diff options
author | hairball <xhairball@gmail.com> | 2014-02-08 03:21:02 +0000 |
---|---|---|
committer | Tim Angus <tim@ngus.net> | 2014-06-17 17:43:38 +0100 |
commit | 35064811c0ac104acddd7777e00bfd9e054c2db6 (patch) | |
tree | 4063389141542093ecc3de47e3999ed099520621 /src/opus-1.0.2/celt/cwrs.c | |
parent | 1778f3fb8cabe7400011c84331018b0ebf6a44b1 (diff) |
Upgrade opus 1.0.2 -> 1.1
Diffstat (limited to 'src/opus-1.0.2/celt/cwrs.c')
-rw-r--r-- | src/opus-1.0.2/celt/cwrs.c | 645 |
1 files changed, 0 insertions, 645 deletions
diff --git a/src/opus-1.0.2/celt/cwrs.c b/src/opus-1.0.2/celt/cwrs.c deleted file mode 100644 index 8edc919d..00000000 --- a/src/opus-1.0.2/celt/cwrs.c +++ /dev/null @@ -1,645 +0,0 @@ -/* Copyright (c) 2007-2008 CSIRO - Copyright (c) 2007-2009 Xiph.Org Foundation - Copyright (c) 2007-2009 Timothy B. Terriberry - Written by Timothy B. Terriberry and Jean-Marc Valin */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "os_support.h" -#include "cwrs.h" -#include "mathops.h" -#include "arch.h" - -#ifdef CUSTOM_MODES - -/*Guaranteed to return a conservatively large estimate of the binary logarithm - with frac bits of fractional precision. - Tested for all possible 32-bit inputs with frac=4, where the maximum - overestimation is 0.06254243 bits.*/ -int log2_frac(opus_uint32 val, int frac) -{ - int l; - l=EC_ILOG(val); - if(val&(val-1)){ - /*This is (val>>l-16), but guaranteed to round up, even if adding a bias - before the shift would cause overflow (e.g., for 0xFFFFxxxx). - Doesn't work for val=0, but that case fails the test above.*/ - if(l>16)val=((val-1)>>(l-16))+1; - else val<<=16-l; - l=(l-1)<<frac; - /*Note that we always need one iteration, since the rounding up above means - that we might need to adjust the integer part of the logarithm.*/ - do{ - int b; - b=(int)(val>>16); - l+=b<<frac; - val=(val+b)>>b; - val=(val*val+0x7FFF)>>15; - } - while(frac-->0); - /*If val is not exactly 0x8000, then we have to round up the remainder.*/ - return l+(val>0x8000); - } - /*Exact powers of two require no rounding.*/ - else return (l-1)<<frac; -} -#endif - -#ifndef SMALL_FOOTPRINT - -#define MASK32 (0xFFFFFFFF) - -/*INV_TABLE[i] holds the multiplicative inverse of (2*i+1) mod 2**32.*/ -static const opus_uint32 INV_TABLE[53]={ - 0x00000001,0xAAAAAAAB,0xCCCCCCCD,0xB6DB6DB7, - 0x38E38E39,0xBA2E8BA3,0xC4EC4EC5,0xEEEEEEEF, - 0xF0F0F0F1,0x286BCA1B,0x3CF3CF3D,0xE9BD37A7, - 0xC28F5C29,0x684BDA13,0x4F72C235,0xBDEF7BDF, - 0x3E0F83E1,0x8AF8AF8B,0x914C1BAD,0x96F96F97, - 0xC18F9C19,0x2FA0BE83,0xA4FA4FA5,0x677D46CF, - 0x1A1F58D1,0xFAFAFAFB,0x8C13521D,0x586FB587, - 0xB823EE09,0xA08AD8F3,0xC10C9715,0xBEFBEFBF, - 0xC0FC0FC1,0x07A44C6B,0xA33F128D,0xE327A977, - 0xC7E3F1F9,0x962FC963,0x3F2B3885,0x613716AF, - 0x781948B1,0x2B2E43DB,0xFCFCFCFD,0x6FD0EB67, - 0xFA3F47E9,0xD2FD2FD3,0x3F4FD3F5,0xD4E25B9F, - 0x5F02A3A1,0xBF5A814B,0x7C32B16D,0xD3431B57, - 0xD8FD8FD9, -}; - -/*Computes (_a*_b-_c)/(2*_d+1) when the quotient is known to be exact. - _a, _b, _c, and _d may be arbitrary so long as the arbitrary precision result - fits in 32 bits, but currently the table for multiplicative inverses is only - valid for _d<=52.*/ -static inline opus_uint32 imusdiv32odd(opus_uint32 _a,opus_uint32 _b, - opus_uint32 _c,int _d){ - celt_assert(_d<=52); - return (_a*_b-_c)*INV_TABLE[_d]&MASK32; -} - -/*Computes (_a*_b-_c)/_d when the quotient is known to be exact. - _d does not actually have to be even, but imusdiv32odd will be faster when - it's odd, so you should use that instead. - _a and _d are assumed to be small (e.g., _a*_d fits in 32 bits; currently the - table for multiplicative inverses is only valid for _d<=54). - _b and _c may be arbitrary so long as the arbitrary precision reuslt fits in - 32 bits.