return stack::get<T>(base_t::lua_state());
+ }
+
+ template <bool global, typename T, typename Key, typename... Keys>
+ decltype(auto) traverse_get_deep(Key&& key, Keys&&... keys) const {
+ stack::get_field<global>(base_t::lua_state(), std::forward<Key>(key));
+ return traverse_get_deep<false, T>(std::forward<Keys>(keys)...);
+ }
+
+ template <bool global, typename T, std::size_t I, typename Key>
+ decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key) const {
+ typedef decltype(stack::get<T>(base_t::lua_state())) R;
+ auto p = stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
+ popcount += p.levels;
+ if (!p.success)
+ return R(nullopt);
+ return stack::get<T>(base_t::lua_state());
+ }
+
+ template <bool global, typename T, std::size_t I, typename Key, typename... Keys>
+ decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key, Keys&&... keys) const {
+ auto p = I > 0 ? stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), -1) : stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
+ popcount += p.levels;
+ if (!p.success)
+ return T(nullopt);
+ return traverse_get_deep_optional<false, T, I + 1>(popcount, std::forward<Keys>(keys)...);
+ }
+
+ template <bool global, typename T, typename... Keys>
+ decltype(auto) traverse_get_optional(std::false_type, Keys&&... keys) const {
+ detail::clean<sizeof...(Keys)> c(base_t::lua_state());
+ return traverse_get_deep<top_level, T>(std::forward<Keys>(keys)...);
+ }
+
+ template <bool global, typename T, typename... Keys>
+ decltype(auto) traverse_get_optional(std::true_type, Keys&&... keys) const {
+ int popcount = 0;
+ detail::ref_clean c(base_t::lua_state(), popcount);
+ return traverse_get_deep_optional<top_level, T, 0>(popcount, std::forward<Keys>(keys)...);
+ }
+
+ template <bool global, typename Key, typename Value>
+ void traverse_set_deep(Key&& key, Value&& value) const {
+ stack::set_field<global>(base_t::lua_state(), std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global, typename Key, typename... Keys>
+ void traverse_set_deep(Key&& key, Keys&&... keys) const {
+ stack::get_field<global>(base_t::lua_state(), std::forward<Key>(key));
+ traverse_set_deep<false>(std::forward<Keys>(keys)...);
+ }
+
+ basic_table_core(lua_State* L, detail::global_tag t) noexcept : reference(L, t) { }
+
+ public:
+ typedef basic_table_iterator<base_t> iterator;
+ typedef iterator const_iterator;
+
+ basic_table_core() noexcept : base_t() { }
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
+ basic_table_core(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!is_table<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ stack::check<basic_table_core>(base_t::lua_state(), -1, type_panic);
+ }
+#endif // Safety
+ }
+ basic_table_core(const basic_table_core&) = default;
+ basic_table_core(basic_table_core&&) = default;
+ basic_table_core& operator=(const basic_table_core&) = default;
+ basic_table_core& operator=(basic_table_core&&) = default;
+ basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {}
+ basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {}
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ basic_table_core(lua_State* L, T&& r) : basic_table_core(L, sol::ref_index(r.registry_index())) {}
+ basic_table_core(lua_State* L, int index = -1) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ stack::check<basic_table_core>(L, index, type_panic);
+#endif // Safety
+ }
+ basic_table_core(lua_State* L, ref_index index) : base_t(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ stack::check<basic_table_core>(L, -1, type_panic);
+#endif // Safety
+ }
+
+ iterator begin() const {
+ return iterator(*this);
+ }
+
+ iterator end() const {
+ return iterator();
+ }
+
+ const_iterator cbegin() const {
+ return begin();
+ }
+
+ const_iterator cend() const {
+ return end();
+ }
+
+ template<typename... Ret, typename... Keys>
+ decltype(auto) get(Keys&&... keys) const {
+ static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
+ auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
+ return tuple_get(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...));
+ }
+
+ template<typename T, typename Key>
+ decltype(auto) get_or(Key&& key, T&& otherwise) const {
+ typedef decltype(get<T>("")) U;
+ sol::optional<U> option = get<sol::optional<U>>(std::forward<Key>(key));
+ if (option) {
+ return static_cast<U>(option.value());
+ }
+ return static_cast<U>(std::forward<T>(otherwise));
+ }
+
+ template<typename T, typename Key, typename D>
+ decltype(auto) get_or(Key&& key, D&& otherwise) const {
+ sol::optional<T> option = get<sol::optional<T>>(std::forward<Key>(key));
+ if (option) {
+ return static_cast<T>(option.value());
+ }
+ return static_cast<T>(std::forward<D>(otherwise));
+ }
+
+ template <typename T, typename... Keys>
+ decltype(auto) traverse_get(Keys&&... keys) const {
+ auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
