summaryrefslogtreecommitdiff
path: root/external/lua-5.3.3/src/ltable.c
blob: 7e15b71bad452d69744fd984bd0688d7e5fd62cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/*
** $Id: ltable.c,v 2.117 2015/11/19 19:16:22 roberto Exp $
** Lua tables (hash)
** See Copyright Notice in lua.h
*/

#define ltable_c
#define LUA_CORE

#include "lprefix.h"


/*
** Implementation of tables (aka arrays, objects, or hash tables).
** Tables keep its elements in two parts: an array part and a hash part.
** Non-negative integer keys are all candidates to be kept in the array
** part. The actual size of the array is the largest 'n' such that
** more than half the slots between 1 and n are in use.
** Hash uses a mix of chained scatter table with Brent's variation.
** A main invariant of these tables is that, if an element is not
** in its main position (i.e. the 'original' position that its hash gives
** to it), then the colliding element is in its own main position.
** Hence even when the load factor reaches 100%, performance remains good.
*/

#include <math.h>
#include <limits.h>

#include "lua.h"

#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "lvm.h"


/*
** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
** the largest integer such that MAXASIZE fits in an unsigned int.
*/
#define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
#define MAXASIZE	(1u << MAXABITS)

/*
** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
** integer such that 2^MAXHBITS fits in a signed int. (Note that the
** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
** fits comfortably in an unsigned int.)
*/
#define MAXHBITS	(MAXABITS - 1)


#define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))

#define hashstr(t,str)		hashpow2(t, (str)->hash)
#define hashboolean(t,p)	hashpow2(t, p)
#define hashint(t,i)		hashpow2(t, i)


/*
** for some types, it is better to avoid modulus by power of 2, as
** they tend to have many 2 factors.
*/
#define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))


#define hashpointer(t,p)	hashmod(t, point2uint(p))


#define dummynode		(&dummynode_)

#define isdummy(n)		((n) == dummynode)

static const Node dummynode_ = {
  {NILCONSTANT},  /* value */
  {{NILCONSTANT, 0}}  /* key */
};


/*
** Hash for floating-point numbers.
** The main computation should be just
**     n = frexp(n, &i); return (n * INT_MAX) + i
** but there are some numerical subtleties.
** In a two-complement representation, INT_MAX does not has an exact
** representation as a float, but INT_MIN does; because the absolute
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
** INT_MIN.
*/
#if !defined(l_hashfloat)
static int l_hashfloat (lua_Number n) {
  int i;
  lua_Integer ni;
  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
    lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
    return 0;
  }
  else {  /* normal case */
    unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
    return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
  }
}
#endif


/*
** returns the 'main' position of an element in a table (that is, the index
** of its hash value)
*/
static Node *mainposition (const Table *t, const TValue *key) {
  switch (ttype(key)) {
    case LUA_TNUMINT:
      return hashint(t, ivalue(key));
    case LUA_TNUMFLT:
      return hashmod(t, l_hashfloat(fltvalue(key)));
    case LUA_TSHRSTR:
      return hashstr(t, tsvalue(key));
    case LUA_TLNGSTR:
      return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
    case LUA_TBOOLEAN:
      return hashboolean(t, bvalue(key));
    case LUA_TLIGHTUSERDATA:
      return hashpointer(t, pvalue(key));
    case LUA_TLCF:
      return hashpointer(t, fvalue(key));
    default:
      lua_assert(!ttisdeadkey(key));
      return hashpointer(t, gcvalue(key));
  }
}


/*
** returns the index for 'key' if 'key' is an appropriate key to live in
** the array part of the table, 0 otherwise.
*/
static unsigned int arrayindex (const TValue *key) {
  if (ttisinteger(key)) {
    lua_Integer k = ivalue(key);
    if (0 < k && (lua_Unsigned)k <= MAXASIZE)
      return cast(unsigned int, k);  /* 'key' is an appropriate array index */
  }
  return 0;  /* 'key' did not match some condition */
}


/*
** returns the index of a 'key' for table traversals. First goes all
** elements in the array part, then elements in the hash part. The
** beginning of a traversal is signaled by 0.
*/
static unsigned int findindex (lua_State *L, Table *t, StkId key) {
  unsigned int i;
  if (ttisnil(key)) return 0;  /* first iteration */
  i = arrayindex(key);
  if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */
    return i;  /* yes; that's the index */
  else {
    int nx;
    Node *n = mainposition(t, key);
    for (;;) {  /* check whether 'key' is somewhere in the chain */
      /* key may be dead already, but it is ok to use it in 'next' */
      if (luaV_rawequalobj(gkey(n), key) ||
            (ttisdeadkey(gkey(n)) && iscollectable(key) &&
             deadvalue(gkey(n)) == gcvalue(key))) {
        i = cast_int(n - gnode(t, 0));  /* key index in hash table */
        /* hash elements are numbered after array ones */
        return (i + 1) + t->sizearray;
      }
      nx = gnext(n);
      if (nx == 0)
        luaG_runerror(L, "invalid key to 'next'");  /* key not found */
      else n += nx;
    }
  }
}


