diff options
Diffstat (limited to 'ioq3-r437/src/renderer/tr_shade_calc.c')
-rw-r--r-- | ioq3-r437/src/renderer/tr_shade_calc.c | 1231 |
1 files changed, 1231 insertions, 0 deletions
diff --git a/ioq3-r437/src/renderer/tr_shade_calc.c b/ioq3-r437/src/renderer/tr_shade_calc.c new file mode 100644 index 00000000..15fbe77a --- /dev/null +++ b/ioq3-r437/src/renderer/tr_shade_calc.c @@ -0,0 +1,1231 @@ +/* +=========================================================================== +Copyright (C) 1999-2005 Id Software, Inc. + +This file is part of Quake III Arena source code. + +Quake III Arena source code is free software; you can redistribute it +and/or modify it under the terms of the GNU General Public License as +published by the Free Software Foundation; either version 2 of the License, +or (at your option) any later version. + +Quake III Arena source code is distributed in the hope that it will be +useful, but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with Quake III Arena source code; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +=========================================================================== +*/ +// tr_shade_calc.c + +#include "tr_local.h" +#if idppc_altivec && !defined(MACOS_X) +#include <altivec.h> +#endif + + +#define WAVEVALUE( table, base, amplitude, phase, freq ) ((base) + table[ myftol( ( ( (phase) + tess.shaderTime * (freq) ) * FUNCTABLE_SIZE ) ) & FUNCTABLE_MASK ] * (amplitude)) + +static float *TableForFunc( genFunc_t func ) +{ + switch ( func ) + { + case GF_SIN: + return tr.sinTable; + case GF_TRIANGLE: + return tr.triangleTable; + case GF_SQUARE: + return tr.squareTable; + case GF_SAWTOOTH: + return tr.sawToothTable; + case GF_INVERSE_SAWTOOTH: + return tr.inverseSawToothTable; + case GF_NONE: + default: + break; + } + + ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name ); + return NULL; +} + +/* +** EvalWaveForm +** +** Evaluates a given waveForm_t, referencing backEnd.refdef.time directly +*/ +static float EvalWaveForm( const waveForm_t *wf ) +{ + float *table; + + table = TableForFunc( wf->func ); + + return WAVEVALUE( table, wf->base, wf->amplitude, wf->phase, wf->frequency ); +} + +static float EvalWaveFormClamped( const waveForm_t *wf ) +{ + float glow = EvalWaveForm( wf ); + + if ( glow < 0 ) + { + return 0; + } + + if ( glow > 1 ) + { + return 1; + } + + return glow; +} + +/* +** RB_CalcStretchTexCoords +*/ +void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st ) +{ + float p; + texModInfo_t tmi; + + p = 1.0f / EvalWaveForm( wf ); + + tmi.matrix[0][0] = p; + tmi.matrix[1][0] = 0; + tmi.translate[0] = 0.5f - 0.5f * p; + + tmi.matrix[0][1] = 0; + tmi.matrix[1][1] = p; + tmi.translate[1] = 0.5f - 0.5f * p; + + RB_CalcTransformTexCoords( &tmi, st ); +} + +/* +==================================================================== + +DEFORMATIONS + +==================================================================== +*/ + +/* +======================== +RB_CalcDeformVertexes + +======================== +*/ +void RB_CalcDeformVertexes( deformStage_t *ds ) +{ + int i; + vec3_t offset; + float scale; + float *xyz = ( float * ) tess.xyz; + float *normal = ( float * ) tess.normal; + float *table; + + if ( ds->deformationWave.frequency == 0 ) + { + scale = EvalWaveForm( &ds->deformationWave ); + + for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) + { + VectorScale( normal, scale, offset ); + + xyz[0] += offset[0]; + xyz[1] += offset[1]; + xyz[2] += offset[2]; + } + } + else + { + table = TableForFunc( ds->deformationWave.func ); + + for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) + { + float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread; + + scale = WAVEVALUE( table, ds->deformationWave.base, + ds->deformationWave.amplitude, + ds->deformationWave.phase + off, + ds->deformationWave.frequency ); + + VectorScale( normal, scale, offset ); + + xyz[0] += offset[0]; + xyz[1] += offset[1]; + xyz[2] += offset[2]; + } + } +} + +/* +========================= +RB_CalcDeformNormals + +Wiggle the normals for wavy environment mapping +========================= +*/ +void RB_CalcDeformNormals( deformStage_t *ds ) { + int i; + float scale; + float *xyz = ( float * ) tess.xyz; + float *normal = ( float * ) tess.normal; + + for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) { + scale = 0.98f; + scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale, + tess.shaderTime * ds->deformationWave.frequency ); + normal[ 0 ] += ds->deformationWave.amplitude * scale; + + scale = 0.98f; + scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale, + tess.shaderTime * ds->deformationWave.frequency ); + normal[ 1 ] += ds->deformationWave.amplitude * scale; + + scale = 0.98f; + scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale, + tess.shaderTime * ds->deformationWave.frequency ); + normal[ 2 ] += ds->deformationWave.amplitude * scale; + + VectorNormalizeFast( normal ); + } +} + +/* +======================== +RB_CalcBulgeVertexes + +======================== +*/ +void RB_CalcBulgeVertexes( deformStage_t *ds ) { + int i; + const float *st = ( const float * ) tess.texCoords[0]; + float *xyz = ( float * ) tess.xyz; + float *normal = ( float * ) tess.normal; + float now; + + now = backEnd.refdef.time * ds->bulgeSpeed * 0.001f; + + for ( i = 0; i < tess.numVertexes; i++, xyz += 4, st += 4, normal += 4 ) { + int off; + float scale; + + off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now ); + + scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight; + + xyz[0] += normal[0] * scale; + xyz[1] += normal[1] * scale; + xyz[2] += normal[2] * scale; + } +} + + +/* +====================== +RB_CalcMoveVertexes + +A deformation that can move an entire surface along a wave path +====================== +*/ +void RB_CalcMoveVertexes( deformStage_t *ds ) { + int i; + float *xyz; + float *table; + float scale; + vec3_t offset; + + table = TableForFunc( ds->deformationWave.func ); + + scale = WAVEVALUE( table, ds->deformationWave.base, + ds->deformationWave.amplitude, + ds->deformationWave.phase, + ds->deformationWave.frequency ); + + VectorScale( ds->moveVector, scale, offset ); + + xyz = ( float * ) tess.xyz; + for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) { + VectorAdd( xyz, offset, xyz ); + } +} + + +/* +============= +DeformText + +Change a polygon into a bunch of text polygons +============= +*/ +void DeformText( const char *text ) { + int i; + vec3_t origin, width, height; + int len; + int ch; + byte color[4]; + float bottom, top; + vec3_t mid; + + height[0] = 0; + height[1] = 0; + height[2] = -1; + CrossProduct( tess.normal[0], height, width ); + + // find the midpoint of the box + VectorClear( mid ); + bottom = 999999; + top = -999999; + for ( i = 0 ; i < 4 ; i++ ) { + VectorAdd( tess.xyz[i], mid, mid ); + if ( tess.xyz[i][2] < bottom ) { + bottom = tess.xyz[i][2]; + } + if ( tess.xyz[i][2] > top ) { + top = tess.xyz[i][2]; + } + } + VectorScale( mid, 0.25f, origin ); + + // determine the individual character size + height[0] = 0; + height[1] = 0; + height[2] = ( top - bottom ) * 0.5f; + + VectorScale( width, height[2] * -0.75f, width ); + + // determine the starting position + len = strlen( text ); + VectorMA( origin, (len-1), width, origin ); + + // clear the shader indexes + tess.numIndexes = 0; + tess.numVertexes = 