+ return traverse_get_optional<top_level, T>(meta::is_specialization_of<sol::optional, meta::unqualified_t<T>>(), std::forward<Keys>(keys)...);
+ }
+
+ template <typename... Keys>
+ basic_table_core& traverse_set(Keys&&... keys) {
+ auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
+ auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys)-2));
+ traverse_set_deep<top_level>(std::forward<Keys>(keys)...);
+ return *this;
+ }
+
+ template<typename... Args>
+ basic_table_core& set(Args&&... args) {
+ tuple_set(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
+ return *this;
+ }
+
+ template<typename T>
+ basic_table_core& set_usertype(usertype<T>& user) {
+ return set_usertype(usertype_traits<T>::name(), user);
+ }
+
+ template<typename Key, typename T>
+ basic_table_core& set_usertype(Key&& key, usertype<T>& user) {
+ return set(std::forward<Key>(key), user);
+ }
+
+ template<typename Class, typename... Args>
+ basic_table_core& new_usertype(const std::string& name, Args&&... args) {
+ usertype<Class> utype(std::forward<Args>(args)...);
+ set_usertype(name, utype);
+ return *this;
+ }
+
+ template<typename Class, typename CTor0, typename... CTor, typename... Args>
+ basic_table_core& new_usertype(const std::string& name, Args&&... args) {
+ constructors<types<CTor0, CTor...>> ctor{};
+ return new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
+ }
+
+ template<typename Class, typename... CArgs, typename... Args>
+ basic_table_core& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
+ usertype<Class> utype(ctor, std::forward<Args>(args)...);
+ set_usertype(name, utype);
+ return *this;
+ }
+
+ template<typename Class, typename... Args>
+ basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) {
+ simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
+ set_usertype(name, utype);
+ return *this;
+ }
+
+ template<typename Class, typename CTor0, typename... CTor, typename... Args>
+ basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) {
+ constructors<types<CTor0, CTor...>> ctor{};
+ return new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
+ }
+
+ template<typename Class, typename... CArgs, typename... Args>
+ basic_table_core& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
+ simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
+ set_usertype(name, utype);
+ return *this;
+ }
+
+ template<typename Class, typename... Args>
+ simple_usertype<Class> create_simple_usertype(Args&&... args) {
+ simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
+ return utype;
+ }
+
+ template<typename Class, typename CTor0, typename... CTor, typename... Args>
+ simple_usertype<Class> create_simple_usertype(Args&&... args) {
+ constructors<types<CTor0, CTor...>> ctor{};
+ return create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
+ }
+
+ template<typename Class, typename... CArgs, typename... Args>
+ simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) {
+ simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
+ return utype;
+ }
+
+ template<bool read_only = true, typename... Args>
+ basic_table_core& new_enum(const std::string& name, Args&&... args) {
+ if (read_only) {
+ table idx = create_with(std::forward<Args>(args)...);
+ table x = create_with(
+ meta_function::new_index, detail::fail_on_newindex,
+ meta_function::index, idx
+ );
+ table target = create_named(name);
+ target[metatable_key] = x;
+ }
+ else {
+ create_named(name, std::forward<Args>(args)...);
+ }
+ return *this;
+ }
+
+ template<typename Fx>
+ void for_each(Fx&& fx) const {
+ typedef meta::is_invokable<Fx(std::pair<sol::object, sol::object>)> is_paired;
+ for_each(is_paired(), std::forward<Fx>(fx));
+ }
+
+ size_t size() const {
+ auto pp = stack::push_pop(*this);
+ lua_len(base_t::lua_state(), -1);
+ return stack::pop<size_t>(base_t::lua_state());
+ }
+
+ bool empty() const {
+ return cbegin() == cend();
+ }
+
+ template<typename T>
+ proxy<basic_table_core&, T> operator[](T&& key) & {
+ return proxy<basic_table_core&, T>(*this, std::forward<T>(key));
+ }
+
+ template<typename T>
+ proxy<const basic_table_core&, T> operator[](T&& key) const & {
+ return proxy<const basic_table_core&, T>(*this, std::forward<T>(key));
+ }
+
+ template<typename T>
+ proxy<basic_table_core, T> operator[](T&& key) && {
+ return proxy<basic_table_core, T>(*this, std::forward<T>(key));
+ }
+
+ template<typename Sig, typename Key, typename... Args>
+ basic_table_core& set_function(Key&& key, Args&&... args) {
+ set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Key, typename... Args>
+ basic_table_core& set_function(Key&& key, Args&&... args) {
+ set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename... Args>
+ basic_table_core& add(Args&&... args) {
+ auto pp = stack::push_pop(*this);
+ (void)detail::swallow{0,
+ (stack::set_ref(base_t::lua_state(), std::forward<Args>(args)), 0)...
