summaryrefslogtreecommitdiff
path: root/otsu2018.py
blob: e1889502f9a7b34e84f4fcd1b4f3d1eb8d0e5186 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import numpy as np
import matplotlib.pyplot as plt
import tqdm
import time

from colour import (SpectralDistribution, STANDARD_OBSERVER_CMFS,
                    ILLUMINANT_SDS, sd_to_XYZ, XYZ_to_xy)
from colour.plotting import plot_chromaticity_diagram_CIE1931


def load_Otsu2018_spectra(path, every_nth=1):
    """
    Loads a set of measured reflectances from Otsu et al.'s csv file.

    TODO: This function can't determine the spectral shape.

    Parameters
    ----------
    path : str
        File path.
    every_nth : int
        Load only every n-th spectrum. The original files are huge, so this can
        be useful for testing.
    """
    data = np.genfromtxt(path, delimiter=',', skip_header=1)

    # The first column is the id and is redundant
    data = data[:, 1:]

    spectra = []
    for i in range(data.shape[0]):
        if i % every_nth != 0:
            continue

        values = data[i, :]
        spectra.append(values)

    return np.array(spectra)


class PartitionAxis:
    """
    Represents a horizontal or vertical line, partitioning the 2D space in
    two half-planes.

    Attributes
    ----------
    origin : float
        The x coordinate of a vertical line or the y coordinate of a horizontal
        line.
    direction : int
        '0' if vertical, '1' if horizontal.
    """

    def __init__(self, origin, direction):
        self.origin = origin
        self.direction = direction

    def __str__(self):
        return '%s=%s' % ('yx'[self.direction], repr(self.origin))


class Colours:
    """
    Represents multiple colours: their reflectances, XYZ tristimulus values
    and xy coordinates. The cmfs and the illuminant are taken from the parent
    Clustering.

    This class also supports partitioning, or creating two smaller instances
    of Colours, split along a horizontal or a vertical axis on the xy plane.
    """

    def __init__(self, clustering, reflectances):
        """
        Parameters
        ==========
        clustering : Clustering
            The parent clustering. This determines what cmfs and illuminant
            are used in colourimetric calculations.
        reflectances : ndarray (n,m)
            Reflectances of the ``n`` colours to be stored in this class.
            The shape must match ``Clustering.shape`` with ``m`` points for
            each colour.
        """

        self.reflectances = reflectances
        self.XYZ = np.empty((reflectances.shape[0], 3))
        self.xy = np.empty((reflectances.shape[0], 2))

        for i in range(len(self)):
            sd = SpectralDistribution(reflectances[i, :], clustering.wl)
            XYZ = sd_to_XYZ(sd, illuminant=clustering.illuminant) / 100
            self.XYZ[i, :] = XYZ
            self.xy[i, :] = XYZ_to_xy(XYZ)

    def __len__(self):
        """
        Counts the number of colours in this object.
        """
        return self.reflectances.shape[0]

    def partition(self, axis):
        """
        Parameters
        ==========
        axis : PartitionAxis
            Defines the partition axis.

        Returns
        =======
        lesser : Colours
            The left or lower part.
        greater : Colours
            The right or upper part.
        """
        mask = self.xy[:, axis.direction] <= axis.origin

        lesser = object.__new__(Colours)
        greater = object.__new__(Colours)

        lesser.reflectances = self.reflectances[mask, :]
        greater.reflectances = self.reflectances[np.logical_not(mask), :]

        lesser.XYZ = self.XYZ[mask, :]
        greater.XYZ = self.XYZ[np.logical_not(mask), :]

        lesser.xy = self.xy[mask, :]
        greater.xy = self.xy[np.logical_not(mask), :]

        return lesser, greater


class ClusteringError(Exception):
    """
    Exception used for various errors originating from code in this file.
    """
    pass


class Node:
    """
    Represents a node in the clustering tree.
    """

    _counter = 1

    def __init__(self, clustering, colours):
        """
        Parameters
        ==========
        clustering : Clustering
            The parent clustering. This determines what cmfs and illuminant
            are used in colourimetric calculations.
        colours : Colours
            The colours that belong in this node.
        """

        self.clustering = clustering
        self.colours = colours
        self.children = None

        self._cached_reconstruction_error = None
        self.PCA_done = False
        self.best_partition = None

        # This is just for __str__ and plots
        self.number = Node._counter
        Node._counter += 1

    def __str__(self):
        return 'Node #%d' % (self.number)

    @property
    def leaf(self):
        """
        Is this node a leaf? Tree leaves don't have any children and store
        instances of ``Colours``.
        """

        return self.children is None

    def split(self, children, partition_axis):
        """
        Turns a leaf into a node with the given children.