0; + + color[0] = color[1] = color[2] = color[3] = 255; + + // draw each character + for ( i = 0 ; i < len ; i++ ) { + ch = text[i]; + ch &= 255; + + if ( ch != ' ' ) { + int row, col; + float frow, fcol, size; + + row = ch>>4; + col = ch&15; + + frow = row*0.0625f; + fcol = col*0.0625f; + size = 0.0625f; + + RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size ); + } + VectorMA( origin, -2, width, origin ); + } +} + +/* +================== +GlobalVectorToLocal +================== +*/ +static void GlobalVectorToLocal( const vec3_t in, vec3_t out ) { + out[0] = DotProduct( in, backEnd.or.axis[0] ); + out[1] = DotProduct( in, backEnd.or.axis[1] ); + out[2] = DotProduct( in, backEnd.or.axis[2] ); +} + +/* +===================== +AutospriteDeform + +Assuming all the triangles for this shader are independant +quads, rebuild them as forward facing sprites +===================== +*/ +static void AutospriteDeform( void ) { + int i; + int oldVerts; + float *xyz; + vec3_t mid, delta; + float radius; + vec3_t left, up; + vec3_t leftDir, upDir; + + if ( tess.numVertexes & 3 ) { + ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name ); + } + if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) { + ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name ); + } + + oldVerts = tess.numVertexes; + tess.numVertexes = 0; + tess.numIndexes = 0; + + if ( backEnd.currentEntity != &tr.worldEntity ) { + GlobalVectorToLocal( backEnd.viewParms.or.axis[1], leftDir ); + GlobalVectorToLocal( backEnd.viewParms.or.axis[2], upDir ); + } else { + VectorCopy( backEnd.viewParms.or.axis[1], leftDir ); + VectorCopy( backEnd.viewParms.or.axis[2], upDir ); + } + + for ( i = 0 ; i < oldVerts ; i+=4 ) { + // find the midpoint + xyz = tess.xyz[i]; + + mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]); + mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]); + mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]); + + VectorSubtract( xyz, mid, delta ); + radius = VectorLength( delta ) * 0.707f; // / sqrt(2) + + VectorScale( leftDir, radius, left ); + VectorScale( upDir, radius, up ); + + if ( backEnd.viewParms.isMirror ) { + VectorSubtract( vec3_origin, left, left ); + } + + // compensate for scale in the axes if necessary + if ( backEnd.currentEntity->e.nonNormalizedAxes ) { + float axisLength; + axisLength = VectorLength( backEnd.currentEntity->e.axis[0] ); + if ( !axisLength ) { + axisLength = 0; + } else { + axisLength = 1.0f / axisLength; + } + VectorScale(left, axisLength, left); + VectorScale(up, axisLength, up); + } + + RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] ); + } +} + + +/* +===================== +Autosprite2Deform + +Autosprite2 will pivot a rectangular quad along the center of its long axis +===================== +*/ +int edgeVerts[6][2] = { + { 0, 1 }, + { 0, 2 }, + { 0, 3 }, + { 1, 2 }, + { 1, 3 }, + { 2, 3 } +}; + +static void Autosprite2Deform( void ) { + int i, j, k; + int indexes; + float *xyz; + vec3_t forward; + + if ( tess.numVertexes & 3 ) { + ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name ); + } + if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) { + ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name ); + } + + if ( backEnd.currentEntity != &tr.worldEntity ) { + GlobalVectorToLocal( backEnd.viewParms.or.axis[0], forward ); + } else { + VectorCopy( backEnd.viewParms.or.axis[0], forward ); + } + + // this is a lot of work for two triangles... + // we could precalculate a lot of it is an issue, but it would mess up + // the shader abstraction + for ( i = 0, indexes = 0 ; i < tess.numVertexes ; i+=4, indexes+=6 ) { + float lengths[2]; + int nums[2]; + vec3_t mid[2]; + vec3_t