+ };
+ return *this;
+ }
+
+ private:
+ template<typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>>
+ void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
+ set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template<typename Fx, typename Key, meta::enable<meta::is_specialization_of<overload_set, meta::unqualified_t<Fx>>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx) {
+ set(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template<typename Fx, typename Key, typename... Args, meta::disable<meta::is_specialization_of<overload_set, meta::unqualified_t<Fx>>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
+ }
+
+ template<typename... Sig, typename... Args, typename Key>
+ void set_resolved_function(Key&& key, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
+ }
+
+ public:
+ static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
+ lua_createtable(L, narr, nrec);
+ table result(L);
+ lua_pop(L, 1);
+ return result;
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ lua_createtable(L, narr, nrec);
+ table result(L);
+ result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ lua_pop(L, 1);
+ return result;
+ }
+
+ template <typename... Args>
+ static inline table create_with(lua_State* L, Args&&... args) {
+ static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
+ static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
+ return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
+ }
+
+ table create(int narr = 0, int nrec = 0) {
+ return create(base_t::lua_state(), narr, nrec);
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename Name>
+ table create(Name&& name, int narr = 0, int nrec = 0) {
+ table x = create(base_t::lua_state(), narr, nrec);
+ this->set(std::forward<Name>(name), x);
+ return x;
+ }
+
+ template <typename Name, typename Key, typename Value, typename... Args>
+ table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ this->set(std::forward<Name>(name), x);
+ return x;
+ }
+
+ template <typename... Args>
+ table create_with(Args&&... args) {
+ return create_with(base_t::lua_state(), std::forward<Args>(args)...);
+ }
+
+ template <typename Name, typename... Args>
+ table create_named(Name&& name, Args&&... args) {
+ static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
+ return create(std::forward<Name>(name), narr, sizeof...(Args) / 2 - narr, std::forward<Args>(args)...);
+ }
+
+ ~basic_table_core() {
+
+ }
+ };
+} // sol
+
+// end of sol/table_core.hpp
+
+namespace sol {
+ typedef table_core<false> table;
+} // sol
+
+// end of sol/table.hpp
+
+// beginning of sol/load_result.hpp
+
+namespace sol {
+ struct load_result : public proxy_base<load_result> {
+ private:
+ lua_State* L;
+ int index;
+ int returncount;
+ int popcount;
+ load_status err;
+
+ template <typename T>
+ decltype(auto) tagged_get(types<sol::optional<T>>) const {
+ if (!valid()) {
+ return sol::optional<T>(nullopt);
+ }
+ return stack::get<sol::optional<T>>(L, index);
+ }
+
+ template <typename T>
+ decltype(auto) tagged_get(types<T>) const {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (!valid()) {
+ type_panic(L, index, type_of(L, index), type::none);
+ }
+#endif // Check Argument Safety
+ return stack::get<T>(L, index);
+ }
+
+ sol::optional<sol::error> tagged_get(types<sol::optional<sol::error>>) const {
+ if (valid()) {
+ return nullopt;
+ }
+ return sol::error(detail::direct_error, stack::get<std::string>(L, index));
+ }
+
+ sol::error tagged_get(types<sol::error>) const {
+#ifdef SOL_CHECK_ARGUMENTS
+ if (valid()) {
+ type_panic(L, index, type_of(L, index), type::none);
+ }
+#endif // Check Argument Safety
+ return sol::error(detail::direct_error, stack::get<std::string>(L, index));
+ }
+
+ public:
+ load_result() = default;
+ load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept : L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) {
+
+ }
+ load_result(const load_result&) = default;
+ load_result& operator=(const load_result&) = default;
+ load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ o.popcount = 0;
+ o.err = load_status::syntax;
+ }
+ load_result& operator=(load_result&& o) noexcept {
+ L = o.L;
+ index = o.index;
+ returncount = o.returncount;
+ popcount = o.popcount;
+ err = o.err;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ o.popcount = 0;
+ o.err = load_status::syntax;
+ return *this;
+ }
+
+ load_status status() const noexcept {
+ return err;
