summaryrefslogtreecommitdiff
path: root/src/renderergl2/tr_bsp.c
diff options
context:
space:
mode:
authorSmileTheory <SmileTheory@gmail.com>2013-01-30 17:27:36 -0800
committerTim Angus <tim@ngus.net>2013-05-03 16:06:37 +0100
commitb9374dfb56e7011204844029946cd814f425a65a (patch)
tree6114b82cfeb452b6f3257eae67a7e06aaa387051 /src/renderergl2/tr_bsp.c
parent38daed324464666b5a4bb6a758c60e960b4610f0 (diff)
Starting sunlight experimentation branch
Diffstat (limited to 'src/renderergl2/tr_bsp.c')
-rw-r--r--src/renderergl2/tr_bsp.c186
1 files changed, 186 insertions, 0 deletions
diff --git a/src/renderergl2/tr_bsp.c b/src/renderergl2/tr_bsp.c
index 824e6c2b..b85189fd 100644
--- a/src/renderergl2/tr_bsp.c
+++ b/src/renderergl2/tr_bsp.c
@@ -3348,6 +3348,192 @@ void RE_LoadWorldMap( const char *name ) {
// determine vertex light directions
R_CalcVertexLightDirs();
+ // determine which parts of the map are in sunlight
+ if (0)
+ {
+ world_t *w;
+
+ w = &s_worldData;
+ uint8_t *primaryLightGrid, *data;
+ int lightGridSize;
+ int i;
+
+ lightGridSize = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2];
+ primaryLightGrid = ri.Malloc(lightGridSize * sizeof(*primaryLightGrid));
+
+ memset(primaryLightGrid, 0, lightGridSize * sizeof(*primaryLightGrid));
+
+ data = w->lightGridData;
+ for (i = 0; i < lightGridSize; i++, data += 8)
+ {
+ int lat, lng;
+ vec3_t gridLightDir, gridLightCol;
+
+ // skip samples in wall
+ if (!(data[0]+data[1]+data[2]+data[3]+data[4]+data[5]) )
+ continue;
+
+ gridLightCol[0] = ByteToFloat(data[3]);
+ gridLightCol[1] = ByteToFloat(data[4]);
+ gridLightCol[2] = ByteToFloat(data[5]);
+
+ lat = data[7];
+ lng = data[6];
+ lat *= (FUNCTABLE_SIZE/256);
+ lng *= (FUNCTABLE_SIZE/256);
+
+ // decode X as cos( lat ) * sin( long )
+ // decode Y as sin( lat ) * sin( long )
+ // decode Z as cos( long )
+
+ gridLightDir[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
+ gridLightDir[1] = tr.sinTable[lat] * tr.sinTable[lng];
+ gridLightDir[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
+
+ // FIXME: magic number for determining if light direction is close enough to sunlight
+ if (DotProduct(gridLightDir, tr.sunDirection) > 0.75f)
+ {
+ primaryLightGrid[i] = 1;
+ }
+ else
+ {
+ primaryLightGrid[i] = 255;
+ }
+ }
+
+ if (0)
+ {
+ int i;
+ byte *buffer = ri.Malloc(w->lightGridBounds[0] * w->lightGridBounds[1] * 3 + 18);
+ byte *out;
+ uint8_t *in;
+ char fileName[MAX_QPATH];
+
+ Com_Memset (buffer, 0, 18);
+ buffer[2] = 2; // uncompressed type
+ buffer[12] = w->lightGridBounds[0] & 255;
+ buffer[13] = w->lightGridBounds[0] >> 8;
+ buffer[14] = w->lightGridBounds[1] & 255;
+ buffer[15] = w->lightGridBounds[1] >> 8;
+ buffer[16] = 24; // pixel size
+
+ in = primaryLightGrid;
+ for (i = 0; i < w->lightGridBounds[2]; i++)
+ {
+ int j;
+
+ sprintf(fileName, "primarylg%d.tga", i);
+
+ out = buffer + 18;