        Parameters
        ==========
        children : tuple
            Two instances of ``Node`` in a tuple.
        partition_axis : PartitionAxis
            Defines the partition axis.
        """

        self.children = children
        self.partition_axis = partition_axis
        self.colours = None
        self._cached_reconstruction_error = None
        self.best_partition = None

    def _leaves_generator(self):
        if self.leaf:
            yield self
        else:
            for child in self.children:
                yield from child.leaves

    @property
    def leaves(self):
        """
        Returns a generator of all leaves connected to this node.
        """
        return self._leaves_generator()

    #
    # PCA and reconstruction
    #

    def PCA(self):
        """
        Performs the principal component analysis on colours in this node.
        """

        if not self.leaf:
            raise RuntimeError('Node.PCA called for a node that is not a leaf')

        # https://dev.to/akaame/implementing-simple-pca-using-numpy-3k0a
        self.mean = np.mean(self.colours.reflectances, axis=0)
        data = self.colours.reflectances - self.mean
        cov = np.cov(data.T) / data.shape[0]
        v, w = np.linalg.eig(cov)
        idx = v.argsort()[::-1]
        w = w[:, idx]
        self.basis_functions = np.real(w[:, :3].T)

        # TODO: better names
        M = np.empty((3, 3))
        for i in range(3):
            R = self.basis_functions[i, :]
            M[:, i] = self.clustering.fast_sd_to_XYZ(R)

        self.M_inverse = np.linalg.inv(M)
        self.XYZ_mu = self.clustering.fast_sd_to_XYZ(self.mean)

        self.PCA_done = True

    def reconstruct(self, XYZ):
        """
        Reconstructs a reflectance using data stored in this node.

        Parameters
        ==========
        XYZ : ndarray, (3,)
            *CIE XYZ* tristimulus values to recover the spectral distribution
            from.

        Returns
        -------
        SpectralDistribution
            Recovered spectral distribution.
        """

        weights = np.dot(self.M_inverse, XYZ - self.XYZ_mu)
        reflectance = np.dot(weights, self.basis_functions) + self.mean
        reflectance = np.clip(reflectance, 0, 1)
        return SpectralDistribution(reflectance, self.clustering.wl)

    #
    # Optimisation
    #

    def reconstruction_error(self):
        """
        For every colour in this node, its spectrum is reconstructed (using
        PCA data in this node) and compared with its true, measured spectrum.
        The errors are then summed up and returned.

        Returns
        =======
        error : float
            The sum reconstruction errors for this node.
        """

        if self._cached_reconstruction_error:
            return self._cached_reconstruction_error

        if not self.PCA_done:  # FIXME
            self.PCA()

        error = 0
        for i in range(len(self.colours)):
            sd = self.colours.reflectances[i, :]
            XYZ = self.colours.XYZ[i, :]
            recovered_sd = self.reconstruct(XYZ)
            error += np.sum((sd - recovered_sd.values) ** 2)

        self._cached_reconstruction_error = error
        return error

    def total_reconstruction_error(self):
        """
        Computes the reconstruction error for an entire subtree, starting at
        this node.

        Returns
        =======
        error : float
            The total reconstruction error of the subtree.
        """

        if self.leaf:
            return self.reconstruction_error()
        else:
            return sum([child.total_reconstruction_error()
                        for child in self.children])

    def partition_error(self, axis):
        """
        Compute the sum of reconstruction errors of the two nodes created by
        a given partition of this node.