major, minor; + float *v1, *v2; + + // find the midpoint + xyz = tess.xyz[i]; + + // identify the two shortest edges + nums[0] = nums[1] = 0; + lengths[0] = lengths[1] = 999999; + + for ( j = 0 ; j < 6 ; j++ ) { + float l; + vec3_t temp; + + v1 = xyz + 4 * edgeVerts[j][0]; + v2 = xyz + 4 * edgeVerts[j][1]; + + VectorSubtract( v1, v2, temp ); + + l = DotProduct( temp, temp ); + if ( l < lengths[0] ) { + nums[1] = nums[0]; + lengths[1] = lengths[0]; + nums[0] = j; + lengths[0] = l; + } else if ( l < lengths[1] ) { + nums[1] = j; + lengths[1] = l; + } + } + + for ( j = 0 ; j < 2 ; j++ ) { + v1 = xyz + 4 * edgeVerts[nums[j]][0]; + v2 = xyz + 4 * edgeVerts[nums[j]][1]; + + mid[j][0] = 0.5f * (v1[0] + v2[0]); + mid[j][1] = 0.5f * (v1[1] + v2[1]); + mid[j][2] = 0.5f * (v1[2] + v2[2]); + } + + // find the vector of the major axis + VectorSubtract( mid[1], mid[0], major ); + + // cross this with the view direction to get minor axis + CrossProduct( major, forward, minor ); + VectorNormalize( minor ); + + // re-project the points + for ( j = 0 ; j < 2 ; j++ ) { + float l; + + v1 = xyz + 4 * edgeVerts[nums[j]][0]; + v2 = xyz + 4 * edgeVerts[nums[j]][1]; + + l = 0.5 * sqrt( lengths[j] ); + + // we need to see which direction this edge + // is used to determine direction of projection + for ( k = 0 ; k < 5 ; k++ ) { + if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0] + && tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) { + break; + } + } + + if ( k == 5 ) { + VectorMA( mid[j], l, minor, v1 ); + VectorMA( mid[j], -l, minor, v2 ); + } else { + VectorMA( mid[j], -l, minor, v1 ); + VectorMA( mid[j], l, minor, v2 ); + } + } + } +} + + +/* +===================== +RB_DeformTessGeometry + +===================== +*/ +void RB_DeformTessGeometry( void ) { + int i; + deformStage_t *ds; + + for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) { + ds = &tess.shader->deforms[ i ]; + + switch ( ds->deformation ) { + case DEFORM_NONE: + break; + case DEFORM_NORMALS: + RB_CalcDeformNormals( ds ); + break; + case DEFORM_WAVE: + RB_CalcDeformVertexes( ds ); + break; + case DEFORM_BULGE: + RB_CalcBulgeVertexes( ds ); + break; + case DEFORM_MOVE: + RB_CalcMoveVertexes( ds ); + break; + case DEFORM_PROJECTION_SHADOW: + RB_ProjectionShadowDeform(); + break; + case DEFORM_AUTOSPRITE: + AutospriteDeform(); + break; + case DEFORM_AUTOSPRITE2: + Autosprite2Deform(); + break; + case DEFORM_TEXT0: + case DEFORM_TEXT1: + case DEFORM_TEXT2: + case DEFORM_TEXT3: + case DEFORM_TEXT4: + case DEFORM_TEXT5: + case DEFORM_TEXT6: + case DEFORM_TEXT7: + DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] ); + break; + } + } +} + +/* +==================================================================== + +COLORS + +==================================================================== +*/ + + +/* +** RB_CalcColorFromEntity +*/ +void RB_CalcColorFromEntity( unsigned char *dstColors ) +{ + int i; + int *pColors = ( int * ) dstColors; + int c; + + if ( !backEnd.currentEntity ) + return; + + c = * ( int * ) backEnd.currentEntity->e.shaderRGBA; + + for ( i = 0; i < tess.numVertexes; i++, pColors++ ) + { + *pColors = c; + } +} + +/* +** RB_CalcColorFromOneMinusEntity +*/ +void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors ) +{ + int i; + int *pColors = ( int * ) dstColors; + unsigned char invModulate[3]; + int c; + + if ( !backEnd.currentEntity ) + return; + + invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0]; + invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1]; + invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2]; + invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it + + c = * ( int * ) invModulate; + + for ( i = 0; i < tess.numVertexes; i++, pColors++ ) + { + *pColors = * ( int * ) invModulate; + } +} + +/* +** RB_CalcAlphaFromEntity +*/ +void RB_CalcAlphaFromEntity( unsigned char *dstColors ) +{ + int i; + + if ( !backEnd.currentEntity ) + return; + + dstColors += 3; + + for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 ) + { + *dstColors = backEnd.currentEntity->e.shaderRGBA[3]; + } +} + +/* +** RB_CalcAlphaFromOneMinusEntity +*/ +void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors ) +{ + int i; + + if ( !backEnd.currentEntity ) + return; + + dstColors += 3; + + for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 ) + { + *dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3]; + } +} + +/* +** RB_CalcWaveColor +*/ +void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors ) +{ + int i; + int v; + float glow; + int *colors = ( int * ) dstColors; + byte color[4]; + + + if ( wf->func == GF_NOISE ) { + glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude; + } else { + glow = EvalWaveForm( wf ) * tr.identityLight; + } + + if ( glow < 0 ) { + glow = 0; + } + else if ( glow > 1 ) { + glow = 1; + } + + v = myftol( 255 * glow ); + color[0] = color[1] = color[2] = v; + color[3] = 255; + v = *(int *)color; + + for ( i = 0; i < tess.numVertexes; i++, colors++ ) { + *colors = v; + } +} + +/* +** RB_CalcWaveAlpha +*/ +void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors ) +{ + int i; + int v; + float glow; + + glow = EvalWaveFormClamped( wf ); + + v = 255 * glow; + + for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 ) + { + dstColors[3] = v; + } +} + +/* +** RB_CalcModulateColorsByFog +*/ +void RB_CalcModulateColorsByFog( unsigned char *colors ) { + int i; + float texCoords[SHADER_MAX_VERTEXES][2]; + + // calculate texcoords so we can derive density + // this is not wasted, because it would only have + // been previously called if the surface was opaque + RB_CalcFogTexCoords( texCoords[0] ); + + for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) { + float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] ); + colors[0] *= f; + colors[1] *= f; + colors[2] *= f; + } +} + +/* +** RB_CalcModulateAlphasByFog +*/ +void RB_CalcModulateAlphasByFog( unsigned char *colors ) { + int i; + float texCoords[SHADER_MAX_VERTEXES][2]; + + // calculate texcoords so we can derive density + // this is not wasted, because it would only have + // been previously called if the surface was opaque + RB_CalcFogTexCoords( texCoords[0] ); + + for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) { + float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] ); + colors[3] *= f; + } +} + +/* +** RB_CalcModulateRGBAsByFog +*/ +void RB_CalcModulateRGBAsByFog( unsigned char *colors ) { + int i; + float texCoords[SHADER_MAX_VERTEXES][2]; + + // calculate texcoords so we can derive density + // this is not wasted, because it would only have + // been previously called if the surface was opaque + RB_CalcFogTexCoords( texCoords[0] ); + + for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) { + float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] ); + colors[0] *= f; + colors[1] *= f; + colors[2] *= f; + colors[3] *= f; + } +} + + +/* +==================================================================== + +TEX COORDS + +==================================================================== +*/ + +/* +======================== +RB_CalcFogTexCoords + +To do the clipped fog plane really correctly, we should use +projected textures, but I don't trust the drivers and it +doesn't fit our shader data. +======================== +*/ +void RB_CalcFogTexCoords( float *st ) { + int