+ }
+
+ bool valid() const noexcept {
+ return status() == load_status::ok;
+ }
+
+ template<typename T>
+ T get() const {
+ return tagged_get(types<meta::unqualified_t<T>>());
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ lua_State* lua_state() const noexcept { return L; };
+ int stack_index() const noexcept { return index; };
+
+ ~load_result() {
+ stack::remove(L, index, popcount);
+ }
+ };
+} // sol
+
+// end of sol/load_result.hpp
+
+namespace sol {
+ enum class lib : char {
+ base,
+ package,
+ coroutine,
+ string,
+ os,
+ math,
+ table,
+ debug,
+ bit32,
+ io,
+ ffi,
+ jit,
+ utf8,
+ count
+ };
+
+ inline std::size_t total_memory_used(lua_State* L) {
+ std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0);
+ kb *= 1024;
+ kb += lua_gc(L, LUA_GCCOUNTB, 0);
+ return kb;
+ }
+
+ class state_view {
+ private:
+ lua_State* L;
+ table reg;
+ global_table global;
+
+ optional<object> is_loaded_package(const std::string& key) {
+ auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
+ bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
+ if (is53mod)
+ return loaded;
+#if SOL_LUA_VERSION <= 501
+ auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
+ bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
+ if (is51mod)
+ return loaded51;
+#endif
+ return nullopt;
+ }
+
+ template <typename T>
+ void ensure_package(const std::string& key, T&& sr) {
+#if SOL_LUA_VERSION <= 501
+ auto pkg = global["package"];
+ if (!pkg.valid()) {
+ pkg = create_table_with("loaded", create_table_with(key, sr));
+ }
+ else {
+ auto ld = pkg["loaded"];
+ if (!ld.valid()) {
+ ld = create_table_with(key, sr);
+ }
+ else {
+ ld[key] = sr;
+ }
+ }
+#endif
+ auto loaded = reg["_LOADED"];
+ if (!loaded.valid()) {
+ loaded = create_table_with(key, sr);
+ }
+ else {
+ loaded[key] = sr;
+ }
+ }
+
+ template <typename Fx>
+ object require_core(const std::string& key, Fx&& action, bool create_global = true) {
+ optional<object> loaded = is_loaded_package(key);
+ if (loaded && loaded->valid())
+ return std::move(*loaded);
+ action();
+ auto sr = stack::get<stack_reference>(L);
+ if (create_global)
+ set(key, sr);
+ ensure_package(key, sr);
+ return stack::pop<object>(L);
+ }
+
+ public:
+ typedef global_table::iterator iterator;
+ typedef global_table::const_iterator const_iterator;
+
+ state_view(lua_State* Ls) :
+ L(Ls),
+ reg(Ls, LUA_REGISTRYINDEX),
+ global(Ls, detail::global_) {
+
+ }
+
+ state_view(this_state Ls) : state_view(Ls.L){
+
+ }
+
+ lua_State* lua_state() const {
+ return L;
+ }
+
+ template<typename... Args>
+ void open_libraries(Args&&... args) {
+ static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries");
+ if (sizeof...(args) == 0) {
+ luaL_openlibs(L);
+ return;
+ }
+
+ lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };
+
+ for (auto&& library : libraries) {
+ switch (library) {
+#if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT)
+ case lib::coroutine:
+#endif // luajit opens coroutine base stuff
+ case lib::base:
+ luaL_requiref(L, "base", luaopen_base, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::package:
+ luaL_requiref(L, "package", luaopen_package, 1);
+ lua_pop(L, 1);
+ break;
+#if !defined(SOL_LUAJIT)
+ case lib::coroutine:
+#if SOL_LUA_VERSION > 501
+ luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
+ lua_pop(L, 1);
+#endif // Lua 5.2+ only
+ break;
+#endif // Not LuaJIT - comes builtin
+ case lib::string:
+ luaL_requiref(L, "string", luaopen_string, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::table:
+ luaL_requiref(L, "table", luaopen_table, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::math:
+ luaL_requiref(L, "math", luaopen_math, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::bit32:
+#ifdef SOL_LUAJIT
+ luaL_requiref(L, "bit32", luaopen_bit, 1);
+ lua_pop(L, 1);
+#elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2)
+ luaL_requiref(L, "bit32", luaopen_bit32, 1);
+ lua_pop(L, 1);
+#else
+#endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
+ break;
+ case lib::io:
+ luaL_requiref(L, "io", luaopen_io, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::os:
+ luaL_requiref(L, "os", luaopen_os, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::debug:
+ luaL_requiref(L, "debug", luaopen_debug, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::utf8:
+#if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT)
+ luaL_requiref(L, "utf8", luaopen_utf8, 1);
