diff options
Diffstat (limited to 'src/jpeg-6')
63 files changed, 24943 insertions, 0 deletions
diff --git a/src/jpeg-6/README b/src/jpeg-6/README new file mode 100644 index 00000000..86cc2066 --- /dev/null +++ b/src/jpeg-6/README @@ -0,0 +1,385 @@ +The Independent JPEG Group's JPEG software +========================================== + +README for release 6b of 27-Mar-1998 +==================================== + +This distribution contains the sixth public release of the Independent JPEG +Group's free JPEG software.  You are welcome to redistribute this software and +to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. + +Serious users of this software (particularly those incorporating it into +larger programs) should contact IJG at jpeg-info@uunet.uu.net to be added to +our electronic mailing list.  Mailing list members are notified of updates +and have a chance to participate in technical discussions, etc. + +This software is the work of Tom Lane, Philip Gladstone, Jim Boucher, +Lee Crocker, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, +Guido Vollbeding, Ge' Weijers, and other members of the Independent JPEG +Group. + +IJG is not affiliated with the official ISO JPEG standards committee. + + +DOCUMENTATION ROADMAP +===================== + +This file contains the following sections: + +OVERVIEW            General description of JPEG and the IJG software. +LEGAL ISSUES        Copyright, lack of warranty, terms of distribution. +REFERENCES          Where to learn more about JPEG. +ARCHIVE LOCATIONS   Where to find newer versions of this software. +RELATED SOFTWARE    Other stuff you should get. +FILE FORMAT WARS    Software *not* to get. +TO DO               Plans for future IJG releases. + +Other documentation files in the distribution are: + +User documentation: +  install.doc       How to configure and install the IJG software. +  usage.doc         Usage instructions for cjpeg, djpeg, jpegtran, +                    rdjpgcom, and wrjpgcom. +  *.1               Unix-style man pages for programs (same info as usage.doc). +  wizard.doc        Advanced usage instructions for JPEG wizards only. +  change.log        Version-to-version change highlights. +Programmer and internal documentation: +  libjpeg.doc       How to use the JPEG library in your own programs. +  example.c         Sample code for calling the JPEG library. +  structure.doc     Overview of the JPEG library's internal structure. +  filelist.doc      Road map of IJG files. +  coderules.doc     Coding style rules --- please read if you contribute code. + +Please read at least the files install.doc and usage.doc.  Useful information +can also be found in the JPEG FAQ (Frequently Asked Questions) article.  See +ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. + +If you want to understand how the JPEG code works, we suggest reading one or +more of the REFERENCES, then looking at the documentation files (in roughly +the order listed) before diving into the code. + + +OVERVIEW +======== + +This package contains C software to implement JPEG image compression and +decompression.  JPEG (pronounced "jay-peg") is a standardized compression +method for full-color and gray-scale images.  JPEG is intended for compressing +"real-world" scenes; line drawings, cartoons and other non-realistic images +are not its strong suit.  JPEG is lossy, meaning that the output image is not +exactly identical to the input image.  Hence you must not use JPEG if you +have to have identical output bits.  However, on typical photographic images, +very good compression levels can be obtained with no visible change, and +remarkably high compression levels are possible if you can tolerate a +low-quality image.  For more details, see the references, or just experiment +with various compression settings. + +This software implements JPEG baseline, extended-sequential, and progressive +compression processes.  Provision is made for supporting all variants of these +processes, although some uncommon parameter settings aren't implemented yet. +For legal reasons, we are not distributing code for the arithmetic-coding +variants of JPEG; see LEGAL ISSUES.  We have made no provision for supporting +the hierarchical or lossless processes defined in the standard. + +We provide a set of library routines for reading and writing JPEG image files, +plus two sample applications "cjpeg" and "djpeg", which use the library to +perform conversion between JPEG and some other popular image file formats. +The library is intended to be reused in other applications. + +In order to support file conversion and viewing software, we have included +considerable functionality beyond the bare JPEG coding/decoding capability; +for example, the color quantization modules are not strictly part of JPEG +decoding, but they are essential for output to colormapped file formats or +colormapped displays.  These extra functions can be compiled out of the +library if not required for a particular application.  We have also included +"jpegtran", a utility for lossless transcoding between different JPEG +processes, and "rdjpgcom" and "wrjpgcom", two simple applications for +inserting and extracting textual comments in JFIF files. + +The emphasis in designing this software has been on achieving portability and +flexibility, while also making it fast enough to be useful.  In particular, +the software is not intended to be read as a tutorial on JPEG.  (See the +REFERENCES section for introductory material.)  Rather, it is intended to +be reliable, portable, industrial-strength code.  We do not claim to have +achieved that goal in every aspect of the software, but we strive for it. + +We welcome the use of this software as a component of commercial products. +No royalty is required, but we do ask for an acknowledgement in product +documentation, as described under LEGAL ISSUES. + + +LEGAL ISSUES +============ + +In plain English: + +1. We don't promise that this software works.  (But if you find any bugs, +   please let us know!) +2. You can use this software for whatever you want.  You don't have to pay us. +3. You may not pretend that you wrote this software.  If you use it in a +   program, you must acknowledge somewhere in your documentation that +   you've used the IJG code. + +In legalese: + +The authors make NO WARRANTY or representation, either express or implied, +with respect to this software, its quality, accuracy, merchantability, or +fitness for a particular purpose.  This software is provided "AS IS", and you, +its user, assume the entire risk as to its quality and accuracy. + +This software is copyright (C) 1991-1998, Thomas G. Lane. +All Rights Reserved except as specified below. + +Permission is hereby granted to use, copy, modify, and distribute this +software (or portions thereof) for any purpose, without fee, subject to these +conditions: +(1) If any part of the source code for this software is distributed, then this +README file must be included, with this copyright and no-warranty notice +unaltered; and any additions, deletions, or changes to the original files +must be clearly indicated in accompanying documentation. +(2) If only executable code is distributed, then the accompanying +documentation must state that "this software is based in part on the work of +the Independent JPEG Group". +(3) Permission for use of this software is granted only if the user accepts +full responsibility for any undesirable consequences; the authors accept +NO LIABILITY for damages of any kind. + +These conditions apply to any software derived from or based on the IJG code, +not just to the unmodified library.  If you use our work, you ought to +acknowledge us. + +Permission is NOT granted for the use of any IJG author's name or company name +in advertising or publicity relating to this software or products derived from +it.  This software may be referred to only as "the Independent JPEG Group's +software". + +We specifically permit and encourage the use of this software as the basis of +commercial products, provided that all warranty or liability claims are +assumed by the product vendor. + + +ansi2knr.c is included in this distribution by permission of L. Peter Deutsch, +sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA. +ansi2knr.c is NOT covered by the above copyright and conditions, but instead +by the usual distribution terms of the Free Software Foundation; principally, +that you must include source code if you redistribute it.  (See the file +ansi2knr.c for full details.)  However, since ansi2knr.c is not needed as part +of any program generated from the IJG code, this does not limit you more than +the foregoing paragraphs do. + +The Unix configuration script "configure" was produced with GNU Autoconf. +It is copyright by the Free Software Foundation but is freely distributable. +The same holds for its supporting scripts (config.guess, config.sub, +ltconfig, ltmain.sh).  Another support script, install-sh, is copyright +by M.I.T. but is also freely distributable. + +It appears that the arithmetic coding option of the JPEG spec is covered by +patents owned by IBM, AT&T, and Mitsubishi.  Hence arithmetic coding cannot +legally be used without obtaining one or more licenses.  For this reason, +support for arithmetic coding has been removed from the free JPEG software. +(Since arithmetic coding provides only a marginal gain over the unpatented +Huffman mode, it is unlikely that very many implementations will support it.) +So far as we are aware, there are no patent restrictions on the remaining +code. + +The IJG distribution formerly included code to read and write GIF files. +To avoid entanglement with the Unisys LZW patent, GIF reading support has +been removed altogether, and the GIF writer has been simplified to produce +"uncompressed GIFs".  This technique does not use the LZW algorithm; the +resulting GIF files are larger than usual, but are readable by all standard +GIF decoders. + +We are required to state that +    "The Graphics Interchange Format(c) is the Copyright property of +    CompuServe Incorporated.  GIF(sm) is a Service Mark property of +    CompuServe Incorporated." + + +REFERENCES +========== + +We highly recommend reading one or more of these references before trying to +understand the innards of the JPEG software. + +The best short technical introduction to the JPEG compression algorithm is +	Wallace, Gregory K.  "The JPEG Still Picture Compression Standard", +	Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. +(Adjacent articles in that issue discuss MPEG motion picture compression, +applications of JPEG, and related topics.)  If you don't have the CACM issue +handy, a PostScript file containing a revised version of Wallace's article is +available at ftp://ftp.uu.net/graphics/jpeg/wallace.ps.gz.  The file (actually +a preprint for an article that appeared in IEEE Trans. Consumer Electronics) +omits the sample images that appeared in CACM, but it includes corrections +and some added material.  Note: the Wallace article is copyright ACM and IEEE, +and it may not be used for commercial purposes. + +A somewhat less technical, more leisurely introduction to JPEG can be found in +"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by +M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1.  This book provides +good explanations and example C code for a multitude of compression methods +including JPEG.  It is an excellent source if you are comfortable reading C +code but don't know much about data compression in general.  The book's JPEG +sample code is far from industrial-strength, but when you are ready to look +at a full implementation, you've got one here... + +The best full description of JPEG is the textbook "JPEG Still Image Data +Compression Standard" by William B. Pennebaker and Joan L. Mitchell, published +by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.  Price US$59.95, 638 pp. +The book includes the complete text of the ISO JPEG standards (DIS 10918-1 +and draft DIS 10918-2).  This is by far the most complete exposition of JPEG +in existence, and we highly recommend it. + +The JPEG standard itself is not available electronically; you must order a +paper copy through ISO or ITU.  (Unless you feel a need to own a certified +official copy, we recommend buying the Pennebaker and Mitchell book instead; +it's much cheaper and includes a great deal of useful explanatory material.) +In the USA, copies of the standard may be ordered from ANSI Sales at (212) +642-4900, or from Global Engineering Documents at (800) 854-7179.  (ANSI +doesn't take credit card orders, but Global does.)  It's not cheap: as of +1992, ANSI was charging $95 for Part 1 and $47 for Part 2, plus 7% +shipping/handling.  The standard is divided into two parts, Part 1 being the +actual specification, while Part 2 covers compliance testing methods.  Part 1 +is titled "Digital Compression and Coding of Continuous-tone Still Images, +Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS +10918-1, ITU-T T.81.  Part 2 is titled "Digital Compression and Coding of +Continuous-tone Still Images, Part 2: Compliance testing" and has document +numbers ISO/IEC IS 10918-2, ITU-T T.83. + +Some extensions to the original JPEG standard are defined in JPEG Part 3, +a newer ISO standard numbered ISO/IEC IS 10918-3 and ITU-T T.84.  IJG +currently does not support any Part 3 extensions. + +The JPEG standard does not specify all details of an interchangeable file +format.  For the omitted details we follow the "JFIF" conventions, revision +1.02.  A copy of the JFIF spec is available from: +	Literature Department +	C-Cube Microsystems, Inc. +	1778 McCarthy Blvd. +	Milpitas, CA 95035 +	phone (408) 944-6300,  fax (408) 944-6314 +A PostScript version of this document is available by FTP at +ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz.  There is also a plain text +version at ftp://ftp.uu.net/graphics/jpeg/jfif.txt.gz, but it is missing +the figures. + +The TIFF 6.0 file format specification can be obtained by FTP from +ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz.  The JPEG incorporation scheme +found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. +IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). +Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 +(Compression tag 7).  Copies of this Note can be obtained from ftp.sgi.com or +from ftp://ftp.uu.net/graphics/jpeg/.  It is expected that the next revision +of the TIFF spec will replace the 6.0 JPEG design with the Note's design. +Although IJG's own code does not support TIFF/JPEG, the free libtiff library +uses our library to implement TIFF/JPEG per the Note.  libtiff is available +from ftp://ftp.sgi.com/graphics/tiff/. + + +ARCHIVE LOCATIONS +================= + +The "official" archive site for this software is ftp.uu.net (Internet +address 192.48.96.9).  The most recent released version can always be found +there in directory graphics/jpeg.  This particular version will be archived +as ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz.  If you don't have +direct Internet access, UUNET's archives are also available via UUCP; contact +help@uunet.uu.net for information on retrieving files that way. + +Numerous Internet sites maintain copies of the UUNET files.  However, only +ftp.uu.net is guaranteed to have the latest official version. + +You can also obtain this software in DOS-compatible "zip" archive format from +the SimTel archives (ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/), or +on CompuServe in the Graphics Support forum (GO CIS:GRAPHSUP), library 12 +"JPEG Tools".  Again, these versions may sometimes lag behind the ftp.uu.net +release. + +The JPEG FAQ (Frequently Asked Questions) article is a useful source of +general information about JPEG.  It is updated constantly and therefore is +not included in this distribution.  The FAQ is posted every two weeks to +Usenet newsgroups comp.graphics.misc, news.answers, and other groups. +It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ +and other news.answers archive sites, including the official news.answers +archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. +If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu +with body +	send usenet/news.answers/jpeg-faq/part1 +	send usenet/news.answers/jpeg-faq/part2 + + +RELATED SOFTWARE +================ + +Numerous viewing and image manipulation programs now support JPEG.  (Quite a +few of them use this library to do so.)  The JPEG FAQ described above lists +some of the more popular free and shareware viewers, and tells where to +obtain them on Internet. + +If you are on a Unix machine, we highly recommend Jef Poskanzer's free +PBMPLUS software, which provides many useful operations on PPM-format image +files.  In particular, it can convert PPM images to and from a wide range of +other formats, thus making cjpeg/djpeg considerably more useful.  The latest +version is distributed by the NetPBM group, and is available from numerous +sites, notably ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/. +Unfortunately PBMPLUS/NETPBM is not nearly as portable as the IJG software is; +you are likely to have difficulty making it work on any non-Unix machine. + +A different free JPEG implementation, written by the PVRG group at Stanford, +is available from ftp://havefun.stanford.edu/pub/jpeg/.  This program +is designed for research and experimentation rather than production use; +it is slower, harder to use, and less portable than the IJG code, but it +is easier to read and modify.  Also, the PVRG code supports lossless JPEG, +which we do not.  (On the other hand, it doesn't do progressive JPEG.) + + +FILE FORMAT WARS +================ + +Some JPEG programs produce files that are not compatible with our library. +The root of the problem is that the ISO JPEG committee failed to specify a +concrete file format.  Some vendors "filled in the blanks" on their own, +creating proprietary formats that no one else could read.  (For example, none +of the early commercial JPEG implementations for the Macintosh were able to +exchange compressed files.) + +The file format we have adopted is called JFIF (see REFERENCES).  This format +has been agreed to by a number of major commercial JPEG vendors, and it has +become the de facto standard.  JFIF is a minimal or "low end" representation. +We recommend the use of TIFF/JPEG (TIFF revision 6.0 as modified by TIFF +Technical Note #2) for "high end" applications that need to record a lot of +additional data about an image.  TIFF/JPEG is fairly new and not yet widely +supported, unfortunately. + +The upcoming JPEG Part 3 standard defines a file format called SPIFF. +SPIFF is interoperable with JFIF, in the sense that most JFIF decoders should +be able to read the most common variant of SPIFF.  SPIFF has some technical +advantages over JFIF, but its major claim to fame is simply that it is an +official standard rather than an informal one.  At this point it is unclear +whether SPIFF will supersede JFIF or whether JFIF will remain the de-facto +standard.  IJG intends to support SPIFF once the standard is frozen, but we +have not decided whether it should become our default output format or not. +(In any case, our decoder will remain capable of reading JFIF indefinitely.) + +Various proprietary file formats incorporating JPEG compression also exist. +We have little or no sympathy for the existence of these formats.  Indeed, +one of the original reasons for developing this free software was to help +force convergence on common, open format standards for JPEG files.  Don't +use a proprietary file format! + + +TO DO +===== + +The major thrust for v7 will probably be improvement of visual quality. +The current method for scaling the quantization tables is known not to be +very good at low Q values.  We also intend to investigate block boundary +smoothing, "poor man's variable quantization", and other means of improving +quality-vs-file-size performance without sacrificing compatibility. + +In future versions, we are considering supporting some of the upcoming JPEG +Part 3 extensions --- principally, variable quantization and the SPIFF file +format. + +As always, speeding things up is of great interest. + +Please send bug reports, offers of help, etc. to jpeg-info@uunet.uu.net. diff --git a/src/jpeg-6/jcapimin.c b/src/jpeg-6/jcapimin.c new file mode 100644 index 00000000..1cd9736d --- /dev/null +++ b/src/jpeg-6/jcapimin.c @@ -0,0 +1,228 @@ +/* + * jcapimin.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains application interface code for the compression half + * of the JPEG library.  These are the "minimum" API routines that may be + * needed in either the normal full-compression case or the transcoding-only + * case. + * + * Most of the routines intended to be called directly by an application + * are in this file or in jcapistd.c.  But also see jcparam.c for + * parameter-setup helper routines, jcomapi.c for routines shared by + * compression and decompression, and jctrans.c for the transcoding case. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * Initialization of a JPEG compression object. + * The error manager must already be set up (in case memory manager fails). + */ + +GLOBAL void +jpeg_create_compress (j_compress_ptr cinfo) +{ +  int i; + +  /* For debugging purposes, zero the whole master structure. +   * But error manager pointer is already there, so save and restore it. +   */ +  { +    struct jpeg_error_mgr * err = cinfo->err; +    MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct)); +    cinfo->err = err; +  } +  cinfo->is_decompressor = FALSE; + +  /* Initialize a memory manager instance for this object */ +  jinit_memory_mgr((j_common_ptr) cinfo); + +  /* Zero out pointers to permanent structures. */ +  cinfo->progress = NULL; +  cinfo->dest = NULL; + +  cinfo->comp_info = NULL; + +  for (i = 0; i < NUM_QUANT_TBLS; i++) +    cinfo->quant_tbl_ptrs[i] = NULL; + +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    cinfo->dc_huff_tbl_ptrs[i] = NULL; +    cinfo->ac_huff_tbl_ptrs[i] = NULL; +  } + +  cinfo->input_gamma = 1.0;	/* in case application forgets */ + +  /* OK, I'm ready */ +  cinfo->global_state = CSTATE_START; +} + + +/* + * Destruction of a JPEG compression object + */ + +GLOBAL void +jpeg_destroy_compress (j_compress_ptr cinfo) +{ +  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ +} + + +/* + * Abort processing of a JPEG compression operation, + * but don't destroy the object itself. + */ + +GLOBAL void +jpeg_abort_compress (j_compress_ptr cinfo) +{ +  jpeg_abort((j_common_ptr) cinfo); /* use common routine */ +} + + +/* + * Forcibly suppress or un-suppress all quantization and Huffman tables. + * Marks all currently defined tables as already written (if suppress) + * or not written (if !suppress).  This will control whether they get emitted + * by a subsequent jpeg_start_compress call. + * + * This routine is exported for use by applications that want to produce + * abbreviated JPEG datastreams.  It logically belongs in jcparam.c, but + * since it is called by jpeg_start_compress, we put it here --- otherwise + * jcparam.o would be linked whether the application used it or not. + */ + +GLOBAL void +jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) +{ +  int i; +  JQUANT_TBL * qtbl; +  JHUFF_TBL * htbl; + +  for (i = 0; i < NUM_QUANT_TBLS; i++) { +    if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) +      qtbl->sent_table = suppress; +  } + +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) +      htbl->sent_table = suppress; +    if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) +      htbl->sent_table = suppress; +  } +} + + +/* + * Finish JPEG compression. + * + * If a multipass operating mode was selected, this may do a great deal of + * work including most of the actual output. + */ + +GLOBAL void +jpeg_finish_compress (j_compress_ptr cinfo) +{ +  JDIMENSION iMCU_row; + +  if (cinfo->global_state == CSTATE_SCANNING || +      cinfo->global_state == CSTATE_RAW_OK) { +    /* Terminate first pass */ +    if (cinfo->next_scanline < cinfo->image_height) +      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); +    (*cinfo->master->finish_pass) (cinfo); +  } else if (cinfo->global_state != CSTATE_WRCOEFS) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  /* Perform any remaining passes */ +  while (! cinfo->master->is_last_pass) { +    (*cinfo->master->prepare_for_pass) (cinfo); +    for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { +      if (cinfo->progress != NULL) { +	cinfo->progress->pass_counter = (long) iMCU_row; +	cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; +	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +      } +      /* We bypass the main controller and invoke coef controller directly; +       * all work is being done from the coefficient buffer. +       */ +      if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) +	ERREXIT(cinfo, JERR_CANT_SUSPEND); +    } +    (*cinfo->master->finish_pass) (cinfo); +  } +  /* Write EOI, do final cleanup */ +  (*cinfo->marker->write_file_trailer) (cinfo); +  (*cinfo->dest->term_destination) (cinfo); +  /* We can use jpeg_abort to release memory and reset global_state */ +  jpeg_abort((j_common_ptr) cinfo); +} + + +/* + * Write a special marker. + * This is only recommended for writing COM or APPn markers. + * Must be called after jpeg_start_compress() and before + * first call to jpeg_write_scanlines() or jpeg_write_raw_data(). + */ + +GLOBAL void +jpeg_write_marker (j_compress_ptr cinfo, int marker, +		   const JOCTET *dataptr, unsigned int datalen) +{ +  if (cinfo->next_scanline != 0 || +      (cinfo->global_state != CSTATE_SCANNING && +       cinfo->global_state != CSTATE_RAW_OK && +       cinfo->global_state != CSTATE_WRCOEFS)) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  (*cinfo->marker->write_any_marker) (cinfo, marker, dataptr, datalen); +} + + +/* + * Alternate compression function: just write an abbreviated table file. + * Before calling this, all parameters and a data destination must be set up. + * + * To produce a pair of files containing abbreviated tables and abbreviated + * image data, one would proceed as follows: + * + *		initialize JPEG object + *		set JPEG parameters + *		set destination to table file + *		jpeg_write_tables(cinfo); + *		set destination to image file + *		jpeg_start_compress(cinfo, FALSE); + *		write data... + *		jpeg_finish_compress(cinfo); + * + * jpeg_write_tables has the side effect of marking all tables written + * (same as jpeg_suppress_tables(..., TRUE)).  Thus a subsequent start_compress + * will not re-emit the tables unless it is passed write_all_tables=TRUE. + */ + +GLOBAL void +jpeg_write_tables (j_compress_ptr cinfo) +{ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  /* (Re)initialize error mgr and destination modules */ +  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); +  (*cinfo->dest->init_destination) (cinfo); +  /* Initialize the marker writer ... bit of a crock to do it here. */ +  jinit_marker_writer(cinfo); +  /* Write them tables! */ +  (*cinfo->marker->write_tables_only) (cinfo); +  /* And clean up. */ +  (*cinfo->dest->term_destination) (cinfo); +  /* We can use jpeg_abort to release memory. */ +  jpeg_abort((j_common_ptr) cinfo); +} diff --git a/src/jpeg-6/jcapistd.c b/src/jpeg-6/jcapistd.c new file mode 100644 index 00000000..b99e560b --- /dev/null +++ b/src/jpeg-6/jcapistd.c @@ -0,0 +1,161 @@ +/* + * jcapistd.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains application interface code for the compression half + * of the JPEG library.  These are the "standard" API routines that are + * used in the normal full-compression case.  They are not used by a + * transcoding-only application.  Note that if an application links in + * jpeg_start_compress, it will end up linking in the entire compressor. + * We thus must separate this file from jcapimin.c to avoid linking the + * whole compression library into a transcoder. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * Compression initialization. + * Before calling this, all parameters and a data destination must be set up. + * + * We require a write_all_tables parameter as a failsafe check when writing + * multiple datastreams from the same compression object.  Since prior runs + * will have left all the tables marked sent_table=TRUE, a subsequent run + * would emit an abbreviated stream (no tables) by default.  This may be what + * is wanted, but for safety's sake it should not be the default behavior: + * programmers should have to make a deliberate choice to emit abbreviated + * images.  Therefore the documentation and examples should encourage people + * to pass write_all_tables=TRUE; then it will take active thought to do the + * wrong thing. + */ + +GLOBAL void +jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) +{ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  if (write_all_tables) +    jpeg_suppress_tables(cinfo, FALSE);	/* mark all tables to be written */ + +  /* (Re)initialize error mgr and destination modules */ +  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); +  (*cinfo->dest->init_destination) (cinfo); +  /* Perform master selection of active modules */ +  jinit_compress_master(cinfo); +  /* Set up for the first pass */ +  (*cinfo->master->prepare_for_pass) (cinfo); +  /* Ready for application to drive first pass through jpeg_write_scanlines +   * or jpeg_write_raw_data. +   */ +  cinfo->next_scanline = 0; +  cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); +} + + +/* + * Write some scanlines of data to the JPEG compressor. + * + * The return value will be the number of lines actually written. + * This should be less than the supplied num_lines only in case that + * the data destination module has requested suspension of the compressor, + * or if more than image_height scanlines are passed in. + * + * Note: we warn about excess calls to jpeg_write_scanlines() since + * this likely signals an application programmer error.  However, + * excess scanlines passed in the last valid call are *silently* ignored, + * so that the application need not adjust num_lines for end-of-image + * when using a multiple-scanline buffer. + */ + +GLOBAL JDIMENSION +jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, +		      JDIMENSION num_lines) +{ +  JDIMENSION row_ctr, rows_left; + +  if (cinfo->global_state != CSTATE_SCANNING) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  if (cinfo->next_scanline >= cinfo->image_height) +    WARNMS(cinfo, JWRN_TOO_MUCH_DATA); + +  /* Call progress monitor hook if present */ +  if (cinfo->progress != NULL) { +    cinfo->progress->pass_counter = (long) cinfo->next_scanline; +    cinfo->progress->pass_limit = (long) cinfo->image_height; +    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +  } + +  /* Give master control module another chance if this is first call to +   * jpeg_write_scanlines.  This lets output of the frame/scan headers be +   * delayed so that application can write COM, etc, markers between +   * jpeg_start_compress and jpeg_write_scanlines. +   */ +  if (cinfo->master->call_pass_startup) +    (*cinfo->master->pass_startup) (cinfo); + +  /* Ignore any extra scanlines at bottom of image. */ +  rows_left = cinfo->image_height - cinfo->next_scanline; +  if (num_lines > rows_left) +    num_lines = rows_left; + +  row_ctr = 0; +  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); +  cinfo->next_scanline += row_ctr; +  return row_ctr; +} + + +/* + * Alternate entry point to write raw data. + * Processes exactly one iMCU row per call, unless suspended. + */ + +GLOBAL JDIMENSION +jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, +		     JDIMENSION num_lines) +{ +  JDIMENSION lines_per_iMCU_row; + +  if (cinfo->global_state != CSTATE_RAW_OK) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  if (cinfo->next_scanline >= cinfo->image_height) { +    WARNMS(cinfo, JWRN_TOO_MUCH_DATA); +    return 0; +  } + +  /* Call progress monitor hook if present */ +  if (cinfo->progress != NULL) { +    cinfo->progress->pass_counter = (long) cinfo->next_scanline; +    cinfo->progress->pass_limit = (long) cinfo->image_height; +    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +  } + +  /* Give master control module another chance if this is first call to +   * jpeg_write_raw_data.  This lets output of the frame/scan headers be +   * delayed so that application can write COM, etc, markers between +   * jpeg_start_compress and jpeg_write_raw_data. +   */ +  if (cinfo->master->call_pass_startup) +    (*cinfo->master->pass_startup) (cinfo); + +  /* Verify that at least one iMCU row has been passed. */ +  lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; +  if (num_lines < lines_per_iMCU_row) +    ERREXIT(cinfo, JERR_BUFFER_SIZE); + +  /* Directly compress the row. */ +  if (! (*cinfo->coef->compress_data) (cinfo, data)) { +    /* If compressor did not consume the whole row, suspend processing. */ +    return 0; +  } + +  /* OK, we processed one iMCU row. */ +  cinfo->next_scanline += lines_per_iMCU_row; +  return lines_per_iMCU_row; +} diff --git a/src/jpeg-6/jccoefct.c b/src/jpeg-6/jccoefct.c new file mode 100644 index 00000000..ea3169b8 --- /dev/null +++ b/src/jpeg-6/jccoefct.c @@ -0,0 +1,448 @@ +/* + * jccoefct.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the coefficient buffer controller for compression. + * This controller is the top level of the JPEG compressor proper. + * The coefficient buffer lies between forward-DCT and entropy encoding steps. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* We use a full-image coefficient buffer when doing Huffman optimization, + * and also for writing multiple-scan JPEG files.  In all cases, the DCT + * step is run during the first pass, and subsequent passes need only read + * the buffered coefficients. + */ +#ifdef ENTROPY_OPT_SUPPORTED +#define FULL_COEF_BUFFER_SUPPORTED +#else +#ifdef C_MULTISCAN_FILES_SUPPORTED +#define FULL_COEF_BUFFER_SUPPORTED +#endif +#endif + + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_c_coef_controller pub; /* public fields */ + +  JDIMENSION iMCU_row_num;	/* iMCU row # within image */ +  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */ +  int MCU_vert_offset;		/* counts MCU rows within iMCU row */ +  int MCU_rows_per_iMCU_row;	/* number of such rows needed */ + +  /* For single-pass compression, it's sufficient to buffer just one MCU +   * (although this may prove a bit slow in practice).  We allocate a +   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each +   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though +   * it's not really very big; this is to keep the module interfaces unchanged +   * when a large coefficient buffer is necessary.) +   * In multi-pass modes, this array points to the current MCU's blocks +   * within the virtual arrays. +   */ +  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; + +  /* In multi-pass modes, we need a virtual block array for each component. */ +  jvirt_barray_ptr whole_image[MAX_COMPONENTS]; +} my_coef_controller; + +typedef my_coef_controller * my_coef_ptr; + + +/* Forward declarations */ +METHODDEF boolean compress_data +    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); +#ifdef FULL_COEF_BUFFER_SUPPORTED +METHODDEF boolean compress_first_pass +    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); +METHODDEF boolean compress_output +    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); +#endif + + +LOCAL void +start_iMCU_row (j_compress_ptr cinfo) +/* Reset within-iMCU-row counters for a new row */ +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; + +  /* In an interleaved scan, an MCU row is the same as an iMCU row. +   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. +   * But at the bottom of the image, process only what's left. +   */ +  if (cinfo->comps_in_scan > 1) { +    coef->MCU_rows_per_iMCU_row = 1; +  } else { +    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) +      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; +    else +      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; +  } + +  coef->mcu_ctr = 0; +  coef->MCU_vert_offset = 0; +} + + +/* + * Initialize for a processing pass. + */ + +METHODDEF void +start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; + +  coef->iMCU_row_num = 0; +  start_iMCU_row(cinfo); + +  switch (pass_mode) { +  case JBUF_PASS_THRU: +    if (coef->whole_image[0] != NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    coef->pub.compress_data = compress_data; +    break; +#ifdef FULL_COEF_BUFFER_SUPPORTED +  case JBUF_SAVE_AND_PASS: +    if (coef->whole_image[0] == NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    coef->pub.compress_data = compress_first_pass; +    break; +  case JBUF_CRANK_DEST: +    if (coef->whole_image[0] == NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    coef->pub.compress_data = compress_output; +    break; +#endif +  default: +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    break; +  } +} + + +/* + * Process some data in the single-pass case. + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) + * per call, ie, v_samp_factor block rows for each component in the image. + * Returns TRUE if the iMCU row is completed, FALSE if suspended. + * + * NB: input_buf contains a plane for each component in image. + * For single pass, this is the same as the components in the scan. + */ + +METHODDEF boolean +compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION MCU_col_num;	/* index of current MCU within row */ +  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; +  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; +  int blkn, bi, ci, yindex, yoffset, blockcnt; +  JDIMENSION ypos, xpos; +  jpeg_component_info *compptr; + +  /* Loop to write as much as one whole iMCU row */ +  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; +       yoffset++) { +    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; +	 MCU_col_num++) { +      /* Determine where data comes from in input_buf and do the DCT thing. +       * Each call on forward_DCT processes a horizontal row of DCT blocks +       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks +       * sequentially.  Dummy blocks at the right or bottom edge are filled in +       * specially.  The data in them does not matter for image reconstruction, +       * so we fill them with values that will encode to the smallest amount of +       * data, viz: all zeroes in the AC entries, DC entries equal to previous +       * block's DC value.  (Thanks to Thomas Kinsman for this idea.) +       */ +      blkn = 0; +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +	compptr = cinfo->cur_comp_info[ci]; +	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width +						: compptr->last_col_width; +	xpos = MCU_col_num * compptr->MCU_sample_width; +	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ +	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { +	  if (coef->iMCU_row_num < last_iMCU_row || +	      yoffset+yindex < compptr->last_row_height) { +	    (*cinfo->fdct->forward_DCT) (cinfo, compptr, +					 input_buf[ci], coef->MCU_buffer[blkn], +					 ypos, xpos, (JDIMENSION) blockcnt); +	    if (blockcnt < compptr->MCU_width) { +	      /* Create some dummy blocks at the right edge of the image. */ +	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], +			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); +	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) { +		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; +	      } +	    } +	  } else { +	    /* Create a row of dummy blocks at the bottom of the image. */ +	    jzero_far((void FAR *) coef->MCU_buffer[blkn], +		      compptr->MCU_width * SIZEOF(JBLOCK)); +	    for (bi = 0; bi < compptr->MCU_width; bi++) { +	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; +	    } +	  } +	  blkn += compptr->MCU_width; +	  ypos += DCTSIZE; +	} +      } +      /* Try to write the MCU.  In event of a suspension failure, we will +       * re-DCT the MCU on restart (a bit inefficient, could be fixed...) +       */ +      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { +	/* Suspension forced; update state counters and exit */ +	coef->MCU_vert_offset = yoffset; +	coef->mcu_ctr = MCU_col_num; +	return FALSE; +      } +    } +    /* Completed an MCU row, but perhaps not an iMCU row */ +    coef->mcu_ctr = 0; +  } +  /* Completed the iMCU row, advance counters for next one */ +  coef->iMCU_row_num++; +  start_iMCU_row(cinfo); +  return TRUE; +} + + +#ifdef FULL_COEF_BUFFER_SUPPORTED + +/* + * Process some data in the first pass of a multi-pass case. + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) + * per call, ie, v_samp_factor block rows for each component in the image. + * This amount of data is read from the source buffer, DCT'd and quantized, + * and saved into the virtual arrays.  We also generate suitable dummy blocks + * as needed at the right and lower edges.  (The dummy blocks are constructed + * in the virtual arrays, which have been padded appropriately.)  This makes + * it possible for subsequent passes not to worry about real vs. dummy blocks. + * + * We must also emit the data to the entropy encoder.  This is conveniently + * done by calling compress_output() after we've loaded the current strip + * of the virtual arrays. + * + * NB: input_buf contains a plane for each component in image.  All + * components are DCT'd and loaded into the virtual arrays in this pass. + * However, it may be that only a subset of the components are emitted to + * the entropy encoder during this first pass; be careful about looking + * at the scan-dependent variables (MCU dimensions, etc). + */ + +METHODDEF boolean +compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; +  JDIMENSION blocks_across, MCUs_across, MCUindex; +  int bi, ci, h_samp_factor, block_row, block_rows, ndummy; +  JCOEF lastDC; +  jpeg_component_info *compptr; +  JBLOCKARRAY buffer; +  JBLOCKROW thisblockrow, lastblockrow; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Align the virtual buffer for this component. */ +    buffer = (*cinfo->mem->access_virt_barray) +      ((j_common_ptr) cinfo, coef->whole_image[ci], +       coef->iMCU_row_num * compptr->v_samp_factor, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +    /* Count non-dummy DCT block rows in this iMCU row. */ +    if (coef->iMCU_row_num < last_iMCU_row) +      block_rows = compptr->v_samp_factor; +    else { +      /* NB: can't use last_row_height here, since may not be set! */ +      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); +      if (block_rows == 0) block_rows = compptr->v_samp_factor; +    } +    blocks_across = compptr->width_in_blocks; +    h_samp_factor = compptr->h_samp_factor; +    /* Count number of dummy blocks to be added at the right margin. */ +    ndummy = (int) (blocks_across % h_samp_factor); +    if (ndummy > 0) +      ndummy = h_samp_factor - ndummy; +    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call +     * on forward_DCT processes a complete horizontal row of DCT blocks. +     */ +    for (block_row = 0; block_row < block_rows; block_row++) { +      thisblockrow = buffer[block_row]; +      (*cinfo->fdct->forward_DCT) (cinfo, compptr, +				   input_buf[ci], thisblockrow, +				   (JDIMENSION) (block_row * DCTSIZE), +				   (JDIMENSION) 0, blocks_across); +      if (ndummy > 0) { +	/* Create dummy blocks at the right edge of the image. */ +	thisblockrow += blocks_across; /* => first dummy block */ +	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); +	lastDC = thisblockrow[-1][0]; +	for (bi = 0; bi < ndummy; bi++) { +	  thisblockrow[bi][0] = lastDC; +	} +      } +    } +    /* If at end of image, create dummy block rows as needed. +     * The tricky part here is that within each MCU, we want the DC values +     * of the dummy blocks to match the last real block's DC value. +     * This squeezes a few more bytes out of the resulting file... +     */ +    if (coef->iMCU_row_num == last_iMCU_row) { +      blocks_across += ndummy;	/* include lower right corner */ +      MCUs_across = blocks_across / h_samp_factor; +      for (block_row = block_rows; block_row < compptr->v_samp_factor; +	   block_row++) { +	thisblockrow = buffer[block_row]; +	lastblockrow = buffer[block_row-1]; +	jzero_far((void FAR *) thisblockrow, +		  (size_t) (blocks_across * SIZEOF(JBLOCK))); +	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { +	  lastDC = lastblockrow[h_samp_factor-1][0]; +	  for (bi = 0; bi < h_samp_factor; bi++) { +	    thisblockrow[bi][0] = lastDC; +	  } +	  thisblockrow += h_samp_factor; /* advance to next MCU in row */ +	  lastblockrow += h_samp_factor; +	} +      } +    } +  } +  /* NB: compress_output will increment iMCU_row_num if successful. +   * A suspension return will result in redoing all the work above next time. +   */ + +  /* Emit data to the entropy encoder, sharing code with subsequent passes */ +  return compress_output(cinfo, input_buf); +} + + +/* + * Process some data in subsequent passes of a multi-pass case. + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) + * per call, ie, v_samp_factor block rows for each component in the scan. + * The data is obtained from the virtual arrays and fed to the entropy coder. + * Returns TRUE if the iMCU row is completed, FALSE if suspended. + * + * NB: input_buf is ignored; it is likely to be a NULL pointer. + */ + +METHODDEF boolean +compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION MCU_col_num;	/* index of current MCU within row */ +  int blkn, ci, xindex, yindex, yoffset; +  JDIMENSION start_col; +  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; +  JBLOCKROW buffer_ptr; +  jpeg_component_info *compptr; + +  /* Align the virtual buffers for the components used in this scan. +   * NB: during first pass, this is safe only because the buffers will +   * already be aligned properly, so jmemmgr.c won't need to do any I/O. +   */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    buffer[ci] = (*cinfo->mem->access_virt_barray) +      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], +       coef->iMCU_row_num * compptr->v_samp_factor, +       (JDIMENSION) compptr->v_samp_factor, FALSE); +  } + +  /* Loop to process one whole iMCU row */ +  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; +       yoffset++) { +    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; +	 MCU_col_num++) { +      /* Construct list of pointers to DCT blocks belonging to this MCU */ +      blkn = 0;			/* index of current DCT block within MCU */ +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +	compptr = cinfo->cur_comp_info[ci]; +	start_col = MCU_col_num * compptr->MCU_width; +	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { +	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col; +	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) { +	    coef->MCU_buffer[blkn++] = buffer_ptr++; +	  } +	} +      } +      /* Try to write the MCU. */ +      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { +	/* Suspension forced; update state counters and exit */ +	coef->MCU_vert_offset = yoffset; +	coef->mcu_ctr = MCU_col_num; +	return FALSE; +      } +    } +    /* Completed an MCU row, but perhaps not an iMCU row */ +    coef->mcu_ctr = 0; +  } +  /* Completed the iMCU row, advance counters for next one */ +  coef->iMCU_row_num++; +  start_iMCU_row(cinfo); +  return TRUE; +} + +#endif /* FULL_COEF_BUFFER_SUPPORTED */ + + +/* + * Initialize coefficient buffer controller. + */ + +GLOBAL void +jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) +{ +  my_coef_ptr coef; + +  coef = (my_coef_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_coef_controller)); +  cinfo->coef = (struct jpeg_c_coef_controller *) coef; +  coef->pub.start_pass = start_pass_coef; + +  /* Create the coefficient buffer. */ +  if (need_full_buffer) { +#ifdef FULL_COEF_BUFFER_SUPPORTED +    /* Allocate a full-image virtual array for each component, */ +    /* padded to a multiple of samp_factor DCT blocks in each direction. */ +    int ci; +    jpeg_component_info *compptr; + +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, +	 (JDIMENSION) jround_up((long) compptr->width_in_blocks, +				(long) compptr->h_samp_factor), +	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, +				(long) compptr->v_samp_factor), +	 (JDIMENSION) compptr->v_samp_factor); +    } +#else +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +#endif +  } else { +    /* We only need a single-MCU buffer. */ +    JBLOCKROW buffer; +    int i; + +    buffer = (JBLOCKROW) +      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); +    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { +      coef->MCU_buffer[i] = buffer + i; +    } +    coef->whole_image[0] = NULL; /* flag for no virtual arrays */ +  } +} diff --git a/src/jpeg-6/jccolor.c b/src/jpeg-6/jccolor.c new file mode 100644 index 00000000..67079118 --- /dev/null +++ b/src/jpeg-6/jccolor.c @@ -0,0 +1,459 @@ +/* + * jccolor.c + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains input colorspace conversion routines. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Private subobject */ + +typedef struct { +  struct jpeg_color_converter pub; /* public fields */ + +  /* Private state for RGB->YCC conversion */ +  INT32 * rgb_ycc_tab;		/* => table for RGB to YCbCr conversion */ +} my_color_converter; + +typedef my_color_converter * my_cconvert_ptr; + + +/**************** RGB -> YCbCr conversion: most common case **************/ + +/* + * YCbCr is defined per CCIR 601-1, except that Cb and Cr are + * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. + * The conversion equations to be implemented are therefore + *	Y  =  0.29900 * R + 0.58700 * G + 0.11400 * B + *	Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B  + CENTERJSAMPLE + *	Cr =  0.50000 * R - 0.41869 * G - 0.08131 * B  + CENTERJSAMPLE + * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) + * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, + * rather than CENTERJSAMPLE, for Cb and Cr.  This gave equal positive and + * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) + * were not represented exactly.  Now we sacrifice exact representation of + * maximum red and maximum blue in order to get exact grayscales. + * + * To avoid floating-point arithmetic, we represent the fractional constants + * as integers scaled up by 2^16 (about 4 digits precision); we have to divide + * the products by 2^16, with appropriate rounding, to get the correct answer. + * + * For even more speed, we avoid doing any multiplications in the inner loop + * by precalculating the constants times R,G,B for all possible values. + * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); + * for 12-bit samples it is still acceptable.  It's not very reasonable for + * 16-bit samples, but if you want lossless storage you shouldn't be changing + * colorspace anyway. + * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included + * in the tables to save adding them separately in the inner loop. + */ + +#define SCALEBITS	16	/* speediest right-shift on some machines */ +#define CBCR_OFFSET	((INT32) CENTERJSAMPLE << SCALEBITS) +#define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) +#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) + +/* We allocate one big table and divide it up into eight parts, instead of + * doing eight alloc_small requests.  This lets us use a single table base + * address, which can be held in a register in the inner loops on many + * machines (more than can hold all eight addresses, anyway). + */ + +#define R_Y_OFF		0			/* offset to R => Y section */ +#define G_Y_OFF		(1*(MAXJSAMPLE+1))	/* offset to G => Y section */ +#define B_Y_OFF		(2*(MAXJSAMPLE+1))	/* etc. */ +#define R_CB_OFF	(3*(MAXJSAMPLE+1)) +#define G_CB_OFF	(4*(MAXJSAMPLE+1)) +#define B_CB_OFF	(5*(MAXJSAMPLE+1)) +#define R_CR_OFF	B_CB_OFF		/* B=>Cb, R=>Cr are the same */ +#define G_CR_OFF	(6*(MAXJSAMPLE+1)) +#define B_CR_OFF	(7*(MAXJSAMPLE+1)) +#define TABLE_SIZE	(8*(MAXJSAMPLE+1)) + + +/* + * Initialize for RGB->YCC colorspace conversion. + */ + +METHODDEF void +rgb_ycc_start (j_compress_ptr cinfo) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  INT32 * rgb_ycc_tab; +  INT32 i; + +  /* Allocate and fill in the conversion tables. */ +  cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(TABLE_SIZE * SIZEOF(INT32))); + +  for (i = 0; i <= MAXJSAMPLE; i++) { +    rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; +    rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; +    rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i     + ONE_HALF; +    rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; +    rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; +    /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. +     * This ensures that the maximum output will round to MAXJSAMPLE +     * not MAXJSAMPLE+1, and thus that we don't have to range-limit. +     */ +    rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1; +/*  B=>Cb and R=>Cr tables are the same +    rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1; +*/ +    rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; +    rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; +  } +} + + +/* + * Convert some rows of samples to the JPEG colorspace. + * + * Note that we change from the application's interleaved-pixel format + * to our internal noninterleaved, one-plane-per-component format. + * The input buffer is therefore three times as wide as the output buffer. + * + * A starting row offset is provided only for the output buffer.  