summaryrefslogtreecommitdiff
path: root/src/renderergl2/glsl/lightall_fp.glsl
diff options
context:
space:
mode:
authorSmileTheory <SmileTheory@gmail.com>2013-09-16 00:54:26 -0700
committerTim Angus <tim@ngus.net>2014-06-17 17:43:34 +0100
commit75fe4796280cc95fe6b96cc9c9df5d74fc478ffa (patch)
treed031d5af29fb83215f6d140df94e5d4b48ce7309 /src/renderergl2/glsl/lightall_fp.glsl
parent57ba5d4419af6c57be928ca57da090622411215f (diff)
#5979: Cubemap support for opengl2.
Diffstat (limited to 'src/renderergl2/glsl/lightall_fp.glsl')
-rw-r--r--src/renderergl2/glsl/lightall_fp.glsl482
1 files changed, 282 insertions, 200 deletions
diff --git a/src/renderergl2/glsl/lightall_fp.glsl b/src/renderergl2/glsl/lightall_fp.glsl
index 0b455dd6..efd01399 100644
--- a/src/renderergl2/glsl/lightall_fp.glsl
+++ b/src/renderergl2/glsl/lightall_fp.glsl
@@ -20,14 +20,11 @@ uniform sampler2D u_SpecularMap;
uniform sampler2D u_ShadowMap;
#endif
-uniform vec3 u_ViewOrigin;
-
-#if defined(USE_TCGEN)
-uniform int u_TCGen0;
+#if defined(USE_CUBEMAP)
+uniform samplerCube u_CubeMap;
#endif
#if defined(USE_LIGHT_VECTOR)
-uniform vec4 u_LightOrigin;
uniform vec3 u_DirectedLight;
uniform vec3 u_AmbientLight;
uniform float u_LightRadius;
@@ -39,7 +36,6 @@ uniform vec3 u_PrimaryLightAmbient;
uniform float u_PrimaryLightRadius;
#endif
-
#if defined(USE_LIGHT)
uniform vec2 u_MaterialInfo;
#endif
@@ -50,43 +46,35 @@ varying vec2 var_LightTex;
#endif
varying vec4 var_Color;
-#if defined(USE_NORMALMAP) && !defined(USE_VERT_TANGENT_SPACE)
-varying vec3 var_Position;
-#endif
-
-#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
-varying vec3 var_SampleToView;
-#endif
-
-#if !defined(USE_FAST_LIGHT)
+#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
+varying vec3 var_ViewDir;
varying vec3 var_Normal;
-#endif
-
-#if defined(USE_VERT_TANGENT_SPACE)
varying vec3 var_Tangent;
varying vec3 var_Bitangent;
#endif
-varying vec3 var_VertLight;
+#if defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
+varying vec3 var_lightColor;
+#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP)
-varying vec3 var_LightDirection;
+varying vec4 var_LightDir;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
-varying vec3 var_PrimaryLightDirection;
+varying vec3 var_PrimaryLightDir;
#endif
#define EPSILON 0.00000001
#if defined(USE_PARALLAXMAP)
-float SampleHeight(sampler2D normalMap, vec2 t)
+float SampleDepth(sampler2D normalMap, vec2 t)
{
#if defined(SWIZZLE_NORMALMAP)
- return texture2D(normalMap, t).r;
+ return 1.0 - texture2D(normalMap, t).r;
#else
- return texture2D(normalMap, t).a;
+ return 1.0 - texture2D(normalMap, t).a;
#endif
}
@@ -95,10 +83,8 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
const int linearSearchSteps = 16;
const int binarySearchSteps = 6;
- float depthStep = 1.0 / float(linearSearchSteps);
-
// current size of search window
- float size = depthStep;
+ float size = 1.0 / float(linearSearchSteps);
// current depth position
float depth = 0.0;
@@ -111,7 +97,7 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
depth += size;
- float t = 1.0 - SampleHeight(normalMap, dp + ds * depth);
+ float t = SampleDepth(normalMap, dp + ds * depth);
if(bestDepth > 0.996) // if no depth found yet
if(depth >= t)
@@ -125,7 +111,7 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
size *= 0.5;
- float t = 1.0 - SampleHeight(normalMap, dp + ds * depth);
+ float t = SampleDepth(normalMap, dp + ds * depth);
if(depth >= t)
{
@@ -157,7 +143,7 @@ vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL,
if (gamma >= 0.0)
#endif
{