*/ -static inline opus_uint32 imusdiv32even(opus_uint32 _a,opus_uint32 _b, - opus_uint32 _c,int _d){ - opus_uint32 inv; - int mask; - int shift; - int one; - celt_assert(_d>0); - celt_assert(_d<=54); - shift=EC_ILOG(_d^(_d-1)); - inv=INV_TABLE[(_d-1)>>shift]; - shift--; - one=1<<shift; - mask=one-1; - return (_a*(_b>>shift)-(_c>>shift)+ - ((_a*(_b&mask)+one-(_c&mask))>>shift)-1)*inv&MASK32; -} - -#endif /* SMALL_FOOTPRINT */ - -/*Although derived separately, the pulse vector coding scheme is equivalent to - a Pyramid Vector Quantizer \cite{Fis86}. - Some additional notes about an early version appear at - http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering - and the definitions of some terms have evolved since that was written. - - The conversion from a pulse vector to an integer index (encoding) and back - (decoding) is governed by two related functions, V(N,K) and U(N,K). - - V(N,K) = the number of combinations, with replacement, of N items, taken K - at a time, when a sign bit is added to each item taken at least once (i.e., - the number of N-dimensional unit pulse vectors with K pulses). - One way to compute this is via - V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, - where choose() is the binomial function. - A table of values for N<10 and K<10 looks like: - V[10][10] = { - {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}, - {1, 4, 8, 12, 16, 20, 24, 28, 32, 36}, - {1, 6, 18, 38, 66, 102, 146, 198, 258, 326}, - {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992}, - {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290}, - {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436}, - {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598}, - {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688}, - {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146} - }; - - U(N,K) = the number of such combinations wherein N-1 objects are taken at - most K-1 at a time. - This is given by - U(N,K) = sum(k=0...K-1,V(N-1,k)) - = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. - The latter expression also makes clear that U(N,K) is half the number of such - combinations wherein the first object is taken at least once. - Although it may not be clear from either of these definitions, U(N,K) is the - natural function to work with when enumerating the pulse vector codebooks, - not V(N,K). - U(N,K) is not well-defined for N=0, but with the extension - U(0,K) = K>0 ? 0 : 1, - the function becomes symmetric: U(N,K) = U(K,N), with a similar table: - U[10][10] = { - {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - {0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, - {0, 1, 3, 5, 7, 9, 11, 13, 15, 17}, - {0, 1, 5, 13, 25, 41, 61, 85, 113, 145}, - {0, 1, 7, 25, 63, 129, 231, 377, 575, 833}, - {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649}, - {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073}, - {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081}, - {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545}, - {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729} - }; - - With this extension, V(N,K) may be written in terms of U(N,K): - V(N,K) = U(N,K) + U(N,K+1) - for all N>=0, K>=0. - Thus U(N,K+1) represents the number of combinations where the first element - is positive or zero, and U(N,K) represents the number of combinations where - it is negative. - With a large enough table of U(N,K) values, we could write O(N) encoding - and O(min(N*log(K),N+K)) decoding routines, but such a table would be - prohibitively large for small embedded devices (K may be as large as 32767 - for small N, and N may be as large as 200). - - Both functions obey the same recurrence relation: - V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), - U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), - for all