The caller + * can easily adjust the passed input_buf value to accommodate any row + * offset required on that side. + */ + +METHODDEF void +rgb_ycc_convert (j_compress_ptr cinfo, +		 JSAMPARRAY input_buf, JSAMPIMAGE output_buf, +		 JDIMENSION output_row, int num_rows) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  register int r, g, b; +  register INT32 * ctab = cconvert->rgb_ycc_tab; +  register JSAMPROW inptr; +  register JSAMPROW outptr0, outptr1, outptr2; +  register JDIMENSION col; +  JDIMENSION num_cols = cinfo->image_width; + +  while (--num_rows >= 0) { +    inptr = *input_buf++; +    outptr0 = output_buf[0][output_row]; +    outptr1 = output_buf[1][output_row]; +    outptr2 = output_buf[2][output_row]; +    output_row++; +    for (col = 0; col < num_cols; col++) { +      r = GETJSAMPLE(inptr[RGB_RED]); +      g = GETJSAMPLE(inptr[RGB_GREEN]); +      b = GETJSAMPLE(inptr[RGB_BLUE]); +      inptr += RGB_PIXELSIZE; +      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations +       * must be too; we do not need an explicit range-limiting operation. +       * Hence the value being shifted is never negative, and we don't +       * need the general RIGHT_SHIFT macro. +       */ +      /* Y */ +      outptr0[col] = (JSAMPLE) +		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) +		 >> SCALEBITS); +      /* Cb */ +      outptr1[col] = (JSAMPLE) +		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) +		 >> SCALEBITS); +      /* Cr */ +      outptr2[col] = (JSAMPLE) +		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) +		 >> SCALEBITS); +    } +  } +} + + +/**************** Cases other than RGB -> YCbCr **************/ + + +/* + * Convert some rows of samples to the JPEG colorspace. + * This version handles RGB->grayscale conversion, which is the same + * as the RGB->Y portion of RGB->YCbCr. + * We assume rgb_ycc_start has been called (we only use the Y tables). + */ + +METHODDEF void +rgb_gray_convert (j_compress_ptr cinfo, +		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf, +		  JDIMENSION output_row, int num_rows) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  register int r, g, b; +  register INT32 * ctab = cconvert->rgb_ycc_tab; +  register JSAMPROW inptr; +  register JSAMPROW outptr; +  register JDIMENSION col; +  JDIMENSION num_cols = cinfo->image_width; + +  while (--num_rows >= 0) { +    inptr = *input_buf++; +    outptr = output_buf[0][output_row]; +    output_row++; +    for (col = 0; col < num_cols; col++) { +      r = GETJSAMPLE(inptr[RGB_RED]); +      g = GETJSAMPLE(inptr[RGB_GREEN]); +      b = GETJSAMPLE(inptr[RGB_BLUE]); +      inptr += RGB_PIXELSIZE; +      /* Y */ +      outptr[col] = (JSAMPLE) +		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) +		 >> SCALEBITS); +    } +  } +} + + +/* + * Convert some rows of samples to the JPEG colorspace. + * This version handles Adobe-style CMYK->YCCK conversion, + * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same + * conversion as above, while passing K (black) unchanged. + * We assume rgb_ycc_start has been called. + */ + +METHODDEF void +cmyk_ycck_convert (j_compress_ptr cinfo, +		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf, +		   JDIMENSION output_row, int num_rows) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  register int r, g, b; +  register INT32 * ctab = cconvert->rgb_ycc_tab; +  register JSAMPROW inptr; +  register JSAMPROW outptr0, outptr1, outptr2, outptr3; +  register JDIMENSION col; +  JDIMENSION num_cols = cinfo->image_width; + +  while (--num_rows >= 0) { +    inptr = *input_buf++; +    outptr0 = output_buf[0][output_row]; +    outptr1 = output_buf[1][output_row]; +    outptr2 = output_buf[2][output_row]; +    outptr3 = output_buf[3][output_row]; +    output_row++; +    for (col = 0; col < num_cols; col++) { +      r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); +      g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); +      b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); +      /* K passes through as-is */ +      outptr3[col] = inptr[3];	/* don't need GETJSAMPLE here */ +      inptr += 4; +      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations +       * must be too; we do not need an explicit range-limiting operation. +       * Hence the value being shifted is never negative, and we don't +       * need the general RIGHT_SHIFT macro. +       */ +      /* Y */ +      outptr0[col] = (JSAMPLE) +		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) +		 >> SCALEBITS); +      /* Cb */ +      outptr1[col] = (JSAMPLE) +		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) +		 >> SCALEBITS); +      /* Cr */ +      outptr2[col] = (JSAMPLE) +		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) +		 >> SCALEBITS); +    } +  } +} + + +/* + * Convert some rows of samples to the JPEG colorspace. + * This version handles grayscale output with no conversion. + * The source can be either plain grayscale or YCbCr (since Y == gray). + */ + +METHODDEF void +grayscale_convert (j_compress_ptr cinfo, +		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf, +		   JDIMENSION output_row, int num_rows) +{ +  register JSAMPROW inptr; +  register JSAMPROW outptr; +  register JDIMENSION col; +  JDIMENSION num_cols = cinfo->image_width; +  int instride = cinfo->input_components; + +  while (--num_rows >= 0) { +    inptr = *input_buf++; +    outptr = output_buf[0][output_row]; +    output_row++; +    for (col = 0; col < num_cols; col++) { +      outptr[col] = inptr[0];	/* don't need GETJSAMPLE() here */ +      inptr += instride; +    } +  } +} + + +/* + * Convert some rows of samples to the JPEG colorspace. + * This version handles multi-component colorspaces without conversion. + * We assume input_components == num_components. + */ + +METHODDEF void +null_convert (j_compress_ptr cinfo, +	      JSAMPARRAY input_buf, JSAMPIMAGE output_buf, +	      JDIMENSION output_row, int num_rows) +{ +  register JSAMPROW inptr; +  register JSAMPROW outptr; +  register JDIMENSION col; +  register int ci; +  int nc = cinfo->num_components; +  JDIMENSION num_cols = cinfo->image_width; + +  while (--num_rows >= 0) { +    /* It seems fastest to make a separate pass for each component. */ +    for (ci = 0; ci < nc; ci++) { +      inptr = *input_buf; +      outptr = output_buf[ci][output_row]; +      for (col = 0; col < num_cols; col++) { +	outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ +	inptr += nc; +      } +    } +    input_buf++; +    output_row++; +  } +} + + +/* + * Empty method for start_pass. + */ + +METHODDEF void +null_method (j_compress_ptr cinfo) +{ +  /* no work needed */ +} + + +/* + * Module initialization routine for input colorspace conversion. + */ + +GLOBAL void +jinit_color_converter (j_compress_ptr cinfo) +{ +  my_cconvert_ptr cconvert; + +  cconvert = (my_cconvert_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_color_converter)); +  cinfo->cconvert = (struct jpeg_color_converter *) cconvert; +  /* set start_pass to null method until we find out differently */ +  cconvert->pub.start_pass = null_method; + +  /* Make sure input_components agrees with in_color_space */ +  switch (cinfo->in_color_space) { +  case JCS_GRAYSCALE: +    if (cinfo->input_components != 1) +      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); +    break; + +  case JCS_RGB: +#if RGB_PIXELSIZE != 3 +    if (cinfo->input_components != RGB_PIXELSIZE) +      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); +    break; +#endif /* else share code with YCbCr */ + +  case JCS_YCbCr: +    if (cinfo->input_components != 3) +      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); +    break; + +  case JCS_CMYK: +  case JCS_YCCK: +    if (cinfo->input_components != 4) +      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); +    break; + +  default:			/* JCS_UNKNOWN can be anything */ +    if (cinfo->input_components < 1) +      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); +    break; +  } + +  /* Check num_components, set conversion method based on requested space */ +  switch (cinfo->jpeg_color_space) { +  case JCS_GRAYSCALE: +    if (cinfo->num_components != 1) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    if (cinfo->in_color_space == JCS_GRAYSCALE) +      cconvert->pub.color_convert = grayscale_convert; +    else if (cinfo->in_color_space == JCS_RGB) { +      cconvert->pub.start_pass = rgb_ycc_start; +      cconvert->pub.color_convert = rgb_gray_convert; +    } else if (cinfo->in_color_space == JCS_YCbCr) +      cconvert->pub.color_convert = grayscale_convert; +    else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  case JCS_RGB: +    if (cinfo->num_components != 3) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3) +      cconvert->pub.color_convert = null_convert; +    else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  case JCS_YCbCr: +    if (cinfo->num_components != 3) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    if (cinfo->in_color_space == JCS_RGB) { +      cconvert->pub.start_pass = rgb_ycc_start; +      cconvert->pub.color_convert = rgb_ycc_convert; +    } else if (cinfo->in_color_space == JCS_YCbCr) +      cconvert->pub.color_convert = null_convert; +    else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  case JCS_CMYK: +    if (cinfo->num_components != 4) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    if (cinfo->in_color_space == JCS_CMYK) +      cconvert->pub.color_convert = null_convert; +    else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  case JCS_YCCK: +    if (cinfo->num_components != 4) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    if (cinfo->in_color_space == JCS_CMYK) { +      cconvert->pub.start_pass = rgb_ycc_start; +      cconvert->pub.color_convert = cmyk_ycck_convert; +    } else if (cinfo->in_color_space == JCS_YCCK) +      cconvert->pub.color_convert = null_convert; +    else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  default:			/* allow null conversion of JCS_UNKNOWN */ +    if (cinfo->jpeg_color_space != cinfo->in_color_space || +	cinfo->num_components != cinfo->input_components) +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    cconvert->pub.color_convert = null_convert; +    break; +  } +} diff --git a/src/jpeg-6/jcdctmgr.c b/src/jpeg-6/jcdctmgr.c new file mode 100644 index 00000000..f31a96f2 --- /dev/null +++ b/src/jpeg-6/jcdctmgr.c @@ -0,0 +1,391 @@ +/* + * jcdctmgr.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the forward-DCT management logic. + * This code selects a particular DCT implementation to be used, + * and it performs related housekeeping chores including coefficient + * quantization. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + + +/* Private subobject for this module */ + +typedef struct { +  struct jpeg_forward_dct pub;	/* public fields */ + +  /* Pointer to the DCT routine actually in use */ +  forward_DCT_method_ptr do_dct; + +  /* The actual post-DCT divisors --- not identical to the quant table +   * entries, because of scaling (especially for an unnormalized DCT). +   * Each table is given in normal array order; note that this must +   * be converted from the zigzag order of the quantization tables. +   */ +  DCTELEM * divisors[NUM_QUANT_TBLS]; + +#ifdef DCT_FLOAT_SUPPORTED +  /* Same as above for the floating-point case. */ +  float_DCT_method_ptr do_float_dct; +  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; +#endif +} my_fdct_controller; + +typedef my_fdct_controller * my_fdct_ptr; + + +/* + * Initialize for a processing pass. + * Verify that all referenced Q-tables are present, and set up + * the divisor table for each one. + * In the current implementation, DCT of all components is done during + * the first pass, even if only some components will be output in the + * first scan.  Hence all components should be examined here. + */ + +METHODDEF void +start_pass_fdctmgr (j_compress_ptr cinfo) +{ +  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; +  int ci, qtblno, i; +  jpeg_component_info *compptr; +  JQUANT_TBL * qtbl; +#ifdef DCT_ISLOW_SUPPORTED +  DCTELEM * dtbl; +#endif + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    qtblno = compptr->quant_tbl_no; +    /* Make sure specified quantization table is present */ +    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || +	cinfo->quant_tbl_ptrs[qtblno] == NULL) +      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); +    qtbl = cinfo->quant_tbl_ptrs[qtblno]; +    /* Compute divisors for this quant table */ +    /* We may do this more than once for same table, but it's not a big deal */ +    switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED +    case JDCT_ISLOW: +      /* For LL&M IDCT method, divisors are equal to raw quantization +       * coefficients multiplied by 8 (to counteract scaling). +       */ +      if (fdct->divisors[qtblno] == NULL) { +	fdct->divisors[qtblno] = (DCTELEM *) +	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				      DCTSIZE2 * SIZEOF(DCTELEM)); +      } +      dtbl = fdct->divisors[qtblno]; +      for (i = 0; i < DCTSIZE2; i++) { +	dtbl[i] = ((DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]]) << 3; +      } +      break; +#endif +#ifdef DCT_IFAST_SUPPORTED +    case JDCT_IFAST: +      { +	/* For AA&N IDCT method, divisors are equal to quantization +	 * coefficients scaled by scalefactor[row]*scalefactor[col], where +	 *   scalefactor[0] = 1 +	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 +	 * We apply a further scale factor of 8. +	 */ +#define CONST_BITS 14 +	static const INT16 aanscales[DCTSIZE2] = { +	  /* precomputed values scaled up by 14 bits: in natural order */ +	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, +	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, +	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, +	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, +	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, +	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, +	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, +	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 +	}; +	SHIFT_TEMPS + +	if (fdct->divisors[qtblno] == NULL) { +	  fdct->divisors[qtblno] = (DCTELEM *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					DCTSIZE2 * SIZEOF(DCTELEM)); +	} +	dtbl = fdct->divisors[qtblno]; +	for (i = 0; i < DCTSIZE2; i++) { +	  dtbl[i] = (DCTELEM) +	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]], +				  (INT32) aanscales[i]), +		    CONST_BITS-3); +	} +      } +      break; +#endif +#ifdef DCT_FLOAT_SUPPORTED +    case JDCT_FLOAT: +      { +	/* For float AA&N IDCT method, divisors are equal to quantization +	 * coefficients scaled by scalefactor[row]*scalefactor[col], where +	 *   scalefactor[0] = 1 +	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 +	 * We apply a further scale factor of 8. +	 * What's actually stored is 1/divisor so that the inner loop can +	 * use a multiplication rather than a division. +	 */ +	FAST_FLOAT * fdtbl; +	int row, col; +	static const double aanscalefactor[DCTSIZE] = { +	  1.0, 1.387039845, 1.306562965, 1.175875602, +	  1.0, 0.785694958, 0.541196100, 0.275899379 +	}; + +	if (fdct->float_divisors[qtblno] == NULL) { +	  fdct->float_divisors[qtblno] = (FAST_FLOAT *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					DCTSIZE2 * SIZEOF(FAST_FLOAT)); +	} +	fdtbl = fdct->float_divisors[qtblno]; +	i = 0; +	for (row = 0; row < DCTSIZE; row++) { +	  for (col = 0; col < DCTSIZE; col++) { +	    fdtbl[i] = (FAST_FLOAT) +	      (1.0 / (((double) qtbl->quantval[jpeg_zigzag_order[i]] * +		       aanscalefactor[row] * aanscalefactor[col] * 8.0))); +	    i++; +	  } +	} +      } +      break; +#endif +    default: +      ERREXIT(cinfo, JERR_NOT_COMPILED); +      break; +    } +  } +} + + +/* + * Perform forward DCT on one or more blocks of a component. + * + * The input samples are taken from the sample_data[] array starting at + * position start_row/start_col, and moving to the right for any additional + * blocks. The quantized coefficients are returned in coef_blocks[]. + */ + +#if 0 // bk001204 +METHODDEF void +forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, +	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks, +	     JDIMENSION start_row, JDIMENSION start_col, +	     JDIMENSION num_blocks) +/* This version is used for integer DCT implementations. */ +{ +  /* This routine is heavily used, so it's worth coding it tightly. */ +  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; +  forward_DCT_method_ptr do_dct = fdct->do_dct; +  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; +  DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */ +  JDIMENSION bi; + +  sample_data += start_row;	/* fold in the vertical offset once */ + +  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { +    /* Load data into workspace, applying unsigned->signed conversion */ +    { register DCTELEM *workspaceptr; +      register JSAMPROW elemptr; +      register int elemr; + +      workspaceptr = workspace; +      for (elemr = 0; elemr < DCTSIZE; elemr++) { +	elemptr = sample_data[elemr] + start_col; +#if DCTSIZE == 8		/* unroll the inner loop */ +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +#else +	{ register int elemc; +	  for (elemc = DCTSIZE; elemc > 0; elemc--) { +	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; +	  } +	} +#endif +      } +    } + +    /* Perform the DCT */ +    (*do_dct) (workspace); + +    /* Quantize/descale the coefficients, and store into coef_blocks[] */ +    { register DCTELEM temp, qval; +      register int i; +      register JCOEFPTR output_ptr = coef_blocks[bi]; + +      for (i = 0; i < DCTSIZE2; i++) { +	qval = divisors[i]; +	temp = workspace[i]; +	/* Divide the coefficient value by qval, ensuring proper rounding. +	 * Since C does not specify the direction of rounding for negative +	 * quotients, we have to force the dividend positive for portability. +	 * +	 * In most files, at least half of the output values will be zero +	 * (at default quantization settings, more like three-quarters...) +	 * so we should ensure that this case is fast.  On many machines, +	 * a comparison is enough cheaper than a divide to make a special test +	 * a win.  Since both inputs will be nonnegative, we need only test +	 * for a < b to discover whether a/b is 0. +	 * If your machine's division is fast enough, define FAST_DIVIDE. +	 */ +#ifdef FAST_DIVIDE +#define DIVIDE_BY(a,b)	a /= b +#else +#define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0 +#endif +	if (temp < 0) { +	  temp = -temp; +	  temp += qval>>1;	/* for rounding */ +	  DIVIDE_BY(temp, qval); +	  temp = -temp; +	} else { +	  temp += qval>>1;	/* for rounding */ +	  DIVIDE_BY(temp, qval); +	} +	output_ptr[i] = (JCOEF) temp; +      } +    } +  } +} +#endif // 0 + +#ifdef DCT_FLOAT_SUPPORTED + +METHODDEF void +forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, +		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks, +		   JDIMENSION start_row, JDIMENSION start_col, +		   JDIMENSION num_blocks) +/* This version is used for floating-point DCT implementations. */ +{ +  /* This routine is heavily used, so it's worth coding it tightly. */ +  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; +  float_DCT_method_ptr do_dct = fdct->do_float_dct; +  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; +  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ +  JDIMENSION bi; + +  sample_data += start_row;	/* fold in the vertical offset once */ + +  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { +    /* Load data into workspace, applying unsigned->signed conversion */ +    { register FAST_FLOAT *workspaceptr; +      register JSAMPROW elemptr; +      register int elemr; + +      workspaceptr = workspace; +      for (elemr = 0; elemr < DCTSIZE; elemr++) { +	elemptr = sample_data[elemr] + start_col; +#if DCTSIZE == 8		/* unroll the inner loop */ +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +#else +	{ register int elemc; +	  for (elemc = DCTSIZE; elemc > 0; elemc--) { +	    *workspaceptr++ = (FAST_FLOAT) +	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); +	  } +	} +#endif +      } +    } + +    /* Perform the DCT */ +    (*do_dct) (workspace); + +    /* Quantize/descale the coefficients, and store into coef_blocks[] */ +    { register FAST_FLOAT temp; +      register int i; +      register JCOEFPTR output_ptr = coef_blocks[bi]; + +      for (i = 0; i < DCTSIZE2; i++) { +	/* Apply the quantization and scaling factor */ +	temp = workspace[i] * divisors[i]; +	/* Round to nearest integer. +	 * Since C does not specify the direction of rounding for negative +	 * quotients, we have to force the dividend positive for portability. +	 * The maximum coefficient size is +-16K (for 12-bit data), so this +	 * code should work for either 16-bit or 32-bit ints. +	 */ +	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); +      } +    } +  } +} + +#endif /* DCT_FLOAT_SUPPORTED */ + + +/* + * Initialize FDCT manager. + */ + +GLOBAL void +jinit_forward_dct (j_compress_ptr cinfo) +{ +  my_fdct_ptr fdct; +  int i; + +  fdct = (my_fdct_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_fdct_controller)); +  cinfo->fdct = (struct jpeg_forward_dct *) fdct; +  fdct->pub.start_pass = start_pass_fdctmgr; + +  switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED +  case JDCT_ISLOW: +    fdct->pub.forward_DCT = forward_DCT; +    fdct->do_dct = jpeg_fdct_islow; +    break; +#endif +#ifdef DCT_IFAST_SUPPORTED +  case JDCT_IFAST: +    fdct->pub.forward_DCT = forward_DCT; +    fdct->do_dct = jpeg_fdct_ifast; +    break; +#endif +#ifdef DCT_FLOAT_SUPPORTED +  case JDCT_FLOAT: +    fdct->pub.forward_DCT = forward_DCT_float; +    fdct->do_float_dct = jpeg_fdct_float; +    break; +#endif +  default: +    ERREXIT(cinfo, JERR_NOT_COMPILED); +    break; +  } + +  /* Mark divisor tables unallocated */ +  for (i = 0; i < NUM_QUANT_TBLS; i++) { +    fdct->divisors[i] = NULL; +#ifdef DCT_FLOAT_SUPPORTED +    fdct->float_divisors[i] = NULL; +#endif +  } +} diff --git a/src/jpeg-6/jchuff.c b/src/jpeg-6/jchuff.c new file mode 100644 index 00000000..59f7865c --- /dev/null +++ b/src/jpeg-6/jchuff.c @@ -0,0 +1,846 @@ +/* + * jchuff.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains Huffman entropy encoding routines. + * + * Much of the complexity here has to do with supporting output suspension. + * If the data destination module demands suspension, we want to be able to + * back up to the start of the current MCU.  To do this, we copy state + * variables into local working storage, and update them back to the + * permanent JPEG objects only upon successful completion of an MCU. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jchuff.h"		/* Declarations shared with jcphuff.c */ + + +/* Expanded entropy encoder object for Huffman encoding. + * + * The savable_state subrecord contains fields that change within an MCU, + * but must not be updated permanently until we complete the MCU. + */ + +typedef struct { +  INT32 put_buffer;		/* current bit-accumulation buffer */ +  int put_bits;			/* # of bits now in it */ +  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ +} savable_state; + +/* This macro is to work around compilers with missing or broken + * structure assignment.  You'll need to fix this code if you have + * such a compiler and you change MAX_COMPS_IN_SCAN. + */ + +#ifndef NO_STRUCT_ASSIGN +#define ASSIGN_STATE(dest,src)  ((dest) = (src)) +#else +#if MAX_COMPS_IN_SCAN == 4 +#define ASSIGN_STATE(dest,src)  \ +	((dest).put_buffer = (src).put_buffer, \ +	 (dest).put_bits = (src).put_bits, \ +	 (dest).last_dc_val[0] = (src).last_dc_val[0], \ +	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ +	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ +	 (dest).last_dc_val[3] = (src).last_dc_val[3]) +#endif +#endif + + +typedef struct { +  struct jpeg_entropy_encoder pub; /* public fields */ + +  savable_state saved;		/* Bit buffer & DC state at start of MCU */ + +  /* These fields are NOT loaded into local working state. */ +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ +  int next_restart_num;		/* next restart number to write (0-7) */ + +  /* Pointers to derived tables (these workspaces have image lifespan) */ +  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; +  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; + +#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */ +  long * dc_count_ptrs[NUM_HUFF_TBLS]; +  long * ac_count_ptrs[NUM_HUFF_TBLS]; +#endif +} huff_entropy_encoder; + +typedef huff_entropy_encoder * huff_entropy_ptr; + +/* Working state while writing an MCU. + * This struct contains all the fields that are needed by subroutines. + */ + +typedef struct { +  JOCTET * next_output_byte;	/* => next byte to write in buffer */ +  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ +  savable_state cur;		/* Current bit buffer & DC state */ +  j_compress_ptr cinfo;		/* dump_buffer needs access to this */ +} working_state; + + +/* Forward declarations */ +METHODDEF boolean encode_mcu_huff JPP((j_compress_ptr cinfo, +				       JBLOCKROW *MCU_data)); +METHODDEF void finish_pass_huff JPP((j_compress_ptr cinfo)); +#ifdef ENTROPY_OPT_SUPPORTED +METHODDEF boolean encode_mcu_gather JPP((j_compress_ptr cinfo, +					 JBLOCKROW *MCU_data)); +METHODDEF void finish_pass_gather JPP((j_compress_ptr cinfo)); +#endif + + +/* + * Initialize for a Huffman-compressed scan. + * If gather_statistics is TRUE, we do not output anything during the scan, + * just count the Huffman symbols used and generate Huffman code tables. + */ + +METHODDEF void +start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci, dctbl, actbl; +  jpeg_component_info * compptr; + +  if (gather_statistics) { +#ifdef ENTROPY_OPT_SUPPORTED +    entropy->pub.encode_mcu = encode_mcu_gather; +    entropy->pub.finish_pass = finish_pass_gather; +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +  } else { +    entropy->pub.encode_mcu = encode_mcu_huff; +    entropy->pub.finish_pass = finish_pass_huff; +  } + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    dctbl = compptr->dc_tbl_no; +    actbl = compptr->ac_tbl_no; +    /* Make sure requested tables are present */ +    /* (In gather mode, tables need not be allocated yet) */ +    if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS || +	(cinfo->dc_huff_tbl_ptrs[dctbl] == NULL && !gather_statistics)) +      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); +    if (actbl < 0 || actbl >= NUM_HUFF_TBLS || +	(cinfo->ac_huff_tbl_ptrs[actbl] == NULL && !gather_statistics)) +      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); +    if (gather_statistics) { +#ifdef ENTROPY_OPT_SUPPORTED +      /* Allocate and zero the statistics tables */ +      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ +      if (entropy->dc_count_ptrs[dctbl] == NULL) +	entropy->dc_count_ptrs[dctbl] = (long *) +	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				      257 * SIZEOF(long)); +      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); +      if (entropy->ac_count_ptrs[actbl] == NULL) +	entropy->ac_count_ptrs[actbl] = (long *) +	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				      257 * SIZEOF(long)); +      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); +#endif +    } else { +      /* Compute derived values for Huffman tables */ +      /* We may do this more than once for a table, but it's not expensive */ +      jpeg_make_c_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], +			      & entropy->dc_derived_tbls[dctbl]); +      jpeg_make_c_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl], +			      & entropy->ac_derived_tbls[actbl]); +    } +    /* Initialize DC predictions to 0 */ +    entropy->saved.last_dc_val[ci] = 0; +  } + +  /* Initialize bit buffer to empty */ +  entropy->saved.put_buffer = 0; +  entropy->saved.put_bits = 0; + +  /* Initialize restart stuff */ +  entropy->restarts_to_go = cinfo->restart_interval; +  entropy->next_restart_num = 0; +} + + +/* + * Compute the derived values for a Huffman table. + * Note this is also used by jcphuff.c. + */ + +GLOBAL void +jpeg_make_c_derived_tbl (j_compress_ptr cinfo, JHUFF_TBL * htbl, +			 c_derived_tbl ** pdtbl) +{ +  c_derived_tbl *dtbl; +  int p, i, l, lastp, si; +  char huffsize[257]; +  unsigned int huffcode[257]; +  unsigned int code; + +  /* Allocate a workspace if we haven't already done so. */ +  if (*pdtbl == NULL) +    *pdtbl = (c_derived_tbl *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(c_derived_tbl)); +  dtbl = *pdtbl; +   +  /* Figure C.1: make table of Huffman code length for each symbol */ +  /* Note that this is in code-length order. */ + +  p = 0; +  for (l = 1; l <= 16; l++) { +    for (i = 1; i <= (int) htbl->bits[l]; i++) +      huffsize[p++] = (char) l; +  } +  huffsize[p] = 0; +  lastp = p; +   +  /* Figure C.2: generate the codes themselves */ +  /* Note that this is in code-length order. */ +   +  code = 0; +  si = huffsize[0]; +  p = 0; +  while (huffsize[p]) { +    while (((int) huffsize[p]) == si) { +      huffcode[p++] = code; +      code++; +    } +    code <<= 1; +    si++; +  } +   +  /* Figure C.3: generate encoding tables */ +  /* These are code and size indexed by symbol value */ + +  /* Set any codeless symbols to have code length 0; +   * this allows emit_bits to detect any attempt to emit such symbols. +   */ +  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); + +  for (p = 0; p < lastp; p++) { +    dtbl->ehufco[htbl->huffval[p]] = huffcode[p]; +    dtbl->ehufsi[htbl->huffval[p]] = huffsize[p]; +  } +} + + +/* Outputting bytes to the file */ + +/* Emit a byte, taking 'action' if must suspend. */ +#define emit_byte(state,val,action)  \ +	{ *(state)->next_output_byte++ = (JOCTET) (val);  \ +	  if (--(state)->free_in_buffer == 0)  \ +	    if (! dump_buffer(state))  \ +	      { action; } } + + +LOCAL boolean +dump_buffer (working_state * state) +/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ +{ +  struct jpeg_destination_mgr * dest = state->cinfo->dest; + +  if (! (*dest->empty_output_buffer) (state->cinfo)) +    return FALSE; +  /* After a successful buffer dump, must reset buffer pointers */ +  state->next_output_byte = dest->next_output_byte; +  state->free_in_buffer = dest->free_in_buffer; +  return TRUE; +} + + +/* Outputting bits to the file */ + +/* Only the right 24 bits of put_buffer are used; the valid bits are + * left-justified in this part.  At most 16 bits can be passed to emit_bits + * in one call, and we never retain more than 7 bits in put_buffer + * between calls, so 24 bits are sufficient. + */ + +INLINE +LOCAL boolean +emit_bits (working_state * state, unsigned int code, int size) +/* Emit some bits; return TRUE if successful, FALSE if must suspend */ +{ +  /* This routine is heavily used, so it's worth coding tightly. */ +  register INT32 put_buffer = (INT32) code; +  register int put_bits = state->cur.put_bits; + +  /* if size is 0, caller used an invalid Huffman table entry */ +  if (size == 0) +    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); + +  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ +   +  put_bits += size;		/* new number of bits in buffer */ +   +  put_buffer <<= 24 - put_bits; /* align incoming bits */ + +  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ +   +  while (put_bits >= 8) { +    int c = (int) ((put_buffer >> 16) & 0xFF); +     +    emit_byte(state, c, return FALSE); +    if (c == 0xFF) {		/* need to stuff a zero byte? */ +      emit_byte(state, 0, return FALSE); +    } +    put_buffer <<= 8; +    put_bits -= 8; +  } + +  state->cur.put_buffer = put_buffer; /* update state variables */ +  state->cur.put_bits = put_bits; + +  return TRUE; +} + + +LOCAL boolean +flush_bits (working_state * state) +{ +  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ +    return FALSE; +  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */ +  state->cur.put_bits = 0; +  return TRUE; +} + + +/* Encode a single block's worth of coefficients */ + +LOCAL boolean +encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, +		  c_derived_tbl *dctbl, c_derived_tbl *actbl) +{ +  register int temp, temp2; +  register int nbits; +  register int k, r, i; +   +  /* Encode the DC coefficient difference per section F.1.2.1 */ +   +  temp = temp2 = block[0] - last_dc_val; + +  if (temp < 0) { +    temp = -temp;		/* temp is abs value of input */ +    /* For a negative input, want temp2 = bitwise complement of abs(input) */ +    /* This code assumes we are on a two's complement machine */ +    temp2--; +  } +   +  /* Find the number of bits needed for the magnitude of the coefficient */ +  nbits = 0; +  while (temp) { +    nbits++; +    temp >>= 1; +  } +   +  /* Emit the Huffman-coded symbol for the number of bits */ +  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) +    return FALSE; + +  /* Emit that number of bits of the value, if positive, */ +  /* or the complement of its magnitude, if negative. */ +  if (nbits)			/* emit_bits rejects calls with size 0 */ +    if (! emit_bits(state, (unsigned int) temp2, nbits)) +      return FALSE; + +  /* Encode the AC coefficients per section F.1.2.2 */ +   +  r = 0;			/* r = run length of zeros */ +   +  for (k = 1; k < DCTSIZE2; k++) { +    if ((temp = block[jpeg_natural_order[k]]) == 0) { +      r++; +    } else { +      /* if run length > 15, must emit special run-length-16 codes (0xF0) */ +      while (r > 15) { +	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) +	  return FALSE; +	r -= 16; +      } + +      temp2 = temp; +      if (temp < 0) { +	temp = -temp;		/* temp is abs value of input */ +	/* This code assumes we are on a two's complement machine */ +	temp2--; +      } +       +      /* Find the number of bits needed for the magnitude of the coefficient */ +      nbits = 1;		/* there must be at least one 1 bit */ +      while ((temp >>= 1)) +	nbits++; +       +      /* Emit Huffman symbol for run length / number of bits */ +      i = (r << 4) + nbits; +      if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) +	return FALSE; + +      /* Emit that number of bits of the value, if positive, */ +      /* or the complement of its magnitude, if negative. */ +      if (! emit_bits(state, (unsigned int) temp2, nbits)) +	return FALSE; +       +      r = 0; +    } +  } + +  /* If the last coef(s) were zero, emit an end-of-block code */ +  if (r > 0) +    if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) +      return FALSE; + +  return TRUE; +} + + +/* + * Emit a restart marker & resynchronize predictions. + */ + +LOCAL boolean +emit_restart (working_state * state, int restart_num) +{ +  int ci; + +  if (! flush_bits(state)) +    return FALSE; + +  emit_byte(state, 0xFF, return FALSE); +  emit_byte(state, JPEG_RST0 + restart_num, return FALSE); + +  /* Re-initialize DC predictions to 0 */ +  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) +    state->cur.last_dc_val[ci] = 0; + +  /* The restart counter is not updated until we successfully write the MCU. */ + +  return TRUE; +} + + +/* + * Encode and output one MCU's worth of Huffman-compressed coefficients. + */ + +METHODDEF boolean +encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  working_state state; +  int blkn, ci; +  jpeg_component_info * compptr; + +  /* Load up working state */ +  state.next_output_byte = cinfo->dest->next_output_byte; +  state.free_in_buffer = cinfo->dest->free_in_buffer; +  ASSIGN_STATE(state.cur, entropy->saved); +  state.cinfo = cinfo; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! emit_restart(&state, entropy->next_restart_num)) +	return FALSE; +  } + +  /* Encode the MCU data blocks */ +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; +    if (! encode_one_block(&state, +			   MCU_data[blkn][0], state.cur.last_dc_val[ci], +			   entropy->dc_derived_tbls[compptr->dc_tbl_no], +			   entropy->ac_derived_tbls[compptr->ac_tbl_no])) +      return FALSE; +    /* Update last_dc_val */ +    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; +  } + +  /* Completed MCU, so update state */ +  cinfo->dest->next_output_byte = state.next_output_byte; +  cinfo->dest->free_in_buffer = state.free_in_buffer; +  ASSIGN_STATE(entropy->saved, state.cur); + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * Finish up at the end of a Huffman-compressed scan. + */ + +METHODDEF void +finish_pass_huff (j_compress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  working_state state; + +  /* Load up working state ... flush_bits needs it */ +  state.next_output_byte = cinfo->dest->next_output_byte; +  state.free_in_buffer = cinfo->dest->free_in_buffer; +  ASSIGN_STATE(state.cur, entropy->saved); +  state.cinfo = cinfo; + +  /* Flush out the last data */ +  if (! flush_bits(&state)) +    ERREXIT(cinfo, JERR_CANT_SUSPEND); + +  /* Update state */ +  cinfo->dest->next_output_byte = state.next_output_byte; +  cinfo->dest->free_in_buffer = state.free_in_buffer; +  ASSIGN_STATE(entropy->saved, state.cur); +} + + +/* + * Huffman coding optimization. + * + * This actually is optimization, in the sense that we find the best possible + * Huffman table(s) for the given data.  We first scan the supplied data and + * count the number of uses of each symbol that is to be Huffman-coded. + * (This process must agree with the code above.)  Then we build an + * optimal Huffman coding tree for the observed counts. + * + * The JPEG standard requires Huffman codes to be no more than 16 bits long. + * If some symbols have a very small but nonzero probability, the Huffman tree + * must be adjusted to meet the code length restriction.  We currently use + * the adjustment method suggested in the JPEG spec.  This method is *not* + * optimal; it may not choose the best possible limited-length code.  But + * since the symbols involved are infrequently used, it's not clear that + * going to extra trouble is worthwhile. + */ + +#ifdef ENTROPY_OPT_SUPPORTED + + +/* Process a single block's worth of coefficients */ + +LOCAL void +htest_one_block (JCOEFPTR block, int last_dc_val, +		 long dc_counts[], long ac_counts[]) +{ +  register int temp; +  register int nbits; +  register int k, r; +   +  /* Encode the DC coefficient difference per section F.1.2.1 */ +   +  temp = block[0] - last_dc_val; +  if (temp < 0) +    temp = -temp; +   +  /* Find the number of bits needed for the magnitude of the coefficient */ +  nbits = 0; +  while (temp) { +    nbits++; +    temp >>= 1; +  } + +  /* Count the Huffman symbol for the number of bits */ +  dc_counts[nbits]++; +   +  /* Encode the AC coefficients per section F.1.2.2 */ +   +  r = 0;			/* r = run length of zeros */ +   +  for (k = 1; k < DCTSIZE2; k++) { +    if ((temp = block[jpeg_natural_order[k]]) == 0) { +      r++; +    } else { +      /* if run length > 15, must emit special run-length-16 codes (0xF0) */ +      while (r > 15) { +	ac_counts[0xF0]++; +	r -= 16; +      } +       +      /* Find the number of bits needed for the magnitude of the coefficient */ +      if (temp < 0) +	temp = -temp; +       +      /* Find the number of bits needed for the magnitude of the coefficient */ +      nbits = 1;		/* there must be at least one 1 bit */ +      while ((temp >>= 1)) +	nbits++; +       +      /* Count Huffman symbol for run length / number of bits */ +      ac_counts[(r << 4) + nbits]++; +       +      r = 0; +    } +  } + +  /* If the last coef(s) were zero, emit an end-of-block code */ +  if (r > 0) +    ac_counts[0]++; +} + + +/* + * Trial-encode one MCU's worth of Huffman-compressed coefficients. + * No data is actually output, so no suspension return is possible. + */ + +METHODDEF boolean +encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int blkn, ci; +  jpeg_component_info * compptr; + +  /* Take care of restart intervals if needed */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      /* Re-initialize DC predictions to 0 */ +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) +	entropy->saved.last_dc_val[ci] = 0; +      /* Update restart state */ +      entropy->restarts_to_go = cinfo->restart_interval; +    } +    entropy->restarts_to_go--; +  } + +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; +    htest_one_block(MCU_data[blkn][0], entropy->saved.last_dc_val[ci], +		    entropy->dc_count_ptrs[compptr->dc_tbl_no], +		    entropy->ac_count_ptrs[compptr->ac_tbl_no]); +    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; +  } + +  return TRUE; +} + + +/* + * Generate the optimal coding for the given counts, fill htbl. + * Note this is also used by jcphuff.c. + */ + +GLOBAL void +jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) +{ +#define MAX_CLEN 32		/* assumed maximum initial code length */ +  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */ +  int codesize[257];		/* codesize[k] = code length of symbol k */ +  int others[257];		/* next symbol in current branch of tree */ +  int c1, c2; +  int p, i, j; +  long v; + +  /* This algorithm is explained in section K.2 of the JPEG standard */ + +  MEMZERO(bits, SIZEOF(bits)); +  MEMZERO(codesize, SIZEOF(codesize)); +  for (i = 0; i < 257; i++) +    others[i] = -1;		/* init links to empty */ +   +  freq[256] = 1;		/* make sure there is a nonzero count */ +  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees +   * that no real symbol is given code-value of all ones, because 256 +   * will be placed in the largest codeword category. +   */ + +  /* Huffman's basic algorithm to assign optimal code lengths to symbols */ + +  for (;;) { +    /* Find the smallest nonzero frequency, set c1 = its symbol */ +    /* In case of ties, take the larger symbol number */ +    c1 = -1; +    v = 1000000000L; +    for (i = 0; i <= 256; i++) { +      if (freq[i] && freq[i] <= v) { +	v = freq[i]; +	c1 = i; +      } +    } + +    /* Find the next smallest nonzero frequency, set c2 = its symbol */ +    /* In case of ties, take the larger symbol number */ +    c2 = -1; +    v = 1000000000L; +    for (i = 0; i <= 256; i++) { +      if (freq[i] && freq[i] <= v && i != c1) { +	v = freq[i]; +	c2 = i; +      } +    } + +    /* Done if we've merged everything into one frequency */ +    if (c2 < 0) +      break; +     +    /* Else merge the two counts/trees */ +    freq[c1] += freq[c2]; +    freq[c2] = 0; + +    /* Increment the codesize of everything in c1's tree branch */ +    codesize[c1]++; +    while (others[c1] >= 0) { +      c1 = others[c1]; +      codesize[c1]++; +    } +     +    others[c1] = c2;		/* chain c2 onto c1's tree branch */ +     +    /* Increment the codesize of everything in c2's tree branch */ +    codesize[c2]++; +    while (others[c2] >= 0) { +      c2 = others[c2]; +      codesize[c2]++; +    } +  } + +  /* Now count the number of symbols of each code length */ +  for (i = 0; i <= 256; i++) { +    if (codesize[i]) { +      /* The JPEG standard seems to think that this can't happen, */ +      /* but I'm paranoid... */ +      if (codesize[i] > MAX_CLEN) +	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); + +      bits[codesize[i]]++; +    } +  } + +  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure +   * Huffman procedure assigned any such lengths, we must adjust the coding. +   * Here is what the JPEG spec says about how this next bit works: +   * Since symbols are paired for the longest Huffman code, the symbols are +   * removed from this length category two at a time.  The prefix for the pair +   * (which is one bit shorter) is allocated to one of the pair; then, +   * skipping the BITS entry for that prefix length, a code word from the next +   * shortest nonzero BITS entry is converted into a prefix for two code words +   * one bit longer. +   */ +   +  for (i = MAX_CLEN; i > 16; i--) { +    while (bits[i] > 0) { +      j = i - 2;		/* find length of new prefix to be used */ +      while (bits[j] == 0) +	j--; +       +      bits[i] -= 2;		/* remove two symbols */ +      bits[i-1]++;		/* one goes in this length */ +      bits[j+1] += 2;		/* two new symbols in this length */ +      bits[j]--;		/* symbol of this length is now a prefix */ +    } +  } + +  /* Remove the count for the pseudo-symbol 256 from the largest codelength */ +  while (bits[i] == 0)		/* find largest codelength still in use */ +    i--; +  bits[i]--; +   +  /* Return final symbol counts (only for lengths 0..16) */ +  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); +   +  /* Return a list of the symbols sorted by code length */ +  /* It's not real clear to me why we don't need to consider the codelength +   * changes made above, but the JPEG spec seems to think this works. +   */ +  p = 0; +  for (i = 1; i <= MAX_CLEN; i++) { +    for (j = 0; j <= 255; j++) { +      if (codesize[j] == i) { +	htbl->huffval[p] = (UINT8) j; +	p++; +      } +    } +  } + +  /* Set sent_table FALSE so updated table will be written to JPEG file. */ +  htbl->sent_table = FALSE; +} + + +/* + * Finish up a statistics-gathering pass and create the new Huffman tables. + */ + +METHODDEF void +finish_pass_gather (j_compress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci, dctbl, actbl; +  jpeg_component_info * compptr; +  JHUFF_TBL **htblptr; +  boolean did_dc[NUM_HUFF_TBLS]; +  boolean did_ac[NUM_HUFF_TBLS]; + +  /* It's important not to apply jpeg_gen_optimal_table more than once +   * per table, because it clobbers the input frequency counts! +   */ +  MEMZERO(did_dc, SIZEOF(did_dc)); +  MEMZERO(did_ac, SIZEOF(did_ac)); + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    dctbl = compptr->dc_tbl_no; +    actbl = compptr->ac_tbl_no; +    if (! did_dc[dctbl]) { +      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; +      if (*htblptr == NULL) +	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); +      did_dc[dctbl] = TRUE; +    } +    if (! did_ac[actbl]) { +      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; +      if (*htblptr == NULL) +	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); +      did_ac[actbl] = TRUE; +    } +  } +} + + +#endif /* ENTROPY_OPT_SUPPORTED */ + + +/* + * Module initialization routine for Huffman entropy encoding. + */ + +GLOBAL void +jinit_huff_encoder (j_compress_ptr cinfo) +{ +  huff_entropy_ptr entropy; +  int i; + +  entropy = (huff_entropy_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(huff_entropy_encoder)); +  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; +  entropy->pub.start_pass = start_pass_huff; + +  /* Mark tables unallocated */ +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; +#ifdef ENTROPY_OPT_SUPPORTED +    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; +#endif +  } +} diff --git a/src/jpeg-6/jchuff.h b/src/jpeg-6/jchuff.h new file mode 100644 index 00000000..f43d571d --- /dev/null +++ b/src/jpeg-6/jchuff.h @@ -0,0 +1,34 @@ +/* + * jchuff.h + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains declarations for Huffman entropy encoding routines + * that are shared between the sequential encoder (jchuff.c) and the + * progressive encoder (jcphuff.c).  No other modules need to see these. + */ + +/* Derived data constructed for each Huffman table */ + +typedef struct { +  unsigned int ehufco[256];	/* code for each symbol */ +  char ehufsi[256];		/* length of code for each symbol */ +  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ +} c_derived_tbl; + +/* Short forms of external names for systems with brain-damaged linkers. */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jpeg_make_c_derived_tbl	jMkCDerived +#define jpeg_gen_optimal_table	jGenOptTbl +#endif /* NEED_SHORT_EXTERNAL_NAMES */ + +/* Expand a Huffman table definition into the derived format */ +EXTERN void jpeg_make_c_derived_tbl JPP((j_compress_ptr cinfo, +				JHUFF_TBL * htbl, c_derived_tbl ** pdtbl)); + +/* Generate an optimal table definition given the specified counts */ +EXTERN void jpeg_gen_optimal_table JPP((j_compress_ptr cinfo, +					JHUFF_TBL * htbl, long freq[])); diff --git a/src/jpeg-6/jcinit.c b/src/jpeg-6/jcinit.c new file mode 100644 index 00000000..2cc82b25 --- /dev/null +++ b/src/jpeg-6/jcinit.c @@ -0,0 +1,72 @@ +/* + * jcinit.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains initialization logic for the JPEG compressor. + * This routine is in charge of selecting the modules to be executed and + * making an initialization call to each one. + * + * Logically, this code belongs in jcmaster.c.  It's split out because + * linking this routine implies linking the entire compression library. + * For a transcoding-only application, we want to be able to use jcmaster.c + * without linking in the whole library. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * Master selection of compression modules. + * This is done once at the start of processing an image.  We determine + * which modules will be used and give them appropriate initialization calls. + */ + +GLOBAL void +jinit_compress_master (j_compress_ptr cinfo) +{ +  /* Initialize master control (includes parameter checking/processing) */ +  jinit_c_master_control(cinfo, FALSE /* full compression */); + +  /* Preprocessing */ +  if (! cinfo->raw_data_in) { +    jinit_color_converter(cinfo); +    jinit_downsampler(cinfo); +    jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); +  } +  /* Forward DCT */ +  jinit_forward_dct(cinfo); +  /* Entropy encoding: either Huffman or arithmetic coding. */ +  if (cinfo->arith_code) { +    ERREXIT(cinfo, JERR_ARITH_NOTIMPL); +  } else { +    if (cinfo->progressive_mode) { +#ifdef C_PROGRESSIVE_SUPPORTED +      jinit_phuff_encoder(cinfo); +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } else +      jinit_huff_encoder(cinfo); +  } + +  /* Need a full-image coefficient buffer in any multi-pass mode. */ +  jinit_c_coef_controller(cinfo, +			  (cinfo->num_scans > 1 || cinfo->optimize_coding)); +  jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); + +  jinit_marker_writer(cinfo); + +  /* We can now tell the memory manager to allocate virtual arrays. */ +  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); + +  /* Write the datastream header (SOI) immediately. +   * Frame and scan headers are postponed till later. +   * This lets application insert special markers after the SOI. +   */ +  (*cinfo->marker->write_file_header) (cinfo); +} diff --git a/src/jpeg-6/jcmainct.c b/src/jpeg-6/jcmainct.c new file mode 100644 index 00000000..42a02d09 --- /dev/null +++ b/src/jpeg-6/jcmainct.c @@ -0,0 +1,296 @@ +/* + * jcmainct.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the main buffer controller for compression. + * The main buffer lies between the pre-processor and the JPEG + * compressor proper; it holds downsampled data in the JPEG colorspace. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Note: currently, there is no operating mode in which a full-image buffer + * is needed at this step.  If there were, that mode could not be used with + * "raw data" input, since this module is bypassed in that case.  However, + * we've left the code here for possible use in special applications. + */ +#undef FULL_MAIN_BUFFER_SUPPORTED + + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_c_main_controller pub; /* public fields */ + +  JDIMENSION cur_iMCU_row;	/* number of current iMCU row */ +  JDIMENSION rowgroup_ctr;	/* counts row groups received in iMCU row */ +  boolean suspended;		/* remember if we suspended output */ +  J_BUF_MODE pass_mode;		/* current operating mode */ + +  /* If using just a strip buffer, this points to the entire set of buffers +   * (we allocate one for each component).  In the full-image case, this +   * points to the currently accessible strips of the virtual arrays. +   */ +  JSAMPARRAY buffer[MAX_COMPONENTS]; + +#ifdef FULL_MAIN_BUFFER_SUPPORTED +  /* If using full-image storage, this array holds pointers to virtual-array +   * control blocks for each component.  Unused if not full-image storage. +   */ +  jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; +#endif +} my_main_controller; + +typedef my_main_controller * my_main_ptr; + + +/* Forward declarations */ +METHODDEF void process_data_simple_main +	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, +	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); +#ifdef FULL_MAIN_BUFFER_SUPPORTED +METHODDEF void process_data_buffer_main +	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, +	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); +#endif + + +/* + * Initialize for a processing pass. + */ + +METHODDEF void +start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) +{ +  // bk001204 - don't use main... +  my_main_ptr jmain = (my_main_ptr) cinfo->main; + +  /* Do nothing in raw-data mode. */ +  if (cinfo->raw_data_in) +    return; + +  jmain->cur_iMCU_row = 0;	/* initialize counters */ +  jmain->rowgroup_ctr = 0; +  jmain->suspended = FALSE; +  jmain->pass_mode = pass_mode;	/* save mode for use by process_data */ + +  switch (pass_mode) { +  case JBUF_PASS_THRU: +#ifdef FULL_MAIN_BUFFER_SUPPORTED +    if (jmain->whole_image[0] != NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +#endif +    jmain->pub.process_data = process_data_simple_main; +    break; +#ifdef FULL_MAIN_BUFFER_SUPPORTED +  case JBUF_SAVE_SOURCE: +  case JBUF_CRANK_DEST: +  case JBUF_SAVE_AND_PASS: +    if (jmain->whole_image[0] == NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    jmain->pub.process_data = process_data_buffer_main; +    break; +#endif +  default: +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    break; +  } +} + + +/* + * Process some data. + * This routine handles the simple pass-through mode, + * where we have only a strip buffer. + */ + +METHODDEF void +process_data_simple_main (j_compress_ptr cinfo, +			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, +			  JDIMENSION in_rows_avail) +{ +  // bk001204 - don't use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; + +  while (jmain->cur_iMCU_row < cinfo->total_iMCU_rows) { +    /* Read input data if we haven't filled the main buffer yet */ +    if (jmain->rowgroup_ctr < DCTSIZE) +      (*cinfo->prep->pre_process_data) (cinfo, +					input_buf, in_row_ctr, in_rows_avail, +					jmain->buffer, &jmain->rowgroup_ctr, +					(JDIMENSION) DCTSIZE); + +    /* If we don't have a full iMCU row buffered, return to application for +     * more data.  Note that preprocessor will always pad to fill the iMCU row +     * at the bottom of the image. +     */ +    if (jmain->rowgroup_ctr != DCTSIZE) +      return; + +    /* Send the completed row to the compressor */ +    if (! (*cinfo->coef->compress_data) (cinfo, jmain->buffer)) { +      /* If compressor did not consume the whole row, then we must need to +       * suspend processing and return to the application.  In this situation +       * we pretend we didn't yet consume the last input row; otherwise, if +       * it happened to be the last row of the image, the application would +       * think we were done. +       */ +      if (! jmain->suspended) { +	(*in_row_ctr)--; +	jmain->suspended = TRUE; +      } +      return; +    } +    /* We did finish the row.  Undo our little suspension hack if a previous +     * call suspended; then mark the main buffer empty. +     */ +    if (jmain->suspended) { +      (*in_row_ctr)++; +      jmain->suspended = FALSE; +    } +    jmain->rowgroup_ctr = 0; +    jmain->cur_iMCU_row++; +  } +} + + +#ifdef FULL_MAIN_BUFFER_SUPPORTED + +/* + * Process some data. + * This routine handles all of the modes that use a full-size buffer. + */ + +METHODDEF void +process_data_buffer_main (j_compress_ptr cinfo, +			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, +			  JDIMENSION in_rows_avail) +{ +  my_main_ptr main = (my_main_ptr) cinfo->main; +  int ci; +  jpeg_component_info *compptr; +  boolean writing = (main->pass_mode != JBUF_CRANK_DEST); + +  while (main->cur_iMCU_row < cinfo->total_iMCU_rows) { +    /* Realign the virtual buffers if at the start of an iMCU row. */ +    if (main->rowgroup_ctr == 0) { +      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	   ci++, compptr++) { +	main->buffer[ci] = (*cinfo->mem->access_virt_sarray) +	  ((j_common_ptr) cinfo, main->whole_image[ci], +	   main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE), +	   (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing); +      } +      /* In a read pass, pretend we just read some source data. */ +      if (! writing) { +	*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE; +	main->rowgroup_ctr = DCTSIZE; +      } +    } + +    /* If a write pass, read input data until the current iMCU row is full. */ +    /* Note: preprocessor will pad if necessary to fill the last iMCU row. */ +    if (writing) { +      (*cinfo->prep->pre_process_data) (cinfo, +					input_buf, in_row_ctr, in_rows_avail, +					main->buffer, &main->rowgroup_ctr, +					(JDIMENSION) DCTSIZE); +      /* Return to application if we need more data to fill the iMCU row. */ +      if (main->rowgroup_ctr < DCTSIZE) +	return; +    } + +    /* Emit data, unless this is a sink-only pass. */ +    if (main->pass_mode != JBUF_SAVE_SOURCE) { +      if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) { +	/* If compressor did not consume the whole row, then we must need to +	 * suspend processing and return to the application.  In this situation +	 * we pretend we didn't yet consume the last input row; otherwise, if +	 * it happened to be the last row of the image, the application would +	 * think we were done. +	 */ +	if (! main->suspended) { +	  (*in_row_ctr)--; +	  main->suspended = TRUE; +	} +	return; +      } +      /* We did finish the row.  Undo our little suspension hack if a previous +       * call suspended; then mark the main buffer empty. +       */ +      if (main->suspended) { +	(*in_row_ctr)++; +	main->suspended = FALSE; +      } +    } + +    /* If get here, we are done with this iMCU row.  Mark buffer empty. */ +    main->rowgroup_ctr = 0; +    main->cur_iMCU_row++; +  } +} + +#endif /* FULL_MAIN_BUFFER_SUPPORTED */ + + +/* + * Initialize main buffer controller. + */ + +GLOBAL void +jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) +{ +  // bk001204 - don't use main +  my_main_ptr jmain; +  int ci; +  jpeg_component_info *compptr; + +  jmain = (my_main_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_main_controller)); +  cinfo->main = (struct jpeg_c_main_controller *) jmain; +  jmain->pub.start_pass = start_pass_main; + +  /* We don't need to create a buffer in raw-data mode. */ +  if (cinfo->raw_data_in) +    return; + +  /* Create the buffer.  