1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
/* bignum-random-prime.c
Generation of random provable primes.
Copyright (C) 2010, 2013 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif
#include <assert.h>
#include <stdlib.h>
#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif
#include "bignum.h"
#include "macros.h"
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
of up to 20 bits. */
#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)
/* A 20-bit number x is divisible by p iff
((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
uint32_t inverse; /* p^{-1} (mod 2^20) */
uint32_t limit; /* floor( (2^20 - 1) / p) */
};
static const uint16_t
primes[NPRIMES] = {
3,5,7,11,13,17,19,23,
29,31,37,41,43,47,53,59,
61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,
139,149,151,157,163,167,173,179,
181,191,193,197,199,211,223,227,
229,233,239,241,251,257,263,269,
271,277,281,283,293,307,311,313,
317,331,337,347,349,353,359,367,
373,379,383,389,397,401,409,419,
421,431,433,439,443,449,457,461,
463,467,479,487,491,499,503,509,
521,523,541,547,557,563,569,571,
577,587,593,599,601,607,613,617,
619,631,641,643,647,653,659,661,
673,677,683,691,701,709,719,727,
733,739,743,751,757,761,769,773,
787,797,809,811,821,823,827,829,
839,853,857,859,863,877,881,883,
887,907,911,919,929,937,941,947,
953,967,971,977,983,991,997,1009,
1013,1019,1021,
};
static const uint32_t
prime_square[NPRIMES+1] = {
9,25,49,121,169,289,361,529,
841,961,1369,1681,1849,2209,2809,3481,
3721,4489,5041,5329,6241,6889,7921,9409,
10201,10609,11449,11881,12769,16129,17161,18769,
19321,22201,22801,24649,26569,27889,29929,32041,
32761,36481,37249,38809,39601,44521,49729,51529,
52441,54289,57121,58081,63001,66049,69169,72361,
73441,76729,78961,80089,85849,94249,96721,97969,
100489,109561,113569,120409,121801,124609,128881,134689,
139129,143641,146689,151321,157609,160801,167281,175561,
177241,185761,187489,192721,196249,201601,208849,212521,
214369,218089,229441,237169,241081,249001,253009,259081,
271441,273529,292681,299209,310249,316969,323761,326041,
332929,344569,351649,358801,361201,368449,375769,380689,
383161,398161,410881,413449,418609,426409,434281,436921,
452929,458329,466489,477481,491401,502681,516961,528529,
537289,546121,552049,564001,573049,579121,591361,597529,
619369,635209,654481,657721,674041,677329,683929,687241,
703921,727609,734449,737881,744769,769129,776161,779689,
786769,822649,829921,844561,863041,877969,885481,896809,
908209,935089,942841,954529,966289,982081,994009,1018081,
1026169,1038361,1042441,1L<<20
};
static const struct trial_div_info
trial_div_table[NPRIMES] = {
{699051,349525},{838861,209715},{748983,149796},{953251,95325},
{806597,80659},{61681,61680},{772635,55188},{866215,45590},
{180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
{48771,24385},{870095,22310},{217629,19784},{710899,17772},
{825109,17189},{281707,15650},{502135,14768},{258553,14364},
{464559,13273},{934875,12633},{1001449,11781},{172961,10810},
{176493,10381},{203607,10180},{568387,9799},{788837,9619},
{770193,9279},{1032063,8256},{544299,8004},{619961,7653},
{550691,7543},{182973,7037},{229159,6944},{427445,6678},
{701195,6432},{370455,6278},{90917,6061},{175739,5857},
{585117,5793},{225087,5489},{298817,5433},{228877,5322},
{442615,5269},{546651,4969},{244511,4702},{83147,4619},