        Parameters
        ==========
        axis : PartitionAxis
            Defines the partition axis.

        Returns
        =======
        error : float
            Sum of reconstruction errors of the two nodes created from
            splitting.
        lesser, greater : tuple
            Subnodes created from splitting.
        """
        partition = self.colours.partition(axis)

        if len(partition[0]) < 3 or len(partition[1]) < 3:
            raise ClusteringError(
                'partition created parts that are too small for PCA')

        lesser = Node(self.clustering, partition[0])
        lesser.PCA()

        greater = Node(self.clustering, partition[1])
        greater.PCA()

        error = lesser.reconstruction_error() + greater.reconstruction_error()
        return error, (lesser, greater)

    def find_best_partition(self):
        """
        Finds the best partition of this node. See
        ``Clustering.find_best_partition``.
        """

        if self.best_partition is not None:
            print('%s: already optimised' % self)
            return self.best_partition

        best_error = None
        bar = tqdm.trange(2 * len(self.colours), leave=False)

        for direction in [0, 1]:
            for i in range(len(self.colours)):
                origin = self.colours.xy[i, direction]
                axis = PartitionAxis(origin, direction)

                try:
                    error, partition = self.partition_error(axis)
                except ClusteringError:
                    continue

                if best_error is None or error < best_error:
                    self.best_partition = (error, axis, partition)

                delta = error - self.reconstruction_error()
                bar.update()

        bar.close()

        if self.best_partition is None:
            raise ClusteringError('no partitions are possible')

        return self.best_partition

    #
    # Plotting
    #

    def _plot_colours(self, number):
        if not self.leaf:
            for child in self.children:
                child._plot_colours(number)
            return

        symbols = ['+', '^', '*', '>', 'o', 'v', 'x', '<']
        plt.plot(*self.colours.xy.T,
                 "k" + symbols[number[0] % len(symbols)],
                 label=str(self))
        number[0] += 1

    def visualise(self):
        """
        Plots the subtree on a xy chromaticity diagram. Does not call
        ``plt.show``.
        """
        plot_chromaticity_diagram_CIE1931(standalone=False)
        self._plot_colours([0])
        plt.legend()


class Clustering:
    """
    Represents the process of clustering and optimisation. Instances store
    shared data such as cmfs and the illuminant.

    Operations involving the entire tree, such as optimisation and
    reconstruction, are implemented here.
    """

    def __init__(
            self,
            sds,
            shape,
            cmfs=STANDARD_OBSERVER_CMFS['CIE 1931 2 Degree Standard Observer'],
            illuminant=ILLUMINANT_SDS['D65']):
        """
        Parameters
        ----------
        sds : ndarray (n,m)
            Reflectances of the ``n`` reference colours to be used for
            optimisation.
        shape : SpectralShape
            Spectral shape of ``sds``.
        cmfs : XYZ_ColourMatchingFunctions, optional
            Standard observer colour matching functions.
        illuminant : SpectralDistribution, optional
            Illuminant spectral distribution.
        """

        self.sds = sds
        self.shape = shape
        self.wl = shape.range()
        self.dw = self.wl[1] - self.wl[0]
        self.cmfs = cmfs.copy().align(shape)
        self.illuminant = illuminant.copy().align(shape)
        self.xy_w = XYZ_to_xy(sd_to_XYZ(illuminant, cmfs=cmfs))

        # The normalising constant used in sd_to_XYZ.
        self.k = 1 / (np.sum(self.cmfs.values[:, 1]
                      * self.illuminant.values) * self.dw)

        colours = Colours(self, sds)
        self.root = Node(self, colours)

    def fast_sd_to_XYZ(self, R):
        """
        Compute the XYZ tristimulus values of a given reflectance. Faster for
        humans, by using cmfs and the illuminant stored in the ''Clustering'',
        thus avoiding unnecessary repetition. Faster for computers, by using
        a very simple and direct method.

        Parameters
        ----------
        R : ndarray
            Reflectance with shape matching the one used to construct this
            ``Clustering``.