It holds downsampled data, so each component +   * may be of a different size. +   */ +  if (need_full_buffer) { +#ifdef FULL_MAIN_BUFFER_SUPPORTED +    /* Allocate a full-image virtual array for each component */ +    /* Note we pad the bottom to a multiple of the iMCU height */ +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      jmain->whole_image[ci] = (*cinfo->mem->request_virt_sarray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, +	 compptr->width_in_blocks * DCTSIZE, +	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, +				(long) compptr->v_samp_factor) * DCTSIZE, +	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE)); +    } +#else +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +#endif +  } else { +#ifdef FULL_MAIN_BUFFER_SUPPORTED +    jmain->whole_image[0] = NULL; /* flag for no virtual arrays */ +#endif +    /* Allocate a strip buffer for each component */ +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      jmain->buffer[ci] = (*cinfo->mem->alloc_sarray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, +	 compptr->width_in_blocks * DCTSIZE, +	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE)); +    } +  } +} diff --git a/src/jpeg-6/jcmarker.c b/src/jpeg-6/jcmarker.c new file mode 100644 index 00000000..f4d290b9 --- /dev/null +++ b/src/jpeg-6/jcmarker.c @@ -0,0 +1,639 @@ +/* + * jcmarker.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains routines to write JPEG datastream markers. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +typedef enum {			/* JPEG marker codes */ +  M_SOF0  = 0xc0, +  M_SOF1  = 0xc1, +  M_SOF2  = 0xc2, +  M_SOF3  = 0xc3, +   +  M_SOF5  = 0xc5, +  M_SOF6  = 0xc6, +  M_SOF7  = 0xc7, +   +  M_JPG   = 0xc8, +  M_SOF9  = 0xc9, +  M_SOF10 = 0xca, +  M_SOF11 = 0xcb, +   +  M_SOF13 = 0xcd, +  M_SOF14 = 0xce, +  M_SOF15 = 0xcf, +   +  M_DHT   = 0xc4, +   +  M_DAC   = 0xcc, +   +  M_RST0  = 0xd0, +  M_RST1  = 0xd1, +  M_RST2  = 0xd2, +  M_RST3  = 0xd3, +  M_RST4  = 0xd4, +  M_RST5  = 0xd5, +  M_RST6  = 0xd6, +  M_RST7  = 0xd7, +   +  M_SOI   = 0xd8, +  M_EOI   = 0xd9, +  M_SOS   = 0xda, +  M_DQT   = 0xdb, +  M_DNL   = 0xdc, +  M_DRI   = 0xdd, +  M_DHP   = 0xde, +  M_EXP   = 0xdf, +   +  M_APP0  = 0xe0, +  M_APP1  = 0xe1, +  M_APP2  = 0xe2, +  M_APP3  = 0xe3, +  M_APP4  = 0xe4, +  M_APP5  = 0xe5, +  M_APP6  = 0xe6, +  M_APP7  = 0xe7, +  M_APP8  = 0xe8, +  M_APP9  = 0xe9, +  M_APP10 = 0xea, +  M_APP11 = 0xeb, +  M_APP12 = 0xec, +  M_APP13 = 0xed, +  M_APP14 = 0xee, +  M_APP15 = 0xef, +   +  M_JPG0  = 0xf0, +  M_JPG13 = 0xfd, +  M_COM   = 0xfe, +   +  M_TEM   = 0x01, +   +  M_ERROR = 0x100 +} JPEG_MARKER; + + +/* + * Basic output routines. + * + * Note that we do not support suspension while writing a marker. + * Therefore, an application using suspension must ensure that there is + * enough buffer space for the initial markers (typ. 600-700 bytes) before + * calling jpeg_start_compress, and enough space to write the trailing EOI + * (a few bytes) before calling jpeg_finish_compress.  Multipass compression + * modes are not supported at all with suspension, so those two are the only + * points where markers will be written. + */ + +LOCAL void +emit_byte (j_compress_ptr cinfo, int val) +/* Emit a byte */ +{ +  struct jpeg_destination_mgr * dest = cinfo->dest; + +  *(dest->next_output_byte)++ = (JOCTET) val; +  if (--dest->free_in_buffer == 0) { +    if (! (*dest->empty_output_buffer) (cinfo)) +      ERREXIT(cinfo, JERR_CANT_SUSPEND); +  } +} + + +LOCAL void +emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) +/* Emit a marker code */ +{ +  emit_byte(cinfo, 0xFF); +  emit_byte(cinfo, (int) mark); +} + + +LOCAL void +emit_2bytes (j_compress_ptr cinfo, int value) +/* Emit a 2-byte integer; these are always MSB first in JPEG files */ +{ +  emit_byte(cinfo, (value >> 8) & 0xFF); +  emit_byte(cinfo, value & 0xFF); +} + + +/* + * Routines to write specific marker types. + */ + +LOCAL int +emit_dqt (j_compress_ptr cinfo, int index) +/* Emit a DQT marker */ +/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ +{ +  JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; +  int prec; +  int i; + +  if (qtbl == NULL) +    ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); + +  prec = 0; +  for (i = 0; i < DCTSIZE2; i++) { +    if (qtbl->quantval[i] > 255) +      prec = 1; +  } + +  if (! qtbl->sent_table) { +    emit_marker(cinfo, M_DQT); + +    emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2); + +    emit_byte(cinfo, index + (prec<<4)); + +    for (i = 0; i < DCTSIZE2; i++) { +      if (prec) +	emit_byte(cinfo, qtbl->quantval[i] >> 8); +      emit_byte(cinfo, qtbl->quantval[i] & 0xFF); +    } + +    qtbl->sent_table = TRUE; +  } + +  return prec; +} + + +LOCAL void +emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) +/* Emit a DHT marker */ +{ +  JHUFF_TBL * htbl; +  int length, i; +   +  if (is_ac) { +    htbl = cinfo->ac_huff_tbl_ptrs[index]; +    index += 0x10;		/* output index has AC bit set */ +  } else { +    htbl = cinfo->dc_huff_tbl_ptrs[index]; +  } + +  if (htbl == NULL) +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); +   +  if (! htbl->sent_table) { +    emit_marker(cinfo, M_DHT); +     +    length = 0; +    for (i = 1; i <= 16; i++) +      length += htbl->bits[i]; +     +    emit_2bytes(cinfo, length + 2 + 1 + 16); +    emit_byte(cinfo, index); +     +    for (i = 1; i <= 16; i++) +      emit_byte(cinfo, htbl->bits[i]); +     +    for (i = 0; i < length; i++) +      emit_byte(cinfo, htbl->huffval[i]); +     +    htbl->sent_table = TRUE; +  } +} + + +LOCAL void +emit_dac (j_compress_ptr cinfo) +/* Emit a DAC marker */ +/* Since the useful info is so small, we want to emit all the tables in */ +/* one DAC marker.  Therefore this routine does its own scan of the table. */ +{ +#ifdef C_ARITH_CODING_SUPPORTED +  char dc_in_use[NUM_ARITH_TBLS]; +  char ac_in_use[NUM_ARITH_TBLS]; +  int length, i; +  jpeg_component_info *compptr; +   +  for (i = 0; i < NUM_ARITH_TBLS; i++) +    dc_in_use[i] = ac_in_use[i] = 0; +   +  for (i = 0; i < cinfo->comps_in_scan; i++) { +    compptr = cinfo->cur_comp_info[i]; +    dc_in_use[compptr->dc_tbl_no] = 1; +    ac_in_use[compptr->ac_tbl_no] = 1; +  } +   +  length = 0; +  for (i = 0; i < NUM_ARITH_TBLS; i++) +    length += dc_in_use[i] + ac_in_use[i]; +   +  emit_marker(cinfo, M_DAC); +   +  emit_2bytes(cinfo, length*2 + 2); +   +  for (i = 0; i < NUM_ARITH_TBLS; i++) { +    if (dc_in_use[i]) { +      emit_byte(cinfo, i); +      emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); +    } +    if (ac_in_use[i]) { +      emit_byte(cinfo, i + 0x10); +      emit_byte(cinfo, cinfo->arith_ac_K[i]); +    } +  } +#endif /* C_ARITH_CODING_SUPPORTED */ +} + + +LOCAL void +emit_dri (j_compress_ptr cinfo) +/* Emit a DRI marker */ +{ +  emit_marker(cinfo, M_DRI); +   +  emit_2bytes(cinfo, 4);	/* fixed length */ + +  emit_2bytes(cinfo, (int) cinfo->restart_interval); +} + + +LOCAL void +emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) +/* Emit a SOF marker */ +{ +  int ci; +  jpeg_component_info *compptr; +   +  emit_marker(cinfo, code); +   +  emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ + +  /* Make sure image isn't bigger than SOF field can handle */ +  if ((long) cinfo->image_height > 65535L || +      (long) cinfo->image_width > 65535L) +    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); + +  emit_byte(cinfo, cinfo->data_precision); +  emit_2bytes(cinfo, (int) cinfo->image_height); +  emit_2bytes(cinfo, (int) cinfo->image_width); + +  emit_byte(cinfo, cinfo->num_components); + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    emit_byte(cinfo, compptr->component_id); +    emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); +    emit_byte(cinfo, compptr->quant_tbl_no); +  } +} + + +LOCAL void +emit_sos (j_compress_ptr cinfo) +/* Emit a SOS marker */ +{ +  int i, td, ta; +  jpeg_component_info *compptr; +   +  emit_marker(cinfo, M_SOS); +   +  emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ +   +  emit_byte(cinfo, cinfo->comps_in_scan); +   +  for (i = 0; i < cinfo->comps_in_scan; i++) { +    compptr = cinfo->cur_comp_info[i]; +    emit_byte(cinfo, compptr->component_id); +    td = compptr->dc_tbl_no; +    ta = compptr->ac_tbl_no; +    if (cinfo->progressive_mode) { +      /* Progressive mode: only DC or only AC tables are used in one scan; +       * furthermore, Huffman coding of DC refinement uses no table at all. +       * We emit 0 for unused field(s); this is recommended by the P&M text +       * but does not seem to be specified in the standard. +       */ +      if (cinfo->Ss == 0) { +	ta = 0;			/* DC scan */ +	if (cinfo->Ah != 0 && !cinfo->arith_code) +	  td = 0;		/* no DC table either */ +      } else { +	td = 0;			/* AC scan */ +      } +    } +    emit_byte(cinfo, (td << 4) + ta); +  } + +  emit_byte(cinfo, cinfo->Ss); +  emit_byte(cinfo, cinfo->Se); +  emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); +} + + +LOCAL void +emit_jfif_app0 (j_compress_ptr cinfo) +/* Emit a JFIF-compliant APP0 marker */ +{ +  /* +   * Length of APP0 block	(2 bytes) +   * Block ID			(4 bytes - ASCII "JFIF") +   * Zero byte			(1 byte to terminate the ID string) +   * Version Major, Minor	(2 bytes - 0x01, 0x01) +   * Units			(1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) +   * Xdpu			(2 bytes - dots per unit horizontal) +   * Ydpu			(2 bytes - dots per unit vertical) +   * Thumbnail X size		(1 byte) +   * Thumbnail Y size		(1 byte) +   */ +   +  emit_marker(cinfo, M_APP0); +   +  emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ + +  emit_byte(cinfo, 0x4A);	/* Identifier: ASCII "JFIF" */ +  emit_byte(cinfo, 0x46); +  emit_byte(cinfo, 0x49); +  emit_byte(cinfo, 0x46); +  emit_byte(cinfo, 0); +  /* We currently emit version code 1.01 since we use no 1.02 features. +   * This may avoid complaints from some older decoders. +   */ +  emit_byte(cinfo, 1);		/* Major version */ +  emit_byte(cinfo, 1);		/* Minor version */ +  emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ +  emit_2bytes(cinfo, (int) cinfo->X_density); +  emit_2bytes(cinfo, (int) cinfo->Y_density); +  emit_byte(cinfo, 0);		/* No thumbnail image */ +  emit_byte(cinfo, 0); +} + + +LOCAL void +emit_adobe_app14 (j_compress_ptr cinfo) +/* Emit an Adobe APP14 marker */ +{ +  /* +   * Length of APP14 block	(2 bytes) +   * Block ID			(5 bytes - ASCII "Adobe") +   * Version Number		(2 bytes - currently 100) +   * Flags0			(2 bytes - currently 0) +   * Flags1			(2 bytes - currently 0) +   * Color transform		(1 byte) +   * +   * Although Adobe TN 5116 mentions Version = 101, all the Adobe files +   * now in circulation seem to use Version = 100, so that's what we write. +   * +   * We write the color transform byte as 1 if the JPEG color space is +   * YCbCr, 2 if it's YCCK, 0 otherwise.  Adobe's definition has to do with +   * whether the encoder performed a transformation, which is pretty useless. +   */ +   +  emit_marker(cinfo, M_APP14); +   +  emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ + +  emit_byte(cinfo, 0x41);	/* Identifier: ASCII "Adobe" */ +  emit_byte(cinfo, 0x64); +  emit_byte(cinfo, 0x6F); +  emit_byte(cinfo, 0x62); +  emit_byte(cinfo, 0x65); +  emit_2bytes(cinfo, 100);	/* Version */ +  emit_2bytes(cinfo, 0);	/* Flags0 */ +  emit_2bytes(cinfo, 0);	/* Flags1 */ +  switch (cinfo->jpeg_color_space) { +  case JCS_YCbCr: +    emit_byte(cinfo, 1);	/* Color transform = 1 */ +    break; +  case JCS_YCCK: +    emit_byte(cinfo, 2);	/* Color transform = 2 */ +    break; +  default: +    emit_byte(cinfo, 0);	/* Color transform = 0 */ +    break; +  } +} + + +/* + * This routine is exported for possible use by applications. + * The intended use is to emit COM or APPn markers after calling + * jpeg_start_compress() and before the first jpeg_write_scanlines() call + * (hence, after write_file_header but before write_frame_header). + * Other uses are not guaranteed to produce desirable results. + */ + +METHODDEF void +write_any_marker (j_compress_ptr cinfo, int marker, +		  const JOCTET *dataptr, unsigned int datalen) +/* Emit an arbitrary marker with parameters */ +{ +  if (datalen <= (unsigned int) 65533) { /* safety check */ +    emit_marker(cinfo, (JPEG_MARKER) marker); +   +    emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ + +    while (datalen--) { +      emit_byte(cinfo, *dataptr); +      dataptr++; +    } +  } +} + + +/* + * Write datastream header. + * This consists of an SOI and optional APPn markers. + * We recommend use of the JFIF marker, but not the Adobe marker, + * when using YCbCr or grayscale data.  The JFIF marker should NOT + * be used for any other JPEG colorspace.  The Adobe marker is helpful + * to distinguish RGB, CMYK, and YCCK colorspaces. + * Note that an application can write additional header markers after + * jpeg_start_compress returns. + */ + +METHODDEF void +write_file_header (j_compress_ptr cinfo) +{ +  emit_marker(cinfo, M_SOI);	/* first the SOI */ + +  if (cinfo->write_JFIF_header)	/* next an optional JFIF APP0 */ +    emit_jfif_app0(cinfo); +  if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ +    emit_adobe_app14(cinfo); +} + + +/* + * Write frame header. + * This consists of DQT and SOFn markers. + * Note that we do not emit the SOF until we have emitted the DQT(s). + * This avoids compatibility problems with incorrect implementations that + * try to error-check the quant table numbers as soon as they see the SOF. + */ + +METHODDEF void +write_frame_header (j_compress_ptr cinfo) +{ +  int ci, prec; +  boolean is_baseline; +  jpeg_component_info *compptr; +   +  /* Emit DQT for each quantization table. +   * Note that emit_dqt() suppresses any duplicate tables. +   */ +  prec = 0; +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    prec += emit_dqt(cinfo, compptr->quant_tbl_no); +  } +  /* now prec is nonzero iff there are any 16-bit quant tables. */ + +  /* Check for a non-baseline specification. +   * Note we assume that Huffman table numbers won't be changed later. +   */ +  if (cinfo->arith_code || cinfo->progressive_mode || +      cinfo->data_precision != 8) { +    is_baseline = FALSE; +  } else { +    is_baseline = TRUE; +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) +	is_baseline = FALSE; +    } +    if (prec && is_baseline) { +      is_baseline = FALSE; +      /* If it's baseline except for quantizer size, warn the user */ +      TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); +    } +  } + +  /* Emit the proper SOF marker */ +  if (cinfo->arith_code) { +    emit_sof(cinfo, M_SOF9);	/* SOF code for arithmetic coding */ +  } else { +    if (cinfo->progressive_mode) +      emit_sof(cinfo, M_SOF2);	/* SOF code for progressive Huffman */ +    else if (is_baseline) +      emit_sof(cinfo, M_SOF0);	/* SOF code for baseline implementation */ +    else +      emit_sof(cinfo, M_SOF1);	/* SOF code for non-baseline Huffman file */ +  } +} + + +/* + * Write scan header. + * This consists of DHT or DAC markers, optional DRI, and SOS. + * Compressed data will be written following the SOS. + */ + +METHODDEF void +write_scan_header (j_compress_ptr cinfo) +{ +  int i; +  jpeg_component_info *compptr; + +  if (cinfo->arith_code) { +    /* Emit arith conditioning info.  We may have some duplication +     * if the file has multiple scans, but it's so small it's hardly +     * worth worrying about. +     */ +    emit_dac(cinfo); +  } else { +    /* Emit Huffman tables. +     * Note that emit_dht() suppresses any duplicate tables. +     */ +    for (i = 0; i < cinfo->comps_in_scan; i++) { +      compptr = cinfo->cur_comp_info[i]; +      if (cinfo->progressive_mode) { +	/* Progressive mode: only DC or only AC tables are used in one scan */ +	if (cinfo->Ss == 0) { +	  if (cinfo->Ah == 0)	/* DC needs no table for refinement scan */ +	    emit_dht(cinfo, compptr->dc_tbl_no, FALSE); +	} else { +	  emit_dht(cinfo, compptr->ac_tbl_no, TRUE); +	} +      } else { +	/* Sequential mode: need both DC and AC tables */ +	emit_dht(cinfo, compptr->dc_tbl_no, FALSE); +	emit_dht(cinfo, compptr->ac_tbl_no, TRUE); +      } +    } +  } + +  /* Emit DRI if required --- note that DRI value could change for each scan. +   * If it doesn't, a tiny amount of space is wasted in multiple-scan files. +   * We assume DRI will never be nonzero for one scan and zero for a later one. +   */ +  if (cinfo->restart_interval) +    emit_dri(cinfo); + +  emit_sos(cinfo); +} + + +/* + * Write datastream trailer. + */ + +METHODDEF void +write_file_trailer (j_compress_ptr cinfo) +{ +  emit_marker(cinfo, M_EOI); +} + + +/* + * Write an abbreviated table-specification datastream. + * This consists of SOI, DQT and DHT tables, and EOI. + * Any table that is defined and not marked sent_table = TRUE will be + * emitted.  Note that all tables will be marked sent_table = TRUE at exit. + */ + +METHODDEF void +write_tables_only (j_compress_ptr cinfo) +{ +  int i; + +  emit_marker(cinfo, M_SOI); + +  for (i = 0; i < NUM_QUANT_TBLS; i++) { +    if (cinfo->quant_tbl_ptrs[i] != NULL) +      (void) emit_dqt(cinfo, i); +  } + +  if (! cinfo->arith_code) { +    for (i = 0; i < NUM_HUFF_TBLS; i++) { +      if (cinfo->dc_huff_tbl_ptrs[i] != NULL) +	emit_dht(cinfo, i, FALSE); +      if (cinfo->ac_huff_tbl_ptrs[i] != NULL) +	emit_dht(cinfo, i, TRUE); +    } +  } + +  emit_marker(cinfo, M_EOI); +} + + +/* + * Initialize the marker writer module. + */ + +GLOBAL void +jinit_marker_writer (j_compress_ptr cinfo) +{ +  /* Create the subobject */ +  cinfo->marker = (struct jpeg_marker_writer *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(struct jpeg_marker_writer)); +  /* Initialize method pointers */ +  cinfo->marker->write_any_marker = write_any_marker; +  cinfo->marker->write_file_header = write_file_header; +  cinfo->marker->write_frame_header = write_frame_header; +  cinfo->marker->write_scan_header = write_scan_header; +  cinfo->marker->write_file_trailer = write_file_trailer; +  cinfo->marker->write_tables_only = write_tables_only; +} diff --git a/src/jpeg-6/jcmaster.c b/src/jpeg-6/jcmaster.c new file mode 100644 index 00000000..84494e62 --- /dev/null +++ b/src/jpeg-6/jcmaster.c @@ -0,0 +1,578 @@ +/* + * jcmaster.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains master control logic for the JPEG compressor. + * These routines are concerned with parameter validation, initial setup, + * and inter-pass control (determining the number of passes and the work  + * to be done in each pass). + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Private state */ + +typedef enum { +	main_pass,		/* input data, also do first output step */ +	huff_opt_pass,		/* Huffman code optimization pass */ +	output_pass		/* data output pass */ +} c_pass_type; + +typedef struct { +  struct jpeg_comp_master pub;	/* public fields */ + +  c_pass_type pass_type;	/* the type of the current pass */ + +  int pass_number;		/* # of passes completed */ +  int total_passes;		/* total # of passes needed */ + +  int scan_number;		/* current index in scan_info[] */ +} my_comp_master; + +typedef my_comp_master * my_master_ptr; + + +/* + * Support routines that do various essential calculations. + */ + +LOCAL void +initial_setup (j_compress_ptr cinfo) +/* Do computations that are needed before master selection phase */ +{ +  int ci; +  jpeg_component_info *compptr; +  long samplesperrow; +  JDIMENSION jd_samplesperrow; + +  /* Sanity check on image dimensions */ +  if (cinfo->image_height <= 0 || cinfo->image_width <= 0 +      || cinfo->num_components <= 0 || cinfo->input_components <= 0) +    ERREXIT(cinfo, JERR_EMPTY_IMAGE); + +  /* Make sure image isn't bigger than I can handle */ +  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || +      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) +    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); + +  /* Width of an input scanline must be representable as JDIMENSION. */ +  samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; +  jd_samplesperrow = (JDIMENSION) samplesperrow; +  if ((long) jd_samplesperrow != samplesperrow) +    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); + +  /* For now, precision must match compiled-in value... */ +  if (cinfo->data_precision != BITS_IN_JSAMPLE) +    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); + +  /* Check that number of components won't exceed internal array sizes */ +  if (cinfo->num_components > MAX_COMPONENTS) +    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, +	     MAX_COMPONENTS); + +  /* Compute maximum sampling factors; check factor validity */ +  cinfo->max_h_samp_factor = 1; +  cinfo->max_v_samp_factor = 1; +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || +	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) +      ERREXIT(cinfo, JERR_BAD_SAMPLING); +    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, +				   compptr->h_samp_factor); +    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, +				   compptr->v_samp_factor); +  } + +  /* Compute dimensions of components */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Fill in the correct component_index value; don't rely on application */ +    compptr->component_index = ci; +    /* For compression, we never do DCT scaling. */ +    compptr->DCT_scaled_size = DCTSIZE; +    /* Size in DCT blocks */ +    compptr->width_in_blocks = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, +		    (long) (cinfo->max_h_samp_factor * DCTSIZE)); +    compptr->height_in_blocks = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, +		    (long) (cinfo->max_v_samp_factor * DCTSIZE)); +    /* Size in samples */ +    compptr->downsampled_width = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, +		    (long) cinfo->max_h_samp_factor); +    compptr->downsampled_height = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, +		    (long) cinfo->max_v_samp_factor); +    /* Mark component needed (this flag isn't actually used for compression) */ +    compptr->component_needed = TRUE; +  } + +  /* Compute number of fully interleaved MCU rows (number of times that +   * main controller will call coefficient controller). +   */ +  cinfo->total_iMCU_rows = (JDIMENSION) +    jdiv_round_up((long) cinfo->image_height, +		  (long) (cinfo->max_v_samp_factor*DCTSIZE)); +} + + +#ifdef C_MULTISCAN_FILES_SUPPORTED + +LOCAL void +validate_script (j_compress_ptr cinfo) +/* Verify that the scan script in cinfo->scan_info[] is valid; also + * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. + */ +{ +  const jpeg_scan_info * scanptr; +  int scanno, ncomps, ci, coefi, thisi; +  int Ss, Se, Ah, Al; +  boolean component_sent[MAX_COMPONENTS]; +#ifdef C_PROGRESSIVE_SUPPORTED +  int * last_bitpos_ptr; +  int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; +  /* -1 until that coefficient has been seen; then last Al for it */ +#endif + +  if (cinfo->num_scans <= 0) +    ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); + +  /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; +   * for progressive JPEG, no scan can have this. +   */ +  scanptr = cinfo->scan_info; +  if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { +#ifdef C_PROGRESSIVE_SUPPORTED +    cinfo->progressive_mode = TRUE; +    last_bitpos_ptr = & last_bitpos[0][0]; +    for (ci = 0; ci < cinfo->num_components; ci++)  +      for (coefi = 0; coefi < DCTSIZE2; coefi++) +	*last_bitpos_ptr++ = -1; +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +  } else { +    cinfo->progressive_mode = FALSE; +    for (ci = 0; ci < cinfo->num_components; ci++)  +      component_sent[ci] = FALSE; +  } + +  for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { +    /* Validate component indexes */ +    ncomps = scanptr->comps_in_scan; +    if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) +      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); +    for (ci = 0; ci < ncomps; ci++) { +      thisi = scanptr->component_index[ci]; +      if (thisi < 0 || thisi >= cinfo->num_components) +	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); +      /* Components must appear in SOF order within each scan */ +      if (ci > 0 && thisi <= scanptr->component_index[ci-1]) +	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); +    } +    /* Validate progression parameters */ +    Ss = scanptr->Ss; +    Se = scanptr->Se; +    Ah = scanptr->Ah; +    Al = scanptr->Al; +    if (cinfo->progressive_mode) { +#ifdef C_PROGRESSIVE_SUPPORTED +      if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || +	  Ah < 0 || Ah > 13 || Al < 0 || Al > 13) +	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +      if (Ss == 0) { +	if (Se != 0)		/* DC and AC together not OK */ +	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +      } else { +	if (ncomps != 1)	/* AC scans must be for only one component */ +	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +      } +      for (ci = 0; ci < ncomps; ci++) { +	last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; +	if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ +	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +	for (coefi = Ss; coefi <= Se; coefi++) { +	  if (last_bitpos_ptr[coefi] < 0) { +	    /* first scan of this coefficient */ +	    if (Ah != 0) +	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +	  } else { +	    /* not first scan */ +	    if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) +	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +	  } +	  last_bitpos_ptr[coefi] = Al; +	} +      } +#endif +    } else { +      /* For sequential JPEG, all progression parameters must be these: */ +      if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) +	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); +      /* Make sure components are not sent twice */ +      for (ci = 0; ci < ncomps; ci++) { +	thisi = scanptr->component_index[ci]; +	if (component_sent[thisi]) +	  ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); +	component_sent[thisi] = TRUE; +      } +    } +  } + +  /* Now verify that everything got sent. */ +  if (cinfo->progressive_mode) { +#ifdef C_PROGRESSIVE_SUPPORTED +    /* For progressive mode, we only check that at least some DC data +     * got sent for each component; the spec does not require that all bits +     * of all coefficients be transmitted.  Would it be wiser to enforce +     * transmission of all coefficient bits?? +     */ +    for (ci = 0; ci < cinfo->num_components; ci++) { +      if (last_bitpos[ci][0] < 0) +	ERREXIT(cinfo, JERR_MISSING_DATA); +    } +#endif +  } else { +    for (ci = 0; ci < cinfo->num_components; ci++) { +      if (! component_sent[ci]) +	ERREXIT(cinfo, JERR_MISSING_DATA); +    } +  } +} + +#endif /* C_MULTISCAN_FILES_SUPPORTED */ + + +LOCAL void +select_scan_parameters (j_compress_ptr cinfo) +/* Set up the scan parameters for the current scan */ +{ +  int ci; + +#ifdef C_MULTISCAN_FILES_SUPPORTED +  if (cinfo->scan_info != NULL) { +    /* Prepare for current scan --- the script is already validated */ +    my_master_ptr master = (my_master_ptr) cinfo->master; +    const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; + +    cinfo->comps_in_scan = scanptr->comps_in_scan; +    for (ci = 0; ci < scanptr->comps_in_scan; ci++) { +      cinfo->cur_comp_info[ci] = +	&cinfo->comp_info[scanptr->component_index[ci]]; +    } +    cinfo->Ss = scanptr->Ss; +    cinfo->Se = scanptr->Se; +    cinfo->Ah = scanptr->Ah; +    cinfo->Al = scanptr->Al; +  } +  else +#endif +  { +    /* Prepare for single sequential-JPEG scan containing all components */ +    if (cinfo->num_components > MAX_COMPS_IN_SCAN) +      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, +	       MAX_COMPS_IN_SCAN); +    cinfo->comps_in_scan = cinfo->num_components; +    for (ci = 0; ci < cinfo->num_components; ci++) { +      cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; +    } +    cinfo->Ss = 0; +    cinfo->Se = DCTSIZE2-1; +    cinfo->Ah = 0; +    cinfo->Al = 0; +  } +} + + +LOCAL void +per_scan_setup (j_compress_ptr cinfo) +/* Do computations that are needed before processing a JPEG scan */ +/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ +{ +  int ci, mcublks, tmp; +  jpeg_component_info *compptr; +   +  if (cinfo->comps_in_scan == 1) { +     +    /* Noninterleaved (single-component) scan */ +    compptr = cinfo->cur_comp_info[0]; +     +    /* Overall image size in MCUs */ +    cinfo->MCUs_per_row = compptr->width_in_blocks; +    cinfo->MCU_rows_in_scan = compptr->height_in_blocks; +     +    /* For noninterleaved scan, always one block per MCU */ +    compptr->MCU_width = 1; +    compptr->MCU_height = 1; +    compptr->MCU_blocks = 1; +    compptr->MCU_sample_width = DCTSIZE; +    compptr->last_col_width = 1; +    /* For noninterleaved scans, it is convenient to define last_row_height +     * as the number of block rows present in the last iMCU row. +     */ +    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); +    if (tmp == 0) tmp = compptr->v_samp_factor; +    compptr->last_row_height = tmp; +     +    /* Prepare array describing MCU composition */ +    cinfo->blocks_in_MCU = 1; +    cinfo->MCU_membership[0] = 0; +     +  } else { +     +    /* Interleaved (multi-component) scan */ +    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) +      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, +	       MAX_COMPS_IN_SCAN); +     +    /* Overall image size in MCUs */ +    cinfo->MCUs_per_row = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width, +		    (long) (cinfo->max_h_samp_factor*DCTSIZE)); +    cinfo->MCU_rows_in_scan = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height, +		    (long) (cinfo->max_v_samp_factor*DCTSIZE)); +     +    cinfo->blocks_in_MCU = 0; +     +    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +      compptr = cinfo->cur_comp_info[ci]; +      /* Sampling factors give # of blocks of component in each MCU */ +      compptr->MCU_width = compptr->h_samp_factor; +      compptr->MCU_height = compptr->v_samp_factor; +      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; +      compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE; +      /* Figure number of non-dummy blocks in last MCU column & row */ +      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); +      if (tmp == 0) tmp = compptr->MCU_width; +      compptr->last_col_width = tmp; +      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); +      if (tmp == 0) tmp = compptr->MCU_height; +      compptr->last_row_height = tmp; +      /* Prepare array describing MCU composition */ +      mcublks = compptr->MCU_blocks; +      if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) +	ERREXIT(cinfo, JERR_BAD_MCU_SIZE); +      while (mcublks-- > 0) { +	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; +      } +    } +     +  } + +  /* Convert restart specified in rows to actual MCU count. */ +  /* Note that count must fit in 16 bits, so we provide limiting. */ +  if (cinfo->restart_in_rows > 0) { +    long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; +    cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); +  } +} + + +/* + * Per-pass setup. + * This is called at the beginning of each pass.  We determine which modules + * will be active during this pass and give them appropriate start_pass calls. + * We also set is_last_pass to indicate whether any more passes will be + * required. + */ + +METHODDEF void +prepare_for_pass (j_compress_ptr cinfo) +{ +  my_master_ptr master = (my_master_ptr) cinfo->master; + +  switch (master->pass_type) { +  case main_pass: +    /* Initial pass: will collect input data, and do either Huffman +     * optimization or data output for the first scan. +     */ +    select_scan_parameters(cinfo); +    per_scan_setup(cinfo); +    if (! cinfo->raw_data_in) { +      (*cinfo->cconvert->start_pass) (cinfo); +      (*cinfo->downsample->start_pass) (cinfo); +      (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); +    } +    (*cinfo->fdct->start_pass) (cinfo); +    (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); +    (*cinfo->coef->start_pass) (cinfo, +				(master->total_passes > 1 ? +				 JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); +    (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); +    if (cinfo->optimize_coding) { +      /* No immediate data output; postpone writing frame/scan headers */ +      master->pub.call_pass_startup = FALSE; +    } else { +      /* Will write frame/scan headers at first jpeg_write_scanlines call */ +      master->pub.call_pass_startup = TRUE; +    } +    break; +#ifdef ENTROPY_OPT_SUPPORTED +  case huff_opt_pass: +    /* Do Huffman optimization for a scan after the first one. */ +    select_scan_parameters(cinfo); +    per_scan_setup(cinfo); +    if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) { +      (*cinfo->entropy->start_pass) (cinfo, TRUE); +      (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); +      master->pub.call_pass_startup = FALSE; +      break; +    } +    /* Special case: Huffman DC refinement scans need no Huffman table +     * and therefore we can skip the optimization pass for them. +     */ +    master->pass_type = output_pass; +    master->pass_number++; +    /*FALLTHROUGH*/ +#endif +  case output_pass: +    /* Do a data-output pass. */ +    /* We need not repeat per-scan setup if prior optimization pass did it. */ +    if (! cinfo->optimize_coding) { +      select_scan_parameters(cinfo); +      per_scan_setup(cinfo); +    } +    (*cinfo->entropy->start_pass) (cinfo, FALSE); +    (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); +    /* We emit frame/scan headers now */ +    if (master->scan_number == 0) +      (*cinfo->marker->write_frame_header) (cinfo); +    (*cinfo->marker->write_scan_header) (cinfo); +    master->pub.call_pass_startup = FALSE; +    break; +  default: +    ERREXIT(cinfo, JERR_NOT_COMPILED); +  } + +  master->pub.is_last_pass = (master->pass_number == master->total_passes-1); + +  /* Set up progress monitor's pass info if present */ +  if (cinfo->progress != NULL) { +    cinfo->progress->completed_passes = master->pass_number; +    cinfo->progress->total_passes = master->total_passes; +  } +} + + +/* + * Special start-of-pass hook. + * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. + * In single-pass processing, we need this hook because we don't want to + * write frame/scan headers during jpeg_start_compress; we want to let the + * application write COM markers etc. between jpeg_start_compress and the + * jpeg_write_scanlines loop. + * In multi-pass processing, this routine is not used. + */ + +METHODDEF void +pass_startup (j_compress_ptr cinfo) +{ +  cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ + +  (*cinfo->marker->write_frame_header) (cinfo); +  (*cinfo->marker->write_scan_header) (cinfo); +} + + +/* + * Finish up at end of pass. + */ + +METHODDEF void +finish_pass_master (j_compress_ptr cinfo) +{ +  my_master_ptr master = (my_master_ptr) cinfo->master; + +  /* The entropy coder always needs an end-of-pass call, +   * either to analyze statistics or to flush its output buffer. +   */ +  (*cinfo->entropy->finish_pass) (cinfo); + +  /* Update state for next pass */ +  switch (master->pass_type) { +  case main_pass: +    /* next pass is either output of scan 0 (after optimization) +     * or output of scan 1 (if no optimization). +     */ +    master->pass_type = output_pass; +    if (! cinfo->optimize_coding) +      master->scan_number++; +    break; +  case huff_opt_pass: +    /* next pass is always output of current scan */ +    master->pass_type = output_pass; +    break; +  case output_pass: +    /* next pass is either optimization or output of next scan */ +    if (cinfo->optimize_coding) +      master->pass_type = huff_opt_pass; +    master->scan_number++; +    break; +  } + +  master->pass_number++; +} + + +/* + * Initialize master compression control. + */ + +GLOBAL void +jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) +{ +  my_master_ptr master; + +  master = (my_master_ptr) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(my_comp_master)); +  cinfo->master = (struct jpeg_comp_master *) master; +  master->pub.prepare_for_pass = prepare_for_pass; +  master->pub.pass_startup = pass_startup; +  master->pub.finish_pass = finish_pass_master; +  master->pub.is_last_pass = FALSE; + +  /* Validate parameters, determine derived values */ +  initial_setup(cinfo); + +  if (cinfo->scan_info != NULL) { +#ifdef C_MULTISCAN_FILES_SUPPORTED +    validate_script(cinfo); +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +  } else { +    cinfo->progressive_mode = FALSE; +    cinfo->num_scans = 1; +  } + +  if (cinfo->progressive_mode)	/*  TEMPORARY HACK ??? */ +    cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */ + +  /* Initialize my private state */ +  if (transcode_only) { +    /* no main pass in transcoding */ +    if (cinfo->optimize_coding) +      master->pass_type = huff_opt_pass; +    else +      master->pass_type = output_pass; +  } else { +    /* for normal compression, first pass is always this type: */ +    master->pass_type = main_pass; +  } +  master->scan_number = 0; +  master->pass_number = 0; +  if (cinfo->optimize_coding) +    master->total_passes = cinfo->num_scans * 2; +  else +    master->total_passes = cinfo->num_scans; +} diff --git a/src/jpeg-6/jcomapi.c b/src/jpeg-6/jcomapi.c new file mode 100644 index 00000000..c10903f0 --- /dev/null +++ b/src/jpeg-6/jcomapi.c @@ -0,0 +1,94 @@ +/* + * jcomapi.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains application interface routines that are used for both + * compression and decompression. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * Abort processing of a JPEG compression or decompression operation, + * but don't destroy the object itself. + * + * For this, we merely clean up all the nonpermanent memory pools. + * Note that temp files (virtual arrays) are not allowed to belong to + * the permanent pool, so we will be able to close all temp files here. + * Closing a data source or destination, if necessary, is the application's + * responsibility. + */ + +GLOBAL void +jpeg_abort (j_common_ptr cinfo) +{ +  int pool; + +  /* Releasing pools in reverse order might help avoid fragmentation +   * with some (brain-damaged) malloc libraries. +   */ +  for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { +    (*cinfo->mem->free_pool) (cinfo, pool); +  } + +  /* Reset overall state for possible reuse of object */ +  cinfo->global_state = (cinfo->is_decompressor ? DSTATE_START : CSTATE_START); +} + + +/* + * Destruction of a JPEG object. + * + * Everything gets deallocated except the master jpeg_compress_struct itself + * and the error manager struct.  Both of these are supplied by the application + * and must be freed, if necessary, by the application.  (Often they are on + * the stack and so don't need to be freed anyway.) + * Closing a data source or destination, if necessary, is the application's + * responsibility. + */ + +GLOBAL void +jpeg_destroy (j_common_ptr cinfo) +{ +  /* We need only tell the memory manager to release everything. */ +  /* NB: mem pointer is NULL if memory mgr failed to initialize. */ +  if (cinfo->mem != NULL) +    (*cinfo->mem->self_destruct) (cinfo); +  cinfo->mem = NULL;		/* be safe if jpeg_destroy is called twice */ +  cinfo->global_state = 0;	/* mark it destroyed */ +} + + +/* + * Convenience routines for allocating quantization and Huffman tables. + * (Would jutils.c be a more reasonable place to put these?) + */ + +GLOBAL JQUANT_TBL * +jpeg_alloc_quant_table (j_common_ptr cinfo) +{ +  JQUANT_TBL *tbl; + +  tbl = (JQUANT_TBL *) +    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL)); +  tbl->sent_table = FALSE;	/* make sure this is false in any new table */ +  return tbl; +} + + +GLOBAL JHUFF_TBL * +jpeg_alloc_huff_table (j_common_ptr cinfo) +{ +  JHUFF_TBL *tbl; + +  tbl = (JHUFF_TBL *) +    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL)); +  tbl->sent_table = FALSE;	/* make sure this is false in any new table */ +  return tbl; +} diff --git a/src/jpeg-6/jconfig.h b/src/jpeg-6/jconfig.h new file mode 100644 index 00000000..7d2f733b --- /dev/null +++ b/src/jpeg-6/jconfig.h @@ -0,0 +1,41 @@ +/* jconfig.wat --- jconfig.h for Watcom C/C++ on MS-DOS or OS/2. */ +/* see jconfig.doc for explanations */ + +#define HAVE_PROTOTYPES +#define HAVE_UNSIGNED_CHAR +#define HAVE_UNSIGNED_SHORT +/* #define void char */ +/* #define const */ +#define CHAR_IS_UNSIGNED +#define HAVE_STDDEF_H +#define HAVE_STDLIB_H +#undef NEED_BSD_STRINGS +#undef NEED_SYS_TYPES_H +#undef NEED_FAR_POINTERS	/* Watcom uses flat 32-bit addressing */ +#undef NEED_SHORT_EXTERNAL_NAMES +#undef INCOMPLETE_TYPES_BROKEN + +#define JDCT_DEFAULT  JDCT_FLOAT +#define JDCT_FASTEST  JDCT_FLOAT + +#ifdef JPEG_INTERNALS + +#undef RIGHT_SHIFT_IS_UNSIGNED + +#endif /* JPEG_INTERNALS */ + +#ifdef JPEG_CJPEG_DJPEG + +#define BMP_SUPPORTED		/* BMP image file format */ +#define GIF_SUPPORTED		/* GIF image file format */ +#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */ +#undef RLE_SUPPORTED		/* Utah RLE image file format */ +#define TARGA_SUPPORTED		/* Targa image file format */ + +#undef TWO_FILE_COMMANDLINE	/* optional */ +#define USE_SETMODE		/* Needed to make one-file style work in Watcom */ +#undef NEED_SIGNAL_CATCHER	/* Define this if you use jmemname.c */ +#undef DONT_USE_B_MODE +#undef PROGRESS_REPORT		/* optional */ + +#endif /* JPEG_CJPEG_DJPEG */ diff --git a/src/jpeg-6/jcparam.c b/src/jpeg-6/jcparam.c new file mode 100644 index 00000000..29862d36 --- /dev/null +++ b/src/jpeg-6/jcparam.c @@ -0,0 +1,575 @@ +/* + * jcparam.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains optional default-setting code for the JPEG compressor. + * Applications do not have to use this file, but those that don't use it + * must know a lot more about the innards of the JPEG code. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * Quantization table setup routines + */ + +GLOBAL void +jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, +		      const unsigned int *basic_table, +		      int scale_factor, boolean force_baseline) +/* Define a quantization table equal to the basic_table times + * a scale factor (given as a percentage). + * If force_baseline is TRUE, the computed quantization table entries + * are limited to 1..255 for JPEG baseline compatibility. + */ +{ +  JQUANT_TBL ** qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; +  int i; +  long temp; + +  /* Safety check to ensure start_compress not called yet. */ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  if (*qtblptr == NULL) +    *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); + +  for (i = 0; i < DCTSIZE2; i++) { +    temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; +    /* limit the values to the valid range */ +    if (temp <= 0L) temp = 1L; +    if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ +    if (force_baseline && temp > 255L) +      temp = 255L;		/* limit to baseline range if requested */ +    (*qtblptr)->quantval[i] = (UINT16) temp; +  } + +  /* Initialize sent_table FALSE so table will be written to JPEG file. */ +  (*qtblptr)->sent_table = FALSE; +} + + +GLOBAL void +jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, +			 boolean force_baseline) +/* Set or change the 'quality' (quantization) setting, using default tables + * and a straight percentage-scaling quality scale.  In most cases it's better + * to use jpeg_set_quality (below); this entry point is provided for + * applications that insist on a linear percentage scaling. + */ +{ +  /* This is the sample quantization table given in the JPEG spec section K.1, +   * but expressed in zigzag order (as are all of our quant. tables). +   * The spec says that the values given produce "good" quality, and +   * when divided by 2, "very good" quality. +   */ +  static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { +    16,  11,  12,  14,  12,  10,  16,  14, +    13,  14,  18,  17,  16,  19,  24,  40, +    26,  24,  22,  22,  24,  49,  35,  37, +    29,  40,  58,  51,  61,  60,  57,  51, +    56,  55,  64,  72,  92,  78,  64,  68, +    87,  69,  55,  56,  80, 109,  81,  87, +    95,  98, 103, 104, 103,  62,  77, 113, +    121, 112, 100, 120,  92, 101, 103,  99 +    }; +  static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { +    17,  18,  18,  24,  21,  24,  47,  26, +    26,  47,  99,  66,  56,  66,  99,  99, +    99,  99,  99,  99,  99,  99,  99,  99, +    99,  99,  99,  99,  99,  99,  99,  99, +    99,  99,  99,  99,  99,  99,  99,  99, +    99,  99,  99,  99,  99,  99,  99,  99, +    99,  99,  99,  99,  99,  99,  99,  99, +    99,  99,  99,  99,  99,  99,  99,  99 +    }; + +  /* Set up two quantization tables using the specified scaling */ +  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, +		       scale_factor, force_baseline); +  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, +		       scale_factor, force_baseline); +} + + +GLOBAL int +jpeg_quality_scaling (int quality) +/* Convert a user-specified quality rating to a percentage scaling factor + * for an underlying quantization table, using our recommended scaling curve. + * The input 'quality' factor should be 0 (terrible) to 100 (very good). + */ +{ +  /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */ +  if (quality <= 0) quality = 1; +  if (quality > 100) quality = 100; + +  /* The basic table is used as-is (scaling 100) for a quality of 50. +   * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; +   * note that at Q=100 the scaling is 0, which will cause j_add_quant_table +   * to make all the table entries 1 (hence, no quantization loss). +   * Qualities 1..50 are converted to scaling percentage 5000/Q. +   */ +  if (quality < 50) +    quality = 5000 / quality; +  else +    quality = 200 - quality*2; + +  return quality; +} + + +GLOBAL void +jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) +/* Set or change the 'quality' (quantization) setting, using default tables. + * This is the standard quality-adjusting entry point for typical user + * interfaces; only those who want detailed control over quantization tables + * would use the preceding three routines directly. + */ +{ +  /* Convert user 0-100 rating to percentage scaling */ +  quality = jpeg_quality_scaling(quality); + +  /* Set up standard quality tables */ +  jpeg_set_linear_quality(cinfo, quality, force_baseline); +} + + +/* + * Huffman table setup routines + */ + +LOCAL void +add_huff_table (j_compress_ptr cinfo, +		JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) +/* Define a Huffman table */ +{ +  if (*htblptr == NULL) +    *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +   +  MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); +  MEMCOPY((*htblptr)->huffval, val, SIZEOF((*htblptr)->huffval)); + +  /* Initialize sent_table FALSE so table will be written to JPEG file. */ +  (*htblptr)->sent_table = FALSE; +} + + +LOCAL void +std_huff_tables (j_compress_ptr cinfo) +/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ +/* IMPORTANT: these are only valid for 8-bit data precision! */ +{ +  static const UINT8 bits_dc_luminance[17] = +    { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; +  static const UINT8 val_dc_luminance[] = +    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; +   +  static const UINT8 bits_dc_chrominance[17] = +    { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; +  static const UINT8 val_dc_chrominance[] = +    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; +   +  static const UINT8 bits_ac_luminance[17] = +    { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; +  static const UINT8 val_ac_luminance[] = +    { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, +      0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, +      0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, +      0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, +      0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, +      0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, +      0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, +      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, +      0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, +      0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, +      0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, +      0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, +      0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, +      0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, +      0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, +      0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, +      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, +      0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, +      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, +      0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, +      0xf9, 0xfa }; +   +  static const UINT8 bits_ac_chrominance[17] = +    { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; +  static const UINT8 val_ac_chrominance[] = +    { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, +      0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, +      0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, +      0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, +      0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, +      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, +      0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, +      0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, +      0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, +      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, +      0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, +      0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, +      0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, +      0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, +      0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, +      0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, +      0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, +      0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, +      0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, +      0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, +      0xf9, 0xfa }; +   +  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0], +		 bits_dc_luminance, val_dc_luminance); +  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0], +		 bits_ac_luminance, val_ac_luminance); +  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1], +		 bits_dc_chrominance, val_dc_chrominance); +  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1], +		 bits_ac_chrominance, val_ac_chrominance); +} + + +/* + * Default parameter setup for compression. + * + * Applications that don't choose to use this routine must do their + * own setup of all these parameters.  Alternately, you can call this + * to establish defaults and then alter parameters selectively.  This + * is the recommended approach since, if we add any new parameters, + * your code will still work (they'll be set to reasonable defaults). + */ + +GLOBAL void +jpeg_set_defaults (j_compress_ptr cinfo) +{ +  int i; + +  /* Safety check to ensure start_compress not called yet. */ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  /* Allocate comp_info array large enough for maximum component count. +   * Array is made permanent in case application wants to compress +   * multiple images at same param settings. +   */ +  if (cinfo->comp_info == NULL) +    cinfo->comp_info = (jpeg_component_info *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				  MAX_COMPONENTS * SIZEOF(jpeg_component_info)); + +  /* Initialize everything not dependent on the color space */ + +  cinfo->data_precision = BITS_IN_JSAMPLE; +  /* Set up two quantization tables using default quality of 75 */ +  jpeg_set_quality(cinfo, 75, TRUE); +  /* Set up two Huffman tables */ +  std_huff_tables(cinfo); + +  /* Initialize default arithmetic coding conditioning */ +  for (i = 0; i < NUM_ARITH_TBLS; i++) { +    cinfo->arith_dc_L[i] = 0; +    cinfo->arith_dc_U[i] = 1; +    cinfo->arith_ac_K[i] = 5; +  } + +  /* Default is no multiple-scan output */ +  cinfo->scan_info = NULL; +  cinfo->num_scans = 0; + +  /* Expect normal source image, not raw downsampled data */ +  cinfo->raw_data_in = FALSE; + +  /* Use Huffman coding, not arithmetic coding, by default */ +  cinfo->arith_code = FALSE; + +  /* By default, don't do extra passes to optimize entropy coding */ +  cinfo->optimize_coding = FALSE; +  /* The standard Huffman tables are only valid for 8-bit data precision. +   * If the precision is higher, force optimization on so that usable +   * tables will be computed.  This test can be removed if default tables +   * are supplied that are valid for the desired precision. +   */ +  if (cinfo->data_precision > 8) +    cinfo->optimize_coding = TRUE; + +  /* By default, use the simpler non-cosited sampling alignment */ +  cinfo->CCIR601_sampling = FALSE; + +  /* No input smoothing */ +  cinfo->smoothing_factor = 0; + +  /* DCT algorithm preference */ +  cinfo->dct_method = JDCT_DEFAULT; + +  /* No restart markers */ +  cinfo->restart_interval = 0; +  cinfo->restart_in_rows = 0; + +  /* Fill in default JFIF marker parameters.  