summaryrefslogtreecommitdiff
path: root/src/jpeg-6/jidctred.c
diff options
context:
space:
mode:
authorPaweł Redman <pawel.redman@gmail.com>2017-03-22 17:56:34 +0100
committerPaweł Redman <pawel.redman@gmail.com>2017-03-22 17:56:34 +0100
commit6a777afc079c2a8d3af3ecd2145fe8dd50567a39 (patch)
tree520f4489cebf8564ef6cb27064ceea45cbc005b3 /src/jpeg-6/jidctred.c
Funko sources as released by Rotacak.HEADmaster
Diffstat (limited to 'src/jpeg-6/jidctred.c')
-rw-r--r--src/jpeg-6/jidctred.c397
1 files changed, 397 insertions, 0 deletions
diff --git a/src/jpeg-6/jidctred.c b/src/jpeg-6/jidctred.c
new file mode 100644
index 0000000..019c339
--- /dev/null
+++ b/src/jpeg-6/jidctred.c
@@ -0,0 +1,397 @@
+/*
+ * jidctred.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains inverse-DCT routines that produce reduced-size output:
+ * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
+ *
+ * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
+ * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
+ * with an 8-to-4 step that produces the four averages of two adjacent outputs
+ * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
+ * These steps were derived by computing the corresponding values at the end
+ * of the normal LL&M code, then simplifying as much as possible.
+ *
+ * 1x1 is trivial: just take the DC coefficient divided by 8.
+ *
+ * See jidctint.c for additional comments.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling is the same as in jidctint.c. */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
+#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
+#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
+#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
+#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
+#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
+#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
+#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
+#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
+#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
+#else
+#define FIX_0_211164243 FIX(0.211164243)
+#define FIX_0_509795579 FIX(0.509795579)
+#define FIX_0_601344887 FIX(0.601344887)
+#define FIX_0_720959822 FIX(0.720959822)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_850430095 FIX(0.850430095)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_061594337 FIX(1.061594337)
+#define FIX_1_272758580 FIX(1.272758580)
+#define FIX_1_451774981 FIX(1.451774981)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_2_172734803 FIX(2.172734803)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_624509785 FIX(3.624509785)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const) ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result. In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 4x4 output block.
+ */
+
+GLOBAL void
+jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+ /* Don't bother to process column 4, because second pass won't use it */
+ if (ctr == DCTSIZE-4)
+ continue;
+ if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
+ inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) {
+ /* AC terms all zero; we need not examine term 4 for 4x4 output */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= (CONST_BITS+1);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+
+ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+ /* Final output stage */
+
+ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
+ wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
+ wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
+ wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
+ }
+
+ /* Pass 2: process 4 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+ if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[5] | wsptr[6] |
+ wsptr[7]) == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+ & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+ outptr[2] = dcval;
+ outptr[3] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part */
+
+ tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
+
+ tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+ + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[7];
+ z2 = (INT32) wsptr[5];
+ z3 = (INT32) wsptr[3];
+ z4 = (INT32) wsptr[1];
+
+ tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+
+ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
+ CONST_BITS+PASS1_BITS+3+1)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
+ CONST_BITS+PASS1_BITS+3+1)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
+ CONST_BITS+PASS1_BITS+3+1)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
+ CONST_BITS+PASS1_BITS+3+1)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 2x2 output block.
+ */
+
+GLOBAL void
+jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp10, z1;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE*2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+ /* Don't bother to process columns 2,4,6 */
+ if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
+ continue;
+ if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*3] |
+ inptr[DCTSIZE*5] | inptr[DCTSIZE*7]) == 0) {
+ /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+
+ continue;
+ }
+
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp10 = z1 << (CONST_BITS+2);
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
+ z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
+ z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+
+ /* Final output stage */
+
+ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
+ wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
+ }
+
+ /* Pass 2: process 2 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 2; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+ if ((wsptr[1] | wsptr[3] | wsptr[5] | wsptr[7]) == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+ & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part */
+
+ tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+ + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+ + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+ + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3+2)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3+2)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 1x1 output block.
+ */
+
+GLOBAL void
+jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ int dcval;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* We hardly need an inverse DCT routine for this: just take the
+ * average pixel value, which is one-eighth of the DC coefficient.
+ */
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+ dcval = (int) DESCALE((INT32) dcval, 3);
+
+ output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+}
+
+#endif /* IDCT_SCALING_SUPPORTED */