1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
/* rsa.h
The RSA publickey algorithm.
Copyright (C) 2001, 2002 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#ifndef NETTLE_RSA_H_INCLUDED
#define NETTLE_RSA_H_INCLUDED
#include "nettle-types.h"
#include "bignum.h"
#include "sha2.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Name mangling */
#define rsa_public_key_init nettle_rsa_public_key_init
#define rsa_public_key_clear nettle_rsa_public_key_clear
#define rsa_public_key_prepare nettle_rsa_public_key_prepare
#define rsa_private_key_init nettle_rsa_private_key_init
#define rsa_private_key_clear nettle_rsa_private_key_clear
#define rsa_private_key_prepare nettle_rsa_private_key_prepare
#define rsa_sha256_sign nettle_rsa_sha256_sign
#define rsa_sha256_sign_tr nettle_rsa_sha256_sign_tr
#define rsa_sha256_verify nettle_rsa_sha256_verify
#define rsa_sha256_sign_digest nettle_rsa_sha256_sign_digest
#define rsa_sha256_sign_digest_tr nettle_rsa_sha256_sign_digest_tr
#define rsa_sha256_verify_digest nettle_rsa_sha256_verify_digest
#define rsa_encrypt nettle_rsa_encrypt
#define rsa_decrypt nettle_rsa_decrypt
#define rsa_decrypt_tr nettle_rsa_decrypt_tr
#define rsa_compute_root nettle_rsa_compute_root
#define rsa_compute_root_tr nettle_rsa_compute_root_tr
#define rsa_generate_keypair nettle_rsa_generate_keypair
#define rsa_keypair_to_sexp nettle_rsa_keypair_to_sexp
#define rsa_keypair_from_sexp_alist nettle_rsa_keypair_from_sexp_alist
#define rsa_keypair_from_sexp nettle_rsa_keypair_from_sexp
#define rsa_public_key_from_der_iterator nettle_rsa_public_key_from_der_iterator
#define rsa_private_key_from_der_iterator nettle_rsa_private_key_from_der_iterator
#define rsa_keypair_from_der nettle_rsa_keypair_from_der
#define rsa_keypair_to_openpgp nettle_rsa_keypair_to_openpgp
#define _rsa_verify _nettle_rsa_verify
#define _rsa_check_size _nettle_rsa_check_size
#define _rsa_blind _nettle_rsa_blind
#define _rsa_unblind _nettle_rsa_unblind
/* This limit is somewhat arbitrary. Technically, the smallest modulo
which makes sense at all is 15 = 3*5, phi(15) = 8, size 4 bits. But
for ridiculously small keys, not all odd e are possible (e.g., for
5 bits, the only possible modulo is 3*7 = 21, phi(21) = 12, and e =
3 don't work). The smallest size that makes sense with pkcs#1, and
which allows RSA encryption of one byte messages, is 12 octets, 89
bits. */
#define RSA_MINIMUM_N_OCTETS 12
#define RSA_MINIMUM_N_BITS (8*RSA_MINIMUM_N_OCTETS - 7)
struct rsa_public_key
{
/* Size of the modulo, in octets. This is also the size of all
* signatures that are created or verified with this key. */
size_t size;
/* Modulo */
mpz_t n;
/* Public exponent */
mpz_t e;
};
struct rsa_private_key
{
size_t size;
/* d is filled in by the key generation function; otherwise it's
* completely unused. */
mpz_t d;
/* The two factors */
mpz_t p; mpz_t q;
/* d % (p-1), i.e. a e = 1 (mod (p-1)) */
mpz_t a;
/* d % (q-1), i.e. b e = 1 (mod (q-1)) */
mpz_t b;
/* modular inverse of q , i.e. c q = 1 (mod p) */
mpz_t c;
};
/* Signing a message works as follows:
*
* Store the private key in a rsa_private_key struct.
*
* Call rsa_private_key_prepare. This initializes the size attribute
* to the length of a signature.
*
* Initialize a hashing context, by callling
* md5_init
*
* Hash the message by calling
* md5_update
*
* Create the signature by calling
* rsa_md5_sign
*
* The signature is represented as a mpz_t bignum. This call also
* resets the hashing context.
*
* When done with the key and signature, don't forget to call
* mpz_clear.