Note that whether the marker +   * will actually be written is determined by jpeg_set_colorspace. +   */ +  cinfo->density_unit = 0;	/* Pixel size is unknown by default */ +  cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */ +  cinfo->Y_density = 1; + +  /* Choose JPEG colorspace based on input space, set defaults accordingly */ + +  jpeg_default_colorspace(cinfo); +} + + +/* + * Select an appropriate JPEG colorspace for in_color_space. + */ + +GLOBAL void +jpeg_default_colorspace (j_compress_ptr cinfo) +{ +  switch (cinfo->in_color_space) { +  case JCS_GRAYSCALE: +    jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); +    break; +  case JCS_RGB: +    jpeg_set_colorspace(cinfo, JCS_YCbCr); +    break; +  case JCS_YCbCr: +    jpeg_set_colorspace(cinfo, JCS_YCbCr); +    break; +  case JCS_CMYK: +    jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ +    break; +  case JCS_YCCK: +    jpeg_set_colorspace(cinfo, JCS_YCCK); +    break; +  case JCS_UNKNOWN: +    jpeg_set_colorspace(cinfo, JCS_UNKNOWN); +    break; +  default: +    ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); +  } +} + + +/* + * Set the JPEG colorspace, and choose colorspace-dependent default values. + */ + +GLOBAL void +jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) +{ +  jpeg_component_info * compptr; +  int ci; + +#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \ +  (compptr = &cinfo->comp_info[index], \ +   compptr->component_id = (id), \ +   compptr->h_samp_factor = (hsamp), \ +   compptr->v_samp_factor = (vsamp), \ +   compptr->quant_tbl_no = (quant), \ +   compptr->dc_tbl_no = (dctbl), \ +   compptr->ac_tbl_no = (actbl) ) + +  /* Safety check to ensure start_compress not called yet. */ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  /* For all colorspaces, we use Q and Huff tables 0 for luminance components, +   * tables 1 for chrominance components. +   */ + +  cinfo->jpeg_color_space = colorspace; + +  cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ +  cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ + +  switch (colorspace) { +  case JCS_GRAYSCALE: +    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ +    cinfo->num_components = 1; +    /* JFIF specifies component ID 1 */ +    SET_COMP(0, 1, 1,1, 0, 0,0); +    break; +  case JCS_RGB: +    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ +    cinfo->num_components = 3; +    SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); +    SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); +    SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); +    break; +  case JCS_YCbCr: +    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ +    cinfo->num_components = 3; +    /* JFIF specifies component IDs 1,2,3 */ +    /* We default to 2x2 subsamples of chrominance */ +    SET_COMP(0, 1, 2,2, 0, 0,0); +    SET_COMP(1, 2, 1,1, 1, 1,1); +    SET_COMP(2, 3, 1,1, 1, 1,1); +    break; +  case JCS_CMYK: +    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ +    cinfo->num_components = 4; +    SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); +    SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); +    SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); +    SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); +    break; +  case JCS_YCCK: +    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ +    cinfo->num_components = 4; +    SET_COMP(0, 1, 2,2, 0, 0,0); +    SET_COMP(1, 2, 1,1, 1, 1,1); +    SET_COMP(2, 3, 1,1, 1, 1,1); +    SET_COMP(3, 4, 2,2, 0, 0,0); +    break; +  case JCS_UNKNOWN: +    cinfo->num_components = cinfo->input_components; +    if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) +      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, +	       MAX_COMPONENTS); +    for (ci = 0; ci < cinfo->num_components; ci++) { +      SET_COMP(ci, ci, 1,1, 0, 0,0); +    } +    break; +  default: +    ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +  } +} + + +#ifdef C_PROGRESSIVE_SUPPORTED + +LOCAL jpeg_scan_info * +fill_a_scan (jpeg_scan_info * scanptr, int ci, +	     int Ss, int Se, int Ah, int Al) +/* Support routine: generate one scan for specified component */ +{ +  scanptr->comps_in_scan = 1; +  scanptr->component_index[0] = ci; +  scanptr->Ss = Ss; +  scanptr->Se = Se; +  scanptr->Ah = Ah; +  scanptr->Al = Al; +  scanptr++; +  return scanptr; +} + +LOCAL jpeg_scan_info * +fill_scans (jpeg_scan_info * scanptr, int ncomps, +	    int Ss, int Se, int Ah, int Al) +/* Support routine: generate one scan for each component */ +{ +  int ci; + +  for (ci = 0; ci < ncomps; ci++) { +    scanptr->comps_in_scan = 1; +    scanptr->component_index[0] = ci; +    scanptr->Ss = Ss; +    scanptr->Se = Se; +    scanptr->Ah = Ah; +    scanptr->Al = Al; +    scanptr++; +  } +  return scanptr; +} + +LOCAL jpeg_scan_info * +fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) +/* Support routine: generate interleaved DC scan if possible, else N scans */ +{ +  int ci; + +  if (ncomps <= MAX_COMPS_IN_SCAN) { +    /* Single interleaved DC scan */ +    scanptr->comps_in_scan = ncomps; +    for (ci = 0; ci < ncomps; ci++) +      scanptr->component_index[ci] = ci; +    scanptr->Ss = scanptr->Se = 0; +    scanptr->Ah = Ah; +    scanptr->Al = Al; +    scanptr++; +  } else { +    /* Noninterleaved DC scan for each component */ +    scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); +  } +  return scanptr; +} + + +/* + * Create a recommended progressive-JPEG script. + * cinfo->num_components and cinfo->jpeg_color_space must be correct. + */ + +GLOBAL void +jpeg_simple_progression (j_compress_ptr cinfo) +{ +  int ncomps = cinfo->num_components; +  int nscans; +  jpeg_scan_info * scanptr; + +  /* Safety check to ensure start_compress not called yet. */ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  /* Figure space needed for script.  Calculation must match code below! */ +  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { +    /* Custom script for YCbCr color images. */ +    nscans = 10; +  } else { +    /* All-purpose script for other color spaces. */ +    if (ncomps > MAX_COMPS_IN_SCAN) +      nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */ +    else +      nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */ +  } + +  /* Allocate space for script. */ +  /* We use permanent pool just in case application re-uses script. */ +  scanptr = (jpeg_scan_info *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				nscans * SIZEOF(jpeg_scan_info)); +  cinfo->scan_info = scanptr; +  cinfo->num_scans = nscans; + +  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { +    /* Custom script for YCbCr color images. */ +    /* Initial DC scan */ +    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); +    /* Initial AC scan: get some luma data out in a hurry */ +    scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); +    /* Chroma data is too small to be worth expending many scans on */ +    scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); +    scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); +    /* Complete spectral selection for luma AC */ +    scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); +    /* Refine next bit of luma AC */ +    scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); +    /* Finish DC successive approximation */ +    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); +    /* Finish AC successive approximation */ +    scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); +    scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); +    /* Luma bottom bit comes last since it's usually largest scan */ +    scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); +  } else { +    /* All-purpose script for other color spaces. */ +    /* Successive approximation first pass */ +    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); +    scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); +    scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); +    /* Successive approximation second pass */ +    scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); +    /* Successive approximation final pass */ +    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); +    scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); +  } +} + +#endif /* C_PROGRESSIVE_SUPPORTED */ diff --git a/src/jpeg-6/jcphuff.c b/src/jpeg-6/jcphuff.c new file mode 100644 index 00000000..922c17c6 --- /dev/null +++ b/src/jpeg-6/jcphuff.c @@ -0,0 +1,829 @@ +/* + * jcphuff.c + * + * Copyright (C) 1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains Huffman entropy encoding routines for progressive JPEG. + * + * We do not support output suspension in this module, since the library + * currently does not allow multiple-scan files to be written with output + * suspension. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jchuff.h"		/* Declarations shared with jchuff.c */ + +#ifdef C_PROGRESSIVE_SUPPORTED + +/* Expanded entropy encoder object for progressive Huffman encoding. */ + +typedef struct { +  struct jpeg_entropy_encoder pub; /* public fields */ + +  /* Mode flag: TRUE for optimization, FALSE for actual data output */ +  boolean gather_statistics; + +  /* Bit-level coding status. +   * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. +   */ +  JOCTET * next_output_byte;	/* => next byte to write in buffer */ +  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ +  INT32 put_buffer;		/* current bit-accumulation buffer */ +  int put_bits;			/* # of bits now in it */ +  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */ + +  /* Coding status for DC components */ +  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ + +  /* Coding status for AC components */ +  int ac_tbl_no;		/* the table number of the single component */ +  unsigned int EOBRUN;		/* run length of EOBs */ +  unsigned int BE;		/* # of buffered correction bits before MCU */ +  char * bit_buffer;		/* buffer for correction bits (1 per char) */ +  /* packing correction bits tightly would save some space but cost time... */ + +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ +  int next_restart_num;		/* next restart number to write (0-7) */ + +  /* Pointers to derived tables (these workspaces have image lifespan). +   * Since any one scan codes only DC or only AC, we only need one set +   * of tables, not one for DC and one for AC. +   */ +  c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; + +  /* Statistics tables for optimization; again, one set is enough */ +  long * count_ptrs[NUM_HUFF_TBLS]; +} phuff_entropy_encoder; + +typedef phuff_entropy_encoder * phuff_entropy_ptr; + +/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit + * buffer can hold.  Larger sizes may slightly improve compression, but + * 1000 is already well into the realm of overkill. + * The minimum safe size is 64 bits. + */ + +#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */ + +/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. + * We assume that int right shift is unsigned if INT32 right shift is, + * which should be safe. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define ISHIFT_TEMPS	int ishift_temp; +#define IRIGHT_SHIFT(x,shft)  \ +	((ishift_temp = (x)) < 0 ? \ +	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ +	 (ishift_temp >> (shft))) +#else +#define ISHIFT_TEMPS +#define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) +#endif + +/* Forward declarations */ +METHODDEF boolean encode_mcu_DC_first JPP((j_compress_ptr cinfo, +					   JBLOCKROW *MCU_data)); +METHODDEF boolean encode_mcu_AC_first JPP((j_compress_ptr cinfo, +					   JBLOCKROW *MCU_data)); +METHODDEF boolean encode_mcu_DC_refine JPP((j_compress_ptr cinfo, +					    JBLOCKROW *MCU_data)); +METHODDEF boolean encode_mcu_AC_refine JPP((j_compress_ptr cinfo, +					    JBLOCKROW *MCU_data)); +METHODDEF void finish_pass_phuff JPP((j_compress_ptr cinfo)); +METHODDEF void finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); + + +/* + * Initialize for a Huffman-compressed scan using progressive JPEG. + */ + +METHODDEF void +start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) +{   +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  boolean is_DC_band; +  int ci, tbl; +  jpeg_component_info * compptr; + +  entropy->cinfo = cinfo; +  entropy->gather_statistics = gather_statistics; + +  is_DC_band = (cinfo->Ss == 0); + +  /* We assume jcmaster.c already validated the scan parameters. */ + +  /* Select execution routines */ +  if (cinfo->Ah == 0) { +    if (is_DC_band) +      entropy->pub.encode_mcu = encode_mcu_DC_first; +    else +      entropy->pub.encode_mcu = encode_mcu_AC_first; +  } else { +    if (is_DC_band) +      entropy->pub.encode_mcu = encode_mcu_DC_refine; +    else { +      entropy->pub.encode_mcu = encode_mcu_AC_refine; +      /* AC refinement needs a correction bit buffer */ +      if (entropy->bit_buffer == NULL) +	entropy->bit_buffer = (char *) +	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				      MAX_CORR_BITS * SIZEOF(char)); +    } +  } +  if (gather_statistics) +    entropy->pub.finish_pass = finish_pass_gather_phuff; +  else +    entropy->pub.finish_pass = finish_pass_phuff; + +  /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 +   * for AC coefficients. +   */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    /* Initialize DC predictions to 0 */ +    entropy->last_dc_val[ci] = 0; +    /* Make sure requested tables are present */ +    /* (In gather mode, tables need not be allocated yet) */ +    if (is_DC_band) { +      if (cinfo->Ah != 0)	/* DC refinement needs no table */ +	continue; +      tbl = compptr->dc_tbl_no; +      if (tbl < 0 || tbl >= NUM_HUFF_TBLS || +	  (cinfo->dc_huff_tbl_ptrs[tbl] == NULL && !gather_statistics)) +	ERREXIT1(cinfo,JERR_NO_HUFF_TABLE, tbl); +    } else { +      entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; +      if (tbl < 0 || tbl >= NUM_HUFF_TBLS || +          (cinfo->ac_huff_tbl_ptrs[tbl] == NULL && !gather_statistics)) +        ERREXIT1(cinfo,JERR_NO_HUFF_TABLE, tbl); +    } +    if (gather_statistics) { +      /* Allocate and zero the statistics tables */ +      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ +      if (entropy->count_ptrs[tbl] == NULL) +	entropy->count_ptrs[tbl] = (long *) +	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				      257 * SIZEOF(long)); +      MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); +    } else { +      /* Compute derived values for Huffman tables */ +      /* We may do this more than once for a table, but it's not expensive */ +      if (is_DC_band) +        jpeg_make_c_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[tbl], +				& entropy->derived_tbls[tbl]); +      else +        jpeg_make_c_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[tbl], +				& entropy->derived_tbls[tbl]); +    } +  } + +  /* Initialize AC stuff */ +  entropy->EOBRUN = 0; +  entropy->BE = 0; + +  /* Initialize bit buffer to empty */ +  entropy->put_buffer = 0; +  entropy->put_bits = 0; + +  /* Initialize restart stuff */ +  entropy->restarts_to_go = cinfo->restart_interval; +  entropy->next_restart_num = 0; +} + + +/* Outputting bytes to the file. + * NB: these must be called only when actually outputting, + * that is, entropy->gather_statistics == FALSE. + */ + +/* Emit a byte */ +#define emit_byte(entropy,val)  \ +	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \ +	  if (--(entropy)->free_in_buffer == 0)  \ +	    dump_buffer(entropy); } + + +LOCAL void +dump_buffer (phuff_entropy_ptr entropy) +/* Empty the output buffer; we do not support suspension in this module. */ +{ +  struct jpeg_destination_mgr * dest = entropy->cinfo->dest; + +  if (! (*dest->empty_output_buffer) (entropy->cinfo)) +    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); +  /* After a successful buffer dump, must reset buffer pointers */ +  entropy->next_output_byte = dest->next_output_byte; +  entropy->free_in_buffer = dest->free_in_buffer; +} + + +/* Outputting bits to the file */ + +/* Only the right 24 bits of put_buffer are used; the valid bits are + * left-justified in this part.  At most 16 bits can be passed to emit_bits + * in one call, and we never retain more than 7 bits in put_buffer + * between calls, so 24 bits are sufficient. + */ + +INLINE +LOCAL void +emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) +/* Emit some bits, unless we are in gather mode */ +{ +  /* This routine is heavily used, so it's worth coding tightly. */ +  register INT32 put_buffer = (INT32) code; +  register int put_bits = entropy->put_bits; + +  /* if size is 0, caller used an invalid Huffman table entry */ +  if (size == 0) +    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); + +  if (entropy->gather_statistics) +    return;			/* do nothing if we're only getting stats */ + +  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ +   +  put_bits += size;		/* new number of bits in buffer */ +   +  put_buffer <<= 24 - put_bits; /* align incoming bits */ + +  put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ + +  while (put_bits >= 8) { +    int c = (int) ((put_buffer >> 16) & 0xFF); +     +    emit_byte(entropy, c); +    if (c == 0xFF) {		/* need to stuff a zero byte? */ +      emit_byte(entropy, 0); +    } +    put_buffer <<= 8; +    put_bits -= 8; +  } + +  entropy->put_buffer = put_buffer; /* update variables */ +  entropy->put_bits = put_bits; +} + + +LOCAL void +flush_bits (phuff_entropy_ptr entropy) +{ +  emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ +  entropy->put_buffer = 0;     /* and reset bit-buffer to empty */ +  entropy->put_bits = 0; +} + + +/* + * Emit (or just count) a Huffman symbol. + */ + +INLINE +LOCAL void +emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) +{ +  if (entropy->gather_statistics) +    entropy->count_ptrs[tbl_no][symbol]++; +  else { +    c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; +    emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); +  } +} + + +/* + * Emit bits from a correction bit buffer. + */ + +LOCAL void +emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, +		    unsigned int nbits) +{ +  if (entropy->gather_statistics) +    return;			/* no real work */ + +  while (nbits > 0) { +    emit_bits(entropy, (unsigned int) (*bufstart), 1); +    bufstart++; +    nbits--; +  } +} + + +/* + * Emit any pending EOBRUN symbol. + */ + +LOCAL void +emit_eobrun (phuff_entropy_ptr entropy) +{ +  register int temp, nbits; + +  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */ +    temp = entropy->EOBRUN; +    nbits = 0; +    while ((temp >>= 1)) +      nbits++; + +    emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); +    if (nbits) +      emit_bits(entropy, entropy->EOBRUN, nbits); + +    entropy->EOBRUN = 0; + +    /* Emit any buffered correction bits */ +    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); +    entropy->BE = 0; +  } +} + + +/* + * Emit a restart marker & resynchronize predictions. + */ + +LOCAL void +emit_restart (phuff_entropy_ptr entropy, int restart_num) +{ +  int ci; + +  emit_eobrun(entropy); + +  if (! entropy->gather_statistics) { +    flush_bits(entropy); +    emit_byte(entropy, 0xFF); +    emit_byte(entropy, JPEG_RST0 + restart_num); +  } + +  if (entropy->cinfo->Ss == 0) { +    /* Re-initialize DC predictions to 0 */ +    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) +      entropy->last_dc_val[ci] = 0; +  } else { +    /* Re-initialize all AC-related fields to 0 */ +    entropy->EOBRUN = 0; +    entropy->BE = 0; +  } +} + + +/* + * MCU encoding for DC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF boolean +encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  register int temp, temp2; +  register int nbits; +  int blkn, ci; +  int Al = cinfo->Al; +  JBLOCKROW block; +  jpeg_component_info * compptr; +  ISHIFT_TEMPS + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart(entropy, entropy->next_restart_num); + +  /* Encode the MCU data blocks */ +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; + +    /* Compute the DC value after the required point transform by Al. +     * This is simply an arithmetic right shift. +     */ +    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); + +    /* DC differences are figured on the point-transformed values. */ +    temp = temp2 - entropy->last_dc_val[ci]; +    entropy->last_dc_val[ci] = temp2; + +    /* Encode the DC coefficient difference per section G.1.2.1 */ +    temp2 = temp; +    if (temp < 0) { +      temp = -temp;		/* temp is abs value of input */ +      /* For a negative input, want temp2 = bitwise complement of abs(input) */ +      /* This code assumes we are on a two's complement machine */ +      temp2--; +    } +     +    /* Find the number of bits needed for the magnitude of the coefficient */ +    nbits = 0; +    while (temp) { +      nbits++; +      temp >>= 1; +    } +     +    /* Count/emit the Huffman-coded symbol for the number of bits */ +    emit_symbol(entropy, compptr->dc_tbl_no, nbits); +     +    /* Emit that number of bits of the value, if positive, */ +    /* or the complement of its magnitude, if negative. */ +    if (nbits)			/* emit_bits rejects calls with size 0 */ +      emit_bits(entropy, (unsigned int) temp2, nbits); +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * MCU encoding for AC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF boolean +encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  register int temp, temp2; +  register int nbits; +  register int r, k; +  int Se = cinfo->Se; +  int Al = cinfo->Al; +  JBLOCKROW block; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart(entropy, entropy->next_restart_num); + +  /* Encode the MCU data block */ +  block = MCU_data[0]; + +  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ +   +  r = 0;			/* r = run length of zeros */ +    +  for (k = cinfo->Ss; k <= Se; k++) { +    if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { +      r++; +      continue; +    } +    /* We must apply the point transform by Al.  For AC coefficients this +     * is an integer division with rounding towards 0.  To do this portably +     * in C, we shift after obtaining the absolute value; so the code is +     * interwoven with finding the abs value (temp) and output bits (temp2). +     */ +    if (temp < 0) { +      temp = -temp;		/* temp is abs value of input */ +      temp >>= Al;		/* apply the point transform */ +      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ +      temp2 = ~temp; +    } else { +      temp >>= Al;		/* apply the point transform */ +      temp2 = temp; +    } +    /* Watch out for case that nonzero coef is zero after point transform */ +    if (temp == 0) { +      r++; +      continue; +    } + +    /* Emit any pending EOBRUN */ +    if (entropy->EOBRUN > 0) +      emit_eobrun(entropy); +    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ +    while (r > 15) { +      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); +      r -= 16; +    } + +    /* Find the number of bits needed for the magnitude of the coefficient */ +    nbits = 1;			/* there must be at least one 1 bit */ +    while ((temp >>= 1)) +      nbits++; + +    /* Count/emit Huffman symbol for run length / number of bits */ +    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); + +    /* Emit that number of bits of the value, if positive, */ +    /* or the complement of its magnitude, if negative. */ +    emit_bits(entropy, (unsigned int) temp2, nbits); + +    r = 0;			/* reset zero run length */ +  } + +  if (r > 0) {			/* If there are trailing zeroes, */ +    entropy->EOBRUN++;		/* count an EOB */ +    if (entropy->EOBRUN == 0x7FFF) +      emit_eobrun(entropy);	/* force it out to avoid overflow */ +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * MCU encoding for DC successive approximation refinement scan. + * Note: we assume such scans can be multi-component, although the spec + * is not very clear on the point. + */ + +METHODDEF boolean +encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  register int temp; +  int blkn; +  int Al = cinfo->Al; +  JBLOCKROW block; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart(entropy, entropy->next_restart_num); + +  /* Encode the MCU data blocks */ +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; + +    /* We simply emit the Al'th bit of the DC coefficient value. */ +    temp = (*block)[0]; +    emit_bits(entropy, (unsigned int) (temp >> Al), 1); +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * MCU encoding for AC successive approximation refinement scan. + */ + +METHODDEF boolean +encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  register int temp; +  register int r, k; +  int EOB; +  char *BR_buffer; +  unsigned int BR; +  int Se = cinfo->Se; +  int Al = cinfo->Al; +  JBLOCKROW block; +  int absvalues[DCTSIZE2]; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart(entropy, entropy->next_restart_num); + +  /* Encode the MCU data block */ +  block = MCU_data[0]; + +  /* It is convenient to make a pre-pass to determine the transformed +   * coefficients' absolute values and the EOB position. +   */ +  EOB = 0; +  for (k = cinfo->Ss; k <= Se; k++) { +    temp = (*block)[jpeg_natural_order[k]]; +    /* We must apply the point transform by Al.  For AC coefficients this +     * is an integer division with rounding towards 0.  To do this portably +     * in C, we shift after obtaining the absolute value. +     */ +    if (temp < 0) +      temp = -temp;		/* temp is abs value of input */ +    temp >>= Al;		/* apply the point transform */ +    absvalues[k] = temp;	/* save abs value for main pass */ +    if (temp == 1) +      EOB = k;			/* EOB = index of last newly-nonzero coef */ +  } + +  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ +   +  r = 0;			/* r = run length of zeros */ +  BR = 0;			/* BR = count of buffered bits added now */ +  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ + +  for (k = cinfo->Ss; k <= Se; k++) { +    if ((temp = absvalues[k]) == 0) { +      r++; +      continue; +    } + +    /* Emit any required ZRLs, but not if they can be folded into EOB */ +    while (r > 15 && k <= EOB) { +      /* emit any pending EOBRUN and the BE correction bits */ +      emit_eobrun(entropy); +      /* Emit ZRL */ +      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); +      r -= 16; +      /* Emit buffered correction bits that must be associated with ZRL */ +      emit_buffered_bits(entropy, BR_buffer, BR); +      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ +      BR = 0; +    } + +    /* If the coef was previously nonzero, it only needs a correction bit. +     * NOTE: a straight translation of the spec's figure G.7 would suggest +     * that we also need to test r > 15.  But if r > 15, we can only get here +     * if k > EOB, which implies that this coefficient is not 1. +     */ +    if (temp > 1) { +      /* The correction bit is the next bit of the absolute value. */ +      BR_buffer[BR++] = (char) (temp & 1); +      continue; +    } + +    /* Emit any pending EOBRUN and the BE correction bits */ +    emit_eobrun(entropy); + +    /* Count/emit Huffman symbol for run length / number of bits */ +    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); + +    /* Emit output bit for newly-nonzero coef */ +    temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; +    emit_bits(entropy, (unsigned int) temp, 1); + +    /* Emit buffered correction bits that must be associated with this code */ +    emit_buffered_bits(entropy, BR_buffer, BR); +    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ +    BR = 0; +    r = 0;			/* reset zero run length */ +  } + +  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */ +    entropy->EOBRUN++;		/* count an EOB */ +    entropy->BE += BR;		/* concat my correction bits to older ones */ +    /* We force out the EOB if we risk either: +     * 1. overflow of the EOB counter; +     * 2. overflow of the correction bit buffer during the next MCU. +     */ +    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) +      emit_eobrun(entropy); +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * Finish up at the end of a Huffman-compressed progressive scan. + */ + +METHODDEF void +finish_pass_phuff (j_compress_ptr cinfo) +{    +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Flush out any buffered data */ +  emit_eobrun(entropy); +  flush_bits(entropy); + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; +} + + +/* + * Finish up a statistics-gathering pass and create the new Huffman tables. + */ + +METHODDEF void +finish_pass_gather_phuff (j_compress_ptr cinfo) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  boolean is_DC_band; +  int ci, tbl; +  jpeg_component_info * compptr; +  JHUFF_TBL **htblptr; +  boolean did[NUM_HUFF_TBLS]; + +  /* Flush out buffered data (all we care about is counting the EOB symbol) */ +  emit_eobrun(entropy); + +  is_DC_band = (cinfo->Ss == 0); + +  /* It's important not to apply jpeg_gen_optimal_table more than once +   * per table, because it clobbers the input frequency counts! +   */ +  MEMZERO(did, SIZEOF(did)); + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    if (is_DC_band) { +      if (cinfo->Ah != 0)	/* DC refinement needs no table */ +	continue; +      tbl = compptr->dc_tbl_no; +    } else { +      tbl = compptr->ac_tbl_no; +    } +    if (! did[tbl]) { +      if (is_DC_band) +        htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; +      else +        htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; +      if (*htblptr == NULL) +        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); +      did[tbl] = TRUE; +    } +  } +} + + +/* + * Module initialization routine for progressive Huffman entropy encoding. + */ + +GLOBAL void +jinit_phuff_encoder (j_compress_ptr cinfo) +{ +  phuff_entropy_ptr entropy; +  int i; + +  entropy = (phuff_entropy_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(phuff_entropy_encoder)); +  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; +  entropy->pub.start_pass = start_pass_phuff; + +  /* Mark tables unallocated */ +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    entropy->derived_tbls[i] = NULL; +    entropy->count_ptrs[i] = NULL; +  } +  entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */ +} + +#endif /* C_PROGRESSIVE_SUPPORTED */ diff --git a/src/jpeg-6/jcprepct.c b/src/jpeg-6/jcprepct.c new file mode 100644 index 00000000..7e609462 --- /dev/null +++ b/src/jpeg-6/jcprepct.c @@ -0,0 +1,371 @@ +/* + * jcprepct.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the compression preprocessing controller. + * This controller manages the color conversion, downsampling, + * and edge expansion steps. + * + * Most of the complexity here is associated with buffering input rows + * as required by the downsampler.  See the comments at the head of + * jcsample.c for the downsampler's needs. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* At present, jcsample.c can request context rows only for smoothing. + * In the future, we might also need context rows for CCIR601 sampling + * or other more-complex downsampling procedures.  The code to support + * context rows should be compiled only if needed. + */ +#ifdef INPUT_SMOOTHING_SUPPORTED +#define CONTEXT_ROWS_SUPPORTED +#endif + + +/* + * For the simple (no-context-row) case, we just need to buffer one + * row group's worth of pixels for the downsampling step.  At the bottom of + * the image, we pad to a full row group by replicating the last pixel row. + * The downsampler's last output row is then replicated if needed to pad + * out to a full iMCU row. + * + * When providing context rows, we must buffer three row groups' worth of + * pixels.  Three row groups are physically allocated, but the row pointer + * arrays are made five row groups high, with the extra pointers above and + * below "wrapping around" to point to the last and first real row groups. + * This allows the downsampler to access the proper context rows. + * At the top and bottom of the image, we create dummy context rows by + * copying the first or last real pixel row.  This copying could be avoided + * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the + * trouble on the compression side. + */ + + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_c_prep_controller pub; /* public fields */ + +  /* Downsampling input buffer.  This buffer holds color-converted data +   * until we have enough to do a downsample step. +   */ +  JSAMPARRAY color_buf[MAX_COMPONENTS]; + +  JDIMENSION rows_to_go;	/* counts rows remaining in source image */ +  int next_buf_row;		/* index of next row to store in color_buf */ + +#ifdef CONTEXT_ROWS_SUPPORTED	/* only needed for context case */ +  int this_row_group;		/* starting row index of group to process */ +  int next_buf_stop;		/* downsample when we reach this index */ +#endif +} my_prep_controller; + +typedef my_prep_controller * my_prep_ptr; + + +/* + * Initialize for a processing pass. + */ + +METHODDEF void +start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) +{ +  my_prep_ptr prep = (my_prep_ptr) cinfo->prep; + +  if (pass_mode != JBUF_PASS_THRU) +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); + +  /* Initialize total-height counter for detecting bottom of image */ +  prep->rows_to_go = cinfo->image_height; +  /* Mark the conversion buffer empty */ +  prep->next_buf_row = 0; +#ifdef CONTEXT_ROWS_SUPPORTED +  /* Preset additional state variables for context mode. +   * These aren't used in non-context mode, so we needn't test which mode. +   */ +  prep->this_row_group = 0; +  /* Set next_buf_stop to stop after two row groups have been read in. */ +  prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; +#endif +} + + +/* + * Expand an image vertically from height input_rows to height output_rows, + * by duplicating the bottom row. + */ + +LOCAL void +expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, +		    int input_rows, int output_rows) +{ +  register int row; + +  for (row = input_rows; row < output_rows; row++) { +    jcopy_sample_rows(image_data, input_rows-1, image_data, row, +		      1, num_cols); +  } +} + + +/* + * Process some data in the simple no-context case. + * + * Preprocessor output data is counted in "row groups".  A row group + * is defined to be v_samp_factor sample rows of each component. + * Downsampling will produce this much data from each max_v_samp_factor + * input rows. + */ + +METHODDEF void +pre_process_data (j_compress_ptr cinfo, +		  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, +		  JDIMENSION in_rows_avail, +		  JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, +		  JDIMENSION out_row_groups_avail) +{ +  my_prep_ptr prep = (my_prep_ptr) cinfo->prep; +  int numrows, ci; +  JDIMENSION inrows; +  jpeg_component_info * compptr; + +  while (*in_row_ctr < in_rows_avail && +	 *out_row_group_ctr < out_row_groups_avail) { +    /* Do color conversion to fill the conversion buffer. */ +    inrows = in_rows_avail - *in_row_ctr; +    numrows = cinfo->max_v_samp_factor - prep->next_buf_row; +    numrows = (int) MIN((JDIMENSION) numrows, inrows); +    (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, +				       prep->color_buf, +				       (JDIMENSION) prep->next_buf_row, +				       numrows); +    *in_row_ctr += numrows; +    prep->next_buf_row += numrows; +    prep->rows_to_go -= numrows; +    /* If at bottom of image, pad to fill the conversion buffer. */ +    if (prep->rows_to_go == 0 && +	prep->next_buf_row < cinfo->max_v_samp_factor) { +      for (ci = 0; ci < cinfo->num_components; ci++) { +	expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, +			   prep->next_buf_row, cinfo->max_v_samp_factor); +      } +      prep->next_buf_row = cinfo->max_v_samp_factor; +    } +    /* If we've filled the conversion buffer, empty it. */ +    if (prep->next_buf_row == cinfo->max_v_samp_factor) { +      (*cinfo->downsample->downsample) (cinfo, +					prep->color_buf, (JDIMENSION) 0, +					output_buf, *out_row_group_ctr); +      prep->next_buf_row = 0; +      (*out_row_group_ctr)++; +    } +    /* If at bottom of image, pad the output to a full iMCU height. +     * Note we assume the caller is providing a one-iMCU-height output buffer! +     */ +    if (prep->rows_to_go == 0 && +	*out_row_group_ctr < out_row_groups_avail) { +      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	   ci++, compptr++) { +	expand_bottom_edge(output_buf[ci], +			   compptr->width_in_blocks * DCTSIZE, +			   (int) (*out_row_group_ctr * compptr->v_samp_factor), +			   (int) (out_row_groups_avail * compptr->v_samp_factor)); +      } +      *out_row_group_ctr = out_row_groups_avail; +      break;			/* can exit outer loop without test */ +    } +  } +} + + +#ifdef CONTEXT_ROWS_SUPPORTED + +/* + * Process some data in the context case. + */ + +METHODDEF void +pre_process_context (j_compress_ptr cinfo, +		     JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, +		     JDIMENSION in_rows_avail, +		     JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, +		     JDIMENSION out_row_groups_avail) +{ +  my_prep_ptr prep = (my_prep_ptr) cinfo->prep; +  int numrows, ci; +  int buf_height = cinfo->max_v_samp_factor * 3; +  JDIMENSION inrows; +  jpeg_component_info * compptr; + +  while (*out_row_group_ctr < out_row_groups_avail) { +    if (*in_row_ctr < in_rows_avail) { +      /* Do color conversion to fill the conversion buffer. */ +      inrows = in_rows_avail - *in_row_ctr; +      numrows = prep->next_buf_stop - prep->next_buf_row; +      numrows = (int) MIN((JDIMENSION) numrows, inrows); +      (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, +					 prep->color_buf, +					 (JDIMENSION) prep->next_buf_row, +					 numrows); +      /* Pad at top of image, if first time through */ +      if (prep->rows_to_go == cinfo->image_height) { +	for (ci = 0; ci < cinfo->num_components; ci++) { +	  int row; +	  for (row = 1; row <= cinfo->max_v_samp_factor; row++) { +	    jcopy_sample_rows(prep->color_buf[ci], 0, +			      prep->color_buf[ci], -row, +			      1, cinfo->image_width); +	  } +	} +      } +      *in_row_ctr += numrows; +      prep->next_buf_row += numrows; +      prep->rows_to_go -= numrows; +    } else { +      /* Return for more data, unless we are at the bottom of the image. */ +      if (prep->rows_to_go != 0) +	break; +    } +    /* If at bottom of image, pad to fill the conversion buffer. */ +    if (prep->rows_to_go == 0 && +	prep->next_buf_row < prep->next_buf_stop) { +      for (ci = 0; ci < cinfo->num_components; ci++) { +	expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, +			   prep->next_buf_row, prep->next_buf_stop); +      } +      prep->next_buf_row = prep->next_buf_stop; +    } +    /* If we've gotten enough data, downsample a row group. */ +    if (prep->next_buf_row == prep->next_buf_stop) { +      (*cinfo->downsample->downsample) (cinfo, +					prep->color_buf, +					(JDIMENSION) prep->this_row_group, +					output_buf, *out_row_group_ctr); +      (*out_row_group_ctr)++; +      /* Advance pointers with wraparound as necessary. */ +      prep->this_row_group += cinfo->max_v_samp_factor; +      if (prep->this_row_group >= buf_height) +	prep->this_row_group = 0; +      if (prep->next_buf_row >= buf_height) +	prep->next_buf_row = 0; +      prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; +    } +    /* If at bottom of image, pad the output to a full iMCU height. +     * Note we assume the caller is providing a one-iMCU-height output buffer! +     */ +    if (prep->rows_to_go == 0 && +	*out_row_group_ctr < out_row_groups_avail) { +      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	   ci++, compptr++) { +	expand_bottom_edge(output_buf[ci], +			   compptr->width_in_blocks * DCTSIZE, +			   (int) (*out_row_group_ctr * compptr->v_samp_factor), +			   (int) (out_row_groups_avail * compptr->v_samp_factor)); +      } +      *out_row_group_ctr = out_row_groups_avail; +      break;			/* can exit outer loop without test */ +    } +  } +} + + +/* + * Create the wrapped-around downsampling input buffer needed for context mode. + */ + +LOCAL void +create_context_buffer (j_compress_ptr cinfo) +{ +  my_prep_ptr prep = (my_prep_ptr) cinfo->prep; +  int rgroup_height = cinfo->max_v_samp_factor; +  int ci, i; +  jpeg_component_info * compptr; +  JSAMPARRAY true_buffer, fake_buffer; + +  /* Grab enough space for fake row pointers for all the components; +   * we need five row groups' worth of pointers for each component. +   */ +  fake_buffer = (JSAMPARRAY) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(cinfo->num_components * 5 * rgroup_height) * +				SIZEOF(JSAMPROW)); + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Allocate the actual buffer space (3 row groups) for this component. +     * We make the buffer wide enough to allow the downsampler to edge-expand +     * horizontally within the buffer, if it so chooses. +     */ +    true_buffer = (*cinfo->mem->alloc_sarray) +      ((j_common_ptr) cinfo, JPOOL_IMAGE, +       (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * +		      cinfo->max_h_samp_factor) / compptr->h_samp_factor), +       (JDIMENSION) (3 * rgroup_height)); +    /* Copy true buffer row pointers into the middle of the fake row array */ +    MEMCOPY(fake_buffer + rgroup_height, true_buffer, +	    3 * rgroup_height * SIZEOF(JSAMPROW)); +    /* Fill in the above and below wraparound pointers */ +    for (i = 0; i < rgroup_height; i++) { +      fake_buffer[i] = true_buffer[2 * rgroup_height + i]; +      fake_buffer[4 * rgroup_height + i] = true_buffer[i]; +    } +    prep->color_buf[ci] = fake_buffer + rgroup_height; +    fake_buffer += 5 * rgroup_height; /* point to space for next component */ +  } +} + +#endif /* CONTEXT_ROWS_SUPPORTED */ + + +/* + * Initialize preprocessing controller. + */ + +GLOBAL void +jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) +{ +  my_prep_ptr prep; +  int ci; +  jpeg_component_info * compptr; + +  if (need_full_buffer)		/* safety check */ +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); + +  prep = (my_prep_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_prep_controller)); +  cinfo->prep = (struct jpeg_c_prep_controller *) prep; +  prep->pub.start_pass = start_pass_prep; + +  /* Allocate the color conversion buffer. +   * We make the buffer wide enough to allow the downsampler to edge-expand +   * horizontally within the buffer, if it so chooses. +   */ +  if (cinfo->downsample->need_context_rows) { +    /* Set up to provide context rows */ +#ifdef CONTEXT_ROWS_SUPPORTED +    prep->pub.pre_process_data = pre_process_context; +    create_context_buffer(cinfo); +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +  } else { +    /* No context, just make it tall enough for one row group */ +    prep->pub.pre_process_data = pre_process_data; +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, +	 (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * +			cinfo->max_h_samp_factor) / compptr->h_samp_factor), +	 (JDIMENSION) cinfo->max_v_samp_factor); +    } +  } +} diff --git a/src/jpeg-6/jcsample.c b/src/jpeg-6/jcsample.c new file mode 100644 index 00000000..bf0fb46b --- /dev/null +++ b/src/jpeg-6/jcsample.c @@ -0,0 +1,519 @@ +/* + * jcsample.c + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains downsampling routines. + * + * Downsampling input data is counted in "row groups".  A row group + * is defined to be max_v_samp_factor pixel rows of each component, + * from which the downsampler produces v_samp_factor sample rows. + * A single row group is processed in each call to the downsampler module. + * + * The downsampler is responsible for edge-expansion of its output data + * to fill an integral number of DCT blocks horizontally.  The source buffer + * may be modified if it is helpful for this purpose (the source buffer is + * allocated wide enough to correspond to the desired output width). + * The caller (the prep controller) is responsible for vertical padding. + * + * The downsampler may request "context rows" by setting need_context_rows + * during startup.  In this case, the input arrays will contain at least + * one row group's worth of pixels above and below the passed-in data; + * the caller will create dummy rows at image top and bottom by replicating + * the first or last real pixel row. + * + * An excellent reference for image resampling is + *   Digital Image Warping, George Wolberg, 1990. + *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. + * + * The downsampling algorithm used here is a simple average of the source + * pixels covered by the output pixel.  The hi-falutin sampling literature + * refers to this as a "box filter".  In general the characteristics of a box + * filter are not very good, but for the specific cases we normally use (1:1 + * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not + * nearly so bad.  If you intend to use other sampling ratios, you'd be well + * advised to improve this code. + * + * A simple input-smoothing capability is provided.  This is mainly intended + * for cleaning up color-dithered GIF input files (if you find it inadequate, + * we suggest using an external filtering program such as pnmconvol).  When + * enabled, each input pixel P is replaced by a weighted sum of itself and its + * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF, + * where SF = (smoothing_factor / 1024). + * Currently, smoothing is only supported for 2h2v sampling factors. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Pointer to routine to downsample a single component */ +typedef JMETHOD(void, downsample1_ptr, +		(j_compress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY output_data)); + +/* Private subobject */ + +typedef struct { +  struct jpeg_downsampler pub;	/* public fields */ + +  /* Downsampling method pointers, one per component */ +  downsample1_ptr methods[MAX_COMPONENTS]; +} my_downsampler; + +typedef my_downsampler * my_downsample_ptr; + + +/* + * Initialize for a downsampling pass. + */ + +METHODDEF void +start_pass_downsample (j_compress_ptr cinfo) +{ +  /* no work for now */ +} + + +/* + * Expand a component horizontally from width input_cols to width output_cols, + * by duplicating the rightmost samples. + */ + +LOCAL void +expand_right_edge (JSAMPARRAY image_data, int num_rows, +		   JDIMENSION input_cols, JDIMENSION output_cols) +{ +  register JSAMPROW ptr; +  register JSAMPLE pixval; +  register int count; +  int row; +  int numcols = (int) (output_cols - input_cols); + +  if (numcols > 0) { +    for (row = 0; row < num_rows; row++) { +      ptr = image_data[row] + input_cols; +      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */ +      for (count = numcols; count > 0; count--) +	*ptr++ = pixval; +    } +  } +} + + +/* + * Do downsampling for a whole row group (all components). + * + * In this version we simply downsample each component independently. + */ + +METHODDEF void +sep_downsample (j_compress_ptr cinfo, +		JSAMPIMAGE input_buf, JDIMENSION in_row_index, +		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) +{ +  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; +  int ci; +  jpeg_component_info * compptr; +  JSAMPARRAY in_ptr, out_ptr; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    in_ptr = input_buf[ci] + in_row_index; +    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); +    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); +  } +} + + +/* + * Downsample pixel values of a single component. + * One row group is processed per call. + * This version handles arbitrary integral sampling ratios, without smoothing. + * Note that this version is not actually used for customary sampling ratios. + */ + +METHODDEF void +int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; +  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */ +  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; +  JSAMPROW inptr, outptr; +  INT32 outvalue; + +  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; +  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; +  numpix = h_expand * v_expand; +  numpix2 = numpix/2; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, output_cols * h_expand); + +  inrow = 0; +  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { +    outptr = output_data[outrow]; +    for (outcol = 0, outcol_h = 0; outcol < output_cols; +	 outcol++, outcol_h += h_expand) { +      outvalue = 0; +      for (v = 0; v < v_expand; v++) { +	inptr = input_data[inrow+v] + outcol_h; +	for (h = 0; h < h_expand; h++) { +	  outvalue += (INT32) GETJSAMPLE(*inptr++); +	} +      } +      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); +    } +    inrow += v_expand; +  } +} + + +/* + * Downsample pixel values of a single component. + * This version handles the special case of a full-size component, + * without smoothing. + */ + +METHODDEF void +fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		     JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  /* Copy the data */ +  jcopy_sample_rows(input_data, 0, output_data, 0, +		    cinfo->max_v_samp_factor, cinfo->image_width); +  /* Edge-expand */ +  expand_right_edge(output_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE); +} + + +/* + * Downsample pixel values of a single component. + * This version handles the common case of 2:1 horizontal and 1:1 vertical, + * without smoothing. + * + * A note about the "bias" calculations: when rounding fractional values to + * integer, we do not want to always round 0.5 up to the next integer. + * If we did that, we'd introduce a noticeable bias towards larger values. + * Instead, this code is arranged so that 0.5 will be rounded up or down at + * alternate pixel locations (a simple ordered dither pattern). + */ + +METHODDEF void +h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int outrow; +  JDIMENSION outcol; +  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; +  register JSAMPROW inptr, outptr; +  register int bias; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, output_cols * 2); + +  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { +    outptr = output_data[outrow]; +    inptr = input_data[outrow]; +    bias = 0;			/* bias = 0,1,0,1,... for successive samples */ +    for (outcol = 0; outcol < output_cols; outcol++) { +      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) +			      + bias) >> 1); +      bias ^= 1;		/* 0=>1, 1=>0 */ +      inptr += 2; +    } +  } +} + + +/* + * Downsample pixel values of a single component. + * This version handles the standard case of 2:1 horizontal and 2:1 vertical, + * without smoothing. + */ + +METHODDEF void +h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow, outrow; +  JDIMENSION outcol; +  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; +  register JSAMPROW inptr0, inptr1, outptr; +  register int bias; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, output_cols * 2); + +  inrow = 0; +  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { +    outptr = output_data[outrow]; +    inptr0 = input_data[inrow]; +    inptr1 = input_data[inrow+1]; +    bias = 1;			/* bias = 1,2,1,2,... for successive samples */ +    for (outcol = 0; outcol < output_cols; outcol++) { +      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) +			      + bias) >> 2); +      bias ^= 3;		/* 1=>2, 2=>1 */ +      inptr0 += 2; inptr1 += 2; +    } +    inrow += 2; +  } +} + + +#ifdef INPUT_SMOOTHING_SUPPORTED + +/* + * Downsample pixel values of a single component. + * This version handles the standard case of 2:1 horizontal and 2:1 vertical, + * with smoothing.  One row of context is required. + */ + +METHODDEF void +h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +			JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow, outrow; +  JDIMENSION colctr; +  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; +  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; +  INT32 membersum, neighsum, memberscale, neighscale; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, +		    cinfo->image_width, output_cols * 2); + +  /* We don't bother to form the individual "smoothed" input pixel values; +   * we can directly compute the output which is the average of the four +   * smoothed values.  Each of the four member pixels contributes a fraction +   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three +   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final +   * output.  The four corner-adjacent neighbor pixels contribute a fraction +   * SF to just one smoothed pixel, or SF/4 to the final output; while the +   * eight edge-adjacent neighbors contribute SF to each of two smoothed +   * pixels, or SF/2 overall.  In order to use integer arithmetic, these +   * factors are scaled by 2^16 = 65536. +   * Also recall that SF = smoothing_factor / 1024. +   */ + +  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ +  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ + +  inrow = 0; +  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { +    outptr = output_data[outrow]; +    inptr0 = input_data[inrow]; +    inptr1 = input_data[inrow+1]; +    above_ptr = input_data[inrow-1]; +    below_ptr = input_data[inrow+2]; + +    /* Special case for first column: pretend column -1 is same as column 0 */ +    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); +    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + +	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + +	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + +	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); +    neighsum += neighsum; +    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + +		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; + +    for (colctr = output_cols - 2; colctr > 0; colctr--) { +      /* sum of pixels directly mapped to this output element */ +      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); +      /* sum of edge-neighbor pixels */ +      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + +		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + +		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + +		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); +      /* The edge-neighbors count twice as much as corner-neighbors */ +      neighsum += neighsum; +      /* Add in the corner-neighbors */ +      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + +		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); +      /* form final output scaled up by 2^16 */ +      membersum = membersum * memberscale + neighsum * neighscale; +      /* round, descale and output it */ +      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; +    } + +    /* Special case for last column */ +    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); +    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + +	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + +	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + +	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); +    neighsum += neighsum; +    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + +		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr = (JSAMPLE) ((membersum + 32768) >> 16); + +    inrow += 2; +  } +} + + +/* + * Downsample pixel values of a single component. + * This version handles the special case of a full-size component, + * with smoothing.  One row of context is required. + */ + +METHODDEF void +fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, +			    JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int outrow; +  JDIMENSION colctr; +  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; +  register JSAMPROW inptr, above_ptr, below_ptr, outptr; +  INT32 membersum, neighsum, memberscale, neighscale; +  int colsum, lastcolsum, nextcolsum; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, +		    cinfo->image_width, output_cols); + +  /* Each of the eight neighbor pixels contributes a fraction SF to the +   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order +   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. +   * Also recall that SF = smoothing_factor / 1024. +   */ + +  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ +  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ + +  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { +    outptr = output_data[outrow]; +    inptr = input_data[outrow]; +    above_ptr = input_data[outrow-1]; +    below_ptr = input_data[outrow+1]; + +    /* Special case for first column */ +    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + +	     GETJSAMPLE(*inptr); +    membersum = GETJSAMPLE(*inptr++); +    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + +		 GETJSAMPLE(*inptr); +    neighsum = colsum + (colsum - membersum) + nextcolsum; +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +    lastcolsum = colsum; colsum = nextcolsum; + +    for (colctr = output_cols - 2; colctr > 0; colctr--) { +      membersum = GETJSAMPLE(*inptr++); +      above_ptr++; below_ptr++; +      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + +		   GETJSAMPLE(*inptr); +      neighsum = lastcolsum + (colsum - membersum) + nextcolsum; +      membersum = membersum * memberscale + neighsum * neighscale; +      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +      lastcolsum = colsum; colsum = nextcolsum; +    } + +    /* Special case for last column */ +    membersum = GETJSAMPLE(*inptr); +    neighsum = lastcolsum + (colsum - membersum) + colsum; +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr = (JSAMPLE) ((membersum + 32768) >> 16); + +  } +} + +#endif /* INPUT_SMOOTHING_SUPPORTED */ + + +/* + * Module initialization routine for downsampling. + * Note that we must select a routine for each component. + */ + +GLOBAL void +jinit_downsampler (j_compress_ptr cinfo) +{ +  my_downsample_ptr downsample; +  int ci; +  jpeg_component_info * compptr; +  boolean smoothok = TRUE; + +  downsample = (my_downsample_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_downsampler)); +  cinfo->downsample = (struct jpeg_downsampler *) downsample; +  downsample->pub.start_pass = start_pass_downsample; +  downsample->pub.downsample = sep_downsample; +  downsample->pub.need_context_rows = FALSE; + +  if (cinfo->CCIR601_sampling) +    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); + +  /* Verify we can handle the sampling factors, and set up method pointers */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    if (compptr->h_samp_factor == cinfo->max_h_samp_factor && +	compptr->v_samp_factor == cinfo->max_v_samp_factor) { +#ifdef INPUT_SMOOTHING_SUPPORTED +      if (cinfo->smoothing_factor) { +	downsample->methods[ci] = fullsize_smooth_downsample; +	downsample->pub.need_context_rows = TRUE; +      } else +#endif +	downsample->methods[ci] = fullsize_downsample; +    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && +	       compptr->v_samp_factor == cinfo->max_v_samp_factor) { +      smoothok = FALSE; +      downsample->methods[ci] = h2v1_downsample; +    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && +	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { +#ifdef INPUT_SMOOTHING_SUPPORTED +      if (cinfo->smoothing_factor) { +	downsample->methods[ci] = h2v2_smooth_downsample; +	downsample->pub.need_context_rows = TRUE; +      } else +#endif +	downsample->methods[ci] = h2v2_downsample; +    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && +	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { +      smoothok = FALSE; +      downsample->methods[ci] = int_downsample; +    } else +      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); +  } + +#ifdef INPUT_SMOOTHING_SUPPORTED +  if (cinfo->smoothing_factor && !smoothok) +    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); +#endif +} diff --git a/src/jpeg-6/jctrans.c b/src/jpeg-6/jctrans.c new file mode 100644 index 00000000..8fc53b19 --- /dev/null +++ b/src/jpeg-6/jctrans.c @@ -0,0 +1,371 @@ +/* + * jctrans.c + * + * Copyright (C) 1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains library routines for transcoding compression, + * that is, writing raw DCT coefficient arrays to an output JPEG file. + * The routines in jcapimin.c will also be needed by a transcoder. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Forward declarations */ +LOCAL void transencode_master_selection +	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); +LOCAL void transencode_coef_controller +	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); + + +/* + * Compression initialization for writing raw-coefficient data. + * Before calling this, all parameters and a data destination must be set up. + * Call jpeg_finish_compress() to actually write the data. + * + * The number of passed virtual arrays must match cinfo->num_components. + * Note that the virtual arrays need not be filled or even realized at + * the time write_coefficients is called; indeed, if the virtual arrays + * were requested from this compression object's memory manager, they + * typically will be realized during this routine and filled afterwards. + */ + +GLOBAL void +jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) +{ +  if (cinfo->global_state != CSTATE_START) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  /* Mark all tables to be written */ +  jpeg_suppress_tables(cinfo, FALSE); +  /* (Re)initialize error mgr and destination modules */ +  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); +  (*cinfo->dest->init_destination) (cinfo); +  /* Perform master selection of active modules */ +  transencode_master_selection(cinfo, coef_arrays); +  /* Wait for jpeg_finish_compress() call */ +  cinfo->next_scanline = 0;	/* so jpeg_write_marker works */ +  cinfo->global_state = CSTATE_WRCOEFS; +} + + +/* + * Initialize the compression object with default parameters, + * then copy from the source object all parameters needed for lossless + * transcoding.  Parameters that can be varied without loss (such as + * scan script and Huffman optimization) are left in their default states. + */ + +GLOBAL void +jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, +			       j_compress_ptr dstinfo) +{ +  JQUANT_TBL ** qtblptr; +  jpeg_component_info *incomp, *outcomp; +  JQUANT_TBL *c_quant, *slot_quant; +  int tblno, ci, coefi; + +  /* Safety check to ensure start_compress not called yet. */ +  if (dstinfo->global_state != CSTATE_START) +    ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); +  /* Copy fundamental image dimensions */ +  dstinfo->image_width = srcinfo->image_width; +  dstinfo->image_height = srcinfo->image_height; +  dstinfo->input_components = srcinfo->num_components; +  dstinfo->in_color_space = srcinfo->jpeg_color_space; +  /* Initialize all parameters to default values */ +  jpeg_set_defaults(dstinfo); +  /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. +   * Fix it to get the right header markers for the image colorspace. +   */ +  jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); +  dstinfo->data_precision = srcinfo->data_precision; +  dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; +  /* Copy the source's quantization tables. */ +  for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { +    if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { +      qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; +      if (*qtblptr == NULL) +	*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); +      MEMCOPY((*qtblptr)->quantval, +	      srcinfo->quant_tbl_ptrs[tblno]->quantval, +	      SIZEOF((*qtblptr)->quantval)); +      (*qtblptr)->sent_table = FALSE; +    } +  } +  /* Copy the source's per-component info. +   * Note we assume jpeg_set_defaults has allocated the dest comp_info array. +   */ +  dstinfo->num_components = srcinfo->num_components; +  if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) +    ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, +	     MAX_COMPONENTS); +  for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; +       ci < dstinfo->num_components; ci++, incomp++, outcomp++) { +    outcomp->component_id = incomp->component_id; +    outcomp->h_samp_factor = incomp->h_samp_factor; +    outcomp->v_samp_factor = incomp->v_samp_factor; +    outcomp->quant_tbl_no = incomp->quant_tbl_no; +    /* Make sure saved quantization table for component matches the qtable +     * slot.  If not, the input file re-used this qtable slot. +     * IJG encoder currently cannot duplicate this. +     */ +    tblno = outcomp->quant_tbl_no; +    if (tblno < 0 || tblno >= NUM_QUANT_TBLS || +	srcinfo->quant_tbl_ptrs[tblno] == NULL) +      ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); +    slot_quant = srcinfo->quant_tbl_ptrs[tblno]; +    c_quant = incomp->quant_table; +    if (c_quant != NULL) { +      for (coefi = 0; coefi < DCTSIZE2; coefi++) { +	if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) +	  ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); +      } +    } +    /* Note: we do not copy the source's Huffman table assignments; +     * instead we rely on jpeg_set_colorspace to have made a suitable choice. +     */ +  } +} + + +/* + * Master selection of compression modules for transcoding. + * This substitutes for jcinit.c's initialization of the full compressor. + */ + +LOCAL void +transencode_master_selection (j_compress_ptr cinfo, +			      jvirt_barray_ptr * coef_arrays) +{ +  /* Although we don't actually use input_components for transcoding, +   * jcmaster.c's initial_setup will complain if input_components is 0. +   */ +  cinfo->input_components = 1; +  /* Initialize master control (includes parameter checking/processing) */ +  jinit_c_master_control(cinfo, TRUE /* transcode only */); + +  /* Entropy encoding: either Huffman or arithmetic coding. */ +  if (cinfo->arith_code) { +    ERREXIT(cinfo, JERR_ARITH_NOTIMPL); +  } else { +    if (cinfo->progressive_mode) { +#ifdef C_PROGRESSIVE_SUPPORTED +      jinit_phuff_encoder(cinfo); +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } else +      jinit_huff_encoder(cinfo); +  } + +  /* We need a special coefficient buffer controller. */ +  transencode_coef_controller(cinfo, coef_arrays); + +  jinit_marker_writer(cinfo); + +  /* We can now tell the memory manager to allocate virtual arrays. */ +  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); + +  /* Write the datastream header (SOI) immediately. +   * Frame and scan headers are postponed till later. +   * This lets application insert special markers after the SOI. +   */ +  (*cinfo->marker->write_file_header) (cinfo); +} + + +/* + * The rest of this file is a special implementation of the coefficient + * buffer controller.  This is similar to jccoefct.c, but it handles only + * output from presupplied virtual arrays.  Furthermore, we generate any + * dummy padding blocks on-the-fly rather than expecting them to be present + * in the arrays. + */ + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_c_coef_controller pub; /* public fields */ + +  JDIMENSION iMCU_row_num;	/* iMCU row # within image */ +  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */ +  int MCU_vert_offset;		/* counts MCU rows within iMCU row */ +  int MCU_rows_per_iMCU_row;	/* number of such rows needed */ + +  /* Virtual block array for each component. */ +  jvirt_barray_ptr * whole_image; + +  /* Workspace for constructing dummy blocks at right/bottom edges. */ +  JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; +} my_coef_controller; + +typedef my_coef_controller * my_coef_ptr; + + +LOCAL void +start_iMCU_row (j_compress_ptr cinfo) +/* Reset within-iMCU-row counters for a new row */ +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; + +  /* In an interleaved scan, an MCU row is the same as an iMCU row. +   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. +   * But at the bottom of the image, process only what's left. +   */ +  if (cinfo->comps_in_scan > 1) { +    coef->MCU_rows_per_iMCU_row = 1; +  } else { +    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) +      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; +    else +      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; +  } + +  coef->mcu_ctr = 0; +  coef->MCU_vert_offset = 0; +} + + +/* + * Initialize for a processing pass. + */ + +METHODDEF void +start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; + +  if (pass_mode != JBUF_CRANK_DEST) +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); + +  coef->iMCU_row_num = 0; +  start_iMCU_row(cinfo); +} + + +/* + * Process some data. + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) + * per call, ie, v_samp_factor block rows for each component in the scan. + * The data is obtained from the virtual arrays and fed to the entropy coder. + * Returns TRUE if the iMCU row is completed, FALSE if suspended. + * + * NB: input_buf is ignored; it is likely to be a NULL pointer. + */ + +METHODDEF boolean +compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION MCU_col_num;	/* index of current MCU within row */ +  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; +  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; +  int blkn, ci, xindex, yindex, yoffset, blockcnt; +  JDIMENSION start_col; +  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; +  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; +  JBLOCKROW buffer_ptr; +  jpeg_component_info *compptr; + +  /* Align the virtual buffers for the components used in this scan. */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    buffer[ci] = (*cinfo->mem->access_virt_barray) +      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], +       coef->iMCU_row_num * compptr->v_samp_factor, +       (JDIMENSION) compptr->v_samp_factor, FALSE); +  } + +  /* Loop to process one whole iMCU row */ +  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; +       yoffset++) { +    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; +	 MCU_col_num++) { +      /* Construct list of pointers to DCT blocks belonging to this MCU */ +      blkn = 0;			/* index of current DCT block within MCU */ +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +	compptr = cinfo->cur_comp_info[ci]; +	start_col = MCU_col_num * compptr->MCU_width; +	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width +						: compptr->last_col_width; +	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { +	  if (coef->iMCU_row_num < last_iMCU_row || +	      yindex+yoffset < compptr->last_row_height) { +	    /* Fill in pointers to real blocks in this row */ +	    buffer_ptr = buffer[ci][yindex+yoffset] + start_col; +	    for (xindex = 0; xindex < blockcnt; xindex++) +	      MCU_buffer[blkn++] = buffer_ptr++; +	  } else { +	    /* At bottom of image, need a whole row of dummy blocks */ +	    xindex = 0; +	  } +	  /* Fill in any dummy blocks needed in this row. +	   * Dummy blocks are filled in the same way as in jccoefct.c: +	   * all zeroes in the AC entries, DC entries equal to previous +	   * block's DC value.  The init routine has already zeroed the +	   * AC entries, so we need only set the DC entries correctly. +	   */ +	  for (; xindex < compptr->MCU_width; xindex++) { +	    MCU_buffer[blkn] = coef->dummy_buffer[blkn]; +	    MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0]; +	    blkn++; +	  } +	} +      } +      /* Try to write the MCU. */ +      if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { +	/* Suspension forced; update state counters and exit */ +	coef->MCU_vert_offset = yoffset; +	coef->mcu_ctr = MCU_col_num; +	return FALSE; +      } +    } +    /* Completed an MCU row, but perhaps not an iMCU row */ +    coef->mcu_ctr = 0; +  } +  /* Completed the iMCU row, advance counters for next one */ +  coef->iMCU_row_num++; +  start_iMCU_row(cinfo); +  return TRUE; +} + + +/* + * Initialize coefficient buffer controller. + * + * Each passed coefficient array must be the right size for that + * coefficient: width_in_blocks wide and height_in_blocks high, + * with unitheight at least v_samp_factor. + */ + +LOCAL void +transencode_coef_controller (j_compress_ptr cinfo, +			     jvirt_barray_ptr * coef_arrays) +{ +  my_coef_ptr coef; +  JBLOCKROW buffer; +  int i; + +  coef = (my_coef_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_coef_controller)); +  cinfo->coef = (struct jpeg_c_coef_controller *) coef; +  coef->pub.start_pass = start_pass_coef; +  coef->pub.compress_data = compress_output; + +  /* Save pointer to virtual arrays */ +  coef->whole_image = coef_arrays; + +  /* Allocate and pre-zero space for dummy DCT blocks. */ +  buffer = (JBLOCKROW) +    (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); +  jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); +  for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { +    coef->dummy_buffer[i] = buffer + i; +  } +} diff --git a/src/jpeg-6/jdapimin.c b/src/jpeg-6/jdapimin.c new file mode 100644 index 00000000..d5681876 --- /dev/null +++ b/src/jpeg-6/jdapimin.c @@ -0,0 +1,398 @@ +/* + * jdapimin.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains application interface code for the decompression half + * of the JPEG library.  These are the "minimum" API routines that may be + * needed in either the normal full-decompression case or the + * transcoding-only case. + * + * Most of the routines intended to be called directly by an application + * are in this file or in jdapistd.c.  But also see jcomapi.c for routines + * shared by compression and decompression, and jdtrans.c for the transcoding + * case. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * Initialization of a JPEG decompression object. + * The error manager must already be set up (in case memory manager fails). + */ + +GLOBAL void +jpeg_create_decompress (j_decompress_ptr cinfo) +{ +  int i; + +  /* For debugging purposes, zero the whole master structure. +   * But error manager pointer is already there, so save and restore it. +   */ +  { +    struct jpeg_error_mgr * err = cinfo->err; +    MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct)); +    cinfo->err = err; +  } +  cinfo->is_decompressor = TRUE; + +  /* Initialize a memory manager instance for this object */ +  jinit_memory_mgr((j_common_ptr) cinfo); + +  /* Zero out pointers to permanent structures. */ +  cinfo->progress = NULL; +  cinfo->src = NULL; + +  for (i = 0; i < NUM_QUANT_TBLS; i++) +    cinfo->quant_tbl_ptrs[i] = NULL; + +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    cinfo->dc_huff_tbl_ptrs[i] = NULL; +    cinfo->ac_huff_tbl_ptrs[i] = NULL; +  } + +  /* Initialize marker processor so application can override methods +   * for COM, APPn markers before calling jpeg_read_header. +   */ +  jinit_marker_reader(cinfo); + +  /* And initialize the overall input controller. */ +  jinit_input_controller(cinfo); + +  /* OK, I'm ready */ +  cinfo->global_state = DSTATE_START; +} + + +/* + * Destruction of a JPEG decompression object + */ + +GLOBAL void +jpeg_destroy_decompress (j_decompress_ptr cinfo) +{ +  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ +} + + +/* + * Abort processing of a JPEG decompression operation, + * but don't destroy the object itself. + */ + +GLOBAL void +jpeg_abort_decompress (j_decompress_ptr cinfo) +{ +  jpeg_abort((j_common_ptr) cinfo); /* use common routine */ +} + + +/* + * Install a special processing method for COM or APPn markers. + */ + +GLOBAL void +jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code, +			   jpeg_marker_parser_method routine) +{ +  if (marker_code == JPEG_COM) +    cinfo->marker->process_COM = routine; +  else if (marker_code >= JPEG_APP0 && marker_code <= JPEG_APP0+15) +    cinfo->marker->process_APPn[marker_code-JPEG_APP0] = routine; +  else +    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); +} + + +/* + * Set default decompression parameters. + */ + +LOCAL void +default_decompress_parms (j_decompress_ptr cinfo) +{ +  /* Guess the input colorspace, and set output colorspace accordingly. */ +  /* (Wish JPEG committee had provided a real way to specify this...) */ +  /* Note application may override our guesses. */ +  switch (cinfo->num_components) { +  case 1: +    cinfo->jpeg_color_space = JCS_GRAYSCALE; +    cinfo->out_color_space = JCS_GRAYSCALE; +    break; +     +  case 3: +    if (cinfo->saw_JFIF_marker) { +      cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ +    } else if (cinfo->saw_Adobe_marker) { +      switch (cinfo->Adobe_transform) { +      case 0: +	cinfo->jpeg_color_space = JCS_RGB; +	break; +      case 1: +	cinfo->jpeg_color_space = JCS_YCbCr; +	break; +      default: +	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); +	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ +	break; +      } +    } else { +      /* Saw no special markers, try to guess from the component IDs */ +      int cid0 = cinfo->comp_info[0].component_id; +      int cid1 = cinfo->comp_info[1].component_id; +      int cid2 = cinfo->comp_info[2].component_id; + +      if (cid0 == 1 && cid1 == 2 && cid2 == 3) +	cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ +      else if (cid0 == 82 && cid1 == 71 && cid2 == 66) +	cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ +      else { +	TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); +	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ +      } +    } +    /* Always guess RGB is proper output colorspace. */ +    cinfo->out_color_space = JCS_RGB; +    break; +     +  case 4: +    if (cinfo->saw_Adobe_marker) { +      switch (cinfo->Adobe_transform) { +      case 0: +	cinfo->jpeg_color_space = JCS_CMYK; +	break; +      case 2: +	cinfo->jpeg_color_space = JCS_YCCK; +	break; +      default: +	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); +	cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ +	break; +      } +    } else { +      /* No special markers, assume straight CMYK. */ +      cinfo->jpeg_color_space = JCS_CMYK; +    } +    cinfo->out_color_space = JCS_CMYK; +    break; +     +  default: +    cinfo->jpeg_color_space = JCS_UNKNOWN; +    cinfo->out_color_space = JCS_UNKNOWN; +    break; +  } + +  /* Set defaults for other decompression parameters. */ +  cinfo->scale_num = 1;		/* 1:1 scaling */ +  cinfo->scale_denom = 1; +  cinfo->output_gamma = 1.0; +  cinfo->buffered_image = FALSE; +  cinfo->raw_data_out = FALSE; +  cinfo->dct_method = JDCT_DEFAULT; +  cinfo->do_fancy_upsampling = TRUE; +  cinfo->do_block_smoothing = TRUE; +  cinfo->quantize_colors = FALSE; +  /* We set these in case application only sets quantize_colors. */ +  cinfo->dither_mode = JDITHER_FS; +#ifdef QUANT_2PASS_SUPPORTED +  cinfo->two_pass_quantize = TRUE; +#else +  cinfo->two_pass_quantize = FALSE; +#endif +  cinfo->desired_number_of_colors = 256; +  cinfo->colormap = NULL; +  /* Initialize for no mode change in buffered-image mode. */ +  cinfo->enable_1pass_quant = FALSE; +  cinfo->enable_external_quant = FALSE; +  cinfo->enable_2pass_quant = FALSE; +} + + +/* + * Decompression startup: read start of JPEG datastream to see what's there. + * Need only initialize JPEG object and supply a data source before calling. + * + * This routine will read as far as the first SOS marker (ie, actual start of + * compressed data), and will save all tables and parameters in the JPEG + * object.  It will also initialize the decompression parameters to default + * values, and finally return JPEG_HEADER_OK.  On return, the application may + * adjust the decompression parameters and then call jpeg_start_decompress. + * (Or, if the application only wanted to determine the image parameters, + * the data need not be decompressed.  In that case, call jpeg_abort or + * jpeg_destroy to release any temporary space.) + * If an abbreviated (tables only) datastream is presented, the routine will + * return JPEG_HEADER_TABLES_ONLY upon reaching EOI.  The application may then + * re-use the JPEG object to read the abbreviated image datastream(s). + * It is unnecessary (but OK) to call jpeg_abort in this case. + * The JPEG_SUSPENDED return code only occurs if the data source module + * requests suspension of the decompressor.  In this case the application + * should load more source data and then re-call jpeg_read_header to resume + * processing. + * If a non-suspending data source is used and require_image is TRUE, then the + * return code need not be inspected since only JPEG_HEADER_OK is possible. + * + * This routine is now just a front end to jpeg_consume_input, with some + * extra error checking. + */ + +GLOBAL int +jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) +{ +  int retcode; + +  if (cinfo->global_state != DSTATE_START && +      cinfo->global_state != DSTATE_INHEADER) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  retcode = jpeg_consume_input(cinfo); + +  switch (retcode) { +  case JPEG_REACHED_SOS: +    retcode = JPEG_HEADER_OK; +    break; +  case JPEG_REACHED_EOI: +    if (require_image)		/* Complain if application wanted an image */ +      ERREXIT(cinfo, JERR_NO_IMAGE); +    /* Reset to start state; it would be safer to require the application to +     * call jpeg_abort, but we can't change it now for compatibility reasons. +     * A side effect is to free any temporary memory (there shouldn't be any). +     */ +    jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ +    retcode = JPEG_HEADER_TABLES_ONLY; +    break; +  case JPEG_SUSPENDED: +    /* no work */ +    break; +  } + +  return retcode; +} + + +/* + * Consume data in advance of what the decompressor requires. + * This can be called at any time once the decompressor object has + * been created and a data source has been set up. + * + * This routine is essentially a state machine that handles a couple + * of critical state-transition actions, namely initial setup and + * transition from header scanning to ready-for-start_decompress. + * All the actual input is done via the input controller's consume_input + * method. + */ + +GLOBAL int +jpeg_consume_input (j_decompress_ptr cinfo) +{ +  int retcode = JPEG_SUSPENDED; + +  /* NB: every possible DSTATE value should be listed in this switch */ +  switch (cinfo->global_state) { +  case DSTATE_START: +    /* Start-of-datastream actions: reset appropriate modules */ +    (*cinfo->inputctl->reset_input_controller) (cinfo); +    /* Initialize application's data source module */ +    (*cinfo->src->init_source) (cinfo); +    cinfo->global_state = DSTATE_INHEADER; +    /*FALLTHROUGH*/ +  case DSTATE_INHEADER: +    retcode = (*cinfo->inputctl->consume_input) (cinfo); +    if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ +      /* Set up default parameters based on header data */ +      default_decompress_parms(cinfo); +      /* Set global state: ready for start_decompress */ +      cinfo->global_state = DSTATE_READY; +    } +    break; +  case DSTATE_READY: +    /* Can't advance past first SOS until start_decompress is called */ +    retcode = JPEG_REACHED_SOS; +    break; +  case DSTATE_PRELOAD: +  case DSTATE_PRESCAN: +  case DSTATE_SCANNING: +  case DSTATE_RAW_OK: +  case DSTATE_BUFIMAGE: +  case DSTATE_BUFPOST: +  case DSTATE_STOPPING: +    retcode = (*cinfo->inputctl->consume_input) (cinfo); +    break; +  default: +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  } +  return retcode; +} + + +/* + * Have we finished reading the input file? + */ + +GLOBAL boolean +jpeg_input_complete (j_decompress_ptr cinfo) +{ +  /* Check for valid jpeg object */ +  if (cinfo->global_state < DSTATE_START || +      cinfo->global_state > DSTATE_STOPPING) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  return cinfo->inputctl->eoi_reached; +} + + +/* + * Is there more than one scan? + */ + +GLOBAL boolean +jpeg_has_multiple_scans (j_decompress_ptr cinfo) +{ +  /* Only valid after jpeg_read_header completes */ +  if (cinfo->global_state < DSTATE_READY || +      cinfo->global_state > DSTATE_STOPPING) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  return cinfo->inputctl->has_multiple_scans; +} + + +/* + * Finish JPEG decompression. + * + * This will normally just verify the file trailer and release temp storage. + * + * Returns FALSE if suspended.  The return value need be inspected only if + * a suspending data source is used. + */ + +GLOBAL boolean +jpeg_finish_decompress (j_decompress_ptr cinfo) +{ +  if ((cinfo->global_state == DSTATE_SCANNING || +       cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { +    /* Terminate final pass of non-buffered mode */ +    if (cinfo->output_scanline < cinfo->output_height) +      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); +    (*cinfo->master->finish_output_pass) (cinfo); +    cinfo->global_state = DSTATE_STOPPING; +  } else if (cinfo->global_state == DSTATE_BUFIMAGE) { +    /* Finishing after a buffered-image operation */ +    cinfo->global_state = DSTATE_STOPPING; +  } else if (cinfo->global_state != DSTATE_STOPPING) { +    /* STOPPING = repeat call after a suspension, anything else is error */ +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  } +  /* Read until EOI */ +  while (! cinfo->inputctl->eoi_reached) { +    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) +      return FALSE;		/* Suspend, come back later */ +  } +  /* Do final cleanup */ +  (*cinfo->src->term_source) (cinfo); +  /* We can use jpeg_abort to release memory and reset global_state */ +  jpeg_abort((j_common_ptr) cinfo); +  return TRUE; +} diff --git a/src/jpeg-6/jdapistd.c b/src/jpeg-6/jdapistd.c new file mode 100644 index 00000000..e36f25c2 --- /dev/null +++ b/src/jpeg-6/jdapistd.c @@ -0,0 +1,275 @@ +/* + * jdapistd.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains application interface code for the decompression half + * of the JPEG library.  These are the "standard" API routines that are + * used in the normal full-decompression case.  They are not used by a + * transcoding-only application.  Note that if an application links in + * jpeg_start_decompress, it will end up linking in the entire decompressor. + * We thus must separate this file from jdapimin.c to avoid linking the + * whole decompression library into a transcoder. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Forward declarations */ +LOCAL boolean output_pass_setup JPP((j_decompress_ptr cinfo)); + + +/* + * Decompression initialization. + * jpeg_read_header must be completed before calling this. + * + * If a multipass operating mode was selected, this will do all but the + * last pass, and thus may take a great deal of time. + * + * Returns FALSE if suspended.  The return value need be inspected only if + * a suspending data source is used. + */ + +GLOBAL boolean +jpeg_start_decompress (j_decompress_ptr cinfo) +{ +  if (cinfo->global_state == DSTATE_READY) { +    /* First call: initialize master control, select active modules */ +    jinit_master_decompress(cinfo); +    if (cinfo->buffered_image) { +      /* No more work here; expecting jpeg_start_output next */ +      cinfo->global_state = DSTATE_BUFIMAGE; +      return TRUE; +    } +    cinfo->global_state = DSTATE_PRELOAD; +  } +  if (cinfo->global_state == DSTATE_PRELOAD) { +    /* If file has multiple scans, absorb them all into the coef buffer */ +    if (cinfo->inputctl->has_multiple_scans) { +#ifdef D_MULTISCAN_FILES_SUPPORTED +      for (;;) { +	int retcode; +	/* Call progress monitor hook if present */ +	if (cinfo->progress != NULL) +	  (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +	/* Absorb some more input */ +	retcode = (*cinfo->inputctl->consume_input) (cinfo); +	if (retcode == JPEG_SUSPENDED) +	  return FALSE; +	if (retcode == JPEG_REACHED_EOI) +	  break; +	/* Advance progress counter if appropriate */ +	if (cinfo->progress != NULL && +	    (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { +	  if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { +	    /* jdmaster underestimated number of scans; ratchet up one scan */ +	    cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; +	  } +	} +      } +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif /* D_MULTISCAN_FILES_SUPPORTED */ +    } +    cinfo->output_scan_number = cinfo->input_scan_number; +  } else if (cinfo->global_state != DSTATE_PRESCAN) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  /* Perform any dummy output passes, and set up for the final pass */ +  return output_pass_setup(cinfo); +} + + +/* + * Set up for an output pass, and perform any dummy pass(es) needed. + * Common subroutine for jpeg_start_decompress and jpeg_start_output. + * Entry: global_state = DSTATE_PRESCAN only if previously suspended. + * Exit: If done, returns TRUE and sets global_state for proper output mode. + *       If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. + */ + +LOCAL boolean +output_pass_setup (j_decompress_ptr cinfo) +{ +  if (cinfo->global_state != DSTATE_PRESCAN) { +    /* First call: do pass setup */ +    (*cinfo->master->prepare_for_output_pass) (cinfo); +    cinfo->output_scanline = 0; +    cinfo->global_state = DSTATE_PRESCAN; +  } +  /* Loop over any required dummy passes */ +  while (cinfo->master->is_dummy_pass) { +#ifdef QUANT_2PASS_SUPPORTED +    /* Crank through the dummy pass */ +    while (cinfo->output_scanline < cinfo->output_height) { +      JDIMENSION last_scanline; +      /* Call progress monitor hook if present */ +      if (cinfo->progress != NULL) { +	cinfo->progress->pass_counter = (long) cinfo->output_scanline; +	cinfo->progress->pass_limit = (long) cinfo->output_height; +	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +      } +      /* Process some data */ +      last_scanline = cinfo->output_scanline; +      (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, +				    &cinfo->output_scanline, (JDIMENSION) 0); +      if (cinfo->output_scanline == last_scanline) +	return FALSE;		/* No progress made, must suspend */ +    } +    /* Finish up dummy pass, and set up for another one */ +    (*cinfo->master->finish_output_pass) (cinfo); +    (*cinfo->master->prepare_for_output_pass) (cinfo); +    cinfo->output_scanline = 0; +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif /* QUANT_2PASS_SUPPORTED */ +  } +  /* Ready for application to drive output pass through +   * jpeg_read_scanlines or jpeg_read_raw_data. +   */ +  cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; +  return TRUE; +} + + +/* + * Read some scanlines of data from the JPEG decompressor. + * + * The return value will be the number of lines actually read. + * This may be less than the number requested in several cases, + * including bottom of image, data source suspension, and operating + * modes that emit multiple scanlines at a time. + * + * Note: we warn about excess calls to jpeg_read_scanlines() since + * this likely signals an application programmer error.  However, + * an oversize buffer (max_lines > scanlines remaining) is not an error. + */ + +GLOBAL JDIMENSION +jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, +		     JDIMENSION max_lines) +{ +  JDIMENSION row_ctr; + +  if (cinfo->global_state != DSTATE_SCANNING) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  if (cinfo->output_scanline >= cinfo->output_height) { +    WARNMS(cinfo, JWRN_TOO_MUCH_DATA); +    return 0; +  } + +  /* Call progress monitor hook if present */ +  if (cinfo->progress != NULL) { +    cinfo->progress->pass_counter = (long) cinfo->output_scanline; +    cinfo->progress->pass_limit = (long) cinfo->output_height; +    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +  } + +  /* Process some data */ +  row_ctr = 0; +  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); +  cinfo->output_scanline += row_ctr; +  return row_ctr; +} + + +/* + * Alternate entry point to read raw data. + * Processes exactly one iMCU row per call, unless suspended. + */ + +GLOBAL JDIMENSION +jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, +		    JDIMENSION max_lines) +{ +  JDIMENSION lines_per_iMCU_row; + +  if (cinfo->global_state != DSTATE_RAW_OK) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  if (cinfo->output_scanline >= cinfo->output_height) { +    WARNMS(cinfo, JWRN_TOO_MUCH_DATA); +    return 0; +  } + +  /* Call progress monitor hook if present */ +  if (cinfo->progress != NULL) { +    cinfo->progress->pass_counter = (long) cinfo->output_scanline; +    cinfo->progress->pass_limit = (long) cinfo->output_height; +    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +  } + +  /* Verify that at least one iMCU row can be returned. */ +  lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size; +  if (max_lines < lines_per_iMCU_row) +    ERREXIT(cinfo, JERR_BUFFER_SIZE); + +  /* Decompress directly into user's buffer. */ +  if (! (*cinfo->coef->decompress_data) (cinfo, data)) +    return 0;			/* suspension forced, can do nothing more */ + +  /* OK, we processed one iMCU row. */ +  cinfo->output_scanline += lines_per_iMCU_row; +  return lines_per_iMCU_row; +} + + +/* Additional entry points for buffered-image mode. */ + +#ifdef D_MULTISCAN_FILES_SUPPORTED + +/* + * Initialize for an output pass in buffered-image mode. + */ + +GLOBAL boolean +jpeg_start_output (j_decompress_ptr cinfo, int scan_number) +{ +  if (cinfo->global_state != DSTATE_BUFIMAGE && +      cinfo->global_state != DSTATE_PRESCAN) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  /* Limit scan number to valid range */ +  if (scan_number <= 0) +    scan_number = 1; +  if (cinfo->inputctl->eoi_reached && +      scan_number > cinfo->input_scan_number) +    scan_number = cinfo->input_scan_number; +  cinfo->output_scan_number = scan_number; +  /* Perform any dummy output passes, and set up for the real pass */ +  return output_pass_setup(cinfo); +} + + +/* + * Finish up after an output pass in buffered-image mode. + * + * Returns FALSE if suspended.  The return value need be inspected only if + * a suspending data source is used. + */ + +GLOBAL boolean +jpeg_finish_output (j_decompress_ptr cinfo) +{ +  if ((cinfo->global_state == DSTATE_SCANNING || +       cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { +    /* Terminate this pass. */ +    /* We do not require the whole pass to have been completed. */ +    (*cinfo->master->finish_output_pass) (cinfo); +    cinfo->global_state = DSTATE_BUFPOST; +  } else if (cinfo->global_state != DSTATE_BUFPOST) { +    /* BUFPOST = repeat call after a suspension, anything else is error */ +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  } +  /* Read markers looking for SOS or EOI */ +  while (cinfo->input_scan_number <= cinfo->output_scan_number && +	 ! cinfo->inputctl->eoi_reached) { +    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) +      return FALSE;		/* Suspend, come back later */ +  } +  cinfo->global_state = DSTATE_BUFIMAGE; +  return TRUE; +} + +#endif /* D_MULTISCAN_FILES_SUPPORTED */ diff --git a/src/jpeg-6/jdatadst.c b/src/jpeg-6/jdatadst.c new file mode 100644 index 00000000..08c4dafd --- /dev/null +++ b/src/jpeg-6/jdatadst.c @@ -0,0 +1,151 @@ +/* + * jdatadst.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains compression data destination routines for the case of + * emitting JPEG data to a file (or any stdio stream).  While these routines + * are sufficient for most applications, some will want to use a different + * destination manager. + * IMPORTANT: we assume that fwrite() will correctly transcribe an array of + * JOCTETs into 8-bit-wide elements on external storage.  If char is wider + * than 8 bits on your machine, you may need to do some tweaking. + */ + +/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ +#include "jinclude.h" +#include "jpeglib.h" +#include "jerror.h" + + +/* Expanded data destination object for stdio output */ + +typedef struct { +  struct jpeg_destination_mgr pub; /* public fields */ + +  FILE * outfile;		/* target stream */ +  JOCTET * buffer;		/* start of buffer */ +} my_destination_mgr; + +typedef my_destination_mgr * my_dest_ptr; + +#define OUTPUT_BUF_SIZE  4096	/* choose an efficiently fwrite'able size */ + + +/* + * Initialize destination --- called by jpeg_start_compress + * before any data is actually written. + */ + +METHODDEF void +init_destination (j_compress_ptr cinfo) +{ +  my_dest_ptr dest = (my_dest_ptr) cinfo->dest; + +  /* Allocate the output buffer --- it will be released when done with image */ +  dest->buffer = (JOCTET *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  OUTPUT_BUF_SIZE * SIZEOF(JOCTET)); + +  dest->pub.next_output_byte = dest->buffer; +  dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; +} + + +/* + * Empty the output buffer --- called whenever buffer fills up. + * + * In typical applications, this should write the entire output buffer + * (ignoring the current state of next_output_byte & free_in_buffer), + * reset the pointer & count to the start of the buffer, and return TRUE + * indicating that the buffer has been dumped. + * + * In applications that need to be able to suspend compression due to output + * overrun, a FALSE return indicates that the buffer cannot be emptied now. + * In this situation, the compressor will return to its caller (possibly with + * an indication that it has not accepted all the supplied scanlines).  The + * application should resume compression after it has made more room in the + * output buffer.  Note that there are substantial restrictions on the use of + * suspension --- see the documentation. + * + * When suspending, the compressor will back up to a convenient restart point + * (typically the start of the current MCU). next_output_byte & free_in_buffer + * indicate where the restart point will be if the current call returns FALSE. + * Data beyond this point will be regenerated after resumption, so do not + * write it out when emptying the buffer externally. + */ + +METHODDEF boolean +empty_output_buffer (j_compress_ptr cinfo) +{ +  my_dest_ptr dest = (my_dest_ptr) cinfo->dest; + +  if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != +      (size_t) OUTPUT_BUF_SIZE) +    ERREXIT(cinfo, JERR_FILE_WRITE); + +  dest->pub.next_output_byte = dest->buffer; +  dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; + +  return TRUE; +} + + +/* + * Terminate destination --- called by jpeg_finish_compress + * after all data has been written.  Usually needs to flush buffer. + * + * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding + * application must deal with any cleanup that should happen even + * for error exit. + */ + +METHODDEF void +term_destination (j_compress_ptr cinfo) +{ +  my_dest_ptr dest = (my_dest_ptr) cinfo->dest; +  size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; + +  /* Write any data remaining in the buffer */ +  if (datacount > 0) { +    if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) +      ERREXIT(cinfo, JERR_FILE_WRITE); +  } +  fflush(dest->outfile); +  /* Make sure we wrote the output file OK */ +  if (ferror(dest->outfile)) +    ERREXIT(cinfo, JERR_FILE_WRITE); +} + + +/* + * Prepare for output to a stdio stream. + * The caller must have already opened the stream, and is responsible + * for closing it after finishing compression. + */ + +GLOBAL void +jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile) +{ +  my_dest_ptr dest; + +  /* The destination object is made permanent so that multiple JPEG images +   * can be written to the same file without re-executing jpeg_stdio_dest. +   * This makes it dangerous to use this manager and a different destination +   * manager serially with the same JPEG object, because their private object +   * sizes may be different.  Caveat programmer. +   */ +  if (cinfo->dest == NULL) {	/* first time for this JPEG object? */ +    cinfo->dest = (struct jpeg_destination_mgr *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				  SIZEOF(my_destination_mgr)); +  } + +  dest = (my_dest_ptr) cinfo->dest; +  dest->pub.init_destination = init_destination; +  dest->pub.empty_output_buffer = empty_output_buffer; +  dest->pub.term_destination = term_destination; +  dest->outfile = outfile; +} diff --git a/src/jpeg-6/jdatasrc.c b/src/jpeg-6/jdatasrc.c new file mode 100644 index 00000000..0bf78660 --- /dev/null +++ b/src/jpeg-6/jdatasrc.c @@ -0,0 +1,204 @@ +/* + * jdatasrc.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains decompression data source routines for the case of + * reading JPEG data from a file (or any stdio stream).  While these routines + * are sufficient for most applications, some will want to use a different + * source manager. + * IMPORTANT: we assume that fread() will correctly transcribe an array of + * JOCTETs from 8-bit-wide elements on external storage.  If char is wider + * than 8 bits on your machine, you may need to do some tweaking. + */ + + +/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ +#include "jinclude.h" +#include "jpeglib.h" +#include "jerror.h" + + +/* Expanded data source object for stdio input */ + +typedef struct { +  struct jpeg_source_mgr pub;	/* public fields */ + +  unsigned char *infile;		/* source stream */ +  JOCTET * buffer;		/* start of buffer */ +  boolean start_of_file;	/* have we gotten any data yet? */ +} my_source_mgr; + +typedef my_source_mgr * my_src_ptr; + +#define INPUT_BUF_SIZE  4096	/* choose an efficiently fread'able size */ + + +/* + * Initialize source --- called by jpeg_read_header + * before any data is actually read. + */ + +METHODDEF void +init_source (j_decompress_ptr cinfo) +{ +  my_src_ptr src = (my_src_ptr) cinfo->src; + +  /* We reset the empty-input-file flag for each image, +   * but we don't clear the input buffer. +   * This is correct behavior for reading a series of images from one source. +   */ +  src->start_of_file = TRUE; +} + + +/* + * Fill the input buffer --- called whenever buffer is emptied. + * + * In typical applications, this should read fresh data into the buffer + * (ignoring the current state of next_input_byte & bytes_in_buffer), + * reset the pointer & count to the start of the buffer, and return TRUE + * indicating that the buffer has been reloaded.  It is not necessary to + * fill the buffer entirely, only to obtain at least one more byte. + * + * There is no such thing as an EOF return.  If the end of the file has been + * reached, the routine has a choice of ERREXIT() or inserting fake data into + * the buffer.  In most cases, generating a warning message and inserting a + * fake EOI marker is the best course of action --- this will allow the + * decompressor to output however much of the image is there.  However, + * the resulting error message is misleading if the real problem is an empty + * input file, so we handle that case specially. + * + * In applications that need to be able to suspend compression due to input + * not being available yet, a FALSE return indicates that no more data can be + * obtained right now, but more may be forthcoming later.  In this situation, + * the decompressor will return to its caller (with an indication of the + * number of scanlines it has read, if any).  The application should resume + * decompression after it has loaded more data into the input buffer.  Note + * that there are substantial restrictions on the use of suspension --- see + * the documentation. + * + * When suspending, the decompressor will back up to a convenient restart point + * (typically the start of the current MCU). next_input_byte & bytes_in_buffer + * indicate where the restart point will be if the current call returns FALSE. + * Data beyond this point must be rescanned after resumption, so move it to + * the front of the buffer rather than discarding it. + */ + +METHODDEF boolean +fill_input_buffer (j_decompress_ptr cinfo) +{ +  my_src_ptr src = (my_src_ptr) cinfo->src; + +  memcpy( src->buffer, src->infile, INPUT_BUF_SIZE ); + +  src->infile += INPUT_BUF_SIZE; + +  src->pub.next_input_byte = src->buffer; +  src->pub.bytes_in_buffer = INPUT_BUF_SIZE; +  src->start_of_file = FALSE; + +  return TRUE; +} + + +/* + * Skip data --- used to skip over a potentially large amount of + * uninteresting data (such as an APPn marker). + * + * Writers of suspendable-input applications must note that skip_input_data + * is not granted the right to give a suspension return.  If the skip extends + * beyond the data currently in the buffer, the buffer can be marked empty so + * that the next read will cause a fill_input_buffer call that can suspend. + * Arranging for additional bytes to be discarded before reloading the input + * buffer is the application writer's problem. + */ + +METHODDEF void +skip_input_data (j_decompress_ptr cinfo, long num_bytes) +{ +  my_src_ptr src = (my_src_ptr) cinfo->src; + +  /* Just a dumb implementation for now.  Could use fseek() except +   * it doesn't work on pipes.  Not clear that being smart is worth +   * any trouble anyway --- large skips are infrequent. +   */ +  if (num_bytes > 0) { +    while (num_bytes > (long) src->pub.bytes_in_buffer) { +      num_bytes -= (long) src->pub.bytes_in_buffer; +      (void) fill_input_buffer(cinfo); +      /* note we assume that fill_input_buffer will never return FALSE, +       * so suspension need not be handled. +       */ +    } +    src->pub.next_input_byte += (size_t) num_bytes; +    src->pub.bytes_in_buffer -= (size_t) num_bytes; +  } +} + + +/* + * An additional method that can be provided by data source modules is the + * resync_to_restart method for error recovery in the presence of RST markers. + * For the moment, this source module just uses the default resync method + * provided by the JPEG library.  That method assumes that no backtracking + * is possible. + */ + + +/* + * Terminate source --- called by jpeg_finish_decompress + * after all data has been read.  Often a no-op. + * + * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding + * application must deal with any cleanup that should happen even + * for error exit. + */ + +METHODDEF void +term_source (j_decompress_ptr cinfo) +{ +  /* no work necessary here */ +} + + +/* + * Prepare for input from a stdio stream. + * The caller must have already opened the stream, and is responsible + * for closing it after finishing decompression. + */ + +GLOBAL void +jpeg_stdio_src (j_decompress_ptr cinfo, unsigned char *infile) +{ +  my_src_ptr src; + +  /* The source object and input buffer are made permanent so that a series +   * of JPEG images can be read from the same file by calling jpeg_stdio_src +   * only before the first one.  (If we discarded the buffer at the end of +   * one image, we'd likely lose the start of the next one.) +   * This makes it unsafe to use this manager and a different source +   * manager serially with the same JPEG object.  Caveat programmer. +   */ +  if (cinfo->src == NULL) {	/* first time for this JPEG object? */ +    cinfo->src = (struct jpeg_source_mgr *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				  SIZEOF(my_source_mgr)); +    src = (my_src_ptr) cinfo->src; +    src->buffer = (JOCTET *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				  INPUT_BUF_SIZE * SIZEOF(JOCTET)); +  } + +  src = (my_src_ptr) cinfo->src; +  src->pub.init_source = init_source; +  src->pub.fill_input_buffer = fill_input_buffer; +  src->pub.skip_input_data = skip_input_data; +  src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ +  src->pub.term_source = term_source; +  src->infile = infile; +  src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ +  src->pub.next_input_byte = NULL; /* until buffer loaded */ +} diff --git a/src/jpeg-6/jdcoefct.c b/src/jpeg-6/jdcoefct.c new file mode 100644 index 00000000..ba153f5b --- /dev/null +++ b/src/jpeg-6/jdcoefct.c @@ -0,0 +1,725 @@ +/* + * jdcoefct.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the coefficient buffer controller for decompression. + * This controller is the top level of the JPEG decompressor proper. + * The coefficient buffer lies between entropy decoding and inverse-DCT steps. + * + * In buffered-image mode, this controller is the interface between + * input-oriented processing and output-oriented processing. + * Also, the input side (only) is used when reading a file for transcoding. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + +/* Block smoothing is only applicable for progressive JPEG, so: */ +#ifndef D_PROGRESSIVE_SUPPORTED +#undef BLOCK_SMOOTHING_SUPPORTED +#endif + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_d_coef_controller pub; /* public fields */ + +  /* These variables keep track of the current location of the input side. */ +  /* cinfo->input_iMCU_row is also used for this. */ +  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */ +  int MCU_vert_offset;		/* counts MCU rows within iMCU row */ +  int MCU_rows_per_iMCU_row;	/* number of such rows needed */ + +  /* The output side's location is represented by cinfo->output_iMCU_row. */ + +  /* In single-pass modes, it's sufficient to buffer just one MCU. +   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, +   * and let the entropy decoder write into that workspace each time. +   * (On 80x86, the workspace is FAR even though it's not really very big; +   * this is to keep the module interfaces unchanged when a large coefficient +   * buffer is necessary.) +   * In multi-pass modes, this array points to the current MCU's blocks +   * within the virtual arrays; it is used only by the input side. +   */ +  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; + +#ifdef D_MULTISCAN_FILES_SUPPORTED +  /* In multi-pass modes, we need a virtual block array for each component. */ +  jvirt_barray_ptr whole_image[MAX_COMPONENTS]; +#endif + +#ifdef BLOCK_SMOOTHING_SUPPORTED +  /* When doing block smoothing, we latch coefficient Al values here */ +  int * coef_bits_latch; +#define SAVED_COEFS  6		/* we save coef_bits[0..5] */ +#endif +} my_coef_controller; + +typedef my_coef_controller * my_coef_ptr; + +/* Forward declarations */ +METHODDEF int decompress_onepass +	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); +#ifdef D_MULTISCAN_FILES_SUPPORTED +METHODDEF int decompress_data +	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); +#endif +#ifdef BLOCK_SMOOTHING_SUPPORTED +LOCAL boolean smoothing_ok JPP((j_decompress_ptr cinfo)); +METHODDEF int decompress_smooth_data +	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); +#endif + + +LOCAL void +start_iMCU_row (j_decompress_ptr cinfo) +/* Reset within-iMCU-row counters for a new row (input side) */ +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; + +  /* In an interleaved scan, an MCU row is the same as an iMCU row. +   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. +   * But at the bottom of the image, process only what's left. +   */ +  if (cinfo->comps_in_scan > 1) { +    coef->MCU_rows_per_iMCU_row = 1; +  } else { +    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) +      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; +    else +      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; +  } + +  coef->MCU_ctr = 0; +  coef->MCU_vert_offset = 0; +} + + +/* + * Initialize for an input processing pass. + */ + +METHODDEF void +start_input_pass (j_decompress_ptr cinfo) +{ +  cinfo->input_iMCU_row = 0; +  start_iMCU_row(cinfo); +} + + +/* + * Initialize for an output processing pass. + */ + +METHODDEF void +start_output_pass (j_decompress_ptr cinfo) +{ +#ifdef BLOCK_SMOOTHING_SUPPORTED +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; + +  /* If multipass, check to see whether to use block smoothing on this pass */ +  if (coef->pub.coef_arrays != NULL) { +    if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) +      coef->pub.decompress_data = decompress_smooth_data; +    else +      coef->pub.decompress_data = decompress_data; +  } +#endif +  cinfo->output_iMCU_row = 0; +} + + +/* + * Decompress and return some data in the single-pass case. + * Always attempts to emit one fully interleaved MCU row ("iMCU" row). + * Input and output must run in lockstep since we have only a one-MCU buffer. + * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. + * + * NB: output_buf contains a plane for each component in image. + * For single pass, this is the same as the components in the scan. + */ + +METHODDEF int +decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION MCU_col_num;	/* index of current MCU within row */ +  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; +  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; +  int blkn, ci, xindex, yindex, yoffset, useful_width; +  JSAMPARRAY output_ptr; +  JDIMENSION start_col, output_col; +  jpeg_component_info *compptr; +  inverse_DCT_method_ptr inverse_DCT; + +  /* Loop to process as much as one whole iMCU row */ +  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; +       yoffset++) { +    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; +	 MCU_col_num++) { +      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */ +      jzero_far((void FAR *) coef->MCU_buffer[0], +		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); +      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { +	/* Suspension forced; update state counters and exit */ +	coef->MCU_vert_offset = yoffset; +	coef->MCU_ctr = MCU_col_num; +	return JPEG_SUSPENDED; +      } +      /* Determine where data should go in output_buf and do the IDCT thing. +       * We skip dummy blocks at the right and bottom edges (but blkn gets +       * incremented past them!).  