{769261,4578},{841561,4500},{732687,4387},{978961,4350},
{133683,4177},{65281,4080},{629943,3986},{374213,3898},
{708079,3869},{280125,3785},{641833,3731},{618771,3705},
{930477,3578},{778747,3415},{623751,3371},{40201,3350},
{122389,3307},{950371,3167},{1042353,3111},{18131,3021},
{285429,3004},{549537,2970},{166487,2920},{294287,2857},
{919261,2811},{636339,2766},{900735,2737},{118605,2695},
{10565,2641},{188273,2614},{115369,2563},{735755,2502},
{458285,2490},{914767,2432},{370513,2421},{1027079,2388},
{629619,2366},{462401,2335},{649337,2294},{316165,2274},
{484655,2264},{65115,2245},{326175,2189},{1016279,2153},
{990915,2135},{556859,2101},{462791,2084},{844629,2060},
{404537,2012},{457123,2004},{577589,1938},{638347,1916},
{892325,1882},{182523,1862},{1002505,1842},{624371,1836},
{69057,1817},{210787,1786},{558769,1768},{395623,1750},
{992745,1744},{317855,1727},{384877,1710},{372185,1699},
{105027,1693},{423751,1661},{408961,1635},{908331,1630},
{74551,1620},{36933,1605},{617371,1591},{506045,1586},
{24929,1558},{529709,1548},{1042435,1535},{31867,1517},
{166037,1495},{928781,1478},{508975,1458},{4327,1442},
{779637,1430},{742091,1418},{258263,1411},{879631,1396},
{72029,1385},{728905,1377},{589057,1363},{348621,1356},
{671515,1332},{710453,1315},{84249,1296},{959363,1292},
{685853,1277},{467591,1274},{646643,1267},{683029,1264},
{439927,1249},{254461,1229},{660713,1223},{554195,1220},
{202911,1215},{753253,1195},{941457,1190},{776635,1187},
{509511,1182},{986147,1156},{768879,1151},{699431,1140},
{696417,1128},{86169,1119},{808997,1114},{25467,1107},
{201353,1100},{708087,1084},{1018339,1079},{341297,1073},
{434151,1066},{96287,1058},{950765,1051},{298257,1039},
{675933,1035},{167731,1029},{815445,1027},
};
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
1,3,5,10,17,30,53,96,171
};
/* Combined Miller-Rabin test to the base a, and checking the
conditions from Pocklington's theorem, nm1dq holds (n-1)/q, with q
prime. */
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
mpz_t r;
mpz_t y;
int is_prime = 0;
/* Avoid the mp_bitcnt_t type for compatibility with older GMP
versions. */
unsigned k;
unsigned j;
VERBOSE(".");
if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
return 0;
mpz_init(r);
mpz_init(y);
k = mpz_scan1(nm1, 0);
assert(k > 0);
mpz_fdiv_q_2exp (r, nm1, k);
mpz_powm(y, a, r, n);
if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
goto passed_miller_rabin;
for (j = 1; j < k; j++)
{
mpz_powm_ui (y, y, 2, n);
if (mpz_cmp_ui (y, 1) == 0)
break;
if (mpz_cmp (y, nm1) == 0)
{
passed_miller_rabin:
/* We know that a^{n-1} = 1 (mod n)
Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */
VERBOSE("x");
mpz_powm(y, a, nm1dq, n);
mpz_sub_ui(y, y, 1);
mpz_gcd(y, y, n);
is_prime = mpz_cmp_ui (y, 1) == 0;
VERBOSE(is_prime ? "\n" : "");
break;
}
}
mpz_clear(r);
mpz_clear(y);
return is_prime;
}
/* The most basic variant of Pocklingtons theorem:
Assume that q^e | (n-1), with q prime. If we can find an a such that
a^{n-1} = 1 (mod n)
gcd(a^{(n-1)/q} - 1, n) = 1
then any prime divisor p of n satisfies p = 1 (mod q^e).
Proof (Cohen, 8.3.2): Assume p is a prime factor of n. The central
idea of the proof is to consider the order, modulo p, of a. Denote
this by d.
a^{n-1} = 1 (mod n) implies a^{n-1} = 1 (mod p), hence d | (n-1).