+ lua_pop(L, 1);
+#endif // Lua 5.3+ only
+ break;
+ case lib::ffi:
+#ifdef SOL_LUAJIT
+ luaL_requiref(L, "ffi", luaopen_ffi, 1);
+ lua_pop(L, 1);
+#endif // LuaJIT only
+ break;
+ case lib::jit:
+#ifdef SOL_LUAJIT
+ luaL_requiref(L, "jit", luaopen_jit, 1);
+ lua_pop(L, 1);
+#endif // LuaJIT Only
+ break;
+ case lib::count:
+ default:
+ break;
+ }
+ }
+ }
+
+ object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
+ luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
+ return stack::pop<object>(L);
+ }
+
+ object require_script(const std::string& key, const std::string& code, bool create_global = true) {
+ return require_core(key, [this, &code]() {stack::script(L, code); }, create_global);
+ }
+
+ object require_file(const std::string& key, const std::string& filename, bool create_global = true) {
+ return require_core(key, [this, &filename]() {stack::script_file(L, filename); }, create_global);
+ }
+
+ protected_function_result do_string(const std::string& code) {
+ sol::protected_function pf = load(code);
+ return pf();
+ }
+
+ protected_function_result do_file(const std::string& filename) {
+ sol::protected_function pf = load_file(filename);
+ return pf();
+ }
+
+ function_result script(const std::string& code) {
+ int index = lua_gettop(L);
+ stack::script(L, code);
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ function_result script_file(const std::string& filename) {
+ int index = lua_gettop(L);
+ stack::script_file(L, filename);
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ load_result load(const std::string& code) {
+ load_status x = static_cast<load_status>(luaL_loadstring(L, code.c_str()));
+ return load_result(L, lua_absindex(L, -1), 1, 1, x);
+ }
+
+ load_result load_file(const std::string& filename) {
+ load_status x = static_cast<load_status>(luaL_loadfile(L, filename.c_str()));
+ return load_result(L, lua_absindex(L, -1), 1, 1, x);
+ }
+
+ load_result load_buffer(const char *buff, size_t size, const char *name, const char* mode = nullptr) {
+ load_status x = static_cast<load_status>(luaL_loadbufferx(L, buff, size, name, mode));
+ return load_result(L, lua_absindex(L, -1), 1, 1, x);
+ }
+
+ iterator begin() const {
+ return global.begin();
+ }
+
+ iterator end() const {
+ return global.end();
+ }
+
+ const_iterator cbegin() const {
+ return global.cbegin();
+ }
+
+ const_iterator cend() const {
+ return global.cend();
+ }
+
+ global_table globals() const {
+ return global;
+ }
+
+ table registry() const {
+ return reg;
+ }
+
+ std::size_t memory_used() const {
+ return total_memory_used(lua_state());
+ }
+
+ void collect_garbage() {
+ lua_gc(lua_state(), LUA_GCCOLLECT, 0);
+ }
+
+ operator lua_State* () const {
+ return lua_state();
+ }
+
+ void set_panic(lua_CFunction panic) {
+ lua_atpanic(L, panic);
+ }
+
+ template<typename... Args, typename... Keys>
+ decltype(auto) get(Keys&&... keys) const {
+ return global.get<Args...>(std::forward<Keys>(keys)...);
+ }
+
+ template<typename T, typename Key>
+ decltype(auto) get_or(Key&& key, T&& otherwise) const {
+ return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
+ }
+
+ template<typename T, typename Key, typename D>
+ decltype(auto) get_or(Key&& key, D&& otherwise) const {
+ return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
+ }
+
+ template<typename... Args>
+ state_view& set(Args&&... args) {
+ global.set(std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename T, typename... Keys>
+ decltype(auto) traverse_get(Keys&&... keys) const {
+ return global.traverse_get<T>(std::forward<Keys>(keys)...);
+ }
+
+ template<typename... Args>
+ state_view& traverse_set(Args&&... args) {
+ global.traverse_set(std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename T>
+ state_view& set_usertype(usertype<T>& user) {
+ return set_usertype(usertype_traits<T>::name(), user);
+ }
+
+ template<typename Key, typename T>
+ state_view& set_usertype(Key&& key, usertype<T>& user) {
+ global.set_usertype(std::forward<Key>(key), user);
+ return *this;
+ }
+
+ template<typename Class, typename... Args>
+ state_view& new_usertype(const std::string& name, Args&&... args) {
+ global.new_usertype<Class>(name, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Class, typename CTor0, typename... CTor, typename... Args>
+ state_view& new_usertype(const std::string& name, Args&&... args) {
+ global.new_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Class, typename... CArgs, typename... Args>