i; + float *v; + float s, t; + float eyeT; + qboolean eyeOutside; + fog_t *fog; + vec3_t local; + vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0}; + + fog = tr.world->fogs + tess.fogNum; + + // all fogging distance is based on world Z units + VectorSubtract( backEnd.or.origin, backEnd.viewParms.or.origin, local ); + fogDistanceVector[0] = -backEnd.or.modelMatrix[2]; + fogDistanceVector[1] = -backEnd.or.modelMatrix[6]; + fogDistanceVector[2] = -backEnd.or.modelMatrix[10]; + fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.or.axis[0] ); + + // scale the fog vectors based on the fog's thickness + fogDistanceVector[0] *= fog->tcScale; + fogDistanceVector[1] *= fog->tcScale; + fogDistanceVector[2] *= fog->tcScale; + fogDistanceVector[3] *= fog->tcScale; + + // rotate the gradient vector for this orientation + if ( fog->hasSurface ) { + fogDepthVector[0] = fog->surface[0] * backEnd.or.axis[0][0] + + fog->surface[1] * backEnd.or.axis[0][1] + fog->surface[2] * backEnd.or.axis[0][2]; + fogDepthVector[1] = fog->surface[0] * backEnd.or.axis[1][0] + + fog->surface[1] * backEnd.or.axis[1][1] + fog->surface[2] * backEnd.or.axis[1][2]; + fogDepthVector[2] = fog->surface[0] * backEnd.or.axis[2][0] + + fog->surface[1] * backEnd.or.axis[2][1] + fog->surface[2] * backEnd.or.axis[2][2]; + fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.or.origin, fog->surface ); + + eyeT = DotProduct( backEnd.or.viewOrigin, fogDepthVector ) + fogDepthVector[3]; + } else { + eyeT = 1; // non-surface fog always has eye inside + } + + // see if the viewpoint is outside + // this is needed for clipping distance even for constant fog + + if ( eyeT < 0 ) { + eyeOutside = qtrue; + } else { + eyeOutside = qfalse; + } + + fogDistanceVector[3] += 1.0/512; + + // calculate density for each point + for (i = 0, v = tess.xyz[0] ; i < tess.numVertexes ; i++, v += 4) { + // calculate the length in fog + s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3]; + t = DotProduct( v, fogDepthVector ) + fogDepthVector[3]; + + // partially clipped fogs use the T axis + if ( eyeOutside ) { + if ( t < 1.0 ) { + t = 1.0/32; // point is outside, so no fogging + } else { + t = 1.0/32 + 30.0/32 * t / ( t - eyeT ); // cut the distance at the fog plane + } + } else { + if ( t < 0 ) { + t = 1.0/32; // point is outside, so no fogging + } else { + t = 31.0/32; + } + } + + st[0] = s; + st[1] = t; + st += 2; + } +} + + + +/* +** RB_CalcEnvironmentTexCoords +*/ +void RB_CalcEnvironmentTexCoords( float *st ) +{ + int i; + float *v, *normal; + vec3_t viewer, reflected; + float d; + + v = tess.xyz[0]; + normal = tess.normal[0]; + + for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 ) + { + VectorSubtract (backEnd.or.viewOrigin, v, viewer); + VectorNormalizeFast (viewer); + + d = DotProduct (normal, viewer); + + reflected[0] = normal[0]*2*d - viewer[0]; + reflected[1] = normal[1]*2*d - viewer[1]; + reflected[2] = normal[2]*2*d - viewer[2]; + + st[0] = 0.5 + reflected[1] * 0.5; + st[1] = 0.5 - reflected[2] * 0.5; + } +} + +/* +** RB_CalcTurbulentTexCoords +*/ +void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st ) +{ + int i; + float now; + + now = ( wf->phase + tess.shaderTime * wf->frequency ); + + for ( i = 0; i < tess.numVertexes; i++, st += 2 ) + { + float s = st[0]; + float t = st[1]; + + st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude; + st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude; + } +} + +/* +** RB_CalcScaleTexCoords +*/ +void RB_CalcScaleTexCoords( const float scale[2], float *st ) +{ + int i; + + for ( i = 0; i < tess.numVertexes; i++, st += 2 ) + { + st[0] *= scale[0]; + st[1] *= scale[1]; + } +} + +/* +** RB_CalcScrollTexCoords +*/ +void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st ) +{ + int i; + float timeScale = tess.shaderTime; + float adjustedScrollS, adjustedScrollT; + + adjustedScrollS = scrollSpeed[0] * timeScale; + adjustedScrollT = scrollSpeed[1] * timeScale; + + // clamp so coordinates don't continuously get larger, causing problems + // with hardware limits + adjustedScrollS = adjustedScrollS - floor( adjustedScrollS ); + adjustedScrollT = adjustedScrollT - floor( adjustedScrollT ); + + for ( i = 0; i < tess.numVertexes; i++, st += 2 ) + { + st[0] += adjustedScrollS; + st[1] += adjustedScrollT; + } +} + +/* +** RB_CalcTransformTexCoords +*/ +void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st ) +{ + int i; + + for ( i = 0; i < tess.numVertexes; i++, st += 2 ) + { + float s = st[0]; + float t = st[1]; + + st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0]; + st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1]; + } +} + +/* +** RB_CalcRotateTexCoords +*/ +void RB_CalcRotateTexCoords( float degsPerSecond, float *st ) +{ + float timeScale = tess.shaderTime; + float degs; + int index; + float sinValue, cosValue; + texModInfo_t tmi; + + degs = -degsPerSecond * timeScale; + index = degs * ( FUNCTABLE_SIZE / 360.0f ); + + sinValue = tr.sinTable[ index & FUNCTABLE_MASK ]; + cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ]; + + tmi.matrix[0][0] = cosValue; + tmi.matrix[1][0] = -sinValue; + tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue; + + tmi.matrix[0][1] = sinValue; + tmi.matrix[1][1] = cosValue; + tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue; + + RB_CalcTransformTexCoords( &tmi, st ); +} + + + + + + +#if id386 && !defined(__GNUC__) + +long myftol( float f ) { + static int tmp; + __asm fld f + __asm fistp tmp + __asm mov eax, tmp +} + +#endif + +/* +** RB_CalcSpecularAlpha +** +** Calculates specular coefficient and places it in the alpha channel +*/ +vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically + +void RB_CalcSpecularAlpha( unsigned char *alphas ) { + int i; + float *v, *normal; + vec3_t viewer, reflected; + float l, d; + int b; + vec3_t lightDir; + int numVertexes; + + v = tess.xyz[0]; + normal = tess.normal[0]; + + alphas += 3; + + numVertexes = tess.numVertexes; + for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) { + float ilength; + + VectorSubtract( lightOrigin, v, lightDir ); +// ilength = Q_rsqrt( DotProduct( lightDir, lightDir ) ); + VectorNormalizeFast( lightDir ); + + // calculate the specular color + d = DotProduct (normal, lightDir); +// d *= ilength; + + // we don't optimize for the d < 0 case since this tends to + // cause visual artifacts such as faceted "snapping" + reflected[0] = normal[0]*2*d - lightDir[0]; + reflected[1] = normal[1]*2*d - lightDir[1]; + reflected[2] = normal[2]*2*d - lightDir[2]; + + VectorSubtract (backEnd.or.viewOrigin, v, viewer); + ilength = Q_rsqrt( DotProduct( viewer, viewer ) ); + l = DotProduct (reflected, viewer); + l *= ilength; + + if (l < 0) { + b = 0; + } else { + l = l*l; + l = l*l; + b = l * 255; + if (b > 255) { + b = 255; + } + } + + *alphas = b; + } +} + +/* +** RB_CalcDiffuseColor +** +** The basic vertex lighting calc +*/ +#if idppc_altivec +static void RB_CalcDiffuseColor_altivec( unsigned char *colors ) +{ + int i; + float *v, *normal; + trRefEntity_t *ent; + int ambientLightInt; + vec3_t lightDir; + int numVertexes; + vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff, + 0x00, 0x00, 0x00, 0xff, + 0x00, 0x00, 0x00, 0xff, + 0x00, 0x00, 0x00, 0xff); + vector float ambientLightVec; + vector float directedLightVec; + vector float lightDirVec; + vector float