- B *= max(max(NL, NE), EPSILON);
+ B = max(B * max(NL, NE), EPSILON);
}
return diffuseAlbedo * (A + gamma / B);
@@ -166,60 +152,135 @@ vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL,
#endif
}
-#if defined(USE_SPECULARMAP)
-vec3 CalcSpecular(vec3 specularReflectance, float NH, float NL, float NE, float EH, float shininess)
+vec3 EnvironmentBRDF(float gloss, float NE, vec3 specular)
{
- #if defined(USE_BLINN) || defined(USE_TRIACE) || defined(USE_TORRANCE_SPARROW)
- float blinn = pow(NH, shininess);
+ #if 1
+ // from http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
+ vec4 t = vec4( 1/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96,0.25 ) * gloss;
+ t += vec4( 0.0, 0.0, (0.015 - 0.75 * 0.04)/0.96,0.75 );
+ float a0 = t.x * min( t.y, exp2( -9.28 * NE ) ) + t.z;
+ float a1 = t.w;
+ return clamp( a0 + specular * ( a1 - a0 ), 0.0, 1.0 );
+ #elif 0
+ // from http://seblagarde.wordpress.com/2011/08/17/hello-world/
+ return mix(specular.rgb, max(specular.rgb, vec3(gloss)), CalcFresnel(NE));
+ #else
+ // from http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20%28Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course%29.pptx
+ return mix(specular.rgb, vec3(1.0), CalcFresnel(NE) / (4.0 - 3.0 * gloss));
#endif
+}
- #if defined(USE_BLINN)
- return specularReflectance * blinn;
- #endif
+float CalcBlinn(float NH, float shininess)
+{
+#if 0
+ // from http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
+ float a = shininess + 0.775;
+ return exp(a * NH - a);
+#else
+ return pow(NH, shininess);
+#endif
+}
- #if defined(USE_COOK_TORRANCE) || defined (USE_TRIACE) || defined (USE_TORRANCE_SPARROW)
- vec3 fresnel = specularReflectance + (vec3(1.0) - specularReflectance) * pow(1.0 - EH, 5);
- #endif
+float CalcGGX(float NH, float shininess)
+{
+ // from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes.pdf
+ float m_sq = 2.0 / shininess;
+ float d = ((NH * NH) * (m_sq - 1.0) + 1.0);
+ return m_sq / (d * d);
+}
- #if defined(USE_COOK_TORRANCE) || defined(USE_TORRANCE_SPARROW)
+float CalcFresnel(float EH)
+{
+#if 1
+ // From http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
+ return exp2((-5.55473 * EH - 6.98316) * EH);
+#elif 0
+ float blend = 1.0 - EH;
+ float blend2 = blend * blend;
+ blend *= blend2 * blend2;
+
+ return blend;
+#else
+ return pow(1.0 - NH, 5.0);
+#endif
+}
+
+float CalcVisibility(float NH, float NL, float NE, float EH, float shininess)
+{
+#if 0
float geo = 2.0 * NH * min(NE, NL);
geo /= max(EH, geo);
- #endif
-
- #if defined(USE_COOK_TORRANCE)
- float m_sq = 2.0 / max(shininess, EPSILON);
- float NH_sq = NH * NH;
- float m_NH_sq = m_sq * NH_sq;
- float beckmann = exp((NH_sq - 1.0) / max(m_NH_sq, EPSILON)) / max(4.0 * m_NH_sq * NH_sq, EPSILON);
-
- return fresnel * geo * beckmann / max(NE, EPSILON);
+
+ return geo;
+#else
+ // Modified from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes.pdf
+ // NL, NE in numerator factored out from cook-torrance
+ #if defined(USE_GGX)
+ float roughness = sqrt(2.0 / (shininess + 2.0));
+ float k = (roughness + 1.0);
+ k *= k * 0.125;
+ #else
+ float k = 2.0 / sqrt(3.1415926535 * (shininess + 2.0));
+ #endif
+ float k2 = 1.0 - k;
+
+ float invGeo1 = NL * k2 + k;
+ float invGeo2 = NE * k2 + k;
+
+ return 1.0 / (invGeo1 * invGeo2);
#endif
+}
- #if defined(USE_TRIACE)
- float scale = 0.1248582 * shininess + 0.2691817;
- return fresnel * scale * blinn / max(max(NL, NE), EPSILON);
- #endif
-
- #if defined(USE_TORRANCE_SPARROW)
- float scale = 0.125 * shininess + 1.0;
+vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float shininess)