+ state_view& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
+ global.new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Class, typename... Args>
+ state_view& new_simple_usertype(const std::string& name, Args&&... args) {
+ global.new_simple_usertype<Class>(name, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Class, typename CTor0, typename... CTor, typename... Args>
+ state_view& new_simple_usertype(const std::string& name, Args&&... args) {
+ global.new_simple_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Class, typename... CArgs, typename... Args>
+ state_view& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
+ global.new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename Class, typename... Args>
+ simple_usertype<Class> create_simple_usertype(Args&&... args) {
+ return global.create_simple_usertype<Class>(std::forward<Args>(args)...);
+ }
+
+ template<typename Class, typename CTor0, typename... CTor, typename... Args>
+ simple_usertype<Class> create_simple_usertype(Args&&... args) {
+ return global.create_simple_usertype<Class, CTor0, CTor...>(std::forward<Args>(args)...);
+ }
+
+ template<typename Class, typename... CArgs, typename... Args>
+ simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) {
+ return global.create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
+ }
+
+ template<bool read_only = true, typename... Args>
+ state_view& new_enum(const std::string& name, Args&&... args) {
+ global.new_enum<read_only>(name, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Fx>
+ void for_each(Fx&& fx) {
+ global.for_each(std::forward<Fx>(fx));
+ }
+
+ template<typename T>
+ proxy<global_table&, T> operator[](T&& key) {
+ return global[std::forward<T>(key)];
+ }
+
+ template<typename T>
+ proxy<const global_table&, T> operator[](T&& key) const {
+ return global[std::forward<T>(key)];
+ }
+
+ template<typename Sig, typename... Args, typename Key>
+ state_view& set_function(Key&& key, Args&&... args) {
+ global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template<typename... Args, typename Key>
+ state_view& set_function(Key&& key, Args&&... args) {
+ global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Name>
+ table create_table(Name&& name, int narr = 0, int nrec = 0) {
+ return global.create(std::forward<Name>(name), narr, nrec);
+ }
+
+ template <typename Name, typename Key, typename Value, typename... Args>
+ table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename Name, typename... Args>
+ table create_named_table(Name&& name, Args&&... args) {
+ table x = global.create_with(std::forward<Args>(args)...);
+ global.set(std::forward<Name>(name), x);
+ return x;
+ }
+
+ table create_table(int narr = 0, int nrec = 0) {
+ return create_table(lua_state(), narr, nrec);
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ table create_table_with(Args&&... args) {
+ return create_table_with(lua_state(), std::forward<Args>(args)...);
+ }
+
+ static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) {
+ return global_table::create(L, narr, nrec);
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static inline table create_table_with(lua_State* L, Args&&... args) {
+ return global_table::create_with(L, std::forward<Args>(args)...);
+ }
+ };
+} // sol
+
+// end of sol/state_view.hpp
+
+namespace sol {
+ inline int default_at_panic(lua_State* L) {
+#ifdef SOL_NO_EXCEPTIONS
+ (void)L;
+ return -1;
+#else
+ const char* message = lua_tostring(L, -1);
+ if (message) {
+ std::string err = message;
+ lua_pop(L, 1);
+ throw error(err);
+ }
+ throw error(std::string("An unexpected error occurred and forced the lua state to call atpanic"));
+#endif
+ }
+
+ inline int default_error_handler(lua_State*L) {
+ using namespace sol;
+ std::string msg = "An unknown error has triggered the default error handler";
+ optional<string_detail::string_shim> maybetopmsg = stack::check_get<string_detail::string_shim>(L, 1);
+ if (maybetopmsg) {
+ const string_detail::string_shim& topmsg = maybetopmsg.value();
+ msg.assign(topmsg.c_str(), topmsg.size());
+ }
+ luaL_traceback(L, L, msg.c_str(), 1);
+ optional<string_detail::string_shim> maybetraceback = stack::check_get<string_detail::string_shim>(L, -1);
+ if (maybetraceback) {
+ const string_detail::string_shim& traceback = maybetraceback.value();
+ msg.assign(traceback.c_str(), traceback.size());
+ }
+ return stack::push(L, msg);
+ }
+