normalVec0, normalVec1; + vector float incomingVec0, incomingVec1, incomingVec2; + vector float zero, jVec; + vector signed int jVecInt; + vector signed short jVecShort; + vector unsigned char jVecChar, normalPerm; + ent = backEnd.currentEntity; + ambientLightInt = ent->ambientLightInt; + // A lot of this could be simplified if we made sure + // entities light info was 16-byte aligned. + jVecChar = vec_lvsl(0, ent->ambientLight); + ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight); + jVec = vec_ld(11, (vector float *)ent->ambientLight); + ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar); + + jVecChar = vec_lvsl(0, ent->directedLight); + directedLightVec = vec_ld(0,(vector float *)ent->directedLight); + jVec = vec_ld(11,(vector float *)ent->directedLight); + directedLightVec = vec_perm(directedLightVec,jVec,jVecChar); + + jVecChar = vec_lvsl(0, ent->lightDir); + lightDirVec = vec_ld(0,(vector float *)ent->lightDir); + jVec = vec_ld(11,(vector float *)ent->lightDir); + lightDirVec = vec_perm(lightDirVec,jVec,jVecChar); + + zero = (vector float)vec_splat_s8(0); + VectorCopy( ent->lightDir, lightDir ); + + v = tess.xyz[0]; + normal = tess.normal[0]; + + normalPerm = vec_lvsl(0,normal); + numVertexes = tess.numVertexes; + for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) { + normalVec0 = vec_ld(0,(vector float *)normal); + normalVec1 = vec_ld(11,(vector float *)normal); + normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm); + incomingVec0 = vec_madd(normalVec0, lightDirVec, zero); + incomingVec1 = vec_sld(incomingVec0,incomingVec0,4); + incomingVec2 = vec_add(incomingVec0,incomingVec1); + incomingVec1 = vec_sld(incomingVec1,incomingVec1,4); + incomingVec2 = vec_add(incomingVec2,incomingVec1); + incomingVec0 = vec_splat(incomingVec2,0); + incomingVec0 = vec_max(incomingVec0,zero); + normalPerm = vec_lvsl(12,normal); + jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec); + jVecInt = vec_cts(jVec,0); // RGBx + jVecShort = vec_pack(jVecInt,jVecInt); // RGBxRGBx + jVecChar = vec_packsu(jVecShort,jVecShort); // RGBxRGBxRGBxRGBx + jVecChar = vec_sel(jVecChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255 + vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]); // store color + } +} +#endif + +static void RB_CalcDiffuseColor_scalar( unsigned char *colors ) +{ + int i, j; + float *v, *normal; + float incoming; + trRefEntity_t *ent; + int ambientLightInt; + vec3_t ambientLight; + vec3_t lightDir; + vec3_t directedLight; + int numVertexes; + ent = backEnd.currentEntity; + ambientLightInt = ent->ambientLightInt; + VectorCopy( ent->ambientLight, ambientLight ); + VectorCopy( ent->directedLight, directedLight ); + VectorCopy( ent->lightDir, lightDir ); + + v = tess.xyz[0]; + normal = tess.normal[0]; + + numVertexes = tess.numVertexes; + for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) { + incoming = DotProduct (normal, lightDir); + if ( incoming <= 0 ) { + *(int *)&colors[i*4] = ambientLightInt; + continue; + } + j = myftol( ambientLight[0] + incoming * directedLight[0] ); + if ( j > 255 ) { + j = 255; + } + colors[i*4+0] = j; + + j = myftol( ambientLight[1] + incoming * directedLight[1] ); + if ( j > 255 ) { + j = 255; + } + colors[i*4+1] = j; + + j = myftol( ambientLight[2] + incoming * directedLight[2] ); + if ( j > 255 ) { + j = 255; + } + colors[i*4+2] = j; + + colors[i*4+3] = 255; + } +} + +void RB_CalcDiffuseColor( unsigned char *colors ) +{ +#if idppc_altivec + if (com_altivec->integer) { + // must be in a seperate function or G3 systems will crash. + RB_CalcDiffuseColor_altivec( colors ); + return; + } +#endif + RB_CalcDiffuseColor_scalar( colors ); +} + |