int luaH_next (lua_State *L, Table *t, StkId key) {
  unsigned int i = findindex(L, t, key);  /* find original element */
  for (; i < t->sizearray; i++) {  /* try first array part */
    if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
      setivalue(key, i + 1);
      setobj2s(L, key+1, &t->array[i]);
      return 1;
    }
  }
  for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */
    if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
      setobj2s(L, key, gkey(gnode(t, i)));
      setobj2s(L, key+1, gval(gnode(t, i)));
      return 1;
    }
  }
  return 0;  /* no more elements */
}


/*
** {=============================================================
** Rehash
** ==============================================================
*/

/*
** Compute the optimal size for the array part of table 't'. 'nums' is a
** "count array" where 'nums[i]' is the number of integers in the table
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
** integer keys in the table and leaves with the number of keys that
** will go to the array part; return the optimal size.
*/
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  int i;
  unsigned int twotoi;  /* 2^i (candidate for optimal size) */
  unsigned int a = 0;  /* number of elements smaller than 2^i */
  unsigned int na = 0;  /* number of elements to go to array part */
  unsigned int optimal = 0;  /* optimal size for array part */
  /* loop while keys can fill more than half of total size */
  for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
    if (nums[i] > 0) {
      a += nums[i];
      if (a > twotoi/2) {  /* more than half elements present? */
        optimal = twotoi;  /* optimal size (till now) */
        na = a;  /* all elements up to 'optimal' will go to array part */
      }
    }
  }
  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  *pna = na;
  return optimal;
}


static int countint (const TValue *key, unsigned int *nums) {
  unsigned int k = arrayindex(key);
  if (k != 0) {  /* is 'key' an appropriate array index? */
    nums[luaO_ceillog2(k)]++;  /* count as such */
    return 1;
  }
  else
    return 0;
}


/*
** Count keys in array part of table 't': Fill 'nums[i]' with
** number of keys that will go into corresponding slice and return
** total number of non-nil keys.
*/
static unsigned int numusearray (const Table *t, unsigned int *nums) {
  int lg;
  unsigned int ttlg;  /* 2^lg */
  unsigned int ause = 0;  /* summation of 'nums' */
  unsigned int i = 1;  /* count to traverse all array keys */
  /* traverse each slice */
  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
    unsigned int lc = 0;  /* counter */
    unsigned int lim = ttlg;
    if (lim > t->sizearray) {
      lim = t->sizearray;  /* adjust upper limit */
      if (i > lim)
        break;  /* no more elements to count */
    }
    /* count elements in range (2^(lg - 1), 2^lg] */
    for (; i <= lim; i++) {
      if (!ttisnil(&t->array[i-1]))
        lc++;
    }
    nums[lg] += lc;
    ause += lc;
  }
  return ause;
}


static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  int totaluse = 0;  /* total number of elements */
  int ause = 0;  /* elements added to 'nums' (can go to array part) */
  int i = sizenode(t);
  while (i--) {
    Node *n = &t->node[i];
    if (!ttisnil(gval(n))) {
      ause += countint(gkey(n), nums);
      totaluse++;
    }
  }
  *pna += ause;
  return totaluse;
}


static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
  unsigned int i;
  luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
  for (i=t->sizearray; i<size; i++)
     setnilvalue(&t->array[i]);
  t->sizearray = size;
}


static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  int lsize;
  if (size == 0) {  /* no elements to hash part? */
    t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
    lsize = 0;
  }
  else {
    int i;
    lsize = luaO_ceillog2(size);
    if (lsize > MAXHBITS)
      luaG_runerror(L, "table overflow");
    size = twoto(lsize);
    t->node = luaM_newvector(L, size, Node);
    for (i = 0; i < (int)size; i++) {
      Node *n = gnode(t, i);
      gnext(n) = 0;
      setnilvalue(wgkey(n));
      setnilvalue(gval(n));
    }
  }
  t->lsizenode = cast_byte(lsize);
  t->lastfree = gnode(t, size);  /* all positions are free */
}