        Returns
        -------
        ndarray (3,)
            XYZ tristimulus values, normalised to 1.
        """

        E = self.illuminant.values * R
        return self.k * np.dot(E, self.cmfs.values) * self.dw

    def reconstruct(self, XYZ):
        """
        Finds the appropriate node and reconstructs the reflectance for the
        given XYZ tristimulus values.

        Parameters
        ==========
        XYZ : ndarray, (3,)
            *CIE XYZ* tristimulus values to recover the spectral distribution
            from.

        Returns
        -------
        SpectralDistribution
            Recovered spectral distribution.
        """

        xy = XYZ_to_xy(XYZ)

        def search(node):
            if node.leaf:
                return node

            if xy[node.partition_axis.direction] <= node.partition_axis.origin:
                return search(node.children[0])
            else:
                return search(node.children[1])

        node = search(self.root)
        return node.reconstruct(XYZ)

    def optimise(self, repeats):
        """
        Optimise the tree by repeatedly performing optimal partitions of the
        nodes, creating a clustering that minimizes the total reconstruction
        error.

        Parameters
        ----------
        repeats : int
            Maximum number of splits. If the dataset is too small, this number
            might not be reached.
        """

        t0 = time.time()
        def elapsed():
            delta = time.time() - t0
            return '%dm%.3fs' % (delta // 60, delta % 60)

        for repeat in range(repeats):
            print('=== Iteration %d of %d ===' % (repeat + 1, repeats))

            best_total_error = None
            total_error = self.root.total_reconstruction_error()

            for i, leaf in enumerate(self.root.leaves):
                print('(%s) Optimising %s...' % (elapsed(), leaf))

                try:
                    error, axis, partition = leaf.find_best_partition()
                except ClusteringError:
                    print('...no partitions are possible.')
                    continue

                new_total_error = (total_error - leaf.reconstruction_error()
                                   + error)
                if (best_total_error is None
                        or new_total_error < best_total_error):
                    best_total_error = new_total_error
                    best_axis = axis
                    best_leaf = leaf
                    best_partition = partition

            if best_total_error is None:
                print('WARNING: only %d splits were possible.' % repeat)
                break

            print('\nSplit %s into %s and %s along %s.\n'
                  % (best_leaf, *best_partition, best_axis))
            best_leaf.split(best_partition, best_axis)

        print('Finished in %s.' % elapsed())

    def write_python_dataset(self, path):
        """
        Write the clustering into a Python dataset compatible with Colour's
        ``colour.recovery.otsu2018`` code.

        Parameters
        ----------
        path : string
            File path.
        """

        with open(path, 'w') as fd:
            fd.write('# Autogenerated, do not modify\n\n')

            fd.write('from numpy import array\n')
            fd.write('from colour import SpectralShape\n\n\n')

            fd.write('OTSU_2018_SPECTRAL_SHAPE = SpectralShape%s\n\n\n'
                     % self.shape)

            # Basis functions

            fd.write('OTSU_2018_BASIS_FUNCTIONS = [\n')
            for i, leaf in enumerate(self.root.leaves):
                for line in (repr(leaf.basis_functions) + ',').splitlines():
                    fd.write('    %s\n' % line)
            fd.write(']\n\n\n')

            # Means

            fd.write('OTSU_2018_MEANS = [\n')
            for leaf in self.root.leaves:
                for line in (repr(leaf.mean) + ',').splitlines():
                    fd.write('    %s\n' % line)
            fd.write(']\n\n\n')

            # Cluster selection function

            fd.write('def select_cluster_Otsu2018(xy):\n')
            fd.write('    x, y = xy\n\n')

            counter = 0

            def write_if(node, indent):
                nonlocal counter

                if node.leaf:
                    fd.write('    ' * indent)
                    fd.write('return %d  # %s\n' % (counter, node))
                    counter += 1
                    return

                fd.write('    ' * indent)
                fd.write('if %s <= %s:\n'
                         % ('xy'[node.partition_axis.direction],
                            repr(node.partition_axis.origin)))
                write_if(node.children[0], indent + 1)

                fd.write('    ' * indent)
                fd.write('else:\n')
                write_if(node.children[1], indent + 1)

            write_if(self.root, 1)