Next, the condition gcd(a^{(n-1)/q} - 1, n) = 1 implies that
a^{(n-1)/q} != 1, hence d does not divide (n-1)/q. Since q is
prime, this means that q^e | d.
Finally, we have a^{p-1} = 1 (mod p), hence d | (p-1). So q^e | d |
(p-1), which gives the desired result: p = 1 (mod q^e).
* Variant, slightly stronger than Fact 4.59, HAC:
Assume n = 1 + 2rq, q an odd prime, r <= 2q, and
a^{n-1} = 1 (mod n)
gcd(a^{(n-1)/q} - 1, n) = 1
Then n is prime.
Proof: By Pocklington's theorem, any prime factor p satisfies p = 1
(mod q). Neither 1 or q+1 are primes, hence p >= 1 + 2q. If n is
composite, we have n >= (1+2q)^2. But the assumption r <= 2q
implies n <= 1 + 4q^2, a contradiction.
In bits, the requirement is that #n <= 2 #q, then
r = (n-1)/2q < 2^{#n - #q} <= 2^#q = 2 2^{#q-1}< 2 q
* Another variant with an extra test (Variant of Fact 4.42, HAC):
Assume n = 1 + 2rq, n odd, q an odd prime, 8 q^3 >= n
a^{n-1} = 1 (mod n)
gcd(a^{(n-1)/q} - 1, n) = 1
Also let x = floor(r / 2q), y = r mod 2q,
If y^2 - 4x is not a square, then n is prime.
Proof (adapted from Maurer, Journal of Cryptology, 8 (1995)):
Assume n is composite. There are at most two factors, both odd,
n = (1+2m_1 q)(1+2m_2 q) = 1 + 4 m_1 m_2 q^2 + 2 (m_1 + m_2) q
where we can assume m_1 >= m_2. Then the bound n <= 8 q^3 implies m_1
m_2 < 2q, restricting (m_1, m_2) to the domain 0 < m_2 <
sqrt(2q), 0 < m_1 < 2q / m_2.
We have the bound
m_1 + m_2 < 2q / m_2 + m_2 <= 2q + 1 (maximum value for m_2 = 1)
And the case m_1 = 2q, m_2 = 1 can be excluded, because it gives n
> 8q^3. So in fact, m_1 + m_2 < 2q.
Next, write r = (n-1)/2q = 2 m_1 m_2 q + m_1 + m_2.
If follows that m_1 + m_2 = y and m_1 m_2 = x. m_1 and m_2 are
thus the roots of the equation
m^2 - y m + x = 0
which has integer roots iff y^2 - 4 x is the square of an integer.
In bits, the requirement is that #n <= 3 #q, then
n < 2^#n <= 2^{3 #q} = 8 2^{3 (#q-1)} < 8 q^3
*/
/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
p0 must be of size >= ceil(bits/3). The extra factor q can be
omitted (then p0 and p0q should be equal). If top_bits_set is one,
the topmost two bits are set to one, suitable for RSA primes. Also
returns r = (p-1)/p0q. */
void
_nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
unsigned bits, int top_bits_set,
void *ctx, nettle_random_func *random,
const mpz_t p0,
const mpz_t q,
const mpz_t p0q)
{
mpz_t r_min, r_range, pm1, a, e;
int need_square_test;
unsigned p0_bits;
mpz_t x, y, p04;
p0_bits = mpz_sizeinbase (p0, 2);
assert (bits <= 3*p0_bits);
assert (bits > p0_bits);
need_square_test = (bits > 2 * p0_bits);
mpz_init (r_min);
mpz_init (r_range);
mpz_init (pm1);
mpz_init (a);
if (need_square_test)
{
mpz_init (x);
mpz_init (y);
mpz_init (p04);
mpz_mul_2exp (p04, p0, 2);
}
if (q)
mpz_init (e);
if (top_bits_set)
{
/* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
- 2 possible values. */
mpz_set_ui (r_min, 1);
mpz_mul_2exp (r_min, r_min, bits-3);
mpz_fdiv_q (r_min, r_min, p0q);
