summaryrefslogtreecommitdiff
path: root/stalinizer.py
diff options
context:
space:
mode:
authorPaweł Redman <pawel.redman@gmail.com>2018-03-07 14:55:29 +0100
committerPaweł Redman <pawel.redman@gmail.com>2018-03-07 14:55:29 +0100
commit1646077ab8a024a51ee5eec74f0614015fc91d2d (patch)
treeb8e97735669ce26e1e72e20ae4bacd68f060ec84 /stalinizer.py
parent7414fd645acc394fa2564bff071bfe09fdc08ba9 (diff)
SD and SD of the mean on the ping graph.
Diffstat (limited to 'stalinizer.py')
-rwxr-xr-xstalinizer.py111
1 files changed, 81 insertions, 30 deletions
diff --git a/stalinizer.py b/stalinizer.py
index 0cecb01..1c6503f 100755
--- a/stalinizer.py
+++ b/stalinizer.py
@@ -80,19 +80,71 @@ class StateTracker:
class WeightedMean:
def __init__(self):
+ self.samples = list()
self.total = 0
+ self.total_weighted = 0
self.weights = 0
def feed(self, sample, weight):
- self.total += sample * weight;
+ self.samples.append((sample, weight))
+ self.total += sample
+ self.total_weighted += sample * weight;
self.weights += weight
- def read(self):
+ def mean(self):
if self.weights != 0:
- return self.total / self.weights
+ return self.total/ self.weights
else:
return 0
+ def wmean(self):
+ if self.weights != 0:
+ return self.total_weighted / self.weights
+ else:
+ return 0
+
+ # weighted standard deviation
+ # http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
+ def wsd(self):
+ if len(self.samples) <= 1:
+ return 99999
+
+ wmean = self.wmean()
+
+ S = 0
+ for sample in self.samples:
+ S += sample[1] * (sample[0] - wmean) ** 2
+
+ N = len(self.samples)
+ wsd = (S / ((N - 1) / N * self.weights)) ** 0.5;
+
+ for sample in self.samples:
+ print("%d\t%d" % (sample[0], sample[1]))
+ print("wsd is %f" % wsd)
+
+ return wsd
+
+ # standard deviation of the weighted mean
+ def wmsd(self):
+ if self.weights == 0:
+ return 99999
+
+ # sum of squared weights
+ sq_weights = 0
+ for sample in self.samples:
+ sq_weights += sample[1] ** 2
+
+ # unweighted variance
+ mean = self.mean()
+ var = 0
+ for sample in self.samples:
+ var += (sample[0] - mean) ** 2
+ var /= len(self.samples)
+
+ wmsd = (sq_weights / (self.weights) ** 2 * var) ** 0.5
+
+ return wmsd
+
class Day:
def __init__(self, date):
@@ -100,7 +152,7 @@ class Day:
self.pcount_sum = 0
self.pcount_time = 0
self.pcount_peak = 0
- self.pings = list()
+ self.pings = WeightedMean()
def avg_pcount(self):
return self.pcount_sum / self.pcount_time
@@ -108,37 +160,34 @@ class Day:
def peak_pcount(self):
return self.pcount_peak
- def ping_stats(self):
- mean = WeightedMean()
+ def ping_distrib(self):
above_60 = 0
above_110 = 0
above_160 = 0
above_210 = 0
above_260 = 0
- for ping in self.pings:
- mean.feed(ping[0], ping[1]);
+ for sample in self.pings.samples:
+ if sample[0] > 60:
+ above_60 += sample[1]
+ if sample[0] > 110:
+ above_110 += sample[1]
+ if sample[0] > 160:
+ above_160 += sample[1]
+ if sample[0] > 210:
+ above_210 += sample[1]
+ if sample[0] > 260:
+ above_260 += sample[1]
- if ping[0] > 60:
- above_60 += ping[1]
- if ping[0] > 110:
- above_110 += ping[1]
- if ping[0] > 160:
- above_160 += ping[1]
- if ping[0] > 210:
- above_210 += ping[1]
- if ping[0] > 260:
- above_260 += ping[1]
-
- if len(self.pings):
- above_60 /= mean.weights
- above_110 /= mean.weights
- above_160 /= mean.weights
- above_210 /= mean.weights
- above_260 /= mean.weights
+ if len(self.pings.samples):
+ above_60 /= self.pings.weights
+ above_110 /= self.pings.weights
+ above_160 /= self.pings.weights
+ above_210 /= self.pings.weights
+ above_260 /= self.pings.weights
- return "%f %f%% %f%% %f%% %f%% %f" % (mean.read(), above_60, \
- above_110, above_160, above_210, above_260)
+ return "%f %f %f %f %f" % (above_60, above_110, above_160, \
+ above_210, above_260)
@@ -172,15 +221,17 @@ class Analyzer:
if date not in self.days:
self.days[date] = Day(date)
- self.days[date].pings += pings
+ for ping in pings:
+ self.days[date].pings.feed(ping[0], ping[1])
def finish(self):
for date, day in self.days.items():
if day.pcount_time < 80000:
continue
- print("%s %f %s %d" % (date, day.avg_pcount(), \
- day.ping_stats(), day.peak_pcount()))
+ print("%s %f %f %f %f %s %d" % (date, day.avg_pcount(), \
+ day.pings.wmean(), day.pings.wmsd(), day.pings.wsd(), \
+ day.ping_distrib(), day.peak_pcount()))
pass