N>0, K>0, with different initial conditions at N=0 or K=0. - This allows us to construct a row of one of the tables above given the - previous row or the next row. - Thus we can derive O(NK) encoding and decoding routines with O(K) memory - using only addition and subtraction. - - When encoding, we build up from the U(2,K) row and work our way forwards. - When decoding, we need to start at the U(N,K) row and work our way backwards, - which requires a means of computing U(N,K). - U(N,K) may be computed from two previous values with the same N: - U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) - for all N>1, and since U(N,K) is symmetric, a similar relation holds for two - previous values with the same K: - U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) - for all K>1. - This allows us to construct an arbitrary row of the U(N,K) table by starting - with the first two values, which are constants. - This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) - multiplications. - Similar relations can be derived for V(N,K), but are not used here. - - For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree - polynomial for fixed N. - The first few are - U(1,K) = 1, - U(2,K) = 2*K-1, - U(3,K) = (2*K-2)*K+1, - U(4,K) = (((4*K-6)*K+8)*K-3)/3, - U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, - and - V(1,K) = 2, - V(2,K) = 4*K, - V(3,K) = 4*K*K+2, - V(4,K) = 8*(K*K+2)*K/3, - V(5,K) = ((4*K*K+20)*K*K+6)/3, - for all K>0. - This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for - small N (and indeed decoding is also O(N) for N<3). - - @ARTICLE{Fis86, - author="Thomas R. Fischer", - title="A Pyramid Vector Quantizer", - journal="IEEE Transactions on Information Theory", - volume="IT-32", - number=4, - pages="568--583", - month=Jul, - year=1986 - }*/ - -#ifndef SMALL_FOOTPRINT -/*Compute U(2,_k). - Note that this may be called with _k=32768 (maxK[2]+1).*/ -static inline unsigned ucwrs2(unsigned _k){ - celt_assert(_k>0); - return _k+(_k-1); -} - -/*Compute V(2,_k).*/ -static inline opus_uint32 ncwrs2(int _k){ - celt_assert(_k>0); - return 4*(opus_uint32)_k; -} - -/*Compute U(3,_k). - Note that this may be called with _k=32768 (maxK[3]+1).*/ -static inline opus_uint32 ucwrs3(unsigned _k){ - celt_assert(_k>0); - return (2*(opus_uint32)_k-2)*_k+1; -} - -/*Compute V(3,_k).*/ -static inline opus_uint32 ncwrs3(int _k){ - celt_assert(_k>0); - return 2*(2*(unsigned)_k*(opus_uint32)_k+1); -} - -/*Compute U(4,_k).*/ -static inline opus_uint32 ucwrs4(int _k){ - celt_assert(_k>0); - return imusdiv32odd(2*_k,(2*_k-3)*(opus_uint32)_k+4,3,1); -} - -/*Compute V(4,_k).*/ -static inline opus_uint32 ncwrs4(int _k){ - celt_assert(_k>0); - return ((_k*(opus_uint32)_k+2)*_k)/3<<3; -} - -#endif /* SMALL_FOOTPRINT */ - -/*Computes the next row/column of any recurrence that obeys the relation - u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. - _ui0 is the base case for the new row/column.*/ -static inline void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){ - opus_uint32 ui1; - unsigned j; - /*This do-while will overrun the array if we don't have storage for at least - 2 values.*/ - j=1; do { - ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); - _ui[j-1]=_ui0; - _ui0=ui1; - } while (++j<_len); - _ui[j-1]=_ui0; -} - -/*Computes the previous row/column of any recurrence that obeys the relation - u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. - _ui0 is the base case for the new row/column.*/ -static inline void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){ - opus_uint32 ui1; - unsigned j; - /*This do-while will overrun the array if we don't have storage for at least - 2 values.