+ class state : private std::unique_ptr<lua_State, void(*)(lua_State*)>, public state_view {
+ private:
+ typedef std::unique_ptr<lua_State, void(*)(lua_State*)> unique_base;
+ public:
+ state(lua_CFunction panic = default_at_panic) : unique_base(luaL_newstate(), lua_close),
+ state_view(unique_base::get()) {
+ set_panic(panic);
+ stack::luajit_exception_handler(unique_base::get());
+ }
+
+ state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr) : unique_base(lua_newstate(alfunc, alpointer), lua_close),
+ state_view(unique_base::get()) {
+ set_panic(panic);
+ sol::protected_function::set_default_handler(sol::object(lua_state(), in_place, default_error_handler));
+ stack::luajit_exception_handler(unique_base::get());
+ }
+
+ state(const state&) = delete;
+ state(state&&) = default;
+ state& operator=(const state&) = delete;
+ state& operator=(state&& that) {
+ state_view::operator=(std::move(that));
+ unique_base::operator=(std::move(that));
+ return *this;
+ }
+
+ using state_view::get;
+
+ ~state() {
+ auto& handler = protected_function::get_default_handler();
+ if (handler.lua_state() == this->lua_state()) {
+ protected_function::set_default_handler(reference());
+ }
+ }
+ };
+} // sol
+
+// end of sol/state.hpp
+
+// beginning of sol/coroutine.hpp
+
+// beginning of sol/thread.hpp
+
+namespace sol {
+ struct lua_thread_state {
+ lua_State* L;
+ operator lua_State* () const {
+ return L;
+ }
+ lua_State* operator-> () const {
+ return L;
+ }
+ };
+
+ namespace stack {
+
+ template <>
+ struct pusher<lua_thread_state> {
+ int push(lua_State*, lua_thread_state lts) {
+ lua_pushthread(lts.L);
+ return 1;
+ }
+ };
+
+ template <>
+ struct getter<lua_thread_state> {
+ lua_thread_state get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ lua_thread_state lts{ lua_tothread(L, index) };
+ return lts;
+ }
+ };
+
+ template <>
+ struct check_getter<lua_thread_state> {
+ template <typename Handler>
+ optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ lua_thread_state lts{ lua_tothread(L, index) };
+ if (lts.L == nullptr) {
+ handler(L, index, type::thread, type_of(L, index));
+ return nullopt;
+ }
+ tracking.use(1);
+ return lts;
+ }
+ };
+
+ }
+
+#if SOL_LUA_VERSION < 502
+ inline lua_State* main_thread(lua_State*, lua_State* backup_if_unsupported = nullptr) {
+ return backup_if_unsupported;
+ }
+#else
+ inline lua_State* main_thread(lua_State* L, lua_State* = nullptr) {
+ lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
+ lua_thread_state s = stack::pop<lua_thread_state>(L);
+ return s.L;
+ }
+#endif // Lua 5.2+ has the main thread getter
+
+ class thread : public reference {
+ public:
+ thread() noexcept = default;
+ thread(const thread&) = default;
+ thread(thread&&) = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, thread>>, std::is_base_of<reference, meta::unqualified_t<T>>> = meta::enabler>
+ thread(T&& r) : reference(std::forward<T>(r)) {}
+ thread(const stack_reference& r) : thread(r.lua_state(), r.stack_index()) {};
+ thread(stack_reference&& r) : thread(r.lua_state(), r.stack_index()) {};
+ thread& operator=(const thread&) = default;
+ thread& operator=(thread&&) = default;
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ thread(lua_State* L, T&& r) : thread(L, sol::ref_index(r.registry_index())) {}
+ thread(lua_State* L, int index = -1) : reference(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ type_assert(L, index, type::thread);
+#endif // Safety
+ }
+ thread(lua_State* L, ref_index index) : reference(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ type_assert(L, -1, type::thread);
+#endif // Safety
+ }
+ thread(lua_State* L, lua_State* actualthread) : thread(L, lua_thread_state{ actualthread }) {}
+ thread(lua_State* L, sol::this_state actualthread) : thread(L, lua_thread_state{ actualthread.L }) {}
+ thread(lua_State* L, lua_thread_state actualthread) : reference(L, -stack::push(L, actualthread)) {
+#ifdef SOL_CHECK_ARGUMENTS
+ type_assert(L, -1, type::thread);
+#endif // Safety
+ lua_pop(L, 1);
+ }
+
+ state_view state() const {
+ return state_view(this->thread_state());
+ }
+
+ bool is_main_thread() const {
+ int ismainthread = lua_pushthread(this->thread_state());
+ lua_pop(this->thread_state(), 1);
+ return ismainthread == 1;
+ }
+
+ lua_State* thread_state() const {
+ auto pp = stack::push_pop(*this);
+ lua_State* lthread = lua_tothread(lua_state(), -1);
+ return lthread;
+ }
+
+ thread_status status() const {