Note the inner loop relies on having +       * allocated the MCU_buffer[] blocks sequentially. +       */ +      blkn = 0;			/* index of current DCT block within MCU */ +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +	compptr = cinfo->cur_comp_info[ci]; +	/* Don't bother to IDCT an uninteresting component. */ +	if (! compptr->component_needed) { +	  blkn += compptr->MCU_blocks; +	  continue; +	} +	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; +	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width +						    : compptr->last_col_width; +	output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size; +	start_col = MCU_col_num * compptr->MCU_sample_width; +	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { +	  if (cinfo->input_iMCU_row < last_iMCU_row || +	      yoffset+yindex < compptr->last_row_height) { +	    output_col = start_col; +	    for (xindex = 0; xindex < useful_width; xindex++) { +	      (*inverse_DCT) (cinfo, compptr, +			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex], +			      output_ptr, output_col); +	      output_col += compptr->DCT_scaled_size; +	    } +	  } +	  blkn += compptr->MCU_width; +	  output_ptr += compptr->DCT_scaled_size; +	} +      } +    } +    /* Completed an MCU row, but perhaps not an iMCU row */ +    coef->MCU_ctr = 0; +  } +  /* Completed the iMCU row, advance counters for next one */ +  cinfo->output_iMCU_row++; +  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { +    start_iMCU_row(cinfo); +    return JPEG_ROW_COMPLETED; +  } +  /* Completed the scan */ +  (*cinfo->inputctl->finish_input_pass) (cinfo); +  return JPEG_SCAN_COMPLETED; +} + + +/* + * Dummy consume-input routine for single-pass operation. + */ + +METHODDEF int +dummy_consume_data (j_decompress_ptr cinfo) +{ +  return JPEG_SUSPENDED;	/* Always indicate nothing was done */ +} + + +#ifdef D_MULTISCAN_FILES_SUPPORTED + +/* + * Consume input data and store it in the full-image coefficient buffer. + * We read as much as one fully interleaved MCU row ("iMCU" row) per call, + * ie, v_samp_factor block rows for each component in the scan. + * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. + */ + +METHODDEF int +consume_data (j_decompress_ptr cinfo) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION MCU_col_num;	/* index of current MCU within row */ +  int blkn, ci, xindex, yindex, yoffset; +  JDIMENSION start_col; +  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; +  JBLOCKROW buffer_ptr; +  jpeg_component_info *compptr; + +  /* Align the virtual buffers for the components used in this scan. */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    buffer[ci] = (*cinfo->mem->access_virt_barray) +      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], +       cinfo->input_iMCU_row * compptr->v_samp_factor, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +    /* Note: entropy decoder expects buffer to be zeroed, +     * but this is handled automatically by the memory manager +     * because we requested a pre-zeroed array. +     */ +  } + +  /* Loop to process one whole iMCU row */ +  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; +       yoffset++) { +    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; +	 MCU_col_num++) { +      /* Construct list of pointers to DCT blocks belonging to this MCU */ +      blkn = 0;			/* index of current DCT block within MCU */ +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +	compptr = cinfo->cur_comp_info[ci]; +	start_col = MCU_col_num * compptr->MCU_width; +	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { +	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col; +	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) { +	    coef->MCU_buffer[blkn++] = buffer_ptr++; +	  } +	} +      } +      /* Try to fetch the MCU. */ +      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { +	/* Suspension forced; update state counters and exit */ +	coef->MCU_vert_offset = yoffset; +	coef->MCU_ctr = MCU_col_num; +	return JPEG_SUSPENDED; +      } +    } +    /* Completed an MCU row, but perhaps not an iMCU row */ +    coef->MCU_ctr = 0; +  } +  /* Completed the iMCU row, advance counters for next one */ +  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { +    start_iMCU_row(cinfo); +    return JPEG_ROW_COMPLETED; +  } +  /* Completed the scan */ +  (*cinfo->inputctl->finish_input_pass) (cinfo); +  return JPEG_SCAN_COMPLETED; +} + + +/* + * Decompress and return some data in the multi-pass case. + * Always attempts to emit one fully interleaved MCU row ("iMCU" row). + * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. + * + * NB: output_buf contains a plane for each component in image. + */ + +METHODDEF int +decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; +  JDIMENSION block_num; +  int ci, block_row, block_rows; +  JBLOCKARRAY buffer; +  JBLOCKROW buffer_ptr; +  JSAMPARRAY output_ptr; +  JDIMENSION output_col; +  jpeg_component_info *compptr; +  inverse_DCT_method_ptr inverse_DCT; + +  /* Force some input to be done if we are getting ahead of the input. */ +  while (cinfo->input_scan_number < cinfo->output_scan_number || +	 (cinfo->input_scan_number == cinfo->output_scan_number && +	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { +    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) +      return JPEG_SUSPENDED; +  } + +  /* OK, output from the virtual arrays. */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Don't bother to IDCT an uninteresting component. */ +    if (! compptr->component_needed) +      continue; +    /* Align the virtual buffer for this component. */ +    buffer = (*cinfo->mem->access_virt_barray) +      ((j_common_ptr) cinfo, coef->whole_image[ci], +       cinfo->output_iMCU_row * compptr->v_samp_factor, +       (JDIMENSION) compptr->v_samp_factor, FALSE); +    /* Count non-dummy DCT block rows in this iMCU row. */ +    if (cinfo->output_iMCU_row < last_iMCU_row) +      block_rows = compptr->v_samp_factor; +    else { +      /* NB: can't use last_row_height here; it is input-side-dependent! */ +      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); +      if (block_rows == 0) block_rows = compptr->v_samp_factor; +    } +    inverse_DCT = cinfo->idct->inverse_DCT[ci]; +    output_ptr = output_buf[ci]; +    /* Loop over all DCT blocks to be processed. */ +    for (block_row = 0; block_row < block_rows; block_row++) { +      buffer_ptr = buffer[block_row]; +      output_col = 0; +      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { +	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, +			output_ptr, output_col); +	buffer_ptr++; +	output_col += compptr->DCT_scaled_size; +      } +      output_ptr += compptr->DCT_scaled_size; +    } +  } + +  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) +    return JPEG_ROW_COMPLETED; +  return JPEG_SCAN_COMPLETED; +} + +#endif /* D_MULTISCAN_FILES_SUPPORTED */ + + +#ifdef BLOCK_SMOOTHING_SUPPORTED + +/* + * This code applies interblock smoothing as described by section K.8 + * of the JPEG standard: the first 5 AC coefficients are estimated from + * the DC values of a DCT block and its 8 neighboring blocks. + * We apply smoothing only for progressive JPEG decoding, and only if + * the coefficients it can estimate are not yet known to full precision. + */ + +/* + * Determine whether block smoothing is applicable and safe. + * We also latch the current states of the coef_bits[] entries for the + * AC coefficients; otherwise, if the input side of the decompressor + * advances into a new scan, we might think the coefficients are known + * more accurately than they really are. + */ + +LOCAL boolean +smoothing_ok (j_decompress_ptr cinfo) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  boolean smoothing_useful = FALSE; +  int ci, coefi; +  jpeg_component_info *compptr; +  JQUANT_TBL * qtable; +  int * coef_bits; +  int * coef_bits_latch; + +  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) +    return FALSE; + +  /* Allocate latch area if not already done */ +  if (coef->coef_bits_latch == NULL) +    coef->coef_bits_latch = (int *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  cinfo->num_components * +				  (SAVED_COEFS * SIZEOF(int))); +  coef_bits_latch = coef->coef_bits_latch; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* All components' quantization values must already be latched. */ +    if ((qtable = compptr->quant_table) == NULL) +      return FALSE; +    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ +    for (coefi = 0; coefi <= 5; coefi++) { +      if (qtable->quantval[coefi] == 0) +	return FALSE; +    } +    /* DC values must be at least partly known for all components. */ +    coef_bits = cinfo->coef_bits[ci]; +    if (coef_bits[0] < 0) +      return FALSE; +    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ +    for (coefi = 1; coefi <= 5; coefi++) { +      coef_bits_latch[coefi] = coef_bits[coefi]; +      if (coef_bits[coefi] != 0) +	smoothing_useful = TRUE; +    } +    coef_bits_latch += SAVED_COEFS; +  } + +  return smoothing_useful; +} + + +/* + * Variant of decompress_data for use when doing block smoothing. + */ + +METHODDEF int +decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) +{ +  my_coef_ptr coef = (my_coef_ptr) cinfo->coef; +  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; +  JDIMENSION block_num, last_block_column; +  int ci, block_row, block_rows, access_rows; +  JBLOCKARRAY buffer; +  JBLOCKROW buffer_ptr, prev_block_row, next_block_row; +  JSAMPARRAY output_ptr; +  JDIMENSION output_col; +  jpeg_component_info *compptr; +  inverse_DCT_method_ptr inverse_DCT; +  boolean first_row, last_row; +  JBLOCK workspace; +  int *coef_bits; +  JQUANT_TBL *quanttbl; +  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; +  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; +  int Al, pred; + +  /* Force some input to be done if we are getting ahead of the input. */ +  while (cinfo->input_scan_number <= cinfo->output_scan_number && +	 ! cinfo->inputctl->eoi_reached) { +    if (cinfo->input_scan_number == cinfo->output_scan_number) { +      /* If input is working on current scan, we ordinarily want it to +       * have completed the current row.  But if input scan is DC, +       * we want it to keep one row ahead so that next block row's DC +       * values are up to date. +       */ +      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; +      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) +	break; +    } +    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) +      return JPEG_SUSPENDED; +  } + +  /* OK, output from the virtual arrays. */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Don't bother to IDCT an uninteresting component. */ +    if (! compptr->component_needed) +      continue; +    /* Count non-dummy DCT block rows in this iMCU row. */ +    if (cinfo->output_iMCU_row < last_iMCU_row) { +      block_rows = compptr->v_samp_factor; +      access_rows = block_rows * 2; /* this and next iMCU row */ +      last_row = FALSE; +    } else { +      /* NB: can't use last_row_height here; it is input-side-dependent! */ +      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); +      if (block_rows == 0) block_rows = compptr->v_samp_factor; +      access_rows = block_rows; /* this iMCU row only */ +      last_row = TRUE; +    } +    /* Align the virtual buffer for this component. */ +    if (cinfo->output_iMCU_row > 0) { +      access_rows += compptr->v_samp_factor; /* prior iMCU row too */ +      buffer = (*cinfo->mem->access_virt_barray) +	((j_common_ptr) cinfo, coef->whole_image[ci], +	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, +	 (JDIMENSION) access_rows, FALSE); +      buffer += compptr->v_samp_factor;	/* point to current iMCU row */ +      first_row = FALSE; +    } else { +      buffer = (*cinfo->mem->access_virt_barray) +	((j_common_ptr) cinfo, coef->whole_image[ci], +	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); +      first_row = TRUE; +    } +    /* Fetch component-dependent info */ +    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); +    quanttbl = compptr->quant_table; +    Q00 = quanttbl->quantval[0]; +    Q01 = quanttbl->quantval[1]; +    Q10 = quanttbl->quantval[2]; +    Q20 = quanttbl->quantval[3]; +    Q11 = quanttbl->quantval[4]; +    Q02 = quanttbl->quantval[5]; +    inverse_DCT = cinfo->idct->inverse_DCT[ci]; +    output_ptr = output_buf[ci]; +    /* Loop over all DCT blocks to be processed. */ +    for (block_row = 0; block_row < block_rows; block_row++) { +      buffer_ptr = buffer[block_row]; +      if (first_row && block_row == 0) +	prev_block_row = buffer_ptr; +      else +	prev_block_row = buffer[block_row-1]; +      if (last_row && block_row == block_rows-1) +	next_block_row = buffer_ptr; +      else +	next_block_row = buffer[block_row+1]; +      /* We fetch the surrounding DC values using a sliding-register approach. +       * Initialize all nine here so as to do the right thing on narrow pics. +       */ +      DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; +      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; +      DC7 = DC8 = DC9 = (int) next_block_row[0][0]; +      output_col = 0; +      last_block_column = compptr->width_in_blocks - 1; +      for (block_num = 0; block_num <= last_block_column; block_num++) { +	/* Fetch current DCT block into workspace so we can modify it. */ +	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); +	/* Update DC values */ +	if (block_num < last_block_column) { +	  DC3 = (int) prev_block_row[1][0]; +	  DC6 = (int) buffer_ptr[1][0]; +	  DC9 = (int) next_block_row[1][0]; +	} +	/* Compute coefficient estimates per K.8. +	 * An estimate is applied only if coefficient is still zero, +	 * and is not known to be fully accurate. +	 */ +	/* AC01 */ +	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { +	  num = 36 * Q00 * (DC4 - DC6); +	  if (num >= 0) { +	    pred = (int) (((Q01<<7) + num) / (Q01<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	  } else { +	    pred = (int) (((Q01<<7) - num) / (Q01<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	    pred = -pred; +	  } +	  workspace[1] = (JCOEF) pred; +	} +	/* AC10 */ +	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { +	  num = 36 * Q00 * (DC2 - DC8); +	  if (num >= 0) { +	    pred = (int) (((Q10<<7) + num) / (Q10<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	  } else { +	    pred = (int) (((Q10<<7) - num) / (Q10<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	    pred = -pred; +	  } +	  workspace[8] = (JCOEF) pred; +	} +	/* AC20 */ +	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { +	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5); +	  if (num >= 0) { +	    pred = (int) (((Q20<<7) + num) / (Q20<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	  } else { +	    pred = (int) (((Q20<<7) - num) / (Q20<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	    pred = -pred; +	  } +	  workspace[16] = (JCOEF) pred; +	} +	/* AC11 */ +	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { +	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); +	  if (num >= 0) { +	    pred = (int) (((Q11<<7) + num) / (Q11<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	  } else { +	    pred = (int) (((Q11<<7) - num) / (Q11<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	    pred = -pred; +	  } +	  workspace[9] = (JCOEF) pred; +	} +	/* AC02 */ +	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { +	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5); +	  if (num >= 0) { +	    pred = (int) (((Q02<<7) + num) / (Q02<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	  } else { +	    pred = (int) (((Q02<<7) - num) / (Q02<<8)); +	    if (Al > 0 && pred >= (1<<Al)) +	      pred = (1<<Al)-1; +	    pred = -pred; +	  } +	  workspace[2] = (JCOEF) pred; +	} +	/* OK, do the IDCT */ +	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, +			output_ptr, output_col); +	/* Advance for next column */ +	DC1 = DC2; DC2 = DC3; +	DC4 = DC5; DC5 = DC6; +	DC7 = DC8; DC8 = DC9; +	buffer_ptr++, prev_block_row++, next_block_row++; +	output_col += compptr->DCT_scaled_size; +      } +      output_ptr += compptr->DCT_scaled_size; +    } +  } + +  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) +    return JPEG_ROW_COMPLETED; +  return JPEG_SCAN_COMPLETED; +} + +#endif /* BLOCK_SMOOTHING_SUPPORTED */ + + +/* + * Initialize coefficient buffer controller. + */ + +GLOBAL void +jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) +{ +  my_coef_ptr coef; + +  coef = (my_coef_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_coef_controller)); +  cinfo->coef = (struct jpeg_d_coef_controller *) coef; +  coef->pub.start_input_pass = start_input_pass; +  coef->pub.start_output_pass = start_output_pass; +#ifdef BLOCK_SMOOTHING_SUPPORTED +  coef->coef_bits_latch = NULL; +#endif + +  /* Create the coefficient buffer. */ +  if (need_full_buffer) { +#ifdef D_MULTISCAN_FILES_SUPPORTED +    /* Allocate a full-image virtual array for each component, */ +    /* padded to a multiple of samp_factor DCT blocks in each direction. */ +    /* Note we ask for a pre-zeroed array. */ +    int ci, access_rows; +    jpeg_component_info *compptr; + +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      access_rows = compptr->v_samp_factor; +#ifdef BLOCK_SMOOTHING_SUPPORTED +      /* If block smoothing could be used, need a bigger window */ +      if (cinfo->progressive_mode) +	access_rows *= 3; +#endif +      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, +	 (JDIMENSION) jround_up((long) compptr->width_in_blocks, +				(long) compptr->h_samp_factor), +	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, +				(long) compptr->v_samp_factor), +	 (JDIMENSION) access_rows); +    } +    coef->pub.consume_data = consume_data; +    coef->pub.decompress_data = decompress_data; +    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +  } else { +    /* We only need a single-MCU buffer. */ +    JBLOCKROW buffer; +    int i; + +    buffer = (JBLOCKROW) +      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); +    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { +      coef->MCU_buffer[i] = buffer + i; +    } +    coef->pub.consume_data = dummy_consume_data; +    coef->pub.decompress_data = decompress_onepass; +    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ +  } +} diff --git a/src/jpeg-6/jdcolor.c b/src/jpeg-6/jdcolor.c new file mode 100644 index 00000000..b2bdf6ee --- /dev/null +++ b/src/jpeg-6/jdcolor.c @@ -0,0 +1,367 @@ +/* + * jdcolor.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains output colorspace conversion routines. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Private subobject */ + +typedef struct { +  struct jpeg_color_deconverter pub; /* public fields */ + +  /* Private state for YCC->RGB conversion */ +  int * Cr_r_tab;		/* => table for Cr to R conversion */ +  int * Cb_b_tab;		/* => table for Cb to B conversion */ +  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */ +  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */ +} my_color_deconverter; + +typedef my_color_deconverter * my_cconvert_ptr; + + +/**************** YCbCr -> RGB conversion: most common case **************/ + +/* + * YCbCr is defined per CCIR 601-1, except that Cb and Cr are + * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. + * The conversion equations to be implemented are therefore + *	R = Y                + 1.40200 * Cr + *	G = Y - 0.34414 * Cb - 0.71414 * Cr + *	B = Y + 1.77200 * Cb + * where Cb and Cr represent the incoming values less CENTERJSAMPLE. + * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) + * + * To avoid floating-point arithmetic, we represent the fractional constants + * as integers scaled up by 2^16 (about 4 digits precision); we have to divide + * the products by 2^16, with appropriate rounding, to get the correct answer. + * Notice that Y, being an integral input, does not contribute any fraction + * so it need not participate in the rounding. + * + * For even more speed, we avoid doing any multiplications in the inner loop + * by precalculating the constants times Cb and Cr for all possible values. + * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); + * for 12-bit samples it is still acceptable.  It's not very reasonable for + * 16-bit samples, but if you want lossless storage you shouldn't be changing + * colorspace anyway. + * The Cr=>R and Cb=>B values can be rounded to integers in advance; the + * values for the G calculation are left scaled up, since we must add them + * together before rounding. + */ + +#define SCALEBITS	16	/* speediest right-shift on some machines */ +#define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) +#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) + + +/* + * Initialize tables for YCC->RGB colorspace conversion. + */ + +LOCAL void +build_ycc_rgb_table (j_decompress_ptr cinfo) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  int i; +  INT32 x; +  SHIFT_TEMPS + +  cconvert->Cr_r_tab = (int *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(int)); +  cconvert->Cb_b_tab = (int *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(int)); +  cconvert->Cr_g_tab = (INT32 *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(INT32)); +  cconvert->Cb_g_tab = (INT32 *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(INT32)); + +  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { +    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ +    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ +    /* Cr=>R value is nearest int to 1.40200 * x */ +    cconvert->Cr_r_tab[i] = (int) +		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); +    /* Cb=>B value is nearest int to 1.77200 * x */ +    cconvert->Cb_b_tab[i] = (int) +		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); +    /* Cr=>G value is scaled-up -0.71414 * x */ +    cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; +    /* Cb=>G value is scaled-up -0.34414 * x */ +    /* We also add in ONE_HALF so that need not do it in inner loop */ +    cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; +  } +} + + +/* + * Convert some rows of samples to the output colorspace. + * + * Note that we change from noninterleaved, one-plane-per-component format + * to interleaved-pixel format.  The output buffer is therefore three times + * as wide as the input buffer. + * A starting row offset is provided only for the input buffer.  The caller + * can easily adjust the passed output_buf value to accommodate any row + * offset required on that side. + */ + +METHODDEF void +ycc_rgb_convert (j_decompress_ptr cinfo, +		 JSAMPIMAGE input_buf, JDIMENSION input_row, +		 JSAMPARRAY output_buf, int num_rows) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  register int y, cb, cr; +  register JSAMPROW outptr; +  register JSAMPROW inptr0, inptr1, inptr2; +  register JDIMENSION col; +  JDIMENSION num_cols = cinfo->output_width; +  /* copy these pointers into registers if possible */ +  register JSAMPLE * range_limit = cinfo->sample_range_limit; +  register int * Crrtab = cconvert->Cr_r_tab; +  register int * Cbbtab = cconvert->Cb_b_tab; +  register INT32 * Crgtab = cconvert->Cr_g_tab; +  register INT32 * Cbgtab = cconvert->Cb_g_tab; +  SHIFT_TEMPS + +  while (--num_rows >= 0) { +    inptr0 = input_buf[0][input_row]; +    inptr1 = input_buf[1][input_row]; +    inptr2 = input_buf[2][input_row]; +    input_row++; +    outptr = *output_buf++; +    for (col = 0; col < num_cols; col++) { +      y  = GETJSAMPLE(inptr0[col]); +      cb = GETJSAMPLE(inptr1[col]); +      cr = GETJSAMPLE(inptr2[col]); +      /* Range-limiting is essential due to noise introduced by DCT losses. */ +      outptr[RGB_RED] =   range_limit[y + Crrtab[cr]]; +      outptr[RGB_GREEN] = range_limit[y + +			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], +						 SCALEBITS))]; +      outptr[RGB_BLUE] =  range_limit[y + Cbbtab[cb]]; +      outptr += RGB_PIXELSIZE; +    } +  } +} + + +/**************** Cases other than YCbCr -> RGB **************/ + + +/* + * Color conversion for no colorspace change: just copy the data, + * converting from separate-planes to interleaved representation. + */ + +METHODDEF void +null_convert (j_decompress_ptr cinfo, +	      JSAMPIMAGE input_buf, JDIMENSION input_row, +	      JSAMPARRAY output_buf, int num_rows) +{ +  register JSAMPROW inptr, outptr; +  register JDIMENSION count; +  register int num_components = cinfo->num_components; +  JDIMENSION num_cols = cinfo->output_width; +  int ci; + +  while (--num_rows >= 0) { +    for (ci = 0; ci < num_components; ci++) { +      inptr = input_buf[ci][input_row]; +      outptr = output_buf[0] + ci; +      for (count = num_cols; count > 0; count--) { +	*outptr = *inptr++;	/* needn't bother with GETJSAMPLE() here */ +	outptr += num_components; +      } +    } +    input_row++; +    output_buf++; +  } +} + + +/* + * Color conversion for grayscale: just copy the data. + * This also works for YCbCr -> grayscale conversion, in which + * we just copy the Y (luminance) component and ignore chrominance. + */ + +METHODDEF void +grayscale_convert (j_decompress_ptr cinfo, +		   JSAMPIMAGE input_buf, JDIMENSION input_row, +		   JSAMPARRAY output_buf, int num_rows) +{ +  jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, +		    num_rows, cinfo->output_width); +} + + +/* + * Adobe-style YCCK->CMYK conversion. + * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same + * conversion as above, while passing K (black) unchanged. + * We assume build_ycc_rgb_table has been called. + */ + +METHODDEF void +ycck_cmyk_convert (j_decompress_ptr cinfo, +		   JSAMPIMAGE input_buf, JDIMENSION input_row, +		   JSAMPARRAY output_buf, int num_rows) +{ +  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; +  register int y, cb, cr; +  register JSAMPROW outptr; +  register JSAMPROW inptr0, inptr1, inptr2, inptr3; +  register JDIMENSION col; +  JDIMENSION num_cols = cinfo->output_width; +  /* copy these pointers into registers if possible */ +  register JSAMPLE * range_limit = cinfo->sample_range_limit; +  register int * Crrtab = cconvert->Cr_r_tab; +  register int * Cbbtab = cconvert->Cb_b_tab; +  register INT32 * Crgtab = cconvert->Cr_g_tab; +  register INT32 * Cbgtab = cconvert->Cb_g_tab; +  SHIFT_TEMPS + +  while (--num_rows >= 0) { +    inptr0 = input_buf[0][input_row]; +    inptr1 = input_buf[1][input_row]; +    inptr2 = input_buf[2][input_row]; +    inptr3 = input_buf[3][input_row]; +    input_row++; +    outptr = *output_buf++; +    for (col = 0; col < num_cols; col++) { +      y  = GETJSAMPLE(inptr0[col]); +      cb = GETJSAMPLE(inptr1[col]); +      cr = GETJSAMPLE(inptr2[col]); +      /* Range-limiting is essential due to noise introduced by DCT losses. */ +      outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])];	/* red */ +      outptr[1] = range_limit[MAXJSAMPLE - (y +			/* green */ +			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], +						 SCALEBITS)))]; +      outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])];	/* blue */ +      /* K passes through unchanged */ +      outptr[3] = inptr3[col];	/* don't need GETJSAMPLE here */ +      outptr += 4; +    } +  } +} + + +/* + * Empty method for start_pass. + */ + +METHODDEF void +start_pass_dcolor (j_decompress_ptr cinfo) +{ +  /* no work needed */ +} + + +/* + * Module initialization routine for output colorspace conversion. + */ + +GLOBAL void +jinit_color_deconverter (j_decompress_ptr cinfo) +{ +  my_cconvert_ptr cconvert; +  int ci; + +  cconvert = (my_cconvert_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_color_deconverter)); +  cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert; +  cconvert->pub.start_pass = start_pass_dcolor; + +  /* Make sure num_components agrees with jpeg_color_space */ +  switch (cinfo->jpeg_color_space) { +  case JCS_GRAYSCALE: +    if (cinfo->num_components != 1) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    break; + +  case JCS_RGB: +  case JCS_YCbCr: +    if (cinfo->num_components != 3) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    break; + +  case JCS_CMYK: +  case JCS_YCCK: +    if (cinfo->num_components != 4) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    break; + +  default:			/* JCS_UNKNOWN can be anything */ +    if (cinfo->num_components < 1) +      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); +    break; +  } + +  /* Set out_color_components and conversion method based on requested space. +   * Also clear the component_needed flags for any unused components, +   * so that earlier pipeline stages can avoid useless computation. +   */ + +  switch (cinfo->out_color_space) { +  case JCS_GRAYSCALE: +    cinfo->out_color_components = 1; +    if (cinfo->jpeg_color_space == JCS_GRAYSCALE || +	cinfo->jpeg_color_space == JCS_YCbCr) { +      cconvert->pub.color_convert = grayscale_convert; +      /* For color->grayscale conversion, only the Y (0) component is needed */ +      for (ci = 1; ci < cinfo->num_components; ci++) +	cinfo->comp_info[ci].component_needed = FALSE; +    } else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  case JCS_RGB: +    cinfo->out_color_components = RGB_PIXELSIZE; +    if (cinfo->jpeg_color_space == JCS_YCbCr) { +      cconvert->pub.color_convert = ycc_rgb_convert; +      build_ycc_rgb_table(cinfo); +    } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) { +      cconvert->pub.color_convert = null_convert; +    } else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  case JCS_CMYK: +    cinfo->out_color_components = 4; +    if (cinfo->jpeg_color_space == JCS_YCCK) { +      cconvert->pub.color_convert = ycck_cmyk_convert; +      build_ycc_rgb_table(cinfo); +    } else if (cinfo->jpeg_color_space == JCS_CMYK) { +      cconvert->pub.color_convert = null_convert; +    } else +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; + +  default: +    /* Permit null conversion to same output space */ +    if (cinfo->out_color_space == cinfo->jpeg_color_space) { +      cinfo->out_color_components = cinfo->num_components; +      cconvert->pub.color_convert = null_convert; +    } else			/* unsupported non-null conversion */ +      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); +    break; +  } + +  if (cinfo->quantize_colors) +    cinfo->output_components = 1; /* single colormapped output component */ +  else +    cinfo->output_components = cinfo->out_color_components; +} diff --git a/src/jpeg-6/jdct.h b/src/jpeg-6/jdct.h new file mode 100644 index 00000000..3ce790bc --- /dev/null +++ b/src/jpeg-6/jdct.h @@ -0,0 +1,176 @@ +/* + * jdct.h + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This include file contains common declarations for the forward and + * inverse DCT modules.  These declarations are private to the DCT managers + * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. + * The individual DCT algorithms are kept in separate files to ease  + * machine-dependent tuning (e.g., assembly coding). + */ + + +/* + * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; + * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int + * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT + * implementations use an array of type FAST_FLOAT, instead.) + * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). + * The DCT outputs are returned scaled up by a factor of 8; they therefore + * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This + * convention improves accuracy in integer implementations and saves some + * work in floating-point ones. + * Quantization of the output coefficients is done by jcdctmgr.c. + */ + +#if BITS_IN_JSAMPLE == 8 +typedef int DCTELEM;		/* 16 or 32 bits is fine */ +#else +typedef INT32 DCTELEM;		/* must have 32 bits */ +#endif + +typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); +typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); + + +/* + * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer + * to an output sample array.  The routine must dequantize the input data as + * well as perform the IDCT; for dequantization, it uses the multiplier table + * pointed to by compptr->dct_table.  The output data is to be placed into the + * sample array starting at a specified column.  (Any row offset needed will + * be applied to the array pointer before it is passed to the IDCT code.) + * Note that the number of samples emitted by the IDCT routine is + * DCT_scaled_size * DCT_scaled_size. + */ + +/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ + +/* + * Each IDCT routine has its own ideas about the best dct_table element type. + */ + +typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ +#if BITS_IN_JSAMPLE == 8 +typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ +#define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */ +#else +typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */ +#define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */ +#endif +typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ + + +/* + * Each IDCT routine is responsible for range-limiting its results and + * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could + * be quite far out of range if the input data is corrupt, so a bulletproof + * range-limiting step is required.  We use a mask-and-table-lookup method + * to do the combined operations quickly.  See the comments with + * prepare_range_limit_table (in jdmaster.c) for more info. + */ + +#define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE) + +#define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ + + +/* Short forms of external names for systems with brain-damaged linkers. */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jpeg_fdct_islow		jFDislow +#define jpeg_fdct_ifast		jFDifast +#define jpeg_fdct_float		jFDfloat +#define jpeg_idct_islow		jRDislow +#define jpeg_idct_ifast		jRDifast +#define jpeg_idct_float		jRDfloat +#define jpeg_idct_4x4		jRD4x4 +#define jpeg_idct_2x2		jRD2x2 +#define jpeg_idct_1x1		jRD1x1 +#endif /* NEED_SHORT_EXTERNAL_NAMES */ + +/* Extern declarations for the forward and inverse DCT routines. */ + +EXTERN void jpeg_fdct_islow JPP((DCTELEM * data)); +EXTERN void jpeg_fdct_ifast JPP((DCTELEM * data)); +EXTERN void jpeg_fdct_float JPP((FAST_FLOAT * data)); + +EXTERN void jpeg_idct_islow +    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, +	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); +EXTERN void jpeg_idct_ifast +    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, +	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); +EXTERN void jpeg_idct_float +    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, +	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); +EXTERN void jpeg_idct_4x4 +    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, +	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); +EXTERN void jpeg_idct_2x2 +    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, +	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); +EXTERN void jpeg_idct_1x1 +    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, +	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); + + +/* + * Macros for handling fixed-point arithmetic; these are used by many + * but not all of the DCT/IDCT modules. + * + * All values are expected to be of type INT32. + * Fractional constants are scaled left by CONST_BITS bits. + * CONST_BITS is defined within each module using these macros, + * and may differ from one module to the next. + */ + +#define ONE	((INT32) 1) +#define CONST_SCALE (ONE << CONST_BITS) + +/* Convert a positive real constant to an integer scaled by CONST_SCALE. + * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, + * thus causing a lot of useless floating-point operations at run time. + */ + +#define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5)) + +/* Descale and correctly round an INT32 value that's scaled by N bits. + * We assume RIGHT_SHIFT rounds towards minus infinity, so adding + * the fudge factor is correct for either sign of X. + */ + +#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * This macro is used only when the two inputs will actually be no more than + * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a + * full 32x32 multiply.  This provides a useful speedup on many machines. + * Unfortunately there is no way to specify a 16x16->32 multiply portably + * in C, but some C compilers will do the right thing if you provide the + * correct combination of casts. + */ + +#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */ +#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const))) +#endif +#ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */ +#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const))) +#endif + +#ifndef MULTIPLY16C16		/* default definition */ +#define MULTIPLY16C16(var,const)  ((var) * (const)) +#endif + +/* Same except both inputs are variables. */ + +#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */ +#define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2))) +#endif + +#ifndef MULTIPLY16V16		/* default definition */ +#define MULTIPLY16V16(var1,var2)  ((var1) * (var2)) +#endif diff --git a/src/jpeg-6/jddctmgr.c b/src/jpeg-6/jddctmgr.c new file mode 100644 index 00000000..71215f19 --- /dev/null +++ b/src/jpeg-6/jddctmgr.c @@ -0,0 +1,270 @@ +/* + * jddctmgr.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the inverse-DCT management logic. + * This code selects a particular IDCT implementation to be used, + * and it performs related housekeeping chores.  No code in this file + * is executed per IDCT step, only during output pass setup. + * + * Note that the IDCT routines are responsible for performing coefficient + * dequantization as well as the IDCT proper.  This module sets up the + * dequantization multiplier table needed by the IDCT routine. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + + +/* + * The decompressor input side (jdinput.c) saves away the appropriate + * quantization table for each component at the start of the first scan + * involving that component.  (This is necessary in order to correctly + * decode files that reuse Q-table slots.) + * When we are ready to make an output pass, the saved Q-table is converted + * to a multiplier table that will actually be used by the IDCT routine. + * The multiplier table contents are IDCT-method-dependent.  To support + * application changes in IDCT method between scans, we can remake the + * multiplier tables if necessary. + * In buffered-image mode, the first output pass may occur before any data + * has been seen for some components, and thus before their Q-tables have + * been saved away.  To handle this case, multiplier tables are preset + * to zeroes; the result of the IDCT will be a neutral gray level. + */ + + +/* Private subobject for this module */ + +typedef struct { +  struct jpeg_inverse_dct pub;	/* public fields */ + +  /* This array contains the IDCT method code that each multiplier table +   * is currently set up for, or -1 if it's not yet set up. +   * The actual multiplier tables are pointed to by dct_table in the +   * per-component comp_info structures. +   */ +  int cur_method[MAX_COMPONENTS]; +} my_idct_controller; + +typedef my_idct_controller * my_idct_ptr; + + +/* Allocated multiplier tables: big enough for any supported variant */ + +typedef union { +  ISLOW_MULT_TYPE islow_array[DCTSIZE2]; +#ifdef DCT_IFAST_SUPPORTED +  IFAST_MULT_TYPE ifast_array[DCTSIZE2]; +#endif +#ifdef DCT_FLOAT_SUPPORTED +  FLOAT_MULT_TYPE float_array[DCTSIZE2]; +#endif +} multiplier_table; + + +/* The current scaled-IDCT routines require ISLOW-style multiplier tables, + * so be sure to compile that code if either ISLOW or SCALING is requested. + */ +#ifdef DCT_ISLOW_SUPPORTED +#define PROVIDE_ISLOW_TABLES +#else +#ifdef IDCT_SCALING_SUPPORTED +#define PROVIDE_ISLOW_TABLES +#endif +#endif + + +/* + * Prepare for an output pass. + * Here we select the proper IDCT routine for each component and build + * a matching multiplier table. + */ + +METHODDEF void +start_pass (j_decompress_ptr cinfo) +{ +  my_idct_ptr idct = (my_idct_ptr) cinfo->idct; +  int ci, i; +  jpeg_component_info *compptr; +  int method = 0; +  inverse_DCT_method_ptr method_ptr = NULL; +  JQUANT_TBL * qtbl; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Select the proper IDCT routine for this component's scaling */ +    switch (compptr->DCT_scaled_size) { +#ifdef IDCT_SCALING_SUPPORTED +    case 1: +      method_ptr = jpeg_idct_1x1; +      method = JDCT_ISLOW;	/* jidctred uses islow-style table */ +      break; +    case 2: +      method_ptr = jpeg_idct_2x2; +      method = JDCT_ISLOW;	/* jidctred uses islow-style table */ +      break; +    case 4: +      method_ptr = jpeg_idct_4x4; +      method = JDCT_ISLOW;	/* jidctred uses islow-style table */ +      break; +#endif +    case DCTSIZE: +      switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED +      case JDCT_ISLOW: +	method_ptr = jpeg_idct_islow; +	method = JDCT_ISLOW; +	break; +#endif +#ifdef DCT_IFAST_SUPPORTED +      case JDCT_IFAST: +	method_ptr = jpeg_idct_ifast; +	method = JDCT_IFAST; +	break; +#endif +#ifdef DCT_FLOAT_SUPPORTED +      case JDCT_FLOAT: +	method_ptr = jpeg_idct_float; +	method = JDCT_FLOAT; +	break; +#endif +      default: +	ERREXIT(cinfo, JERR_NOT_COMPILED); +	break; +      } +      break; +    default: +      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); +      break; +    } +    idct->pub.inverse_DCT[ci] = method_ptr; +    /* Create multiplier table from quant table. +     * However, we can skip this if the component is uninteresting +     * or if we already built the table.  Also, if no quant table +     * has yet been saved for the component, we leave the +     * multiplier table all-zero; we'll be reading zeroes from the +     * coefficient controller's buffer anyway. +     */ +    if (! compptr->component_needed || idct->cur_method[ci] == method) +      continue; +    qtbl = compptr->quant_table; +    if (qtbl == NULL)		/* happens if no data yet for component */ +      continue; +    idct->cur_method[ci] = method; +    switch (method) { +#ifdef PROVIDE_ISLOW_TABLES +    case JDCT_ISLOW: +      { +	/* For LL&M IDCT method, multipliers are equal to raw quantization +	 * coefficients, but are stored in natural order as ints. +	 */ +	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; +	for (i = 0; i < DCTSIZE2; i++) { +	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[jpeg_zigzag_order[i]]; +	} +      } +      break; +#endif +#ifdef DCT_IFAST_SUPPORTED +    case JDCT_IFAST: +      { +	/* For AA&N IDCT method, multipliers are equal to quantization +	 * coefficients scaled by scalefactor[row]*scalefactor[col], where +	 *   scalefactor[0] = 1 +	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 +	 * For integer operation, the multiplier table is to be scaled by +	 * IFAST_SCALE_BITS.  The multipliers are stored in natural order. +	 */ +	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; +#define CONST_BITS 14 +	static const INT16 aanscales[DCTSIZE2] = { +	  /* precomputed values scaled up by 14 bits */ +	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, +	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, +	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, +	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, +	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, +	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, +	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, +	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 +	}; +	SHIFT_TEMPS + +	for (i = 0; i < DCTSIZE2; i++) { +	  ifmtbl[i] = (IFAST_MULT_TYPE) +	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]], +				  (INT32) aanscales[i]), +		    CONST_BITS-IFAST_SCALE_BITS); +	} +      } +      break; +#endif +#ifdef DCT_FLOAT_SUPPORTED +    case JDCT_FLOAT: +      { +	/* For float AA&N IDCT method, multipliers are equal to quantization +	 * coefficients scaled by scalefactor[row]*scalefactor[col], where +	 *   scalefactor[0] = 1 +	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 +	 * The multipliers are stored in natural order. +	 */ +	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; +	int row, col; +	static const double aanscalefactor[DCTSIZE] = { +	  1.0, 1.387039845, 1.306562965, 1.175875602, +	  1.0, 0.785694958, 0.541196100, 0.275899379 +	}; + +	i = 0; +	for (row = 0; row < DCTSIZE; row++) { +	  for (col = 0; col < DCTSIZE; col++) { +	    fmtbl[i] = (FLOAT_MULT_TYPE) +	      ((double) qtbl->quantval[jpeg_zigzag_order[i]] * +	       aanscalefactor[row] * aanscalefactor[col]); +	    i++; +	  } +	} +      } +      break; +#endif +    default: +      ERREXIT(cinfo, JERR_NOT_COMPILED); +      break; +    } +  } +} + + +/* + * Initialize IDCT manager. + */ + +GLOBAL void +jinit_inverse_dct (j_decompress_ptr cinfo) +{ +  my_idct_ptr idct; +  int ci; +  jpeg_component_info *compptr; + +  idct = (my_idct_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_idct_controller)); +  cinfo->idct = (struct jpeg_inverse_dct *) idct; +  idct->pub.start_pass = start_pass; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Allocate and pre-zero a multiplier table for each component */ +    compptr->dct_table = +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(multiplier_table)); +    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); +    /* Mark multiplier table not yet set up for any method */ +    idct->cur_method[ci] = -1; +  } +} diff --git a/src/jpeg-6/jdhuff.c b/src/jpeg-6/jdhuff.c new file mode 100644 index 00000000..95174b17 --- /dev/null +++ b/src/jpeg-6/jdhuff.c @@ -0,0 +1,574 @@ +/* + * jdhuff.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains Huffman entropy decoding routines. + * + * Much of the complexity here has to do with supporting input suspension. + * If the data source module demands suspension, we want to be able to back + * up to the start of the current MCU.  To do this, we copy state variables + * into local working storage, and update them back to the permanent + * storage only upon successful completion of an MCU. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdhuff.h"		/* Declarations shared with jdphuff.c */ + + +/* + * Expanded entropy decoder object for Huffman decoding. + * + * The savable_state subrecord contains fields that change within an MCU, + * but must not be updated permanently until we complete the MCU. + */ + +typedef struct { +  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ +} savable_state; + +/* This macro is to work around compilers with missing or broken + * structure assignment.  You'll need to fix this code if you have + * such a compiler and you change MAX_COMPS_IN_SCAN. + */ + +#ifndef NO_STRUCT_ASSIGN +#define ASSIGN_STATE(dest,src)  ((dest) = (src)) +#else +#if MAX_COMPS_IN_SCAN == 4 +#define ASSIGN_STATE(dest,src)  \ +	((dest).last_dc_val[0] = (src).last_dc_val[0], \ +	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ +	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ +	 (dest).last_dc_val[3] = (src).last_dc_val[3]) +#endif +#endif + + +typedef struct { +  struct jpeg_entropy_decoder pub; /* public fields */ + +  /* These fields are loaded into local variables at start of each MCU. +   * In case of suspension, we exit WITHOUT updating them. +   */ +  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */ +  savable_state saved;		/* Other state at start of MCU */ + +  /* These fields are NOT loaded into local working state. */ +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ + +  /* Pointers to derived tables (these workspaces have image lifespan) */ +  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; +  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; +} huff_entropy_decoder; + +typedef huff_entropy_decoder * huff_entropy_ptr; + + +/* + * Initialize for a Huffman-compressed scan. + */ + +METHODDEF void +start_pass_huff_decoder (j_decompress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci, dctbl, actbl; +  jpeg_component_info * compptr; + +  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. +   * This ought to be an error condition, but we make it a warning because +   * there are some baseline files out there with all zeroes in these bytes. +   */ +  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || +      cinfo->Ah != 0 || cinfo->Al != 0) +    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    dctbl = compptr->dc_tbl_no; +    actbl = compptr->ac_tbl_no; +    /* Make sure requested tables are present */ +    if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS || +	cinfo->dc_huff_tbl_ptrs[dctbl] == NULL) +      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); +    if (actbl < 0 || actbl >= NUM_HUFF_TBLS || +	cinfo->ac_huff_tbl_ptrs[actbl] == NULL) +      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); +    /* Compute derived values for Huffman tables */ +    /* We may do this more than once for a table, but it's not expensive */ +    jpeg_make_d_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], +			    & entropy->dc_derived_tbls[dctbl]); +    jpeg_make_d_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl], +			    & entropy->ac_derived_tbls[actbl]); +    /* Initialize DC predictions to 0 */ +    entropy->saved.last_dc_val[ci] = 0; +  } + +  /* Initialize bitread state variables */ +  entropy->bitstate.bits_left = 0; +  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ +  entropy->bitstate.printed_eod = FALSE; + +  /* Initialize restart counter */ +  entropy->restarts_to_go = cinfo->restart_interval; +} + + +/* + * Compute the derived values for a Huffman table. + * Note this is also used by jdphuff.c. + */ + +GLOBAL void +jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, +			 d_derived_tbl ** pdtbl) +{ +  d_derived_tbl *dtbl; +  int p, i, l, si; +  int lookbits, ctr; +  char huffsize[257]; +  unsigned int huffcode[257]; +  unsigned int code; + +  /* Allocate a workspace if we haven't already done so. */ +  if (*pdtbl == NULL) +    *pdtbl = (d_derived_tbl *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(d_derived_tbl)); +  dtbl = *pdtbl; +  dtbl->pub = htbl;		/* fill in back link */ +   +  /* Figure C.1: make table of Huffman code length for each symbol */ +  /* Note that this is in code-length order. */ + +  p = 0; +  for (l = 1; l <= 16; l++) { +    for (i = 1; i <= (int) htbl->bits[l]; i++) +      huffsize[p++] = (char) l; +  } +  huffsize[p] = 0; +   +  /* Figure C.2: generate the codes themselves */ +  /* Note that this is in code-length order. */ +   +  code = 0; +  si = huffsize[0]; +  p = 0; +  while (huffsize[p]) { +    while (((int) huffsize[p]) == si) { +      huffcode[p++] = code; +      code++; +    } +    code <<= 1; +    si++; +  } + +  /* Figure F.15: generate decoding tables for bit-sequential decoding */ + +  p = 0; +  for (l = 1; l <= 16; l++) { +    if (htbl->bits[l]) { +      dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */ +      dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */ +      p += htbl->bits[l]; +      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ +    } else { +      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */ +    } +  } +  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ + +  /* Compute lookahead tables to speed up decoding. +   * First we set all the table entries to 0, indicating "too long"; +   * then we iterate through the Huffman codes that are short enough and +   * fill in all the entries that correspond to bit sequences starting +   * with that code. +   */ + +  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); + +  p = 0; +  for (l = 1; l <= HUFF_LOOKAHEAD; l++) { +    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { +      /* l = current code's length, p = its index in huffcode[] & huffval[]. */ +      /* Generate left-justified code followed by all possible bit sequences */ +      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); +      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { +	dtbl->look_nbits[lookbits] = l; +	dtbl->look_sym[lookbits] = htbl->huffval[p]; +	lookbits++; +      } +    } +  } +} + + +/* + * Out-of-line code for bit fetching (shared with jdphuff.c). + * See jdhuff.h for info about usage. + * Note: current values of get_buffer and bits_left are passed as parameters, + * but are returned in the corresponding fields of the state struct. + * + * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width + * of get_buffer to be used.  (On machines with wider words, an even larger + * buffer could be used.)  However, on some machines 32-bit shifts are + * quite slow and take time proportional to the number of places shifted. + * (This is true with most PC compilers, for instance.)  In this case it may + * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the + * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. + */ + +#ifdef SLOW_SHIFT_32 +#define MIN_GET_BITS  15	/* minimum allowable value */ +#else +#define MIN_GET_BITS  (BIT_BUF_SIZE-7) +#endif + + +GLOBAL boolean +jpeg_fill_bit_buffer (bitread_working_state * state, +		      register bit_buf_type get_buffer, register int bits_left, +		      int nbits) +/* Load up the bit buffer to a depth of at least nbits */ +{ +  /* Copy heavily used state fields into locals (hopefully registers) */ +  register const JOCTET * next_input_byte = state->next_input_byte; +  register size_t bytes_in_buffer = state->bytes_in_buffer; +  register int c; + +  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ +  /* (It is assumed that no request will be for more than that many bits.) */ + +  while (bits_left < MIN_GET_BITS) { +    /* Attempt to read a byte */ +    if (state->unread_marker != 0) +      goto no_more_data;	/* can't advance past a marker */ + +    if (bytes_in_buffer == 0) { +      if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) +	return FALSE; +      next_input_byte = state->cinfo->src->next_input_byte; +      bytes_in_buffer = state->cinfo->src->bytes_in_buffer; +    } +    bytes_in_buffer--; +    c = GETJOCTET(*next_input_byte++); + +    /* If it's 0xFF, check and discard stuffed zero byte */ +    if (c == 0xFF) { +      do { +	if (bytes_in_buffer == 0) { +	  if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) +	    return FALSE; +	  next_input_byte = state->cinfo->src->next_input_byte; +	  bytes_in_buffer = state->cinfo->src->bytes_in_buffer; +	} +	bytes_in_buffer--; +	c = GETJOCTET(*next_input_byte++); +      } while (c == 0xFF); + +      if (c == 0) { +	/* Found FF/00, which represents an FF data byte */ +	c = 0xFF; +      } else { +	/* Oops, it's actually a marker indicating end of compressed data. */ +	/* Better put it back for use later */ +	state->unread_marker = c; + +      no_more_data: +	/* There should be enough bits still left in the data segment; */ +	/* if so, just break out of the outer while loop. */ +	if (bits_left >= nbits) +	  break; +	/* Uh-oh.  Report corrupted data to user and stuff zeroes into +	 * the data stream, so that we can produce some kind of image. +	 * Note that this code will be repeated for each byte demanded +	 * for the rest of the segment.  We use a nonvolatile flag to ensure +	 * that only one warning message appears. +	 */ +	if (! *(state->printed_eod_ptr)) { +	  WARNMS(state->cinfo, JWRN_HIT_MARKER); +	  *(state->printed_eod_ptr) = TRUE; +	} +	c = 0;			/* insert a zero byte into bit buffer */ +      } +    } + +    /* OK, load c into get_buffer */ +    get_buffer = (get_buffer << 8) | c; +    bits_left += 8; +  } + +  /* Unload the local registers */ +  state->next_input_byte = next_input_byte; +  state->bytes_in_buffer = bytes_in_buffer; +  state->get_buffer = get_buffer; +  state->bits_left = bits_left; + +  return TRUE; +} + + +/* + * Out-of-line code for Huffman code decoding. + * See jdhuff.h for info about usage. + */ + +GLOBAL int +jpeg_huff_decode (bitread_working_state * state, +		  register bit_buf_type get_buffer, register int bits_left, +		  d_derived_tbl * htbl, int min_bits) +{ +  register int l = min_bits; +  register INT32 code; + +  /* HUFF_DECODE has determined that the code is at least min_bits */ +  /* bits long, so fetch that many bits in one swoop. */ + +  CHECK_BIT_BUFFER(*state, l, return -1); +  code = GET_BITS(l); + +  /* Collect the rest of the Huffman code one bit at a time. */ +  /* This is per Figure F.16 in the JPEG spec. */ + +  while (code > htbl->maxcode[l]) { +    code <<= 1; +    CHECK_BIT_BUFFER(*state, 1, return -1); +    code |= GET_BITS(1); +    l++; +  } + +  /* Unload the local registers */ +  state->get_buffer = get_buffer; +  state->bits_left = bits_left; + +  /* With garbage input we may reach the sentinel value l = 17. */ + +  if (l > 16) { +    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); +    return 0;			/* fake a zero as the safest result */ +  } + +  return htbl->pub->huffval[ htbl->valptr[l] + +			    ((int) (code - htbl->mincode[l])) ]; +} + + +/* + * Figure F.12: extend sign bit. + * On some machines, a shift and add will be faster than a table lookup. + */ + +#ifdef AVOID_TABLES + +#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) + +#else + +#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) + +static const int extend_test[16] =   /* entry n is 2**(n-1) */ +  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, +    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; + +static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ +  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, +    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, +    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, +    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; + +#endif /* AVOID_TABLES */ + + +/* + * Check for a restart marker & resynchronize decoder. + * Returns FALSE if must suspend. + */ + +LOCAL boolean +process_restart (j_decompress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci; + +  /* Throw away any unused bits remaining in bit buffer; */ +  /* include any full bytes in next_marker's count of discarded bytes */ +  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; +  entropy->bitstate.bits_left = 0; + +  /* Advance past the RSTn marker */ +  if (! (*cinfo->marker->read_restart_marker) (cinfo)) +    return FALSE; + +  /* Re-initialize DC predictions to 0 */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) +    entropy->saved.last_dc_val[ci] = 0; + +  /* Reset restart counter */ +  entropy->restarts_to_go = cinfo->restart_interval; + +  /* Next segment can get another out-of-data warning */ +  entropy->bitstate.printed_eod = FALSE; + +  return TRUE; +} + + +/* + * Decode and return one MCU's worth of Huffman-compressed coefficients. + * The coefficients are reordered from zigzag order into natural array order, + * but are not dequantized. + * + * The i'th block of the MCU is stored into the block pointed to by + * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. + * (Wholesale zeroing is usually a little faster than retail...) + * + * Returns FALSE if data source requested suspension.  