+{
+ float blinn = CalcBlinn(NH, shininess);
+ vec3 fSpecular = mix(specular, vec3(1.0), CalcFresnel(EH));
+ float vis = CalcVisibility(NH, NL, NE, EH, shininess);
- return fresnel * geo * scale * blinn / max(NE, EPSILON);
+ #if defined(USE_BLINN)
+ // Normalized Blinn-Phong
+ return specular * blinn * (shininess * 0.125 + 1.0);
+ #elif defined(USE_BLINN_FRESNEL)
+ // Normalized Blinn-Phong with Fresnel
+ return fSpecular * blinn * (shininess * 0.125 + 1.0);
+ #elif defined(USE_MCAULEY)
+ // Cook-Torrance as done by Stephen McAuley
+ // http://blog.selfshadow.com/publications/s2012-shading-course/mcauley/s2012_pbs_farcry3_notes_v2.pdf
+ return fSpecular * blinn * (shininess * 0.25 + 0.125);
+ #elif defined(USE_GOTANDA)
+ // Neumann-Neumann as done by Yoshiharu Gotanda
+ // http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
+ return fSpecular * blinn * (shininess * 0.124858 + 0.269182) / max(max(NL, NE), EPSILON);
+ #elif defined(USE_LAZAROV)
+ // Cook-Torrance as done by Dimitar Lazarov
+ // http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
+ return fSpecular * blinn * (shininess * 0.125 + 0.25) * vis;
#endif
+
+ return vec3(0.0);
}
-#endif
void main()
{
-#if !defined(USE_FAST_LIGHT) && (defined(USE_LIGHT) || defined(USE_NORMALMAP))
- vec3 surfN = normalize(var_Normal);
+ vec3 L, N, E, H;
+ float NL, NH, NE, EH;
+
+#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
+ mat3 tangentToWorld = mat3(var_Tangent, var_Bitangent, var_Normal);
#endif
#if defined(USE_DELUXEMAP)
- vec3 L = 2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0);
- //L += var_LightDirection * 0.0001;
-#elif defined(USE_LIGHT)
- vec3 L = var_LightDirection;
+ L = (2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0));
+ #if defined(USE_TANGENT_SPACE_LIGHT)
+ L = L * tangentToWorld;
+ #endif
+#elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
+ L = var_LightDir.xyz;
+#endif
+
+#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
+ E = normalize(var_ViewDir);
#endif
#if defined(USE_LIGHTMAP)
@@ -229,94 +290,80 @@ void main()
#endif
vec3 lightColor = lightSample.rgb;
#elif defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
- #if defined(USE_INVSQRLIGHT)
- float intensity = 1.0 / dot(L, L);
- #else
- float intensity = clamp((1.0 - dot(L, L) / (u_LightRadius * u_LightRadius)) * 1.07, 0.0, 1.0);
- #endif
+ // inverse square light
+ float attenuation = u_LightRadius * u_LightRadius / dot(L, L);
+
+ // zero light at radius, approximating q3 style
+ attenuation = 0.5 * attenuation - 0.5;
+ //attenuation = 0.0697168 * attenuation;
+ //attenuation *= step(0.294117, attenuation);
+
+ // clamp attenuation
+ #if defined(NO_LIGHT_CLAMP)
+ attenuation *= step(0.0, attenuation);
+ #else
+ attenuation = clamp(attenuation, 0.0, 1.0);
+ #endif
+
+ // don't attenuate directional light
+ attenuation = (attenuation - 1.0) * var_LightDir.w + 1.0;
- vec3 lightColor = u_DirectedLight * intensity;
- vec3 ambientColor = u_AmbientLight;
+ vec3 lightColor = u_DirectedLight * attenuation;
+ vec3 ambientColor = u_AmbientLight;
#elif defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
- vec3 lightColor = var_VertLight;
+ vec3 lightColor = var_lightColor;
#endif
-#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
- vec3 E = normalize(var_SampleToView);
-#endif
vec2 texCoords = var_DiffuseTex;
- float ambientDiff = 1.0;
-
-#if defined(USE_NORMALMAP)
- #if defined(USE_VERT_TANGENT_SPACE)
- mat3 tangentToWorld = mat3(var_Tangent, var_Bitangent, var_Normal);
+#if defined(USE_PARALLAXMAP)