+ lua_State* lthread = thread_state();
+ thread_status lstat = static_cast<thread_status>(lua_status(lthread));
+ if (lstat != thread_status::ok && lua_gettop(lthread) == 0) {
+ // No thing on the thread's stack means its dead
+ return thread_status::dead;
+ }
+ return lstat;
+ }
+
+ thread create() {
+ return create(lua_state());
+ }
+
+ static thread create(lua_State* L) {
+ lua_newthread(L);
+ thread result(L);
+ lua_pop(L, 1);
+ return result;
+ }
+ };
+} // sol
+
+// end of sol/thread.hpp
+
+namespace sol {
+ class coroutine : public reference {
+ private:
+ call_status stats = call_status::yielded;
+
+ void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) {
+#if SOL_LUA_VERSION < 502
+ stats = static_cast<call_status>(lua_resume(lua_state(), static_cast<int>(argcount)));
+#else
+ stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
+#endif // Lua 5.1 compat
+ }
+
+ template<std::size_t... I, typename... Ret>
+ auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) {
+ luacall(n, sizeof...(Ret));
+ return stack::pop<std::tuple<Ret...>>(lua_state());
+ }
+
+ template<std::size_t I, typename Ret>
+ Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) {
+ luacall(n, 1);
+ return stack::pop<Ret>(lua_state());
+ }
+
+ template <std::size_t I>
+ void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) {
+ luacall(n, 0);
+ }
+
+ protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) {
+ int stacksize = lua_gettop(lua_state());
+ int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
+ luacall(n, LUA_MULTRET);
+ int poststacksize = lua_gettop(lua_state());
+ int returncount = poststacksize - (firstreturn - 1);
+ if (error()) {
+ return protected_function_result(lua_state(), lua_absindex(lua_state(), -1), 1, returncount, status());
+ }
+ return protected_function_result(lua_state(), firstreturn, returncount, returncount, status());
+ }
+
+ public:
+ coroutine() noexcept = default;
+ coroutine(const coroutine&) noexcept = default;
+ coroutine(coroutine&&) noexcept = default;
+ coroutine& operator=(const coroutine&) noexcept = default;
+ coroutine& operator=(coroutine&&) noexcept = default;
+ template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, coroutine>>, std::is_base_of<reference, meta::unqualified_t<T>>> = meta::enabler>
+ coroutine(T&& r) : reference(std::forward<T>(r)) {}
+ coroutine(lua_nil_t r) : reference(r) {}
+ coroutine(const stack_reference& r) noexcept : coroutine(r.lua_state(), r.stack_index()) {}
+ coroutine(stack_reference&& r) noexcept : coroutine(r.lua_state(), r.stack_index()) {}
+ template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
+ coroutine(lua_State* L, T&& r) : coroutine(L, sol::ref_index(r.registry_index())) {}
+ coroutine(lua_State* L, int index = -1) : reference(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ stack::check<coroutine>(L, index, type_panic);
+#endif // Safety
+ }
+ coroutine(lua_State* L, ref_index index) : reference(L, index) {
+#ifdef SOL_CHECK_ARGUMENTS
+ auto pp = stack::push_pop(*this);
+ stack::check<coroutine>(L, -1, type_panic);
+#endif // Safety
+ }
+
+ call_status status() const noexcept {
+ return stats;
+ }
+
+ bool error() const noexcept {
+ call_status cs = status();
+ return cs != call_status::ok && cs != call_status::yielded;
+ }
+
+ bool runnable() const noexcept {
+ return valid()
+ && (status() == call_status::yielded);
+ }
+
+ explicit operator bool() const noexcept {
+ return runnable();
+ }
+
+ template<typename... Args>
+ protected_function_result operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) operator()(types<Ret...>, Args&&... args) {
+ return call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template<typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ push();
+ int pushcount = stack::multi_push(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
+ }
+ };
+} // sol
+
+// end of sol/coroutine.hpp
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#elif defined _MSC_VER
+#pragma warning( push )
+#endif // g++
+
+#ifdef SOL_INSIDE_UNREAL
+#ifdef SOL_INSIDE_UNREAL_REMOVED_CHECK
+#define check(expr) { if(UNLIKELY(!(expr))) { FDebug::LogAssertFailedMessage( #expr, __FILE__, __LINE__ ); _DebugBreakAndPromptForRemote(); FDebug::AssertFailed( #expr, __FILE__, __LINE__ ); CA_ASSUME(false); } }}
+#endif
+#endif // Unreal Engine 4 Bullshit
+
+#endif // SOL_HPP
+// end of sol.hpp
+
+#endif // SOL_SINGLE_INCLUDE_HPP