In that case no + * changes have been made to permanent state.  (Exception: some output + * coefficients may already have been assigned.  This is harmless for + * this module, since we'll just re-assign them on the next call.) + */ + +METHODDEF boolean +decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int s, k, r; +  int blkn, ci; +  JBLOCKROW block; +  BITREAD_STATE_VARS; +  savable_state state; +  d_derived_tbl * dctbl; +  d_derived_tbl * actbl; +  jpeg_component_info * compptr; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* Load up working state */ +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +  ASSIGN_STATE(state, entropy->saved); + +  /* Outer loop handles each block in the MCU */ + +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; +    dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no]; +    actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no]; + +    /* Decode a single block's worth of coefficients */ + +    /* Section F.2.2.1: decode the DC coefficient difference */ +    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); +    if (s) { +      CHECK_BIT_BUFFER(br_state, s, return FALSE); +      r = GET_BITS(s); +      s = HUFF_EXTEND(r, s); +    } + +    /* Shortcut if component's values are not interesting */ +    if (! compptr->component_needed) +      goto skip_ACs; + +    /* Convert DC difference to actual value, update last_dc_val */ +    s += state.last_dc_val[ci]; +    state.last_dc_val[ci] = s; +    /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ +    (*block)[0] = (JCOEF) s; + +    /* Do we need to decode the AC coefficients for this component? */ +    if (compptr->DCT_scaled_size > 1) { + +      /* Section F.2.2.2: decode the AC coefficients */ +      /* Since zeroes are skipped, output area must be cleared beforehand */ +      for (k = 1; k < DCTSIZE2; k++) { +	HUFF_DECODE(s, br_state, actbl, return FALSE, label2); +       +	r = s >> 4; +	s &= 15; +       +	if (s) { +	  k += r; +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  r = GET_BITS(s); +	  s = HUFF_EXTEND(r, s); +	  /* Output coefficient in natural (dezigzagged) order. +	   * Note: the extra entries in jpeg_natural_order[] will save us +	   * if k >= DCTSIZE2, which could happen if the data is corrupted. +	   */ +	  (*block)[jpeg_natural_order[k]] = (JCOEF) s; +	} else { +	  if (r != 15) +	    break; +	  k += 15; +	} +      } + +    } else { +skip_ACs: + +      /* Section F.2.2.2: decode the AC coefficients */ +      /* In this path we just discard the values */ +      for (k = 1; k < DCTSIZE2; k++) { +	HUFF_DECODE(s, br_state, actbl, return FALSE, label3); +       +	r = s >> 4; +	s &= 15; +       +	if (s) { +	  k += r; +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  DROP_BITS(s); +	} else { +	  if (r != 15) +	    break; +	  k += 15; +	} +      } + +    } +  } + +  /* Completed MCU, so update state */ +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +  ASSIGN_STATE(entropy->saved, state); + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * Module initialization routine for Huffman entropy decoding. + */ + +GLOBAL void +jinit_huff_decoder (j_decompress_ptr cinfo) +{ +  huff_entropy_ptr entropy; +  int i; + +  entropy = (huff_entropy_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(huff_entropy_decoder)); +  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; +  entropy->pub.start_pass = start_pass_huff_decoder; +  entropy->pub.decode_mcu = decode_mcu; + +  /* Mark tables unallocated */ +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; +  } +} diff --git a/src/jpeg-6/jdhuff.h b/src/jpeg-6/jdhuff.h new file mode 100644 index 00000000..d67fc3b8 --- /dev/null +++ b/src/jpeg-6/jdhuff.h @@ -0,0 +1,202 @@ +/* + * jdhuff.h + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains declarations for Huffman entropy decoding routines + * that are shared between the sequential decoder (jdhuff.c) and the + * progressive decoder (jdphuff.c).  No other modules need to see these. + */ + +/* Short forms of external names for systems with brain-damaged linkers. */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jpeg_make_d_derived_tbl	jMkDDerived +#define jpeg_fill_bit_buffer	jFilBitBuf +#define jpeg_huff_decode	jHufDecode +#endif /* NEED_SHORT_EXTERNAL_NAMES */ + + +/* Derived data constructed for each Huffman table */ + +#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */ + +typedef struct { +  /* Basic tables: (element [0] of each array is unused) */ +  INT32 mincode[17];		/* smallest code of length k */ +  INT32 maxcode[18];		/* largest code of length k (-1 if none) */ +  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ +  int valptr[17];		/* huffval[] index of 1st symbol of length k */ + +  /* Link to public Huffman table (needed only in jpeg_huff_decode) */ +  JHUFF_TBL *pub; + +  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of +   * the input data stream.  If the next Huffman code is no more +   * than HUFF_LOOKAHEAD bits long, we can obtain its length and +   * the corresponding symbol directly from these tables. +   */ +  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ +  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ +} d_derived_tbl; + +/* Expand a Huffman table definition into the derived format */ +EXTERN void jpeg_make_d_derived_tbl JPP((j_decompress_ptr cinfo, +				JHUFF_TBL * htbl, d_derived_tbl ** pdtbl)); + + +/* + * Fetching the next N bits from the input stream is a time-critical operation + * for the Huffman decoders.  We implement it with a combination of inline + * macros and out-of-line subroutines.  Note that N (the number of bits + * demanded at one time) never exceeds 15 for JPEG use. + * + * We read source bytes into get_buffer and dole out bits as needed. + * If get_buffer already contains enough bits, they are fetched in-line + * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough + * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer + * as full as possible (not just to the number of bits needed; this + * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). + * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. + * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains + * at least the requested number of bits --- dummy zeroes are inserted if + * necessary. + */ + +typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */ +#define BIT_BUF_SIZE  32	/* size of buffer in bits */ + +/* If long is > 32 bits on your machine, and shifting/masking longs is + * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE + * appropriately should be a win.  Unfortunately we can't do this with + * something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) + * because not all machines measure sizeof in 8-bit bytes. + */ + +typedef struct {		/* Bitreading state saved across MCUs */ +  bit_buf_type get_buffer;	/* current bit-extraction buffer */ +  int bits_left;		/* # of unused bits in it */ +  boolean printed_eod;		/* flag to suppress multiple warning msgs */ +} bitread_perm_state; + +typedef struct {		/* Bitreading working state within an MCU */ +  /* current data source state */ +  const JOCTET * next_input_byte; /* => next byte to read from source */ +  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */ +  int unread_marker;		/* nonzero if we have hit a marker */ +  /* bit input buffer --- note these values are kept in register variables, +   * not in this struct, inside the inner loops. +   */ +  bit_buf_type get_buffer;	/* current bit-extraction buffer */ +  int bits_left;		/* # of unused bits in it */ +  /* pointers needed by jpeg_fill_bit_buffer */ +  j_decompress_ptr cinfo;	/* back link to decompress master record */ +  boolean * printed_eod_ptr;	/* => flag in permanent state */ +} bitread_working_state; + +/* Macros to declare and load/save bitread local variables. */ +#define BITREAD_STATE_VARS  \ +	register bit_buf_type get_buffer;  \ +	register int bits_left;  \ +	bitread_working_state br_state = {0} + +#define BITREAD_LOAD_STATE(cinfop,permstate)  \ +	br_state.cinfo = cinfop; \ +	br_state.next_input_byte = cinfop->src->next_input_byte; \ +	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ +	br_state.unread_marker = cinfop->unread_marker; \ +	get_buffer = permstate.get_buffer; \ +	bits_left = permstate.bits_left; \ +	br_state.printed_eod_ptr = & permstate.printed_eod + +#define BITREAD_SAVE_STATE(cinfop,permstate)  \ +	cinfop->src->next_input_byte = br_state.next_input_byte; \ +	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ +	cinfop->unread_marker = br_state.unread_marker; \ +	permstate.get_buffer = get_buffer; \ +	permstate.bits_left = bits_left + +/* + * These macros provide the in-line portion of bit fetching. + * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer + * before using GET_BITS, PEEK_BITS, or DROP_BITS. + * The variables get_buffer and bits_left are assumed to be locals, + * but the state struct might not be (jpeg_huff_decode needs this). + *	CHECK_BIT_BUFFER(state,n,action); + *		Ensure there are N bits in get_buffer; if suspend, take action. + *      val = GET_BITS(n); + *		Fetch next N bits. + *      val = PEEK_BITS(n); + *		Fetch next N bits without removing them from the buffer. + *	DROP_BITS(n); + *		Discard next N bits. + * The value N should be a simple variable, not an expression, because it + * is evaluated multiple times. + */ + +#define CHECK_BIT_BUFFER(state,nbits,action) \ +	{ if (bits_left < (nbits)) {  \ +	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \ +	      { action; }  \ +	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } + +#define GET_BITS(nbits) \ +	(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1)) + +#define PEEK_BITS(nbits) \ +	(((int) (get_buffer >> (bits_left -  (nbits)))) & ((1<<(nbits))-1)) + +#define DROP_BITS(nbits) \ +	(bits_left -= (nbits)) + +/* Load up the bit buffer to a depth of at least nbits */ +EXTERN boolean jpeg_fill_bit_buffer JPP((bitread_working_state * state, +		register bit_buf_type get_buffer, register int bits_left, +		int nbits)); + + +/* + * Code for extracting next Huffman-coded symbol from input bit stream. + * Again, this is time-critical and we make the main paths be macros. + * + * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits + * without looping.  Usually, more than 95% of the Huffman codes will be 8 + * or fewer bits long.  The few overlength codes are handled with a loop, + * which need not be inline code. + * + * Notes about the HUFF_DECODE macro: + * 1. Near the end of the data segment, we may fail to get enough bits + *    for a lookahead.  In that case, we do it the hard way. + * 2. If the lookahead table contains no entry, the next code must be + *    more than HUFF_LOOKAHEAD bits long. + * 3. jpeg_huff_decode returns -1 if forced to suspend. + */ + +#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ +{ register int nb, look; \ +  if (bits_left < HUFF_LOOKAHEAD) { \ +    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ +    get_buffer = state.get_buffer; bits_left = state.bits_left; \ +    if (bits_left < HUFF_LOOKAHEAD) { \ +      nb = 1; goto slowlabel; \ +    } \ +  } \ +  look = PEEK_BITS(HUFF_LOOKAHEAD); \ +  if ((nb = htbl->look_nbits[look]) != 0) { \ +    DROP_BITS(nb); \ +    result = htbl->look_sym[look]; \ +  } else { \ +    nb = HUFF_LOOKAHEAD+1; \ +slowlabel: \ +    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ +	{ failaction; } \ +    get_buffer = state.get_buffer; bits_left = state.bits_left; \ +  } \ +} + +/* Out-of-line case for Huffman code fetching */ +EXTERN int jpeg_huff_decode JPP((bitread_working_state * state, +		register bit_buf_type get_buffer, register int bits_left, +		d_derived_tbl * htbl, int min_bits)); diff --git a/src/jpeg-6/jdinput.c b/src/jpeg-6/jdinput.c new file mode 100644 index 00000000..3061a17b --- /dev/null +++ b/src/jpeg-6/jdinput.c @@ -0,0 +1,381 @@ +/* + * jdinput.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains input control logic for the JPEG decompressor. + * These routines are concerned with controlling the decompressor's input + * processing (marker reading and coefficient decoding).  The actual input + * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Private state */ + +typedef struct { +  struct jpeg_input_controller pub; /* public fields */ + +  boolean inheaders;		/* TRUE until first SOS is reached */ +} my_input_controller; + +typedef my_input_controller * my_inputctl_ptr; + + +/* Forward declarations */ +METHODDEF int consume_markers JPP((j_decompress_ptr cinfo)); + + +/* + * Routines to calculate various quantities related to the size of the image. + */ + +LOCAL void +initial_setup (j_decompress_ptr cinfo) +/* Called once, when first SOS marker is reached */ +{ +  int ci; +  jpeg_component_info *compptr; + +  /* Make sure image isn't bigger than I can handle */ +  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || +      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) +    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); + +  /* For now, precision must match compiled-in value... */ +  if (cinfo->data_precision != BITS_IN_JSAMPLE) +    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); + +  /* Check that number of components won't exceed internal array sizes */ +  if (cinfo->num_components > MAX_COMPONENTS) +    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, +	     MAX_COMPONENTS); + +  /* Compute maximum sampling factors; check factor validity */ +  cinfo->max_h_samp_factor = 1; +  cinfo->max_v_samp_factor = 1; +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || +	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) +      ERREXIT(cinfo, JERR_BAD_SAMPLING); +    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, +				   compptr->h_samp_factor); +    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, +				   compptr->v_samp_factor); +  } + +  /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE. +   * In the full decompressor, this will be overridden by jdmaster.c; +   * but in the transcoder, jdmaster.c is not used, so we must do it here. +   */ +  cinfo->min_DCT_scaled_size = DCTSIZE; + +  /* Compute dimensions of components */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    compptr->DCT_scaled_size = DCTSIZE; +    /* Size in DCT blocks */ +    compptr->width_in_blocks = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, +		    (long) (cinfo->max_h_samp_factor * DCTSIZE)); +    compptr->height_in_blocks = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, +		    (long) (cinfo->max_v_samp_factor * DCTSIZE)); +    /* downsampled_width and downsampled_height will also be overridden by +     * jdmaster.c if we are doing full decompression.  The transcoder library +     * doesn't use these values, but the calling application might. +     */ +    /* Size in samples */ +    compptr->downsampled_width = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, +		    (long) cinfo->max_h_samp_factor); +    compptr->downsampled_height = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, +		    (long) cinfo->max_v_samp_factor); +    /* Mark component needed, until color conversion says otherwise */ +    compptr->component_needed = TRUE; +    /* Mark no quantization table yet saved for component */ +    compptr->quant_table = NULL; +  } + +  /* Compute number of fully interleaved MCU rows. */ +  cinfo->total_iMCU_rows = (JDIMENSION) +    jdiv_round_up((long) cinfo->image_height, +		  (long) (cinfo->max_v_samp_factor*DCTSIZE)); + +  /* Decide whether file contains multiple scans */ +  if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) +    cinfo->inputctl->has_multiple_scans = TRUE; +  else +    cinfo->inputctl->has_multiple_scans = FALSE; +} + + +LOCAL void +per_scan_setup (j_decompress_ptr cinfo) +/* Do computations that are needed before processing a JPEG scan */ +/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ +{ +  int ci, mcublks, tmp; +  jpeg_component_info *compptr; +   +  if (cinfo->comps_in_scan == 1) { +     +    /* Noninterleaved (single-component) scan */ +    compptr = cinfo->cur_comp_info[0]; +     +    /* Overall image size in MCUs */ +    cinfo->MCUs_per_row = compptr->width_in_blocks; +    cinfo->MCU_rows_in_scan = compptr->height_in_blocks; +     +    /* For noninterleaved scan, always one block per MCU */ +    compptr->MCU_width = 1; +    compptr->MCU_height = 1; +    compptr->MCU_blocks = 1; +    compptr->MCU_sample_width = compptr->DCT_scaled_size; +    compptr->last_col_width = 1; +    /* For noninterleaved scans, it is convenient to define last_row_height +     * as the number of block rows present in the last iMCU row. +     */ +    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); +    if (tmp == 0) tmp = compptr->v_samp_factor; +    compptr->last_row_height = tmp; +     +    /* Prepare array describing MCU composition */ +    cinfo->blocks_in_MCU = 1; +    cinfo->MCU_membership[0] = 0; +     +  } else { +     +    /* Interleaved (multi-component) scan */ +    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) +      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, +	       MAX_COMPS_IN_SCAN); +     +    /* Overall image size in MCUs */ +    cinfo->MCUs_per_row = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width, +		    (long) (cinfo->max_h_samp_factor*DCTSIZE)); +    cinfo->MCU_rows_in_scan = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height, +		    (long) (cinfo->max_v_samp_factor*DCTSIZE)); +     +    cinfo->blocks_in_MCU = 0; +     +    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +      compptr = cinfo->cur_comp_info[ci]; +      /* Sampling factors give # of blocks of component in each MCU */ +      compptr->MCU_width = compptr->h_samp_factor; +      compptr->MCU_height = compptr->v_samp_factor; +      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; +      compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size; +      /* Figure number of non-dummy blocks in last MCU column & row */ +      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); +      if (tmp == 0) tmp = compptr->MCU_width; +      compptr->last_col_width = tmp; +      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); +      if (tmp == 0) tmp = compptr->MCU_height; +      compptr->last_row_height = tmp; +      /* Prepare array describing MCU composition */ +      mcublks = compptr->MCU_blocks; +      if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) +	ERREXIT(cinfo, JERR_BAD_MCU_SIZE); +      while (mcublks-- > 0) { +	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; +      } +    } +     +  } +} + + +/* + * Save away a copy of the Q-table referenced by each component present + * in the current scan, unless already saved during a prior scan. + * + * In a multiple-scan JPEG file, the encoder could assign different components + * the same Q-table slot number, but change table definitions between scans + * so that each component uses a different Q-table.  (The IJG encoder is not + * currently capable of doing this, but other encoders might.)  Since we want + * to be able to dequantize all the components at the end of the file, this + * means that we have to save away the table actually used for each component. + * We do this by copying the table at the start of the first scan containing + * the component. + * The JPEG spec prohibits the encoder from changing the contents of a Q-table + * slot between scans of a component using that slot.  If the encoder does so + * anyway, this decoder will simply use the Q-table values that were current + * at the start of the first scan for the component. + * + * The decompressor output side looks only at the saved quant tables, + * not at the current Q-table slots. + */ + +LOCAL void +latch_quant_tables (j_decompress_ptr cinfo) +{ +  int ci, qtblno; +  jpeg_component_info *compptr; +  JQUANT_TBL * qtbl; + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    /* No work if we already saved Q-table for this component */ +    if (compptr->quant_table != NULL) +      continue; +    /* Make sure specified quantization table is present */ +    qtblno = compptr->quant_tbl_no; +    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || +	cinfo->quant_tbl_ptrs[qtblno] == NULL) +      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); +    /* OK, save away the quantization table */ +    qtbl = (JQUANT_TBL *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(JQUANT_TBL)); +    MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); +    compptr->quant_table = qtbl; +  } +} + + +/* + * Initialize the input modules to read a scan of compressed data. + * The first call to this is done by jdmaster.c after initializing + * the entire decompressor (during jpeg_start_decompress). + * Subsequent calls come from consume_markers, below. + */ + +METHODDEF void +start_input_pass (j_decompress_ptr cinfo) +{ +  per_scan_setup(cinfo); +  latch_quant_tables(cinfo); +  (*cinfo->entropy->start_pass) (cinfo); +  (*cinfo->coef->start_input_pass) (cinfo); +  cinfo->inputctl->consume_input = cinfo->coef->consume_data; +} + + +/* + * Finish up after inputting a compressed-data scan. + * This is called by the coefficient controller after it's read all + * the expected data of the scan. + */ + +METHODDEF void +finish_input_pass (j_decompress_ptr cinfo) +{ +  cinfo->inputctl->consume_input = consume_markers; +} + + +/* + * Read JPEG markers before, between, or after compressed-data scans. + * Change state as necessary when a new scan is reached. + * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. + * + * The consume_input method pointer points either here or to the + * coefficient controller's consume_data routine, depending on whether + * we are reading a compressed data segment or inter-segment markers. + */ + +METHODDEF int +consume_markers (j_decompress_ptr cinfo) +{ +  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; +  int val; + +  if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ +    return JPEG_REACHED_EOI; + +  val = (*cinfo->marker->read_markers) (cinfo); + +  switch (val) { +  case JPEG_REACHED_SOS:	/* Found SOS */ +    if (inputctl->inheaders) {	/* 1st SOS */ +      initial_setup(cinfo); +      inputctl->inheaders = FALSE; +      /* Note: start_input_pass must be called by jdmaster.c +       * before any more input can be consumed.  jdapi.c is +       * responsible for enforcing this sequencing. +       */ +    } else {			/* 2nd or later SOS marker */ +      if (! inputctl->pub.has_multiple_scans) +	ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ +      start_input_pass(cinfo); +    } +    break; +  case JPEG_REACHED_EOI:	/* Found EOI */ +    inputctl->pub.eoi_reached = TRUE; +    if (inputctl->inheaders) {	/* Tables-only datastream, apparently */ +      if (cinfo->marker->saw_SOF) +	ERREXIT(cinfo, JERR_SOF_NO_SOS); +    } else { +      /* Prevent infinite loop in coef ctlr's decompress_data routine +       * if user set output_scan_number larger than number of scans. +       */ +      if (cinfo->output_scan_number > cinfo->input_scan_number) +	cinfo->output_scan_number = cinfo->input_scan_number; +    } +    break; +  case JPEG_SUSPENDED: +    break; +  } + +  return val; +} + + +/* + * Reset state to begin a fresh datastream. + */ + +METHODDEF void +reset_input_controller (j_decompress_ptr cinfo) +{ +  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; + +  inputctl->pub.consume_input = consume_markers; +  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ +  inputctl->pub.eoi_reached = FALSE; +  inputctl->inheaders = TRUE; +  /* Reset other modules */ +  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); +  (*cinfo->marker->reset_marker_reader) (cinfo); +  /* Reset progression state -- would be cleaner if entropy decoder did this */ +  cinfo->coef_bits = NULL; +} + + +/* + * Initialize the input controller module. + * This is called only once, when the decompression object is created. + */ + +GLOBAL void +jinit_input_controller (j_decompress_ptr cinfo) +{ +  my_inputctl_ptr inputctl; + +  /* Create subobject in permanent pool */ +  inputctl = (my_inputctl_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				SIZEOF(my_input_controller)); +  cinfo->inputctl = (struct jpeg_input_controller *) inputctl; +  /* Initialize method pointers */ +  inputctl->pub.consume_input = consume_markers; +  inputctl->pub.reset_input_controller = reset_input_controller; +  inputctl->pub.start_input_pass = start_input_pass; +  inputctl->pub.finish_input_pass = finish_input_pass; +  /* Initialize state: can't use reset_input_controller since we don't +   * want to try to reset other modules yet. +   */ +  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ +  inputctl->pub.eoi_reached = FALSE; +  inputctl->inheaders = TRUE; +} diff --git a/src/jpeg-6/jdmainct.c b/src/jpeg-6/jdmainct.c new file mode 100644 index 00000000..6cb0b7a0 --- /dev/null +++ b/src/jpeg-6/jdmainct.c @@ -0,0 +1,520 @@ +/* + * jdmainct.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the main buffer controller for decompression. + * The main buffer lies between the JPEG decompressor proper and the + * post-processor; it holds downsampled data in the JPEG colorspace. + * + * Note that this code is bypassed in raw-data mode, since the application + * supplies the equivalent of the main buffer in that case. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * In the current system design, the main buffer need never be a full-image + * buffer; any full-height buffers will be found inside the coefficient or + * postprocessing controllers.  Nonetheless, the main controller is not + * trivial.  Its responsibility is to provide context rows for upsampling/ + * rescaling, and doing this in an efficient fashion is a bit tricky. + * + * Postprocessor input data is counted in "row groups".  A row group + * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) + * sample rows of each component.  (We require DCT_scaled_size values to be + * chosen such that these numbers are integers.  In practice DCT_scaled_size + * values will likely be powers of two, so we actually have the stronger + * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) + * Upsampling will typically produce max_v_samp_factor pixel rows from each + * row group (times any additional scale factor that the upsampler is + * applying). + * + * The coefficient controller will deliver data to us one iMCU row at a time; + * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or + * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds + * to one row of MCUs when the image is fully interleaved.)  Note that the + * number of sample rows varies across components, but the number of row + * groups does not.  Some garbage sample rows may be included in the last iMCU + * row at the bottom of the image. + * + * Depending on the vertical scaling algorithm used, the upsampler may need + * access to the sample row(s) above and below its current input row group. + * The upsampler is required to set need_context_rows TRUE at global selection + * time if so.  When need_context_rows is FALSE, this controller can simply + * obtain one iMCU row at a time from the coefficient controller and dole it + * out as row groups to the postprocessor. + * + * When need_context_rows is TRUE, this controller guarantees that the buffer + * passed to postprocessing contains at least one row group's worth of samples + * above and below the row group(s) being processed.  Note that the context + * rows "above" the first passed row group appear at negative row offsets in + * the passed buffer.  At the top and bottom of the image, the required + * context rows are manufactured by duplicating the first or last real sample + * row; this avoids having special cases in the upsampling inner loops. + * + * The amount of context is fixed at one row group just because that's a + * convenient number for this controller to work with.  The existing + * upsamplers really only need one sample row of context.  An upsampler + * supporting arbitrary output rescaling might wish for more than one row + * group of context when shrinking the image; tough, we don't handle that. + * (This is justified by the assumption that downsizing will be handled mostly + * by adjusting the DCT_scaled_size values, so that the actual scale factor at + * the upsample step needn't be much less than one.) + * + * To provide the desired context, we have to retain the last two row groups + * of one iMCU row while reading in the next iMCU row.  (The last row group + * can't be processed until we have another row group for its below-context, + * and so we have to save the next-to-last group too for its above-context.) + * We could do this most simply by copying data around in our buffer, but + * that'd be very slow.  We can avoid copying any data by creating a rather + * strange pointer structure.  Here's how it works.  We allocate a workspace + * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number + * of row groups per iMCU row).  We create two sets of redundant pointers to + * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized + * pointer lists look like this: + *                   M+1                          M-1 + * master pointer --> 0         master pointer --> 0 + *                    1                            1 + *                   ...                          ... + *                   M-3                          M-3 + *                   M-2                           M + *                   M-1                          M+1 + *                    M                           M-2 + *                   M+1                          M-1 + *                    0                            0 + * We read alternate iMCU rows using each master pointer; thus the last two + * row groups of the previous iMCU row remain un-overwritten in the workspace. + * The pointer lists are set up so that the required context rows appear to + * be adjacent to the proper places when we pass the pointer lists to the + * upsampler. + * + * The above pictures describe the normal state of the pointer lists. + * At top and bottom of the image, we diddle the pointer lists to duplicate + * the first or last sample row as necessary (this is cheaper than copying + * sample rows around). + * + * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that + * situation each iMCU row provides only one row group so the buffering logic + * must be different (eg, we must read two iMCU rows before we can emit the + * first row group).  For now, we simply do not support providing context + * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to + * be worth providing --- if someone wants a 1/8th-size preview, they probably + * want it quick and dirty, so a context-free upsampler is sufficient. + */ + + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_d_main_controller pub; /* public fields */ + +  /* Pointer to allocated workspace (M or M+2 row groups). */ +  JSAMPARRAY buffer[MAX_COMPONENTS]; + +  boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */ +  JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */ + +  /* Remaining fields are only used in the context case. */ + +  /* These are the master pointers to the funny-order pointer lists. */ +  JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */ + +  int whichptr;			/* indicates which pointer set is now in use */ +  int context_state;		/* process_data state machine status */ +  JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */ +  JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */ +} my_main_controller; + +typedef my_main_controller * my_main_ptr; + +/* context_state values: */ +#define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */ +#define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */ +#define CTX_POSTPONED_ROW	2	/* feeding postponed row group */ + + +/* Forward declarations */ +METHODDEF void process_data_simple_main +	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, +	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); +METHODDEF void process_data_context_main +	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, +	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); +#ifdef QUANT_2PASS_SUPPORTED +METHODDEF void process_data_crank_post +	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, +	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); +#endif + + +LOCAL void +alloc_funny_pointers (j_decompress_ptr cinfo) +/* Allocate space for the funny pointer lists. + * This is done only once, not once per pass. + */ +{ +  // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; +  int ci, rgroup; +  int M = cinfo->min_DCT_scaled_size; +  jpeg_component_info *compptr; +  JSAMPARRAY xbuf; + +  /* Get top-level space for component array pointers. +   * We alloc both arrays with one call to save a few cycles. +   */ +  jmain->xbuffer[0] = (JSAMPIMAGE) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); +  jmain->xbuffer[1] = jmain->xbuffer[0] + cinfo->num_components; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / +      cinfo->min_DCT_scaled_size; /* height of a row group of component */ +    /* Get space for pointer lists --- M+4 row groups in each list. +     * We alloc both pointer lists with one call to save a few cycles. +     */ +    xbuf = (JSAMPARRAY) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); +    xbuf += rgroup;		/* want one row group at negative offsets */ +    jmain->xbuffer[0][ci] = xbuf; +    xbuf += rgroup * (M + 4); +    jmain->xbuffer[1][ci] = xbuf; +  } +} + + +LOCAL void +make_funny_pointers (j_decompress_ptr cinfo) +/* Create the funny pointer lists discussed in the comments above. + * The actual workspace is already allocated (in main->buffer), + * and the space for the pointer lists is allocated too. + * This routine just fills in the curiously ordered lists. + * This will be repeated at the beginning of each pass. + */ +{ + // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; +  int ci, i, rgroup; +  int M = cinfo->min_DCT_scaled_size; +  jpeg_component_info *compptr; +  JSAMPARRAY buf, xbuf0, xbuf1; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / +      cinfo->min_DCT_scaled_size; /* height of a row group of component */ +    xbuf0 = jmain->xbuffer[0][ci]; +    xbuf1 = jmain->xbuffer[1][ci]; +    /* First copy the workspace pointers as-is */ +    buf = jmain->buffer[ci]; +    for (i = 0; i < rgroup * (M + 2); i++) { +      xbuf0[i] = xbuf1[i] = buf[i]; +    } +    /* In the second list, put the last four row groups in swapped order */ +    for (i = 0; i < rgroup * 2; i++) { +      xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; +      xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; +    } +    /* The wraparound pointers at top and bottom will be filled later +     * (see set_wraparound_pointers, below).  Initially we want the "above" +     * pointers to duplicate the first actual data line.  This only needs +     * to happen in xbuffer[0]. +     */ +    for (i = 0; i < rgroup; i++) { +      xbuf0[i - rgroup] = xbuf0[0]; +    } +  } +} + + +LOCAL void +set_wraparound_pointers (j_decompress_ptr cinfo) +/* Set up the "wraparound" pointers at top and bottom of the pointer lists. + * This changes the pointer list state from top-of-image to the normal state. + */ +{ + // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; +  int ci, i, rgroup; +  int M = cinfo->min_DCT_scaled_size; +  jpeg_component_info *compptr; +  JSAMPARRAY xbuf0, xbuf1; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / +      cinfo->min_DCT_scaled_size; /* height of a row group of component */ +    xbuf0 = jmain->xbuffer[0][ci]; +    xbuf1 = jmain->xbuffer[1][ci]; +    for (i = 0; i < rgroup; i++) { +      xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; +      xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; +      xbuf0[rgroup*(M+2) + i] = xbuf0[i]; +      xbuf1[rgroup*(M+2) + i] = xbuf1[i]; +    } +  } +} + + +LOCAL void +set_bottom_pointers (j_decompress_ptr cinfo) +/* Change the pointer lists to duplicate the last sample row at the bottom + * of the image.  whichptr indicates which xbuffer holds the final iMCU row. + * Also sets rowgroups_avail to indicate number of nondummy row groups in row. + */ +{ + // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; +  int ci, i, rgroup, iMCUheight, rows_left; +  jpeg_component_info *compptr; +  JSAMPARRAY xbuf; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Count sample rows in one iMCU row and in one row group */ +    iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size; +    rgroup = iMCUheight / cinfo->min_DCT_scaled_size; +    /* Count nondummy sample rows remaining for this component */ +    rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); +    if (rows_left == 0) rows_left = iMCUheight; +    /* Count nondummy row groups.  Should get same answer for each component, +     * so we need only do it once. +     */ +    if (ci == 0) { +      jmain->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); +    } +    /* Duplicate the last real sample row rgroup*2 times; this pads out the +     * last partial rowgroup and ensures at least one full rowgroup of context. +     */ +    xbuf = jmain->xbuffer[jmain->whichptr][ci]; +    for (i = 0; i < rgroup * 2; i++) { +      xbuf[rows_left + i] = xbuf[rows_left-1]; +    } +  } +} + + +/* + * Initialize for a processing pass. + */ + +METHODDEF void +start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) +{ +  // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; + +  switch (pass_mode) { +  case JBUF_PASS_THRU: +    if (cinfo->upsample->need_context_rows) { +      jmain->pub.process_data = process_data_context_main; +      make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ +      jmain->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */ +      jmain->context_state = CTX_PREPARE_FOR_IMCU; +      jmain->iMCU_row_ctr = 0; +    } else { +      /* Simple case with no context needed */ +      jmain->pub.process_data = process_data_simple_main; +    } +    jmain->buffer_full = FALSE;	/* Mark buffer empty */ +    jmain->rowgroup_ctr = 0; +    break; +#ifdef QUANT_2PASS_SUPPORTED +  case JBUF_CRANK_DEST: +    /* For last pass of 2-pass quantization, just crank the postprocessor */ +    jmain->pub.process_data = process_data_crank_post; +    break; +#endif +  default: +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    break; +  } +} + + +/* + * Process some data. + * This handles the simple case where no context is required. + */ + +METHODDEF void +process_data_simple_main (j_decompress_ptr cinfo, +			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +			  JDIMENSION out_rows_avail) +{ +  // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; +  JDIMENSION rowgroups_avail; + +  /* Read input data if we haven't filled the main buffer yet */ +  if (! jmain->buffer_full) { +    if (! (*cinfo->coef->decompress_data) (cinfo, jmain->buffer)) +      return;			/* suspension forced, can do nothing more */ +    jmain->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */ +  } + +  /* There are always min_DCT_scaled_size row groups in an iMCU row. */ +  rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size; +  /* Note: at the bottom of the image, we may pass extra garbage row groups +   * to the postprocessor.  The postprocessor has to check for bottom +   * of image anyway (at row resolution), so no point in us doing it too. +   */ + +  /* Feed the postprocessor */ +  (*cinfo->post->post_process_data) (cinfo, jmain->buffer, +				     &jmain->rowgroup_ctr, rowgroups_avail, +				     output_buf, out_row_ctr, out_rows_avail); + +  /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ +  if (jmain->rowgroup_ctr >= rowgroups_avail) { +    jmain->buffer_full = FALSE; +    jmain->rowgroup_ctr = 0; +  } +} + + +/* + * Process some data. + * This handles the case where context rows must be provided. + */ + +METHODDEF void +process_data_context_main (j_decompress_ptr cinfo, +			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +			   JDIMENSION out_rows_avail) +{ +  // bk001204 - no use main +  my_main_ptr jmain = (my_main_ptr) cinfo->main; + +  /* Read input data if we haven't filled the main buffer yet */ +  if (! jmain->buffer_full) { +    if (! (*cinfo->coef->decompress_data) (cinfo, +					   jmain->xbuffer[jmain->whichptr])) +      return;			/* suspension forced, can do nothing more */ +    jmain->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */ +    jmain->iMCU_row_ctr++;	/* count rows received */ +  } + +  /* Postprocessor typically will not swallow all the input data it is handed +   * in one call (due to filling the output buffer first).  Must be prepared +   * to exit and restart.  This switch lets us keep track of how far we got. +   * Note that each case falls through to the next on successful completion. +   */ +  switch (jmain->context_state) { +  case CTX_POSTPONED_ROW: +    /* Call postprocessor using previously set pointers for postponed row */ +    (*cinfo->post->post_process_data) (cinfo, jmain->xbuffer[jmain->whichptr], +			&jmain->rowgroup_ctr, jmain->rowgroups_avail, +			output_buf, out_row_ctr, out_rows_avail); +    if (jmain->rowgroup_ctr < jmain->rowgroups_avail) +      return;			/* Need to suspend */ +    jmain->context_state = CTX_PREPARE_FOR_IMCU; +    if (*out_row_ctr >= out_rows_avail) +      return;			/* Postprocessor exactly filled output buf */ +    /*FALLTHROUGH*/ +  case CTX_PREPARE_FOR_IMCU: +    /* Prepare to process first M-1 row groups of this iMCU row */ +    jmain->rowgroup_ctr = 0; +    jmain->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1); +    /* Check for bottom of image: if so, tweak pointers to "duplicate" +     * the last sample row, and adjust rowgroups_avail to ignore padding rows. +     */ +    if (jmain->iMCU_row_ctr == cinfo->total_iMCU_rows) +      set_bottom_pointers(cinfo); +    jmain->context_state = CTX_PROCESS_IMCU; +    /*FALLTHROUGH*/ +  case CTX_PROCESS_IMCU: +    /* Call postprocessor using previously set pointers */ +    (*cinfo->post->post_process_data) (cinfo, jmain->xbuffer[jmain->whichptr], +			&jmain->rowgroup_ctr, jmain->rowgroups_avail, +			output_buf, out_row_ctr, out_rows_avail); +    if (jmain->rowgroup_ctr < jmain->rowgroups_avail) +      return;			/* Need to suspend */ +    /* After the first iMCU, change wraparound pointers to normal state */ +    if (jmain->iMCU_row_ctr == 1) +      set_wraparound_pointers(cinfo); +    /* Prepare to load new iMCU row using other xbuffer list */ +    jmain->whichptr ^= 1;	/* 0=>1 or 1=>0 */ +    jmain->buffer_full = FALSE; +    /* Still need to process last row group of this iMCU row, */ +    /* which is saved at index M+1 of the other xbuffer */ +    jmain->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1); +    jmain->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2); +    jmain->context_state = CTX_POSTPONED_ROW; +  } +} + + +/* + * Process some data. + * Final pass of two-pass quantization: just call the postprocessor. + * Source data will be the postprocessor controller's internal buffer. + */ + +#ifdef QUANT_2PASS_SUPPORTED + +METHODDEF void +process_data_crank_post (j_decompress_ptr cinfo, +			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +			 JDIMENSION out_rows_avail) +{ +  (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, +				     (JDIMENSION *) NULL, (JDIMENSION) 0, +				     output_buf, out_row_ctr, out_rows_avail); +} + +#endif /* QUANT_2PASS_SUPPORTED */ + + +/* + * Initialize main buffer controller. + */ + +GLOBAL void +jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) +{ +  // bk001204 - no use main +  my_main_ptr jmain; +  int ci, rgroup, ngroups; +  jpeg_component_info *compptr; + +  jmain = (my_main_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_main_controller)); +  cinfo->main = (struct jpeg_d_main_controller *) jmain; +  jmain->pub.start_pass = start_pass_main; + +  if (need_full_buffer)		/* shouldn't happen */ +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); + +  /* Allocate the workspace. +   * ngroups is the number of row groups we need. +   */ +  if (cinfo->upsample->need_context_rows) { +    if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */ +      ERREXIT(cinfo, JERR_NOTIMPL); +    alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ +    ngroups = cinfo->min_DCT_scaled_size + 2; +  } else { +    ngroups = cinfo->min_DCT_scaled_size; +  } + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / +      cinfo->min_DCT_scaled_size; /* height of a row group of component */ +    jmain->buffer[ci] = (*cinfo->mem->alloc_sarray) +			((j_common_ptr) cinfo, JPOOL_IMAGE, +			 compptr->width_in_blocks * compptr->DCT_scaled_size, +			 (JDIMENSION) (rgroup * ngroups)); +  } +} diff --git a/src/jpeg-6/jdmarker.c b/src/jpeg-6/jdmarker.c new file mode 100644 index 00000000..80e5f783 --- /dev/null +++ b/src/jpeg-6/jdmarker.c @@ -0,0 +1,1052 @@ +/* + * jdmarker.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains routines to decode JPEG datastream markers. + * Most of the complexity arises from our desire to support input + * suspension: if not all of the data for a marker is available, + * we must exit back to the application.  On resumption, we reprocess + * the marker. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +typedef enum {			/* JPEG marker codes */ +  M_SOF0  = 0xc0, +  M_SOF1  = 0xc1, +  M_SOF2  = 0xc2, +  M_SOF3  = 0xc3, +   +  M_SOF5  = 0xc5, +  M_SOF6  = 0xc6, +  M_SOF7  = 0xc7, +   +  M_JPG   = 0xc8, +  M_SOF9  = 0xc9, +  M_SOF10 = 0xca, +  M_SOF11 = 0xcb, +   +  M_SOF13 = 0xcd, +  M_SOF14 = 0xce, +  M_SOF15 = 0xcf, +   +  M_DHT   = 0xc4, +   +  M_DAC   = 0xcc, +   +  M_RST0  = 0xd0, +  M_RST1  = 0xd1, +  M_RST2  = 0xd2, +  M_RST3  = 0xd3, +  M_RST4  = 0xd4, +  M_RST5  = 0xd5, +  M_RST6  = 0xd6, +  M_RST7  = 0xd7, +   +  M_SOI   = 0xd8, +  M_EOI   = 0xd9, +  M_SOS   = 0xda, +  M_DQT   = 0xdb, +  M_DNL   = 0xdc, +  M_DRI   = 0xdd, +  M_DHP   = 0xde, +  M_EXP   = 0xdf, +   +  M_APP0  = 0xe0, +  M_APP1  = 0xe1, +  M_APP2  = 0xe2, +  M_APP3  = 0xe3, +  M_APP4  = 0xe4, +  M_APP5  = 0xe5, +  M_APP6  = 0xe6, +  M_APP7  = 0xe7, +  M_APP8  = 0xe8, +  M_APP9  = 0xe9, +  M_APP10 = 0xea, +  M_APP11 = 0xeb, +  M_APP12 = 0xec, +  M_APP13 = 0xed, +  M_APP14 = 0xee, +  M_APP15 = 0xef, +   +  M_JPG0  = 0xf0, +  M_JPG13 = 0xfd, +  M_COM   = 0xfe, +   +  M_TEM   = 0x01, +   +  M_ERROR = 0x100 +} JPEG_MARKER; + + +/* + * Macros for fetching data from the data source module. + * + * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect + * the current restart point; we update them only when we have reached a + * suitable place to restart if a suspension occurs. + */ + +/* Declare and initialize local copies of input pointer/count */ +#define INPUT_VARS(cinfo)  \ +	struct jpeg_source_mgr * datasrc = (cinfo)->src;  \ +	const JOCTET * next_input_byte = datasrc->next_input_byte;  \ +	size_t bytes_in_buffer = datasrc->bytes_in_buffer + +/* Unload the local copies --- do this only at a restart boundary */ +#define INPUT_SYNC(cinfo)  \ +	( datasrc->next_input_byte = next_input_byte,  \ +	  datasrc->bytes_in_buffer = bytes_in_buffer ) + +/* Reload the local copies --- seldom used except in MAKE_BYTE_AVAIL */ +#define INPUT_RELOAD(cinfo)  \ +	( next_input_byte = datasrc->next_input_byte,  \ +	  bytes_in_buffer = datasrc->bytes_in_buffer ) + +/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available. + * Note we do *not* do INPUT_SYNC before calling fill_input_buffer, + * but we must reload the local copies after a successful fill. + */ +#define MAKE_BYTE_AVAIL(cinfo,action)  \ +	if (bytes_in_buffer == 0) {  \ +	  if (! (*datasrc->fill_input_buffer) (cinfo))  \ +	    { action; }  \ +	  INPUT_RELOAD(cinfo);  \ +	}  \ +	bytes_in_buffer-- + +/* Read a byte into variable V. + * If must suspend, take the specified action (typically "return FALSE"). + */ +#define INPUT_BYTE(cinfo,V,action)  \ +	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ +		  V = GETJOCTET(*next_input_byte++); ) + +/* As above, but read two bytes interpreted as an unsigned 16-bit integer. + * V should be declared unsigned int or perhaps INT32. + */ +#define INPUT_2BYTES(cinfo,V,action)  \ +	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ +		  V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \ +		  MAKE_BYTE_AVAIL(cinfo,action); \ +		  V += GETJOCTET(*next_input_byte++); ) + + +/* + * Routines to process JPEG markers. + * + * Entry condition: JPEG marker itself has been read and its code saved + *   in cinfo->unread_marker; input restart point is just after the marker. + * + * Exit: if return TRUE, have read and processed any parameters, and have + *   updated the restart point to point after the parameters. + *   If return FALSE, was forced to suspend before reaching end of + *   marker parameters; restart point has not been moved.  Same routine + *   will be called again after application supplies more input data. + * + * This approach to suspension assumes that all of a marker's parameters can + * fit into a single input bufferload.  This should hold for "normal" + * markers.  Some COM/APPn markers might have large parameter segments, + * but we use skip_input_data to get past those, and thereby put the problem + * on the source manager's shoulders. + * + * Note that we don't bother to avoid duplicate trace messages if a + * suspension occurs within marker parameters.  Other side effects + * require more care. + */ + + +LOCAL boolean +get_soi (j_decompress_ptr cinfo) +/* Process an SOI marker */ +{ +  int i; +   +  TRACEMS(cinfo, 1, JTRC_SOI); + +  if (cinfo->marker->saw_SOI) +    ERREXIT(cinfo, JERR_SOI_DUPLICATE); + +  /* Reset all parameters that are defined to be reset by SOI */ + +  for (i = 0; i < NUM_ARITH_TBLS; i++) { +    cinfo->arith_dc_L[i] = 0; +    cinfo->arith_dc_U[i] = 1; +    cinfo->arith_ac_K[i] = 5; +  } +  cinfo->restart_interval = 0; + +  /* Set initial assumptions for colorspace etc */ + +  cinfo->jpeg_color_space = JCS_UNKNOWN; +  cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */ + +  cinfo->saw_JFIF_marker = FALSE; +  cinfo->density_unit = 0;	/* set default JFIF APP0 values */ +  cinfo->X_density = 1; +  cinfo->Y_density = 1; +  cinfo->saw_Adobe_marker = FALSE; +  cinfo->Adobe_transform = 0; + +  cinfo->marker->saw_SOI = TRUE; + +  return TRUE; +} + + +LOCAL boolean +get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith) +/* Process a SOFn marker */ +{ +  INT32 length; +  int c, ci; +  jpeg_component_info * compptr; +  INPUT_VARS(cinfo); + +  cinfo->progressive_mode = is_prog; +  cinfo->arith_code = is_arith; + +  INPUT_2BYTES(cinfo, length, return FALSE); + +  INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE); +  INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE); +  INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE); +  INPUT_BYTE(cinfo, cinfo->num_components, return FALSE); + +  length -= 8; + +  TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker, +	   (int) cinfo->image_width, (int) cinfo->image_height, +	   cinfo->num_components); + +  if (cinfo->marker->saw_SOF) +    ERREXIT(cinfo, JERR_SOF_DUPLICATE); + +  /* We don't support files in which the image height is initially specified */ +  /* as 0 and is later redefined by DNL.  