*/ - j=1; do { - ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); - _ui[j-1]=_ui0; - _ui0=ui1; - } while (++j<_n); - _ui[j-1]=_ui0; -} - -/*Compute V(_n,_k), as well as U(_n,0..._k+1). - _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ -static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){ - opus_uint32 um2; - unsigned len; - unsigned k; - len=_k+2; - /*We require storage at least 3 values (e.g., _k>0).*/ - celt_assert(len>=3); - _u[0]=0; - _u[1]=um2=1; -#ifndef SMALL_FOOTPRINT - /*_k>52 doesn't work in the false branch due to the limits of INV_TABLE, - but _k isn't tested here because k<=52 for n=7*/ - if(_n<=6) -#endif - { - /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ - /*If _n==1, _u[i] should be 1 for i>1.*/ - celt_assert(_n>=2); - /*If _k==0, the following do-while loop will overflow the buffer.*/ - celt_assert(_k>0); - k=2; - do _u[k]=(k<<1)-1; - while(++k<len); - for(k=2;k<_n;k++)unext(_u+1,_k+1,1); - } -#ifndef SMALL_FOOTPRINT - else{ - opus_uint32 um1; - opus_uint32 n2m1; - _u[2]=n2m1=um1=(_n<<1)-1; - for(k=3;k<len;k++){ - /*U(N,K) = ((2*N-1)*U(N,K-1)-U(N,K-2))/(K-1) + U(N,K-2)*/ - _u[k]=um2=imusdiv32even(n2m1,um1,um2,k-1)+um2; - if(++k>=len)break; - _u[k]=um1=imusdiv32odd(n2m1,um2,um1,(k-1)>>1)+um1; - } - } -#endif /* SMALL_FOOTPRINT */ - return _u[_k]+_u[_k+1]; -} - -#ifndef SMALL_FOOTPRINT - -/*Returns the _i'th combination of _k elements (at most 32767) chosen from a - set of size 1 with associated sign bits. - _y: Returns the vector of pulses.*/ -static inline void cwrsi1(int _k,opus_uint32 _i,int *_y){ - int s; - s=-(int)_i; - _y[0]=(_k+s)^s; -} - -/*Returns the _i'th combination of _k elements (at most 32767) chosen from a - set of size 2 with associated sign bits. - _y: Returns the vector of pulses.*/ -static inline void cwrsi2(int _k,opus_uint32 _i,int *_y){ - opus_uint32 p; - int s; - int yj; - p=ucwrs2(_k+1U); - s=-(_i>=p); - _i-=p&s; - yj=_k; - _k=(_i+1)>>1; - p=_k?ucwrs2(_k):0; - _i-=p; - yj-=_k; - _y[0]=(yj+s)^s; - cwrsi1(_k,_i,_y+1); -} - -/*Returns the _i'th combination of _k elements (at most 32767) chosen from a - set of size 3 with associated sign bits. - _y: Returns the vector of pulses.*/ -static void cwrsi3(int _k,opus_uint32 _i,int *_y){ - opus_uint32 p; - int s; - int yj; - p=ucwrs3(_k+1U); - s=-(_i>=p); - _i-=p&s; - yj=_k; - /*Finds the maximum _k such that ucwrs3(_k)<=_i (tested for all - _i<2147418113=U(3,32768)).*/ - _k=_i>0?(isqrt32(2*_i-1)+1)>>1:0; - p=_k?ucwrs3(_k):0; - _i-=p; - yj-=_k; - _y[0]=(yj+s)^s; - cwrsi2(_k,_i,_y+1); -} - -/*Returns the _i'th combination of _k elements (at most 1172) chosen from a set - of size 4 with associated sign bits. - _y: Returns the vector of pulses.*/ -static void cwrsi4(int _k,opus_uint32 _i,int *_y){ - opus_uint32 p; - int s; - int yj; - int kl; - int kr; - p=ucwrs4(_k+1); - s=-(_i>=p); - _i-=p&s; - yj=_k; - /*We could solve a cubic for k here, but the form of the direct solution does - not lend itself well to exact integer arithmetic. - Instead we do a binary search on U(4,K).*/ - kl=0; - kr=_k; - for(;;){ - _k=(kl+kr)>>1; - p=_k?ucwrs4(_k):0; - if(p<_i){ - if(_k>=kr)break; - kl=_k+1; - } - else if(p>_i)kr=_k-1; - else break; - } - _i-=p; - yj-=_k; - _y[0]=(yj+s)^s; - cwrsi3(_k,_i,_y+1); -} - -#endif /* SMALL_FOOTPRINT */ - -/*Returns the _i'th combination of _k elements chosen from a set of size _n - with associated sign bits. - _y: Returns the vector of pulses. - _u: Must contain entries [0..._k+1] of row _n of U() on input. - Its contents will be destructively modified.*/ -static void cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){ - int j; - celt_assert(_n>0); - j=0; - do{ - opus_uint32 p; - int s; - int yj; - p=_u[_k+1]; - s=-(_i>=p); - _i-=p&s; - yj=_k; - p=_u[_k]; - while(p>_i)p=_u[--_k]; - _i-=p; - yj-=_k; - _y[j]=(yj+s)^s; - uprev(_u,_k+2,0); - } - while(++j<_n); -} - -/*Returns the index of the given combination of K elements chosen from a set - of size 1 with associated sign bits. - _y: The vector of pulses, whose sum of absolute values is K. - _k: Returns K.