+ #if defined(USE_TANGENT_SPACE_LIGHT)
+ vec3 offsetDir = E;
#else
- vec3 q0 = dFdx(var_Position);
- vec3 q1 = dFdy(var_Position);
- vec2 st0 = dFdx(texCoords);
- vec2 st1 = dFdy(texCoords);
- float dir = sign(st1.t * st0.s - st0.t * st1.s);
-
- vec3 tangent = normalize(q0 * st1.t - q1 * st0.t) * dir;
- vec3 bitangent = -normalize(q0 * st1.s - q1 * st0.s) * dir;
-
- mat3 tangentToWorld = mat3(tangent, bitangent, var_Normal);
+ vec3 offsetDir = E * tangentToWorld;
#endif
- #if defined(USE_PARALLAXMAP)
- vec3 offsetDir = normalize(E * tangentToWorld);
offsetDir.xy *= -0.05 / offsetDir.z;
texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
- #endif
- vec3 texN;
- #if defined(SWIZZLE_NORMALMAP)
- texN.xy = 2.0 * texture2D(u_NormalMap, texCoords).ag - 1.0;
- #else
- texN.xy = 2.0 * texture2D(u_NormalMap, texCoords).rg - 1.0;
- #endif
- texN.z = sqrt(clamp(1.0 - dot(texN.xy, texN.xy), 0.0, 1.0));
- vec3 N = tangentToWorld * texN;
- #if defined(r_normalAmbient)
- ambientDiff = 0.781341 * texN.z + 0.218659;
- #endif
-#elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
- vec3 N = surfN;
#endif
-#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || (defined(USE_TCGEN) && defined(USE_NORMALMAP))
- N = normalize(N);
-#endif
+ vec4 diffuse = texture2D(u_DiffuseMap, texCoords);
-#if defined(USE_TCGEN) && defined(USE_NORMALMAP)
- if (u_TCGen0 == TCGEN_ENVIRONMENT_MAPPED)
- {
- texCoords = -reflect(E, N).yz * vec2(0.5, -0.5) + 0.5;
- }
-#endif
+#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
- vec4 diffuseAlbedo = texture2D(u_DiffuseMap, texCoords);
-#if defined(USE_LIGHT) && defined(USE_GAMMA2_TEXTURES)
- diffuseAlbedo.rgb *= diffuseAlbedo.rgb;
-#endif
+ #if defined(USE_LINEAR_LIGHT)
+ diffuse.rgb *= diffuse.rgb;
+ #endif
-#if defined(USE_LIGHT) && defined(USE_FAST_LIGHT)
- gl_FragColor = diffuse.rgb;
- #if defined(USE_LIGHTMAP)
- gl_FragColor *= lightColor;
+ #if defined(USE_NORMALMAP)
+ #if defined(SWIZZLE_NORMALMAP)
+ N.xy = 2.0 * texture2D(u_NormalMap, texCoords).ag - vec2(1.0);
+ #else
+ N.xy = 2.0 * texture2D(u_NormalMap, texCoords).rg - vec2(1.0);
+ #endif
+ N.z = sqrt(1.0 - clamp(dot(N.xy, N.xy), 0.0, 1.0));
+ #if !defined(USE_TANGENT_SPACE_LIGHT)
+ N = normalize(tangentToWorld * N);
+ #endif
+ #elif defined(USE_TANGENT_SPACE_LIGHT)
+ N = vec3(0.0, 0.0, 1.0);
+ #else
+ N = normalize(var_Normal);
#endif
-#elif defined(USE_LIGHT)
+
L = normalize(L);
- float surfNL = clamp(dot(surfN, L), 0.0, 1.0);
-
#if defined(USE_SHADOWMAP)
vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
float shadowValue = texture2D(u_ShadowMap, shadowTex).r;
// surfaces not facing the light are always shadowed
- shadowValue *= step(0.0, dot(surfN, var_PrimaryLightDirection));
+ #if defined(USE_TANGENT_SPACE_LIGHT)
+ shadowValue *= step(0.0, var_PrimaryLightDir.z);
+ #else
+ shadowValue *= step(0.0, dot(var_Normal, var_PrimaryLightDir));
+ #endif
#if defined(SHADOWMAP_MODULATE)
//vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor);
@@ -324,106 +371,141 @@ void main()
#if 0
// Only shadow when the world light is parallel to the primary light
- shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDirection), 0.0, 1.0);
+ shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDir), 0.0, 1.0);
#endif
lightColor = mix(shadowColor, lightColor, shadowValue);
#endif
#endif
#if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
- #if defined(USE_STANDARD_DELUXEMAP)
- // Standard deluxe mapping treats the light sample as fully directed
- // and doesn't compensate for light angle attenuation.