void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
                                          unsigned int nhsize) {
  unsigned int i;
  int j;
  unsigned int oldasize = t->sizearray;
  int oldhsize = t->lsizenode;
  Node *nold = t->node;  /* save old hash ... */
  if (nasize > oldasize)  /* array part must grow? */
    setarrayvector(L, t, nasize);
  /* create new hash part with appropriate size */
  setnodevector(L, t, nhsize);
  if (nasize < oldasize) {  /* array part must shrink? */
    t->sizearray = nasize;
    /* re-insert elements from vanishing slice */
    for (i=nasize; i<oldasize; i++) {
      if (!ttisnil(&t->array[i]))
        luaH_setint(L, t, i + 1, &t->array[i]);
    }
    /* shrink array */
    luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
  }
  /* re-insert elements from hash part */
  for (j = twoto(oldhsize) - 1; j >= 0; j--) {
    Node *old = nold + j;
    if (!ttisnil(gval(old))) {
      /* doesn't need barrier/invalidate cache, as entry was
         already present in the table */
      setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
    }
  }
  if (!isdummy(nold))
    luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old hash */
}


void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  int nsize = isdummy(t->node) ? 0 : sizenode(t);
  luaH_resize(L, t, nasize, nsize);
}

/*
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
*/
static void rehash (lua_State *L, Table *t, const TValue *ek) {
  unsigned int asize;  /* optimal size for array part */
  unsigned int na;  /* number of keys in the array part */
  unsigned int nums[MAXABITS + 1];
  int i;
  int totaluse;
  for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
  na = numusearray(t, nums);  /* count keys in array part */
  totaluse = na;  /* all those keys are integer keys */
  totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
  /* count extra key */
  na += countint(ek, nums);
  totaluse++;
  /* compute new size for array part */
  asize = computesizes(nums, &na);
  /* resize the table to new computed sizes */
  luaH_resize(L, t, asize, totaluse - na);
}



/*
** }=============================================================
*/


Table *luaH_new (lua_State *L) {
  GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
  Table *t = gco2t(o);
  t->metatable = NULL;
  t->flags = cast_byte(~0);
  t->array = NULL;
  t->sizearray = 0;
  setnodevector(L, t, 0);
  return t;
}


void luaH_free (lua_State *L, Table *t) {
  if (!isdummy(t->node))
    luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
  luaM_freearray(L, t->array, t->sizearray);
  luaM_free(L, t);
}


static Node *getfreepos (Table *t) {
  while (t->lastfree > t->node) {
    t->lastfree--;
    if (ttisnil(gkey(t->lastfree)))
      return t->lastfree;
  }
  return NULL;  /* could not find a free place */
}



/*
** inserts a new key into a hash table; first, check whether key's main
** position is free. If not, check whether colliding node is in its main
** position or not: if it is not, move colliding node to an empty place and
** put new key in its main position; otherwise (colliding node is in its main
** position), new key goes to an empty position.
*/
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
  Node *mp;
  TValue aux;
  if (ttisnil(key)) luaG_runerror(L, "table index is nil");
  else if (ttisfloat(key)) {
    lua_Integer k;
    if (luaV_tointeger(key, &k, 0)) {  /* index is int? */
      setivalue(&aux, k);
      key = &aux;  /* insert it as an integer */
    }
    else if (luai_numisnan(fltvalue(key)))
      luaG_runerror(L, "table index is NaN");
  }
  mp = mainposition(t, key);
  if (!ttisnil(gval(mp)) || isdummy(mp)) {  /* main position is taken? */
    Node *othern;
    Node *f = getfreepos(t);  /* get a free place */
    if (f == NULL) {  /* cannot find a free place? */
      rehash(L, t, key);  /* grow table */
      /* whatever called 'newkey' takes care of TM cache */
      return luaH_set(L, t, key);  /* insert key into grown table */
    }
    lua_assert(!isdummy(f));
    othern = mainposition(t, gkey(mp));
    if (othern != mp) {  /* is colliding node out of its main position? */
      /* yes; move colliding node into free position */
      while (othern + gnext(othern) != mp)  /* find previous */
        othern += gnext(othern);
      gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
      *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
      if (gnext(mp) != 0) {
        gnext(f) += cast_int(mp - f);  /* correct 'next' */
        gnext(mp) = 0;  /* now 'mp' is free */
      }
      setnilvalue(gval(mp));
    }
    else {  /* colliding node is in its own main position */
      /* new node will go into free position */
      if (gnext(mp) != 0)
        gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
      else lua_assert(gnext(f) == 0);
      gnext(mp) = cast_int(f - mp);
      mp = f;
    }
  }
  setnodekey(L, &mp->i_key, key);
  luaC_barrierback(L, t, key);
  lua_assert(ttisnil(gval(mp)));
  return gval(mp);
}