*/ -static inline opus_uint32 icwrs1(const int *_y,int *_k){ - *_k=abs(_y[0]); - return _y[0]<0; -} - -#ifndef SMALL_FOOTPRINT - -/*Returns the index of the given combination of K elements chosen from a set - of size 2 with associated sign bits. - _y: The vector of pulses, whose sum of absolute values is K. - _k: Returns K.*/ -static inline opus_uint32 icwrs2(const int *_y,int *_k){ - opus_uint32 i; - int k; - i=icwrs1(_y+1,&k); - i+=k?ucwrs2(k):0; - k+=abs(_y[0]); - if(_y[0]<0)i+=ucwrs2(k+1U); - *_k=k; - return i; -} - -/*Returns the index of the given combination of K elements chosen from a set - of size 3 with associated sign bits. - _y: The vector of pulses, whose sum of absolute values is K. - _k: Returns K.*/ -static inline opus_uint32 icwrs3(const int *_y,int *_k){ - opus_uint32 i; - int k; - i=icwrs2(_y+1,&k); - i+=k?ucwrs3(k):0; - k+=abs(_y[0]); - if(_y[0]<0)i+=ucwrs3(k+1U); - *_k=k; - return i; -} - -/*Returns the index of the given combination of K elements chosen from a set - of size 4 with associated sign bits. - _y: The vector of pulses, whose sum of absolute values is K. - _k: Returns K.*/ -static inline opus_uint32 icwrs4(const int *_y,int *_k){ - opus_uint32 i; - int k; - i=icwrs3(_y+1,&k); - i+=k?ucwrs4(k):0; - k+=abs(_y[0]); - if(_y[0]<0)i+=ucwrs4(k+1); - *_k=k; - return i; -} - -#endif /* SMALL_FOOTPRINT */ - -/*Returns the index of the given combination of K elements chosen from a set - of size _n with associated sign bits. - _y: The vector of pulses, whose sum of absolute values must be _k. - _nc: Returns V(_n,_k).*/ -static inline opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y, - opus_uint32 *_u){ - opus_uint32 i; - int j; - int k; - /*We can't unroll the first two iterations of the loop unless _n>=2.*/ - celt_assert(_n>=2); - _u[0]=0; - for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; - i=icwrs1(_y+_n-1,&k); - j=_n-2; - i+=_u[k]; - k+=abs(_y[j]); - if(_y[j]<0)i+=_u[k+1]; - while(j-->0){ - unext(_u,_k+2,0); - i+=_u[k]; - k+=abs(_y[j]); - if(_y[j]<0)i+=_u[k+1]; - } - *_nc=_u[k]+_u[k+1]; - return i; -} - -#ifdef CUSTOM_MODES -void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ - int k; - /*_maxk==0 => there's nothing to do.*/ - celt_assert(_maxk>0); - _bits[0]=0; - if (_n==1) - { - for (k=1;k<=_maxk;k++) - _bits[k] = 1<<_frac; - } - else { - VARDECL(opus_uint32,u); - SAVE_STACK; - ALLOC(u,_maxk+2U,opus_uint32); - ncwrs_urow(_n,_maxk,u); - for(k=1;k<=_maxk;k++) - _bits[k]=log2_frac(u[k]+u[k+1],_frac); - RESTORE_STACK; - } -} -#endif /* CUSTOM_MODES */ - -void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ - opus_uint32 i; - celt_assert(_k>0); -#ifndef SMALL_FOOTPRINT - switch(_n){ - case 2:{ - i=icwrs2(_y,&_k); - ec_enc_uint(_enc,i,ncwrs2(_k)); - }break; - case 3:{ - i=icwrs3(_y,&_k); - ec_enc_uint(_enc,i,ncwrs3(_k)); - }break; - case 4:{ - i=icwrs4(_y,&_k); - ec_enc_uint(_enc,i,ncwrs4(_k)); - }break; - default: - { -#endif - VARDECL(opus_uint32,u); - opus_uint32 nc; - SAVE_STACK; - ALLOC(u,_k+2U,opus_uint32); - i=icwrs(_n,_k,&nc,_y,u); - ec_enc_uint(_enc,i,nc); - RESTORE_STACK; -#ifndef SMALL_FOOTPRINT - } - break; - } -#endif -} - -void decode_pulses(int *_y,int _n,int _k,ec_dec *_dec) -{ - celt_assert(_k>0); -#ifndef SMALL_FOOTPRINT - switch(_n){ - case 2:cwrsi2(_k,ec_dec_uint(_dec,ncwrs2(_k)),_y);break; - case 3:cwrsi3(_k,ec_dec_uint(_dec,ncwrs3(_k)),_y);break; - case 4:cwrsi4(_k,ec_dec_uint(_dec,ncwrs4(_k)),_y);break; - default: - { -#endif - VARDECL(opus_uint32,u); - SAVE_STACK; - ALLOC(u,_k+2U,opus_uint32); - cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); - RESTORE_STACK; -#ifndef SMALL_FOOTPRINT - } - break; - } -#endif -} |