- vec3 ambientColor = vec3(0.0);
- #else
- // Separate the light sample into directed and ambient parts.
- //
- // ambientMax - if the cosine of the angle between the surface
- // normal and the light is below this value, the light
- // is fully ambient.
- // directedMax - if the cosine of the angle between the surface
- // normal and the light is above this value, the light
- // is fully directed.
- const float ambientMax = 0.25;
- const float directedMax = 0.5;
-
- float directedScale = clamp((surfNL - ambientMax) / (directedMax - ambientMax), 0.0, 1.0);
-
- // Scale the directed portion to compensate for the baked-in
- // light angle attenuation.
- directedScale /= max(surfNL, ambientMax);
-
- #if defined(r_normalAmbient)
- directedScale *= 1.0 - r_normalAmbient;
- #endif
-
- // Recover any unused light as ambient
vec3 ambientColor = lightColor;
- lightColor *= directedScale;
+
+ #if defined(USE_TANGENT_SPACE_LIGHT)
+ float surfNL = L.z;
+ #else
+ float surfNL = clamp(dot(var_Normal, L), 0.0, 1.0);
+ #endif
+
+ // Scale the incoming light to compensate for the baked-in light angle
+ // attenuation.
+ lightColor /= max(surfNL, 0.25);
+
+ // Recover any unused light as ambient, in case attenuation is over 4x or
+ // light is below the surface
ambientColor -= lightColor * surfNL;
- #endif
#endif
+
+ vec3 reflectance;
- float NL = clamp(dot(N, L), 0.0, 1.0);
- float NE = clamp(dot(N, E), 0.0, 1.0);
-
- float maxReflectance = u_MaterialInfo.x;
- float shininess = u_MaterialInfo.y;
+ NL = clamp(dot(N, L), 0.0, 1.0);
+ NE = clamp(dot(N, E), 0.0, 1.0);
#if defined(USE_SPECULARMAP)
- vec4 specularReflectance = texture2D(u_SpecularMap, texCoords);
- specularReflectance.rgb *= maxReflectance;
- shininess *= specularReflectance.a;
+ vec4 specular = texture2D(u_SpecularMap, texCoords);
+ #if defined(USE_LINEAR_LIGHT)
+ specular.rgb *= specular.rgb;
+ #endif
+ #else
+ vec4 specular = vec4(1.0);
+ #endif
+
+ specular *= u_MaterialInfo.xxxy;
+
+ float gloss = specular.a;
+ float shininess = exp2(gloss * 13.0);
+ float localOcclusion = clamp((diffuse.r + diffuse.g + diffuse.b) * 16.0f, 0.0, 1.0);
+
+ #if defined(SPECULAR_IS_METALLIC)
+ // diffuse is actually base color, and red of specular is metallicness
+ float metallic = specular.r;
+
+ specular.rgb = vec3(0.04) + 0.96 * diffuse.rgb * metallic;
+ diffuse.rgb *= 1.0 - metallic;
+ #else
// adjust diffuse by specular reflectance, to maintain energy conservation
- diffuseAlbedo.rgb *= vec3(1.0) - specularReflectance.rgb;
+ diffuse.rgb *= vec3(1.0) - specular.rgb;
#endif
+
+
+ reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
- gl_FragColor.rgb = lightColor * NL * CalcDiffuse(diffuseAlbedo.rgb, N, L, E, NE, NL, shininess);
- gl_FragColor.rgb += ambientDiff * ambientColor * diffuseAlbedo.rgb;
- #if defined(USE_PRIMARY_LIGHT)
- vec3 L2 = var_PrimaryLightDirection;
- float NL2 = clamp(dot(N, L2), 0.0, 1.0);
+ #if defined(r_deluxeSpecular) || defined(USE_LIGHT_VECTOR)
+ float adjShininess = shininess;
+
+ #if !defined(USE_LIGHT_VECTOR)
+ adjShininess = exp2(gloss * r_deluxeSpecular * 13.0);
+ #endif
+
+ H = normalize(L + E);
- #if defined(USE_SHADOWMAP)