/*
** search function for integers
*/
const TValue *luaH_getint (Table *t, lua_Integer key) {
  /* (1 <= key && key <= t->sizearray) */
  if (l_castS2U(key) - 1 < t->sizearray)
    return &t->array[key - 1];
  else {
    Node *n = hashint(t, key);
    for (;;) {  /* check whether 'key' is somewhere in the chain */
      if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
        return gval(n);  /* that's it */
      else {
        int nx = gnext(n);
        if (nx == 0) break;
        n += nx;
      }
    }
    return luaO_nilobject;
  }
}


/*
** search function for short strings
*/
const TValue *luaH_getshortstr (Table *t, TString *key) {
  Node *n = hashstr(t, key);
  lua_assert(key->tt == LUA_TSHRSTR);
  for (;;) {  /* check whether 'key' is somewhere in the chain */
    const TValue *k = gkey(n);
    if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
      return gval(n);  /* that's it */
    else {
      int nx = gnext(n);
      if (nx == 0)
        return luaO_nilobject;  /* not found */
      n += nx;
    }
  }
}


/*
** "Generic" get version. (Not that generic: not valid for integers,
** which may be in array part, nor for floats with integral values.)
*/
static const TValue *getgeneric (Table *t, const TValue *key) {
  Node *n = mainposition(t, key);
  for (;;) {  /* check whether 'key' is somewhere in the chain */
    if (luaV_rawequalobj(gkey(n), key))
      return gval(n);  /* that's it */
    else {
      int nx = gnext(n);
      if (nx == 0)
        return luaO_nilobject;  /* not found */
      n += nx;
    }
  }
}


const TValue *luaH_getstr (Table *t, TString *key) {
  if (key->tt == LUA_TSHRSTR)
    return luaH_getshortstr(t, key);
  else {  /* for long strings, use generic case */
    TValue ko;
    setsvalue(cast(lua_State *, NULL), &ko, key);
    return getgeneric(t, &ko);
  }
}


/*
** main search function
*/
const TValue *luaH_get (Table *t, const TValue *key) {
  switch (ttype(key)) {
    case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
    case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
    case LUA_TNIL: return luaO_nilobject;
    case LUA_TNUMFLT: {
      lua_Integer k;
      if (luaV_tointeger(key, &k, 0)) /* index is int? */
        return luaH_getint(t, k);  /* use specialized version */
      /* else... */
    }  /* FALLTHROUGH */
    default:
      return getgeneric(t, key);
  }
}


/*
** beware: when using this function you probably need to check a GC
** barrier and invalidate the TM cache.
*/
TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  const TValue *p = luaH_get(t, key);
  if (p != luaO_nilobject)
    return cast(TValue *, p);
  else return luaH_newkey(L, t, key);
}


void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  const TValue *p = luaH_getint(t, key);
  TValue *cell;
  if (p != luaO_nilobject)
    cell = cast(TValue *, p);
  else {
    TValue k;
    setivalue(&k, key);
    cell = luaH_newkey(L, t, &k);
  }
  setobj2t(L, cell, value);
}


static int unbound_search (Table *t, unsigned int j) {
  unsigned int i = j;  /* i is zero or a present index */
  j++;
  /* find 'i' and 'j' such that i is present and j is not */
  while (!ttisnil(luaH_getint(t, j))) {
    i = j;
    if (j > cast(unsigned int, MAX_INT)/2) {  /* overflow? */
      /* table was built with bad purposes: resort to linear search */
      i = 1;
      while (!ttisnil(luaH_getint(t, i))) i++;
      return i - 1;
    }
    j *= 2;
  }
  /* now do a binary search between them */
  while (j - i > 1) {
    unsigned int m = (i+j)/2;
    if (ttisnil(luaH_getint(t, m))) j = m;
    else i = m;
  }
  return i;
}


/*
** Try to find a boundary in table 't'. A 'boundary' is an integer index
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
*/
int luaH_getn (Table *t) {
  unsigned int j = t->sizearray;
  if (j > 0 && ttisnil(&t->array[j - 1])) {
    /* there is a boundary in the array part: (binary) search for it */
    unsigned int i = 0;
    while (j - i > 1) {
      unsigned int m = (i+j)/2;
      if (ttisnil(&t->array[m - 1])) j = m;
      else i = m;
    }
    return i;
  }
  /* else must find a boundary in hash part */
  else if (isdummy(t->node))  /* hash part is empty? */
    return j;  /* that is easy... */
  else return unbound_search(t, j);
}



#if defined(LUA_DEBUG)

Node *luaH_mainposition (const Table *t, const TValue *key) {
  return mainposition(t, key);
}

int luaH_isdummy (Node *n) { return isdummy(n); }

#endif