*/
/* Calls mpz_init to initialize bignum storage. */
void
rsa_public_key_init(struct rsa_public_key *key);
/* Calls mpz_clear to deallocate bignum storage. */
void
rsa_public_key_clear(struct rsa_public_key *key);
int
rsa_public_key_prepare(struct rsa_public_key *key);
/* Calls mpz_init to initialize bignum storage. */
void
rsa_private_key_init(struct rsa_private_key *key);
/* Calls mpz_clear to deallocate bignum storage. */
void
rsa_private_key_clear(struct rsa_private_key *key);
int
rsa_private_key_prepare(struct rsa_private_key *key);
int
rsa_sha256_sign(const struct rsa_private_key *key,
struct sha256_ctx *hash,
mpz_t signature);
int
rsa_sha256_sign_tr(const struct rsa_public_key *pub,
const struct rsa_private_key *key,
void *random_ctx, nettle_random_func *random,
struct sha256_ctx *hash,
mpz_t s);
int
rsa_sha256_verify(const struct rsa_public_key *key,
struct sha256_ctx *hash,
const mpz_t signature);
int
rsa_sha256_sign_digest(const struct rsa_private_key *key,
const uint8_t *digest,
mpz_t s);
int
rsa_sha256_sign_digest_tr(const struct rsa_public_key *pub,
const struct rsa_private_key *key,
void *random_ctx, nettle_random_func *random,
const uint8_t *digest,
mpz_t s);
int
rsa_sha256_verify_digest(const struct rsa_public_key *key,
const uint8_t *digest,
const mpz_t signature);
/* RSA encryption, using PKCS#1 */
/* These functions uses the v1.5 padding. What should the v2 (OAEP)
* functions be called? */
/* Returns 1 on success, 0 on failure, which happens if the
* message is too long for the key. */
int
rsa_encrypt(const struct rsa_public_key *key,
/* For padding */
void *random_ctx, nettle_random_func *random,
size_t length, const uint8_t *cleartext,
mpz_t cipher);
/* Message must point to a buffer of size *LENGTH. KEY->size is enough
* for all valid messages. On success, *LENGTH is updated to reflect
* the actual length of the message. Returns 1 on success, 0 on
* failure, which happens if decryption failed or if the message
* didn't fit. */
int
rsa_decrypt(const struct rsa_private_key *key,
size_t *length, uint8_t *cleartext,
const mpz_t ciphertext);
/* Timing-resistant version, using randomized RSA blinding. */
int
rsa_decrypt_tr(const struct rsa_public_key *pub,
const struct rsa_private_key *key,
void *random_ctx, nettle_random_func *random,
size_t *length, uint8_t *message,
const mpz_t gibberish);
/* Compute x, the e:th root of m. Calling it with x == m is allowed. */
void
rsa_compute_root(const struct rsa_private_key *key,
mpz_t x, const mpz_t m);
/* Safer variant, using RSA blinding, and checking the result after
CRT. */
int
rsa_compute_root_tr(const struct rsa_public_key *pub,
const struct rsa_private_key *key,
void *random_ctx, nettle_random_func *random,
mpz_t x, const mpz_t m);
/* Key generation */
/* Note that the key structs must be initialized first. */
int
rsa_generate_keypair(struct rsa_public_key *pub,
struct rsa_private_key *key,
void *random_ctx, nettle_random_func *random,
void *progress_ctx, nettle_progress_func *progress,
/* Desired size of modulo, in bits */
unsigned n_size,
/* Desired size of public exponent, in bits. If
* zero, the passed in value pub->e is used. */
unsigned e_size);
#define RSA_SIGN(key, algorithm, ctx, length, data, signature) ( \
algorithm##_update(ctx, length, data), \
rsa_##algorithm##_sign(key, ctx, signature) \
)
#define RSA_VERIFY(key, algorithm, ctx, length, data, signature) ( \
algorithm##_update(ctx, length, data), \
rsa_##algorithm##_verify(key, ctx, signature) \
)
/* Keys in sexp form. */
struct nettle_buffer;
/* Generates a public-key expression if PRIV is NULL .*/
int
rsa_keypair_to_sexp(struct nettle_buffer *buffer,
const char *algorithm_name, /* NULL means "rsa" */
const struct rsa_public_key *pub,
const struct rsa_private_key *priv);
struct sexp_iterator;
int
rsa_keypair_from_sexp_alist(struct rsa_public_key *pub,
struct rsa_private_key *priv,
unsigned limit,
struct sexp_iterator *i);
/* If PRIV is NULL, expect a public-key expression. If PUB is NULL,
* expect a private key expression and ignore the parts not needed for
* the public key. */
/* Keys must be initialized before calling this function, as usual. */
int
rsa_keypair_from_sexp(struct rsa_public_key *pub,
struct rsa_private_key *priv,
unsigned limit,
size_t length, const uint8_t *expr);
/* Keys in PKCS#1 format. */
struct asn1_der_iterator;
int
rsa_public_key_from_der_iterator(struct rsa_public_key *pub,
unsigned limit,
struct asn1_der_iterator *i);
int
rsa_private_key_from_der_iterator(struct rsa_public_key *pub,
struct rsa_private_key *priv,
unsigned limit,
struct asn1_der_iterator *i);
/* For public keys, use PRIV == NULL */
int
rsa_keypair_from_der(struct rsa_public_key *pub,
struct rsa_private_key *priv,
unsigned limit,
size_t length, const uint8_t *data);
/* OpenPGP format. Experimental interface, subject to change. */
int
rsa_keypair_to_openpgp(struct nettle_buffer *buffer,
const struct rsa_public_key *pub,
const struct rsa_private_key *priv,
/* A single user id. NUL-terminated utf8. */
const char *userid);
/* Internal functions. */
int
_rsa_verify(const struct rsa_public_key *key,
const mpz_t m,
const mpz_t s);
size_t
_rsa_check_size(mpz_t n);
/* _rsa_blind and _rsa_unblind are deprecated, unused in the library,
and will likely be removed with the next ABI break. */
void
_rsa_blind (const struct rsa_public_key *pub,
void *random_ctx, nettle_random_func *random,
mpz_t c, mpz_t ri);
void
_rsa_unblind (const struct rsa_public_key *pub, mpz_t c, const mpz_t ri);
#ifdef __cplusplus
}
#endif
#endif /* NETTLE_RSA_H_INCLUDED */
|