- gl_FragColor.rgb += u_PrimaryLightColor * shadowValue * NL2 * CalcDiffuse(diffuseAlbedo.rgb, N, L2, E, NE, NL2, shininess);
+ EH = clamp(dot(E, H), 0.0, 1.0);
+ NH = clamp(dot(N, H), 0.0, 1.0);
+
+ #if !defined(USE_LIGHT_VECTOR)
+ reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjShininess) * r_deluxeSpecular * localOcclusion;
#else
- gl_FragColor.rgb += u_PrimaryLightColor * NL2 * CalcDiffuse(diffuseAlbedo.rgb, N, L2, E, NE, NL2, shininess);
+ reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjShininess) * localOcclusion;
#endif
#endif
-
- #if defined(USE_SPECULARMAP)
- vec3 H = normalize(L + E);
+
+ gl_FragColor.rgb = lightColor * reflectance * NL;
+ gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb);
+
+ #if defined(USE_CUBEMAP)
+ reflectance = EnvironmentBRDF(gloss, NE, specular.rgb);
- float EH = clamp(dot(E, H), 0.0, 1.0);
- float NH = clamp(dot(N, H), 0.0, 1.0);
+ vec3 R = reflect(E, N);
+ #if defined(USE_TANGENT_SPACE_LIGHT)
+ R = tangentToWorld * R;
+ #endif
- gl_FragColor.rgb += lightColor * NL * CalcSpecular(specularReflectance.rgb, NH, NL, NE, EH, shininess);
-
- #if defined(r_normalAmbient)
- vec3 ambientHalf = normalize(surfN + E);
- float ambientSpec = max(dot(ambientHalf, N) + 0.5, 0.0);
- ambientSpec *= ambientSpec * 0.44;
- gl_FragColor.rgb += specularReflectance.rgb * ambientSpec * ambientColor;
+ vec3 cubeLightColor = textureCubeLod(u_CubeMap, R, 7.0 - gloss * 7.0).rgb;
+
+ #if defined(USE_LINEAR_LIGHT)
+ cubeLightColor *= cubeLightColor;
#endif
- #if defined(USE_PRIMARY_LIGHT)
- vec3 H2 = normalize(L2 + E);
- float EH2 = clamp(dot(E, H2), 0.0, 1.0);
- float NH2 = clamp(dot(N, H2), 0.0, 1.0);
+ #if defined(USE_LIGHTMAP)
+ cubeLightColor *= lightSample.rgb;
+ #elif defined (USE_LIGHT_VERTEX)
+ cubeLightColor *= var_lightColor;
+ #else
+ cubeLightColor *= lightColor * NL + ambientColor;
+ #endif
+
+ //gl_FragColor.rgb += diffuse.rgb * textureCubeLod(u_CubeMap, N, 7.0).rgb;
+ gl_FragColor.rgb += cubeLightColor * reflectance * localOcclusion;
+ #endif
+ #if defined(USE_PRIMARY_LIGHT)
+ L = normalize(var_PrimaryLightDir);
+ NL = clamp(dot(N, L), 0.0, 1.0);
- #if defined(USE_SHADOWMAP)
- gl_FragColor.rgb += u_PrimaryLightColor * shadowValue * NL2 * CalcSpecular(specularReflectance.rgb, NH2, NL2, NE, EH2, shininess);
- #else
- gl_FragColor.rgb += u_PrimaryLightColor * NL2 * CalcSpecular(specularReflectance.rgb, NH2, NL2, NE, EH2, shininess);
- #endif
+ H = normalize(L + E);
+ EH = clamp(dot(E, H), 0.0, 1.0);
+ NH = clamp(dot(N, H), 0.0, 1.0);
+
+ reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
+ reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, shininess);
+
+ #if defined(USE_SHADOWMAP)
+ reflectance *= shadowValue;
#endif
- #endif
+
+ gl_FragColor.rgb += u_PrimaryLightColor * reflectance * NL;
+ #endif
+
+ #if defined(USE_LINEAR_LIGHT)
+ gl_FragColor.rgb = sqrt(gl_FragColor.rgb);
+ #endif
+
+ gl_FragColor.a = diffuse.a;
#else
- gl_FragColor.rgb = diffuseAlbedo.rgb;
+ gl_FragColor = diffuse;
+ #if defined(USE_LIGHTMAP)
+ gl_FragColor.rgb *= lightColor;
+ #endif
#endif
- gl_FragColor.a = diffuseAlbedo.a;
-
gl_FragColor *= var_Color;
}