mpz_sub_ui (r_range, r_min, 2);
mpz_mul_ui (r_min, r_min, 3);
mpz_add_ui (r_min, r_min, 3);
}
else
{
/* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
mpz_set_ui (r_range, 1);
mpz_mul_2exp (r_range, r_range, bits-2);
mpz_fdiv_q (r_range, r_range, p0q);
mpz_add_ui (r_min, r_range, 1);
}
for (;;)
{
uint8_t buf[1];
nettle_mpz_random (r, ctx, random, r_range);
mpz_add (r, r, r_min);
/* Set p = 2*r*p0q + 1 */
mpz_mul_2exp(r, r, 1);
mpz_mul (pm1, r, p0q);
mpz_add_ui (p, pm1, 1);
assert(mpz_sizeinbase(p, 2) == bits);
/* Should use GMP trial division interface when that
materializes, we don't need any testing beyond trial
division. */
if (!mpz_probab_prime_p (p, 1))
continue;
random(ctx, sizeof(buf), buf);
mpz_set_ui (a, buf[0] + 2);
if (q)
{
mpz_mul (e, r, q);
if (!miller_rabin_pocklington(p, pm1, e, a))
continue;
if (need_square_test)
{
/* Our e corresponds to 2r in the theorem */
mpz_tdiv_qr (x, y, e, p04);
goto square_test;
}
}
else
{
if (!miller_rabin_pocklington(p, pm1, r, a))
continue;
if (need_square_test)
{
mpz_tdiv_qr (x, y, r, p04);
square_test:
/* We have r' = 2r, x = floor (r/2q) = floor(r'/2q),
and y' = r' - x 4q = 2 (r - x 2q) = 2y.
Then y^2 - 4x is a square iff y'^2 - 16 x is a
square. */
mpz_mul (y, y, y);
mpz_submul_ui (y, x, 16);
if (mpz_perfect_square_p (y))
continue;
}
}
/* If we passed all the tests, we have found a prime. */
break;
}
mpz_clear (r_min);
mpz_clear (r_range);
mpz_clear (pm1);
mpz_clear (a);
if (need_square_test)
{
mpz_clear (x);
mpz_clear (y);
mpz_clear (p04);
}
if (q)
mpz_clear (e);
}
/* Generate random prime of a given size. Maurer's algorithm (Alg.
6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
the variant in fips186-3). */
void
nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
void *random_ctx, nettle_random_func *random,
void *progress_ctx, nettle_progress_func *progress)
{
assert (bits >= 3);
if (bits <= 10)
{
unsigned first;
unsigned choices;
uint8_t buf;
assert (!top_bits_set);
random (random_ctx, sizeof(buf), &buf);
first = prime_by_size[bits-3];
choices = prime_by_size[bits-2] - first;
mpz_set_ui (p, primes[first + buf % choices]);
}
else if (bits <= 20)
{
unsigned long highbit;
uint8_t buf[3];
unsigned long x;
unsigned j;
assert (!top_bits_set);
highbit = 1L << (bits - 1);
again:
random (random_ctx, sizeof(buf), buf);
x = READ_UINT24(buf);
x &= (highbit - 1);
x |= highbit | 1;
for (j = 0; prime_square[j] <= x; j++)
{
unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
if (q <= trial_div_table[j].limit)
goto again;
}
mpz_set_ui (p, x);
}
else
{
mpz_t q, r;
mpz_init (q);
mpz_init (r);
/* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
in Handbook of Applied Cryptography (which seems to be
incorrect for odd k). */
nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
progress_ctx, progress);
_nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
random_ctx, random,
q, NULL, q);
if (progress)
progress (progress_ctx, 'x');
mpz_clear (q);
mpz_clear (r);
}
}
|