+ for (j = 0; j < w->lightGridBounds[0] * w->lightGridBounds[1]; j++)
+ {
+ if (*in == 1)
+ {
+ *out++ = 255;
+ *out++ = 255;
+ *out++ = 255;
+ }
+ else if (*in == 255)
+ {
+ *out++ = 64;
+ *out++ = 64;
+ *out++ = 64;
+ }
+ else
+ {
+ *out++ = 0;
+ *out++ = 0;
+ *out++ = 0;
+ }
+ in++;
+ }
+
+ ri.FS_WriteFile(fileName, buffer, w->lightGridBounds[0] * w->lightGridBounds[1] * 3 + 18);
+ }
+
+ ri.Free(buffer);
+ }
+
+ for (i = 0; i < w->numWorldSurfaces; i++)
+ {
+ msurface_t *surf = w->surfaces + i;
+ cullinfo_t *ci = &surf->cullinfo;
+
+ if(ci->type & CULLINFO_PLANE)
+ {
+ if (DotProduct(ci->plane.normal, tr.sunDirection) <= 0.0f)
+ {
+ //ri.Printf(PRINT_ALL, "surface %d is not oriented towards sunlight\n", i);
+ continue;
+ }
+ }
+
+ if(ci->type & CULLINFO_BOX)
+ {
+ int ibounds[2][3], x, y, z, goodSamples, numSamples;
+ vec3_t lightOrigin;
+
+ VectorSubtract( ci->bounds[0], w->lightGridOrigin, lightOrigin );
+
+ ibounds[0][0] = floor(lightOrigin[0] * w->lightGridInverseSize[0]);
+ ibounds[0][1] = floor(lightOrigin[1] * w->lightGridInverseSize[1]);
+ ibounds[0][2] = floor(lightOrigin[2] * w->lightGridInverseSize[2]);
+
+ VectorSubtract( ci->bounds[1], w->lightGridOrigin, lightOrigin );
+
+ ibounds[1][0] = ceil(lightOrigin[0] * w->lightGridInverseSize[0]);
+ ibounds[1][1] = ceil(lightOrigin[1] * w->lightGridInverseSize[1]);
+ ibounds[1][2] = ceil(lightOrigin[2] * w->lightGridInverseSize[2]);
+
+ ibounds[0][0] = CLAMP(ibounds[0][0], 0, w->lightGridSize[0]);
+ ibounds[0][1] = CLAMP(ibounds[0][1], 0, w->lightGridSize[1]);
+ ibounds[0][2] = CLAMP(ibounds[0][2], 0, w->lightGridSize[2]);
+
+ ibounds[1][0] = CLAMP(ibounds[1][0], 0, w->lightGridSize[0]);
+ ibounds[1][1] = CLAMP(ibounds[1][1], 0, w->lightGridSize[1]);
+ ibounds[1][2] = CLAMP(ibounds[1][2], 0, w->lightGridSize[2]);
+
+ /*
+ ri.Printf(PRINT_ALL, "surf %d bounds (%f %f %f)-(%f %f %f) ibounds (%d %d %d)-(%d %d %d)\n", i,
+ ci->bounds[0][0], ci->bounds[0][1], ci->bounds[0][2],
+ ci->bounds[1][0], ci->bounds[1][1], ci->bounds[1][2],
+ ibounds[0][0], ibounds[0][1], ibounds[0][2],
+ ibounds[1][0], ibounds[1][1], ibounds[1][2]);
+ */
+
+ goodSamples = 0;
+ numSamples = 0;
+ for (x = ibounds[0][0]; x <= ibounds[1][0]; x++)
+ {
+ for (y = ibounds[0][1]; y <= ibounds[1][1]; y++)
+ {
+ for (z = ibounds[0][2]; z <= ibounds[1][2]; z++)
+ {
+ uint8_t primaryLight = primaryLightGrid[x * 8 + y * 8 * w->lightGridBounds[0] + z * 8 * w->lightGridBounds[0] * w->lightGridBounds[2]];
+
+ if (primaryLight == 0)
+ continue;
+
+ numSamples++;
+
+ if (primaryLight == 1)
+ goodSamples++;
+ }
+ }
+ }
+
+ // FIXME: magic number for determining whether object is mostly in sunlight
+ if (goodSamples > numSamples * 0.75f)
+ {
+ //ri.Printf(PRINT_ALL, "surface %d is in sunlight\n", i);
+ //surf->primaryLight = 1;
+ }
+ }
+ }
+
+ ri.Free(primaryLightGrid);
+ }
+
// create static VBOS from the world
R_CreateWorldVBO();
if (r_mergeLeafSurfaces->integer)