As long as we have to check that,  */ +  /* might as well have a general sanity check. */ +  if (cinfo->image_height <= 0 || cinfo->image_width <= 0 +      || cinfo->num_components <= 0) +    ERREXIT(cinfo, JERR_EMPTY_IMAGE); + +  if (length != (cinfo->num_components * 3)) +    ERREXIT(cinfo, JERR_BAD_LENGTH); + +  if (cinfo->comp_info == NULL)	/* do only once, even if suspend */ +    cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) +			((j_common_ptr) cinfo, JPOOL_IMAGE, +			 cinfo->num_components * SIZEOF(jpeg_component_info)); +   +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    compptr->component_index = ci; +    INPUT_BYTE(cinfo, compptr->component_id, return FALSE); +    INPUT_BYTE(cinfo, c, return FALSE); +    compptr->h_samp_factor = (c >> 4) & 15; +    compptr->v_samp_factor = (c     ) & 15; +    INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE); + +    TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT, +	     compptr->component_id, compptr->h_samp_factor, +	     compptr->v_samp_factor, compptr->quant_tbl_no); +  } + +  cinfo->marker->saw_SOF = TRUE; + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +LOCAL boolean +get_sos (j_decompress_ptr cinfo) +/* Process a SOS marker */ +{ +  INT32 length; +  int i, ci, n, c, cc; +  jpeg_component_info * compptr; +  INPUT_VARS(cinfo); + +  if (! cinfo->marker->saw_SOF) +    ERREXIT(cinfo, JERR_SOS_NO_SOF); + +  INPUT_2BYTES(cinfo, length, return FALSE); + +  INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */ + +  if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN) +    ERREXIT(cinfo, JERR_BAD_LENGTH); + +  TRACEMS1(cinfo, 1, JTRC_SOS, n); + +  cinfo->comps_in_scan = n; + +  /* Collect the component-spec parameters */ + +  for (i = 0; i < n; i++) { +    INPUT_BYTE(cinfo, cc, return FALSE); +    INPUT_BYTE(cinfo, c, return FALSE); +     +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      if (cc == compptr->component_id) +	goto id_found; +    } + +    ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); + +  id_found: + +    cinfo->cur_comp_info[i] = compptr; +    compptr->dc_tbl_no = (c >> 4) & 15; +    compptr->ac_tbl_no = (c     ) & 15; +     +    TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc, +	     compptr->dc_tbl_no, compptr->ac_tbl_no); +  } + +  /* Collect the additional scan parameters Ss, Se, Ah/Al. */ +  INPUT_BYTE(cinfo, c, return FALSE); +  cinfo->Ss = c; +  INPUT_BYTE(cinfo, c, return FALSE); +  cinfo->Se = c; +  INPUT_BYTE(cinfo, c, return FALSE); +  cinfo->Ah = (c >> 4) & 15; +  cinfo->Al = (c     ) & 15; + +  TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se, +	   cinfo->Ah, cinfo->Al); + +  /* Prepare to scan data & restart markers */ +  cinfo->marker->next_restart_num = 0; + +  /* Count another SOS marker */ +  cinfo->input_scan_number++; + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +METHODDEF boolean +get_app0 (j_decompress_ptr cinfo) +/* Process an APP0 marker */ +{ +#define JFIF_LEN 14 +  INT32 length; +  UINT8 b[JFIF_LEN]; +  int buffp; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +  length -= 2; + +  /* See if a JFIF APP0 marker is present */ + +  if (length >= JFIF_LEN) { +    for (buffp = 0; buffp < JFIF_LEN; buffp++) +      INPUT_BYTE(cinfo, b[buffp], return FALSE); +    length -= JFIF_LEN; + +    if (b[0]==0x4A && b[1]==0x46 && b[2]==0x49 && b[3]==0x46 && b[4]==0) { +      /* Found JFIF APP0 marker: check version */ +      /* Major version must be 1, anything else signals an incompatible change. +       * We used to treat this as an error, but now it's a nonfatal warning, +       * because some bozo at Hijaak couldn't read the spec. +       * Minor version should be 0..2, but process anyway if newer. +       */ +      if (b[5] != 1) +	WARNMS2(cinfo, JWRN_JFIF_MAJOR, b[5], b[6]); +      else if (b[6] > 2) +	TRACEMS2(cinfo, 1, JTRC_JFIF_MINOR, b[5], b[6]); +      /* Save info */ +      cinfo->saw_JFIF_marker = TRUE; +      cinfo->density_unit = b[7]; +      cinfo->X_density = (b[8] << 8) + b[9]; +      cinfo->Y_density = (b[10] << 8) + b[11]; +      TRACEMS3(cinfo, 1, JTRC_JFIF, +	       cinfo->X_density, cinfo->Y_density, cinfo->density_unit); +      if (b[12] | b[13]) +	TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, b[12], b[13]); +      if (length != ((INT32) b[12] * (INT32) b[13] * (INT32) 3)) +	TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) length); +    } else { +      /* Start of APP0 does not match "JFIF" */ +      TRACEMS1(cinfo, 1, JTRC_APP0, (int) length + JFIF_LEN); +    } +  } else { +    /* Too short to be JFIF marker */ +    TRACEMS1(cinfo, 1, JTRC_APP0, (int) length); +  } + +  INPUT_SYNC(cinfo); +  if (length > 0)		/* skip any remaining data -- could be lots */ +    (*cinfo->src->skip_input_data) (cinfo, (long) length); + +  return TRUE; +} + + +METHODDEF boolean +get_app14 (j_decompress_ptr cinfo) +/* Process an APP14 marker */ +{ +#define ADOBE_LEN 12 +  INT32 length; +  UINT8 b[ADOBE_LEN]; +  int buffp; +  unsigned int version, flags0, flags1, transform; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +  length -= 2; + +  /* See if an Adobe APP14 marker is present */ + +  if (length >= ADOBE_LEN) { +    for (buffp = 0; buffp < ADOBE_LEN; buffp++) +      INPUT_BYTE(cinfo, b[buffp], return FALSE); +    length -= ADOBE_LEN; + +    if (b[0]==0x41 && b[1]==0x64 && b[2]==0x6F && b[3]==0x62 && b[4]==0x65) { +      /* Found Adobe APP14 marker */ +      version = (b[5] << 8) + b[6]; +      flags0 = (b[7] << 8) + b[8]; +      flags1 = (b[9] << 8) + b[10]; +      transform = b[11]; +      TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform); +      cinfo->saw_Adobe_marker = TRUE; +      cinfo->Adobe_transform = (UINT8) transform; +    } else { +      /* Start of APP14 does not match "Adobe" */ +      TRACEMS1(cinfo, 1, JTRC_APP14, (int) length + ADOBE_LEN); +    } +  } else { +    /* Too short to be Adobe marker */ +    TRACEMS1(cinfo, 1, JTRC_APP14, (int) length); +  } + +  INPUT_SYNC(cinfo); +  if (length > 0)		/* skip any remaining data -- could be lots */ +    (*cinfo->src->skip_input_data) (cinfo, (long) length); + +  return TRUE; +} + + +LOCAL boolean +get_dac (j_decompress_ptr cinfo) +/* Process a DAC marker */ +{ +  INT32 length; +  int index, val; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +  length -= 2; +   +  while (length > 0) { +    INPUT_BYTE(cinfo, index, return FALSE); +    INPUT_BYTE(cinfo, val, return FALSE); + +    length -= 2; + +    TRACEMS2(cinfo, 1, JTRC_DAC, index, val); + +    if (index < 0 || index >= (2*NUM_ARITH_TBLS)) +      ERREXIT1(cinfo, JERR_DAC_INDEX, index); + +    if (index >= NUM_ARITH_TBLS) { /* define AC table */ +      cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val; +    } else {			/* define DC table */ +      cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F); +      cinfo->arith_dc_U[index] = (UINT8) (val >> 4); +      if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index]) +	ERREXIT1(cinfo, JERR_DAC_VALUE, val); +    } +  } + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +LOCAL boolean +get_dht (j_decompress_ptr cinfo) +/* Process a DHT marker */ +{ +  INT32 length; +  UINT8 bits[17]; +  UINT8 huffval[256]; +  int i, index, count; +  JHUFF_TBL **htblptr; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +  length -= 2; +   +  while (length > 0) { +    INPUT_BYTE(cinfo, index, return FALSE); + +    TRACEMS1(cinfo, 1, JTRC_DHT, index); +       +    bits[0] = 0; +    count = 0; +    for (i = 1; i <= 16; i++) { +      INPUT_BYTE(cinfo, bits[i], return FALSE); +      count += bits[i]; +    } + +    length -= 1 + 16; + +    TRACEMS8(cinfo, 2, JTRC_HUFFBITS, +	     bits[1], bits[2], bits[3], bits[4], +	     bits[5], bits[6], bits[7], bits[8]); +    TRACEMS8(cinfo, 2, JTRC_HUFFBITS, +	     bits[9], bits[10], bits[11], bits[12], +	     bits[13], bits[14], bits[15], bits[16]); + +    if (count > 256 || ((INT32) count) > length) +      ERREXIT(cinfo, JERR_DHT_COUNTS); + +    for (i = 0; i < count; i++) +      INPUT_BYTE(cinfo, huffval[i], return FALSE); + +    length -= count; + +    if (index & 0x10) {		/* AC table definition */ +      index -= 0x10; +      htblptr = &cinfo->ac_huff_tbl_ptrs[index]; +    } else {			/* DC table definition */ +      htblptr = &cinfo->dc_huff_tbl_ptrs[index]; +    } + +    if (index < 0 || index >= NUM_HUFF_TBLS) +      ERREXIT1(cinfo, JERR_DHT_INDEX, index); + +    if (*htblptr == NULL) +      *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +   +    MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); +    MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval)); +  } + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +LOCAL boolean +get_dqt (j_decompress_ptr cinfo) +/* Process a DQT marker */ +{ +  INT32 length; +  int n, i, prec; +  unsigned int tmp; +  JQUANT_TBL *quant_ptr; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +  length -= 2; + +  while (length > 0) { +    INPUT_BYTE(cinfo, n, return FALSE); +    prec = n >> 4; +    n &= 0x0F; + +    TRACEMS2(cinfo, 1, JTRC_DQT, n, prec); + +    if (n >= NUM_QUANT_TBLS) +      ERREXIT1(cinfo, JERR_DQT_INDEX, n); +       +    if (cinfo->quant_tbl_ptrs[n] == NULL) +      cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo); +    quant_ptr = cinfo->quant_tbl_ptrs[n]; + +    for (i = 0; i < DCTSIZE2; i++) { +      if (prec) +	INPUT_2BYTES(cinfo, tmp, return FALSE); +      else +	INPUT_BYTE(cinfo, tmp, return FALSE); +      quant_ptr->quantval[i] = (UINT16) tmp; +    } + +    for (i = 0; i < DCTSIZE2; i += 8) { +      TRACEMS8(cinfo, 2, JTRC_QUANTVALS, +	       quant_ptr->quantval[i  ], quant_ptr->quantval[i+1], +	       quant_ptr->quantval[i+2], quant_ptr->quantval[i+3], +	       quant_ptr->quantval[i+4], quant_ptr->quantval[i+5], +	       quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]); +    } + +    length -= DCTSIZE2+1; +    if (prec) length -= DCTSIZE2; +  } + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +LOCAL boolean +get_dri (j_decompress_ptr cinfo) +/* Process a DRI marker */ +{ +  INT32 length; +  unsigned int tmp; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +   +  if (length != 4) +    ERREXIT(cinfo, JERR_BAD_LENGTH); + +  INPUT_2BYTES(cinfo, tmp, return FALSE); + +  TRACEMS1(cinfo, 1, JTRC_DRI, tmp); + +  cinfo->restart_interval = tmp; + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +METHODDEF boolean +skip_variable (j_decompress_ptr cinfo) +/* Skip over an unknown or uninteresting variable-length marker */ +{ +  INT32 length; +  INPUT_VARS(cinfo); + +  INPUT_2BYTES(cinfo, length, return FALSE); +   +  TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length); + +  INPUT_SYNC(cinfo);		/* do before skip_input_data */ +  (*cinfo->src->skip_input_data) (cinfo, (long) length - 2L); + +  return TRUE; +} + + +/* + * Find the next JPEG marker, save it in cinfo->unread_marker. + * Returns FALSE if had to suspend before reaching a marker; + * in that case cinfo->unread_marker is unchanged. + * + * Note that the result might not be a valid marker code, + * but it will never be 0 or FF. + */ + +LOCAL boolean +next_marker (j_decompress_ptr cinfo) +{ +  int c; +  INPUT_VARS(cinfo); + +  for (;;) { +    INPUT_BYTE(cinfo, c, return FALSE); +    /* Skip any non-FF bytes. +     * This may look a bit inefficient, but it will not occur in a valid file. +     * We sync after each discarded byte so that a suspending data source +     * can discard the byte from its buffer. +     */ +    while (c != 0xFF) { +      cinfo->marker->discarded_bytes++; +      INPUT_SYNC(cinfo); +      INPUT_BYTE(cinfo, c, return FALSE); +    } +    /* This loop swallows any duplicate FF bytes.  Extra FFs are legal as +     * pad bytes, so don't count them in discarded_bytes.  We assume there +     * will not be so many consecutive FF bytes as to overflow a suspending +     * data source's input buffer. +     */ +    do { +      INPUT_BYTE(cinfo, c, return FALSE); +    } while (c == 0xFF); +    if (c != 0) +      break;			/* found a valid marker, exit loop */ +    /* Reach here if we found a stuffed-zero data sequence (FF/00). +     * Discard it and loop back to try again. +     */ +    cinfo->marker->discarded_bytes += 2; +    INPUT_SYNC(cinfo); +  } + +  if (cinfo->marker->discarded_bytes != 0) { +    WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c); +    cinfo->marker->discarded_bytes = 0; +  } + +  cinfo->unread_marker = c; + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +LOCAL boolean +first_marker (j_decompress_ptr cinfo) +/* Like next_marker, but used to obtain the initial SOI marker. */ +/* For this marker, we do not allow preceding garbage or fill; otherwise, + * we might well scan an entire input file before realizing it ain't JPEG. + * If an application wants to process non-JFIF files, it must seek to the + * SOI before calling the JPEG library. + */ +{ +  int c, c2; +  INPUT_VARS(cinfo); + +  INPUT_BYTE(cinfo, c, return FALSE); +  INPUT_BYTE(cinfo, c2, return FALSE); +  if (c != 0xFF || c2 != (int) M_SOI) +    ERREXIT2(cinfo, JERR_NO_SOI, c, c2); + +  cinfo->unread_marker = c2; + +  INPUT_SYNC(cinfo); +  return TRUE; +} + + +/* + * Read markers until SOS or EOI. + * + * Returns same codes as are defined for jpeg_consume_input: + * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. + */ + +METHODDEF int +read_markers (j_decompress_ptr cinfo) +{ +  /* Outer loop repeats once for each marker. */ +  for (;;) { +    /* Collect the marker proper, unless we already did. */ +    /* NB: first_marker() enforces the requirement that SOI appear first. */ +    if (cinfo->unread_marker == 0) { +      if (! cinfo->marker->saw_SOI) { +	if (! first_marker(cinfo)) +	  return JPEG_SUSPENDED; +      } else { +	if (! next_marker(cinfo)) +	  return JPEG_SUSPENDED; +      } +    } +    /* At this point cinfo->unread_marker contains the marker code and the +     * input point is just past the marker proper, but before any parameters. +     * A suspension will cause us to return with this state still true. +     */ +    switch (cinfo->unread_marker) { +    case M_SOI: +      if (! get_soi(cinfo)) +	return JPEG_SUSPENDED; +      break; + +    case M_SOF0:		/* Baseline */ +    case M_SOF1:		/* Extended sequential, Huffman */ +      if (! get_sof(cinfo, FALSE, FALSE)) +	return JPEG_SUSPENDED; +      break; + +    case M_SOF2:		/* Progressive, Huffman */ +      if (! get_sof(cinfo, TRUE, FALSE)) +	return JPEG_SUSPENDED; +      break; + +    case M_SOF9:		/* Extended sequential, arithmetic */ +      if (! get_sof(cinfo, FALSE, TRUE)) +	return JPEG_SUSPENDED; +      break; + +    case M_SOF10:		/* Progressive, arithmetic */ +      if (! get_sof(cinfo, TRUE, TRUE)) +	return JPEG_SUSPENDED; +      break; + +    /* Currently unsupported SOFn types */ +    case M_SOF3:		/* Lossless, Huffman */ +    case M_SOF5:		/* Differential sequential, Huffman */ +    case M_SOF6:		/* Differential progressive, Huffman */ +    case M_SOF7:		/* Differential lossless, Huffman */ +    case M_JPG:			/* Reserved for JPEG extensions */ +    case M_SOF11:		/* Lossless, arithmetic */ +    case M_SOF13:		/* Differential sequential, arithmetic */ +    case M_SOF14:		/* Differential progressive, arithmetic */ +    case M_SOF15:		/* Differential lossless, arithmetic */ +      ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker); +      break; + +    case M_SOS: +      if (! get_sos(cinfo)) +	return JPEG_SUSPENDED; +      cinfo->unread_marker = 0;	/* processed the marker */ +      return JPEG_REACHED_SOS; +     +    case M_EOI: +      TRACEMS(cinfo, 1, JTRC_EOI); +      cinfo->unread_marker = 0;	/* processed the marker */ +      return JPEG_REACHED_EOI; +       +    case M_DAC: +      if (! get_dac(cinfo)) +	return JPEG_SUSPENDED; +      break; +       +    case M_DHT: +      if (! get_dht(cinfo)) +	return JPEG_SUSPENDED; +      break; +       +    case M_DQT: +      if (! get_dqt(cinfo)) +	return JPEG_SUSPENDED; +      break; +       +    case M_DRI: +      if (! get_dri(cinfo)) +	return JPEG_SUSPENDED; +      break; +       +    case M_APP0: +    case M_APP1: +    case M_APP2: +    case M_APP3: +    case M_APP4: +    case M_APP5: +    case M_APP6: +    case M_APP7: +    case M_APP8: +    case M_APP9: +    case M_APP10: +    case M_APP11: +    case M_APP12: +    case M_APP13: +    case M_APP14: +    case M_APP15: +      if (! (*cinfo->marker->process_APPn[cinfo->unread_marker - (int) M_APP0]) (cinfo)) +	return JPEG_SUSPENDED; +      break; +       +    case M_COM: +      if (! (*cinfo->marker->process_COM) (cinfo)) +	return JPEG_SUSPENDED; +      break; + +    case M_RST0:		/* these are all parameterless */ +    case M_RST1: +    case M_RST2: +    case M_RST3: +    case M_RST4: +    case M_RST5: +    case M_RST6: +    case M_RST7: +    case M_TEM: +      TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker); +      break; + +    case M_DNL:			/* Ignore DNL ... perhaps the wrong thing */ +      if (! skip_variable(cinfo)) +	return JPEG_SUSPENDED; +      break; + +    default:			/* must be DHP, EXP, JPGn, or RESn */ +      /* For now, we treat the reserved markers as fatal errors since they are +       * likely to be used to signal incompatible JPEG Part 3 extensions. +       * Once the JPEG 3 version-number marker is well defined, this code +       * ought to change! +       */ +      ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); +      break; +    } +    /* Successfully processed marker, so reset state variable */ +    cinfo->unread_marker = 0; +  } /* end loop */ +} + + +/* + * Read a restart marker, which is expected to appear next in the datastream; + * if the marker is not there, take appropriate recovery action. + * Returns FALSE if suspension is required. + * + * This is called by the entropy decoder after it has read an appropriate + * number of MCUs.  cinfo->unread_marker may be nonzero if the entropy decoder + * has already read a marker from the data source.  Under normal conditions + * cinfo->unread_marker will be reset to 0 before returning; if not reset, + * it holds a marker which the decoder will be unable to read past. + */ + +METHODDEF boolean +read_restart_marker (j_decompress_ptr cinfo) +{ +  /* Obtain a marker unless we already did. */ +  /* Note that next_marker will complain if it skips any data. */ +  if (cinfo->unread_marker == 0) { +    if (! next_marker(cinfo)) +      return FALSE; +  } + +  if (cinfo->unread_marker == +      ((int) M_RST0 + cinfo->marker->next_restart_num)) { +    /* Normal case --- swallow the marker and let entropy decoder continue */ +    TRACEMS1(cinfo, 2, JTRC_RST, cinfo->marker->next_restart_num); +    cinfo->unread_marker = 0; +  } else { +    /* Uh-oh, the restart markers have been messed up. */ +    /* Let the data source manager determine how to resync. */ +    if (! (*cinfo->src->resync_to_restart) (cinfo, +					    cinfo->marker->next_restart_num)) +      return FALSE; +  } + +  /* Update next-restart state */ +  cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7; + +  return TRUE; +} + + +/* + * This is the default resync_to_restart method for data source managers + * to use if they don't have any better approach.  Some data source managers + * may be able to back up, or may have additional knowledge about the data + * which permits a more intelligent recovery strategy; such managers would + * presumably supply their own resync method. + * + * read_restart_marker calls resync_to_restart if it finds a marker other than + * the restart marker it was expecting.  (This code is *not* used unless + * a nonzero restart interval has been declared.)  cinfo->unread_marker is + * the marker code actually found (might be anything, except 0 or FF). + * The desired restart marker number (0..7) is passed as a parameter. + * This routine is supposed to apply whatever error recovery strategy seems + * appropriate in order to position the input stream to the next data segment. + * Note that cinfo->unread_marker is treated as a marker appearing before + * the current data-source input point; usually it should be reset to zero + * before returning. + * Returns FALSE if suspension is required. + * + * This implementation is substantially constrained by wanting to treat the + * input as a data stream; this means we can't back up.  Therefore, we have + * only the following actions to work with: + *   1. Simply discard the marker and let the entropy decoder resume at next + *      byte of file. + *   2. Read forward until we find another marker, discarding intervening + *      data.  (In theory we could look ahead within the current bufferload, + *      without having to discard data if we don't find the desired marker. + *      This idea is not implemented here, in part because it makes behavior + *      dependent on buffer size and chance buffer-boundary positions.) + *   3. Leave the marker unread (by failing to zero cinfo->unread_marker). + *      This will cause the entropy decoder to process an empty data segment, + *      inserting dummy zeroes, and then we will reprocess the marker. + * + * #2 is appropriate if we think the desired marker lies ahead, while #3 is + * appropriate if the found marker is a future restart marker (indicating + * that we have missed the desired restart marker, probably because it got + * corrupted). + * We apply #2 or #3 if the found marker is a restart marker no more than + * two counts behind or ahead of the expected one.  We also apply #2 if the + * found marker is not a legal JPEG marker code (it's certainly bogus data). + * If the found marker is a restart marker more than 2 counts away, we do #1 + * (too much risk that the marker is erroneous; with luck we will be able to + * resync at some future point). + * For any valid non-restart JPEG marker, we apply #3.  This keeps us from + * overrunning the end of a scan.  An implementation limited to single-scan + * files might find it better to apply #2 for markers other than EOI, since + * any other marker would have to be bogus data in that case. + */ + +GLOBAL boolean +jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired) +{ +  int marker = cinfo->unread_marker; +  int action = 1; +   +  /* Always put up a warning. */ +  WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired); +   +  /* Outer loop handles repeated decision after scanning forward. */ +  for (;;) { +    if (marker < (int) M_SOF0) +      action = 2;		/* invalid marker */ +    else if (marker < (int) M_RST0 || marker > (int) M_RST7) +      action = 3;		/* valid non-restart marker */ +    else { +      if (marker == ((int) M_RST0 + ((desired+1) & 7)) || +	  marker == ((int) M_RST0 + ((desired+2) & 7))) +	action = 3;		/* one of the next two expected restarts */ +      else if (marker == ((int) M_RST0 + ((desired-1) & 7)) || +	       marker == ((int) M_RST0 + ((desired-2) & 7))) +	action = 2;		/* a prior restart, so advance */ +      else +	action = 1;		/* desired restart or too far away */ +    } +    TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action); +    switch (action) { +    case 1: +      /* Discard marker and let entropy decoder resume processing. */ +      cinfo->unread_marker = 0; +      return TRUE; +    case 2: +      /* Scan to the next marker, and repeat the decision loop. */ +      if (! next_marker(cinfo)) +	return FALSE; +      marker = cinfo->unread_marker; +      break; +    case 3: +      /* Return without advancing past this marker. */ +      /* Entropy decoder will be forced to process an empty segment. */ +      return TRUE; +    } +  } /* end loop */ +} + + +/* + * Reset marker processing state to begin a fresh datastream. + */ + +METHODDEF void +reset_marker_reader (j_decompress_ptr cinfo) +{ +  cinfo->comp_info = NULL;		/* until allocated by get_sof */ +  cinfo->input_scan_number = 0;		/* no SOS seen yet */ +  cinfo->unread_marker = 0;		/* no pending marker */ +  cinfo->marker->saw_SOI = FALSE;	/* set internal state too */ +  cinfo->marker->saw_SOF = FALSE; +  cinfo->marker->discarded_bytes = 0; +} + + +/* + * Initialize the marker reader module. + * This is called only once, when the decompression object is created. + */ + +GLOBAL void +jinit_marker_reader (j_decompress_ptr cinfo) +{ +  int i; + +  /* Create subobject in permanent pool */ +  cinfo->marker = (struct jpeg_marker_reader *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, +				SIZEOF(struct jpeg_marker_reader)); +  /* Initialize method pointers */ +  cinfo->marker->reset_marker_reader = reset_marker_reader; +  cinfo->marker->read_markers = read_markers; +  cinfo->marker->read_restart_marker = read_restart_marker; +  cinfo->marker->process_COM = skip_variable; +  for (i = 0; i < 16; i++) +    cinfo->marker->process_APPn[i] = skip_variable; +  cinfo->marker->process_APPn[0] = get_app0; +  cinfo->marker->process_APPn[14] = get_app14; +  /* Reset marker processing state */ +  reset_marker_reader(cinfo); +} diff --git a/src/jpeg-6/jdmaster.c b/src/jpeg-6/jdmaster.c new file mode 100644 index 00000000..18e08809 --- /dev/null +++ b/src/jpeg-6/jdmaster.c @@ -0,0 +1,557 @@ +/* + * jdmaster.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains master control logic for the JPEG decompressor. + * These routines are concerned with selecting the modules to be executed + * and with determining the number of passes and the work to be done in each + * pass. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Private state */ + +typedef struct { +  struct jpeg_decomp_master pub; /* public fields */ + +  int pass_number;		/* # of passes completed */ + +  boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ + +  /* Saved references to initialized quantizer modules, +   * in case we need to switch modes. +   */ +  struct jpeg_color_quantizer * quantizer_1pass; +  struct jpeg_color_quantizer * quantizer_2pass; +} my_decomp_master; + +typedef my_decomp_master * my_master_ptr; + + +/* + * Determine whether merged upsample/color conversion should be used. + * CRUCIAL: this must match the actual capabilities of jdmerge.c! + */ + +LOCAL boolean +use_merged_upsample (j_decompress_ptr cinfo) +{ +#ifdef UPSAMPLE_MERGING_SUPPORTED +  /* Merging is the equivalent of plain box-filter upsampling */ +  if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) +    return FALSE; +  /* jdmerge.c only supports YCC=>RGB color conversion */ +  if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || +      cinfo->out_color_space != JCS_RGB || +      cinfo->out_color_components != RGB_PIXELSIZE) +    return FALSE; +  /* and it only handles 2h1v or 2h2v sampling ratios */ +  if (cinfo->comp_info[0].h_samp_factor != 2 || +      cinfo->comp_info[1].h_samp_factor != 1 || +      cinfo->comp_info[2].h_samp_factor != 1 || +      cinfo->comp_info[0].v_samp_factor >  2 || +      cinfo->comp_info[1].v_samp_factor != 1 || +      cinfo->comp_info[2].v_samp_factor != 1) +    return FALSE; +  /* furthermore, it doesn't work if we've scaled the IDCTs differently */ +  if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size || +      cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size || +      cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size) +    return FALSE; +  /* ??? also need to test for upsample-time rescaling, when & if supported */ +  return TRUE;			/* by golly, it'll work... */ +#else +  return FALSE; +#endif +} + + +/* + * Compute output image dimensions and related values. + * NOTE: this is exported for possible use by application. + * Hence it mustn't do anything that can't be done twice. + * Also note that it may be called before the master module is initialized! + */ + +GLOBAL void +jpeg_calc_output_dimensions (j_decompress_ptr cinfo) +/* Do computations that are needed before master selection phase */ +{ +#if 0	// JDC: commented out to remove warning +  int ci; +  jpeg_component_info *compptr; +#endif + +  /* Prevent application from calling me at wrong times */ +  if (cinfo->global_state != DSTATE_READY) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +#ifdef IDCT_SCALING_SUPPORTED + +  /* Compute actual output image dimensions and DCT scaling choices. */ +  if (cinfo->scale_num * 8 <= cinfo->scale_denom) { +    /* Provide 1/8 scaling */ +    cinfo->output_width = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width, 8L); +    cinfo->output_height = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height, 8L); +    cinfo->min_DCT_scaled_size = 1; +  } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) { +    /* Provide 1/4 scaling */ +    cinfo->output_width = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width, 4L); +    cinfo->output_height = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height, 4L); +    cinfo->min_DCT_scaled_size = 2; +  } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) { +    /* Provide 1/2 scaling */ +    cinfo->output_width = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width, 2L); +    cinfo->output_height = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height, 2L); +    cinfo->min_DCT_scaled_size = 4; +  } else { +    /* Provide 1/1 scaling */ +    cinfo->output_width = cinfo->image_width; +    cinfo->output_height = cinfo->image_height; +    cinfo->min_DCT_scaled_size = DCTSIZE; +  } +  /* In selecting the actual DCT scaling for each component, we try to +   * scale up the chroma components via IDCT scaling rather than upsampling. +   * This saves time if the upsampler gets to use 1:1 scaling. +   * Note this code assumes that the supported DCT scalings are powers of 2. +   */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    int ssize = cinfo->min_DCT_scaled_size; +    while (ssize < DCTSIZE && +	   (compptr->h_samp_factor * ssize * 2 <= +	    cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) && +	   (compptr->v_samp_factor * ssize * 2 <= +	    cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) { +      ssize = ssize * 2; +    } +    compptr->DCT_scaled_size = ssize; +  } + +  /* Recompute downsampled dimensions of components; +   * application needs to know these if using raw downsampled data. +   */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Size in samples, after IDCT scaling */ +    compptr->downsampled_width = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_width * +		    (long) (compptr->h_samp_factor * compptr->DCT_scaled_size), +		    (long) (cinfo->max_h_samp_factor * DCTSIZE)); +    compptr->downsampled_height = (JDIMENSION) +      jdiv_round_up((long) cinfo->image_height * +		    (long) (compptr->v_samp_factor * compptr->DCT_scaled_size), +		    (long) (cinfo->max_v_samp_factor * DCTSIZE)); +  } + +#else /* !IDCT_SCALING_SUPPORTED */ + +  /* Hardwire it to "no scaling" */ +  cinfo->output_width = cinfo->image_width; +  cinfo->output_height = cinfo->image_height; +  /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, +   * and has computed unscaled downsampled_width and downsampled_height. +   */ + +#endif /* IDCT_SCALING_SUPPORTED */ + +  /* Report number of components in selected colorspace. */ +  /* Probably this should be in the color conversion module... */ +  switch (cinfo->out_color_space) { +  case JCS_GRAYSCALE: +    cinfo->out_color_components = 1; +    break; +  case JCS_RGB: +#if RGB_PIXELSIZE != 3 +    cinfo->out_color_components = RGB_PIXELSIZE; +    break; +#endif /* else share code with YCbCr */ +  case JCS_YCbCr: +    cinfo->out_color_components = 3; +    break; +  case JCS_CMYK: +  case JCS_YCCK: +    cinfo->out_color_components = 4; +    break; +  default:			/* else must be same colorspace as in file */ +    cinfo->out_color_components = cinfo->num_components; +    break; +  } +  cinfo->output_components = (cinfo->quantize_colors ? 1 : +			      cinfo->out_color_components); + +  /* See if upsampler will want to emit more than one row at a time */ +  if (use_merged_upsample(cinfo)) +    cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; +  else +    cinfo->rec_outbuf_height = 1; +} + + +/* + * Several decompression processes need to range-limit values to the range + * 0..MAXJSAMPLE; the input value may fall somewhat outside this range + * due to noise introduced by quantization, roundoff error, etc.  These + * processes are inner loops and need to be as fast as possible.  On most + * machines, particularly CPUs with pipelines or instruction prefetch, + * a (subscript-check-less) C table lookup + *		x = sample_range_limit[x]; + * is faster than explicit tests + *		if (x < 0)  x = 0; + *		else if (x > MAXJSAMPLE)  x = MAXJSAMPLE; + * These processes all use a common table prepared by the routine below. + * + * For most steps we can mathematically guarantee that the initial value + * of x is within MAXJSAMPLE+1 of the legal range, so a table running from + * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient.  But for the initial + * limiting step (just after the IDCT), a wildly out-of-range value is  + * possible if the input data is corrupt.  To avoid any chance of indexing + * off the end of memory and getting a bad-pointer trap, we perform the + * post-IDCT limiting thus: + *		x = range_limit[x & MASK]; + * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit + * samples.  Under normal circumstances this is more than enough range and + * a correct output will be generated; with bogus input data the mask will + * cause wraparound, and we will safely generate a bogus-but-in-range output. + * For the post-IDCT step, we want to convert the data from signed to unsigned + * representation by adding CENTERJSAMPLE at the same time that we limit it. + * So the post-IDCT limiting table ends up looking like this: + *   CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, + *   MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), + *   0          (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), + *   0,1,...,CENTERJSAMPLE-1 + * Negative inputs select values from the upper half of the table after + * masking. + * + * We can save some space by overlapping the start of the post-IDCT table + * with the simpler range limiting table.  The post-IDCT table begins at + * sample_range_limit + CENTERJSAMPLE. + * + * Note that the table is allocated in near data space on PCs; it's small + * enough and used often enough to justify this. + */ + +LOCAL void +prepare_range_limit_table (j_decompress_ptr cinfo) +/* Allocate and fill in the sample_range_limit table */ +{ +  JSAMPLE * table; +  int i; + +  table = (JSAMPLE *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +		(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); +  table += (MAXJSAMPLE+1);	/* allow negative subscripts of simple table */ +  cinfo->sample_range_limit = table; +  /* First segment of "simple" table: limit[x] = 0 for x < 0 */ +  MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); +  /* Main part of "simple" table: limit[x] = x */ +  for (i = 0; i <= MAXJSAMPLE; i++) +    table[i] = (JSAMPLE) i; +  table += CENTERJSAMPLE;	/* Point to where post-IDCT table starts */ +  /* End of simple table, rest of first half of post-IDCT table */ +  for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) +    table[i] = MAXJSAMPLE; +  /* Second half of post-IDCT table */ +  MEMZERO(table + (2 * (MAXJSAMPLE+1)), +	  (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); +  MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), +	  cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); +} + + +/* + * Master selection of decompression modules. + * This is done once at jpeg_start_decompress time.  We determine + * which modules will be used and give them appropriate initialization calls. + * We also initialize the decompressor input side to begin consuming data. + * + * Since jpeg_read_header has finished, we know what is in the SOF + * and (first) SOS markers.  We also have all the application parameter + * settings. + */ + +LOCAL void +master_selection (j_decompress_ptr cinfo) +{ +  my_master_ptr master = (my_master_ptr) cinfo->master; +  boolean use_c_buffer; +  long samplesperrow; +  JDIMENSION jd_samplesperrow; + +  /* Initialize dimensions and other stuff */ +  jpeg_calc_output_dimensions(cinfo); +  prepare_range_limit_table(cinfo); + +  /* Width of an output scanline must be representable as JDIMENSION. */ +  samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; +  jd_samplesperrow = (JDIMENSION) samplesperrow; +  if ((long) jd_samplesperrow != samplesperrow) +    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); + +  /* Initialize my private state */ +  master->pass_number = 0; +  master->using_merged_upsample = use_merged_upsample(cinfo); + +  /* Color quantizer selection */ +  master->quantizer_1pass = NULL; +  master->quantizer_2pass = NULL; +  /* No mode changes if not using buffered-image mode. */ +  if (! cinfo->quantize_colors || ! cinfo->buffered_image) { +    cinfo->enable_1pass_quant = FALSE; +    cinfo->enable_external_quant = FALSE; +    cinfo->enable_2pass_quant = FALSE; +  } +  if (cinfo->quantize_colors) { +    if (cinfo->raw_data_out) +      ERREXIT(cinfo, JERR_NOTIMPL); +    /* 2-pass quantizer only works in 3-component color space. */ +    if (cinfo->out_color_components != 3) { +      cinfo->enable_1pass_quant = TRUE; +      cinfo->enable_external_quant = FALSE; +      cinfo->enable_2pass_quant = FALSE; +      cinfo->colormap = NULL; +    } else if (cinfo->colormap != NULL) { +      cinfo->enable_external_quant = TRUE; +    } else if (cinfo->two_pass_quantize) { +      cinfo->enable_2pass_quant = TRUE; +    } else { +      cinfo->enable_1pass_quant = TRUE; +    } + +    if (cinfo->enable_1pass_quant) { +#ifdef QUANT_1PASS_SUPPORTED +      jinit_1pass_quantizer(cinfo); +      master->quantizer_1pass = cinfo->cquantize; +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } + +    /* We use the 2-pass code to map to external colormaps. */ +    if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { +#ifdef QUANT_2PASS_SUPPORTED +      jinit_2pass_quantizer(cinfo); +      master->quantizer_2pass = cinfo->cquantize; +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } +    /* If both quantizers are initialized, the 2-pass one is left active; +     * this is necessary for starting with quantization to an external map. +     */ +  } + +  /* Post-processing: in particular, color conversion first */ +  if (! cinfo->raw_data_out) { +    if (master->using_merged_upsample) { +#ifdef UPSAMPLE_MERGING_SUPPORTED +      jinit_merged_upsampler(cinfo); /* does color conversion too */ +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } else { +      jinit_color_deconverter(cinfo); +      jinit_upsampler(cinfo); +    } +    jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); +  } +  /* Inverse DCT */ +  jinit_inverse_dct(cinfo); +  /* Entropy decoding: either Huffman or arithmetic coding. */ +  if (cinfo->arith_code) { +    ERREXIT(cinfo, JERR_ARITH_NOTIMPL); +  } else { +    if (cinfo->progressive_mode) { +#ifdef D_PROGRESSIVE_SUPPORTED +      jinit_phuff_decoder(cinfo); +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } else +      jinit_huff_decoder(cinfo); +  } + +  /* Initialize principal buffer controllers. */ +  use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; +  jinit_d_coef_controller(cinfo, use_c_buffer); + +  if (! cinfo->raw_data_out) +    jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); + +  /* We can now tell the memory manager to allocate virtual arrays. */ +  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); + +  /* Initialize input side of decompressor to consume first scan. */ +  (*cinfo->inputctl->start_input_pass) (cinfo); + +#ifdef D_MULTISCAN_FILES_SUPPORTED +  /* If jpeg_start_decompress will read the whole file, initialize +   * progress monitoring appropriately.  The input step is counted +   * as one pass. +   */ +  if (cinfo->progress != NULL && ! cinfo->buffered_image && +      cinfo->inputctl->has_multiple_scans) { +    int nscans; +    /* Estimate number of scans to set pass_limit. */ +    if (cinfo->progressive_mode) { +      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ +      nscans = 2 + 3 * cinfo->num_components; +    } else { +      /* For a nonprogressive multiscan file, estimate 1 scan per component. */ +      nscans = cinfo->num_components; +    } +    cinfo->progress->pass_counter = 0L; +    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; +    cinfo->progress->completed_passes = 0; +    cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); +    /* Count the input pass as done */ +    master->pass_number++; +  } +#endif /* D_MULTISCAN_FILES_SUPPORTED */ +} + + +/* + * Per-pass setup. + * This is called at the beginning of each output pass.  We determine which + * modules will be active during this pass and give them appropriate + * start_pass calls.  We also set is_dummy_pass to indicate whether this + * is a "real" output pass or a dummy pass for color quantization. + * (In the latter case, jdapi.c will crank the pass to completion.) + */ + +METHODDEF void +prepare_for_output_pass (j_decompress_ptr cinfo) +{ +  my_master_ptr master = (my_master_ptr) cinfo->master; + +  if (master->pub.is_dummy_pass) { +#ifdef QUANT_2PASS_SUPPORTED +    /* Final pass of 2-pass quantization */ +    master->pub.is_dummy_pass = FALSE; +    (*cinfo->cquantize->start_pass) (cinfo, FALSE); +    (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); +    (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); +#else +    ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif /* QUANT_2PASS_SUPPORTED */ +  } else { +    if (cinfo->quantize_colors && cinfo->colormap == NULL) { +      /* Select new quantization method */ +      if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { +	cinfo->cquantize = master->quantizer_2pass; +	master->pub.is_dummy_pass = TRUE; +      } else if (cinfo->enable_1pass_quant) { +	cinfo->cquantize = master->quantizer_1pass; +      } else { +	ERREXIT(cinfo, JERR_MODE_CHANGE); +      } +    } +    (*cinfo->idct->start_pass) (cinfo); +    (*cinfo->coef->start_output_pass) (cinfo); +    if (! cinfo->raw_data_out) { +      if (! master->using_merged_upsample) +	(*cinfo->cconvert->start_pass) (cinfo); +      (*cinfo->upsample->start_pass) (cinfo); +      if (cinfo->quantize_colors) +	(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); +      (*cinfo->post->start_pass) (cinfo, +	    (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); +      (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); +    } +  } + +  /* Set up progress monitor's pass info if present */ +  if (cinfo->progress != NULL) { +    cinfo->progress->completed_passes = master->pass_number; +    cinfo->progress->total_passes = master->pass_number + +				    (master->pub.is_dummy_pass ? 2 : 1); +    /* In buffered-image mode, we assume one more output pass if EOI not +     * yet reached, but no more passes if EOI has been reached. +     */ +    if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { +      cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); +    } +  } +} + + +/* + * Finish up at end of an output pass. + */ + +METHODDEF void +finish_output_pass (j_decompress_ptr cinfo) +{ +  my_master_ptr master = (my_master_ptr) cinfo->master; + +  if (cinfo->quantize_colors) +    (*cinfo->cquantize->finish_pass) (cinfo); +  master->pass_number++; +} + + +#ifdef D_MULTISCAN_FILES_SUPPORTED + +/* + * Switch to a new external colormap between output passes. + */ + +GLOBAL void +jpeg_new_colormap (j_decompress_ptr cinfo) +{ +  my_master_ptr master = (my_master_ptr) cinfo->master; + +  /* Prevent application from calling me at wrong times */ +  if (cinfo->global_state != DSTATE_BUFIMAGE) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + +  if (cinfo->quantize_colors && cinfo->enable_external_quant && +      cinfo->colormap != NULL) { +    /* Select 2-pass quantizer for external colormap use */ +    cinfo->cquantize = master->quantizer_2pass; +    /* Notify quantizer of colormap change */ +    (*cinfo->cquantize->new_color_map) (cinfo); +    master->pub.is_dummy_pass = FALSE; /* just in case */ +  } else +    ERREXIT(cinfo, JERR_MODE_CHANGE); +} + +#endif /* D_MULTISCAN_FILES_SUPPORTED */ + + +/* + * Initialize master decompression control and select active modules. + * This is performed at the start of jpeg_start_decompress. + */ + +GLOBAL void +jinit_master_decompress (j_decompress_ptr cinfo) +{ +  my_master_ptr master; + +  master = (my_master_ptr) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(my_decomp_master)); +  cinfo->master = (struct jpeg_decomp_master *) master; +  master->pub.prepare_for_output_pass = prepare_for_output_pass; +  master->pub.finish_output_pass = finish_output_pass; + +  master->pub.is_dummy_pass = FALSE; + +  master_selection(cinfo); +} diff --git a/src/jpeg-6/jdmerge.c b/src/jpeg-6/jdmerge.c new file mode 100644 index 00000000..95585fb8 --- /dev/null +++ b/src/jpeg-6/jdmerge.c @@ -0,0 +1,400 @@ +/* + * jdmerge.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains code for merged upsampling/color conversion. + * + * This file combines functions from jdsample.c and jdcolor.c; + * read those files first to understand what's going on. + * + * When the chroma components are to be upsampled by simple replication + * (ie, box filtering), we can save some work in color conversion by + * calculating all the output pixels corresponding to a pair of chroma + * samples at one time.  In the conversion equations + *	R = Y           + K1 * Cr + *	G = Y + K2 * Cb + K3 * Cr + *	B = Y + K4 * Cb + * only the Y term varies among the group of pixels corresponding to a pair + * of chroma samples, so the rest of the terms can be calculated just once. + * At typical sampling ratios, this eliminates half or three-quarters of the + * multiplications needed for color conversion. + * + * This file currently provides implementations for the following cases: + *	YCbCr => RGB color conversion only. + *	Sampling ratios of 2h1v or 2h2v. + *	No scaling needed at upsample time. + *	Corner-aligned (non-CCIR601) sampling alignment. + * Other special cases could be added, but in most applications these are + * the only common cases.  (For uncommon cases we fall back on the more + * general code in jdsample.c and jdcolor.c.) + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + +#ifdef UPSAMPLE_MERGING_SUPPORTED + + +/* Private subobject */ + +typedef struct { +  struct jpeg_upsampler pub;	/* public fields */ + +  /* Pointer to routine to do actual upsampling/conversion of one row group */ +  JMETHOD(void, upmethod, (j_decompress_ptr cinfo, +			   JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, +			   JSAMPARRAY output_buf)); + +  /* Private state for YCC->RGB conversion */ +  int * Cr_r_tab;		/* => table for Cr to R conversion */ +  int * Cb_b_tab;		/* => table for Cb to B conversion */ +  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */ +  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */ + +  /* For 2:1 vertical sampling, we produce two output rows at a time. +   * We need a "spare" row buffer to hold the second output row if the +   * application provides just a one-row buffer; we also use the spare +   * to discard the dummy last row if the image height is odd. +   */ +  JSAMPROW spare_row; +  boolean spare_full;		/* T if spare buffer is occupied */ + +  JDIMENSION out_row_width;	/* samples per output row */ +  JDIMENSION rows_to_go;	/* counts rows remaining in image */ +} my_upsampler; + +typedef my_upsampler * my_upsample_ptr; + +#define SCALEBITS	16	/* speediest right-shift on some machines */ +#define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) +#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) + + +/* + * Initialize tables for YCC->RGB colorspace conversion. + * This is taken directly from jdcolor.c; see that file for more info. + */ + +LOCAL void +build_ycc_rgb_table (j_decompress_ptr cinfo) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; +  int i; +  INT32 x; +  SHIFT_TEMPS + +  upsample->Cr_r_tab = (int *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(int)); +  upsample->Cb_b_tab = (int *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(int)); +  upsample->Cr_g_tab = (INT32 *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(INT32)); +  upsample->Cb_g_tab = (INT32 *) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				(MAXJSAMPLE+1) * SIZEOF(INT32)); + +  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { +    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ +    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ +    /* Cr=>R value is nearest int to 1.40200 * x */ +    upsample->Cr_r_tab[i] = (int) +		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); +    /* Cb=>B value is nearest int to 1.77200 * x */ +    upsample->Cb_b_tab[i] = (int) +		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); +    /* Cr=>G value is scaled-up -0.71414 * x */ +    upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; +    /* Cb=>G value is scaled-up -0.34414 * x */ +    /* We also add in ONE_HALF so that need not do it in inner loop */ +    upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; +  } +} + + +/* + * Initialize for an upsampling pass. + */ + +METHODDEF void +start_pass_merged_upsample (j_decompress_ptr cinfo) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; + +  /* Mark the spare buffer empty */ +  upsample->spare_full = FALSE; +  /* Initialize total-height counter for detecting bottom of image */ +  upsample->rows_to_go = cinfo->output_height; +} + + +/* + * Control routine to do upsampling (and color conversion). + * + * The control routine just handles the row buffering considerations. + */ + +METHODDEF void +merged_2v_upsample (j_decompress_ptr cinfo, +		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +		    JDIMENSION in_row_groups_avail, +		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +		    JDIMENSION out_rows_avail) +/* 2:1 vertical sampling case: may need a spare row. */ +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; +  JSAMPROW work_ptrs[2]; +  JDIMENSION num_rows;		/* number of rows returned to caller */ + +  if (upsample->spare_full) { +    /* If we have a spare row saved from a previous cycle, just return it. */ +    jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, +		      1, upsample->out_row_width); +    num_rows = 1; +    upsample->spare_full = FALSE; +  } else { +    /* Figure number of rows to return to caller. */ +    num_rows = 2; +    /* Not more than the distance to the end of the image. */ +    if (num_rows > upsample->rows_to_go) +      num_rows = upsample->rows_to_go; +    /* And not more than what the client can accept: */ +    out_rows_avail -= *out_row_ctr; +    if (num_rows > out_rows_avail) +      num_rows = out_rows_avail; +    /* Create output pointer array for upsampler. */ +    work_ptrs[0] = output_buf[*out_row_ctr]; +    if (num_rows > 1) { +      work_ptrs[1] = output_buf[*out_row_ctr + 1]; +    } else { +      work_ptrs[1] = upsample->spare_row; +      upsample->spare_full = TRUE; +    } +    /* Now do the upsampling. */ +    (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); +  } + +  /* Adjust counts */ +  *out_row_ctr += num_rows; +  upsample->rows_to_go -= num_rows; +  /* When the buffer is emptied, declare this input row group consumed */ +  if (! upsample->spare_full) +    (*in_row_group_ctr)++; +} + + +METHODDEF void +merged_1v_upsample (j_decompress_ptr cinfo, +		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +		    JDIMENSION in_row_groups_avail, +		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +		    JDIMENSION out_rows_avail) +/* 1:1 vertical sampling case: much easier, never need a spare row. */ +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; + +  /* Just do the upsampling. */ +  (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, +			 output_buf + *out_row_ctr); +  /* Adjust counts */ +  (*out_row_ctr)++; +  (*in_row_group_ctr)++; +} + + +/* + * These are the routines invoked by the control routines to do + * the actual upsampling/conversion.  One row group is processed per call. + * + * Note: since we may be writing directly into application-supplied buffers, + * we have to be honest about the output width; we can't assume the buffer + * has been rounded up to an even width. + */ + + +/* + * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. + */ + +METHODDEF void +h2v1_merged_upsample (j_decompress_ptr cinfo, +		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, +		      JSAMPARRAY output_buf) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; +  register int y, cred, cgreen, cblue; +  int cb, cr; +  register JSAMPROW outptr; +  JSAMPROW inptr0, inptr1, inptr2; +  JDIMENSION col; +  /* copy these pointers into registers if possible */ +  register JSAMPLE * range_limit = cinfo->sample_range_limit; +  int * Crrtab = upsample->Cr_r_tab; +  int * Cbbtab = upsample->Cb_b_tab; +  INT32 * Crgtab = upsample->Cr_g_tab; +  INT32 * Cbgtab = upsample->Cb_g_tab; +  SHIFT_TEMPS + +  inptr0 = input_buf[0][in_row_group_ctr]; +  inptr1 = input_buf[1][in_row_group_ctr]; +  inptr2 = input_buf[2][in_row_group_ctr]; +  outptr = output_buf[0]; +  /* Loop for each pair of output pixels */ +  for (col = cinfo->output_width >> 1; col > 0; col--) { +    /* Do the chroma part of the calculation */ +    cb = GETJSAMPLE(*inptr1++); +    cr = GETJSAMPLE(*inptr2++); +    cred = Crrtab[cr]; +    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); +    cblue = Cbbtab[cb]; +    /* Fetch 2 Y values and emit 2 pixels */ +    y  = GETJSAMPLE(*inptr0++); +    outptr[RGB_RED] =   range_limit[y + cred]; +    outptr[RGB_GREEN] = range_limit[y + cgreen]; +    outptr[RGB_BLUE] =  range_limit[y + cblue]; +    outptr += RGB_PIXELSIZE; +    y  = GETJSAMPLE(*inptr0++); +    outptr[RGB_RED] =   range_limit[y + cred]; +    outptr[RGB_GREEN] = range_limit[y + cgreen]; +    outptr[RGB_BLUE] =  range_limit[y + cblue]; +    outptr += RGB_PIXELSIZE; +  } +  /* If image width is odd, do the last output column separately */ +  if (cinfo->output_width & 1) { +    cb = GETJSAMPLE(*inptr1); +    cr = GETJSAMPLE(*inptr2); +    cred = Crrtab[cr]; +    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); +    cblue = Cbbtab[cb]; +    y  = GETJSAMPLE(*inptr0); +    outptr[RGB_RED] =   range_limit[y + cred]; +    outptr[RGB_GREEN] = range_limit[y + cgreen]; +    outptr[RGB_BLUE] =  range_limit[y + cblue]; +  } +} + + +/* + * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. + */ + +METHODDEF void +h2v2_merged_upsample (j_decompress_ptr cinfo, +		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, +		      JSAMPARRAY output_buf) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; +  register int y, cred, cgreen, cblue; +  int cb, cr; +  register JSAMPROW outptr0, outptr1; +  JSAMPROW inptr00, inptr01, inptr1, inptr2; +  JDIMENSION col; +  /* copy these pointers into registers if possible */ +  register JSAMPLE * range_limit = cinfo->sample_range_limit; +  int * Crrtab = upsample->Cr_r_tab; +  int * Cbbtab = upsample->Cb_b_tab; +  INT32 * Crgtab = upsample->Cr_g_tab; +  INT32 * Cbgtab = upsample->Cb_g_tab; +  SHIFT_TEMPS + +  inptr00 = input_buf[0][in_row_group_ctr*2]; +  inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; +  inptr1 = input_buf[1][in_row_group_ctr]; +  inptr2 = input_buf[2][in_row_group_ctr]; +  outptr0 = output_buf[0]; +  outptr1 = output_buf[1]; +  /* Loop for each group of output pixels */ +  for (col = cinfo->output_width >> 1; col > 0; col--) { +    /* Do the chroma part of the calculation */ +    cb = GETJSAMPLE(*inptr1++); +    cr = GETJSAMPLE(*inptr2++); +    cred = Crrtab[cr]; +    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); +    cblue = Cbbtab[cb]; +    /* Fetch 4 Y values and emit 4 pixels */ +    y  = GETJSAMPLE(*inptr00++); +    outptr0[RGB_RED] =   range_limit[y + cred]; +    outptr0[RGB_GREEN] = range_limit[y + cgreen]; +    outptr0[RGB_BLUE] =  range_limit[y + cblue]; +    outptr0 += RGB_PIXELSIZE; +    y  = GETJSAMPLE(*inptr00++); +    outptr0[RGB_RED] =   range_limit[y + cred]; +    outptr0[RGB_GREEN] = range_limit[y + cgreen]; +    outptr0[RGB_BLUE] =  range_limit[y + cblue]; +    outptr0 += RGB_PIXELSIZE; +    y  = GETJSAMPLE(*inptr01++); +    outptr1[RGB_RED] =   range_limit[y + cred]; +    outptr1[RGB_GREEN] = range_limit[y + cgreen]; +    outptr1[RGB_BLUE] =  range_limit[y + cblue]; +    outptr1 += RGB_PIXELSIZE; +    y  = GETJSAMPLE(*inptr01++); +    outptr1[RGB_RED] =   range_limit[y + cred]; +    outptr1[RGB_GREEN] = range_limit[y + cgreen]; +    outptr1[RGB_BLUE] =  range_limit[y + cblue]; +    outptr1 += RGB_PIXELSIZE; +  } +  /* If image width is odd, do the last output column separately */ +  if (cinfo->output_width & 1) { +    cb = GETJSAMPLE(*inptr1); +    cr = GETJSAMPLE(*inptr2); +    cred = Crrtab[cr]; +    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); +    cblue = Cbbtab[cb]; +    y  = GETJSAMPLE(*inptr00); +    outptr0[RGB_RED] =   range_limit[y + cred]; +    outptr0[RGB_GREEN] = range_limit[y + cgreen]; +    outptr0[RGB_BLUE] =  range_limit[y + cblue]; +    y  = GETJSAMPLE(*inptr01); +    outptr1[RGB_RED] =   range_limit[y + cred]; +    outptr1[RGB_GREEN] = range_limit[y + cgreen]; +    outptr1[RGB_BLUE] =  range_limit[y + cblue]; +  } +} + + +/* + * Module initialization routine for merged upsampling/color conversion. + * + * NB: this is called under the conditions determined by use_merged_upsample() + * in jdmaster.c.  That routine MUST correspond to the actual capabilities + * of this module; no safety checks are made here. + */ + +GLOBAL void +jinit_merged_upsampler (j_decompress_ptr cinfo) +{ +  my_upsample_ptr upsample; + +  upsample = (my_upsample_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_upsampler)); +  cinfo->upsample = (struct jpeg_upsampler *) upsample; +  upsample->pub.start_pass = start_pass_merged_upsample; +  upsample->pub.need_context_rows = FALSE; + +  upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; + +  if (cinfo->max_v_samp_factor == 2) { +    upsample->pub.upsample = merged_2v_upsample; +    upsample->upmethod = h2v2_merged_upsample; +    /* Allocate a spare row buffer */ +    upsample->spare_row = (JSAMPROW) +      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, +		(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); +  } else { +    upsample->pub.upsample = merged_1v_upsample; +    upsample->upmethod = h2v1_merged_upsample; +    /* No spare row needed */ +    upsample->spare_row = NULL; +  } + +  build_ycc_rgb_table(cinfo); +} + +#endif /* UPSAMPLE_MERGING_SUPPORTED */ diff --git a/src/jpeg-6/jdphuff.c b/src/jpeg-6/jdphuff.c new file mode 100644 index 00000000..025bfd80 --- /dev/null +++ b/src/jpeg-6/jdphuff.c @@ -0,0 +1,642 @@ +/* + * jdphuff.c + * + * Copyright (C) 1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains Huffman entropy decoding routines for progressive JPEG. + * + * Much of the complexity here has to do with supporting input suspension. + * If the data source module demands suspension, we want to be able to back + * up to the start of the current MCU.  To do this, we copy state variables + * into local working storage, and update them back to the permanent + * storage only upon successful completion of an MCU. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdhuff.h"		/* Declarations shared with jdhuff.c */ + + +#ifdef D_PROGRESSIVE_SUPPORTED + +/* + * Expanded entropy decoder object for progressive Huffman decoding. + * + * The savable_state subrecord contains fields that change within an MCU, + * but must not be updated permanently until we complete the MCU. + */ + +typedef struct { +  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */ +  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */ +} savable_state; + +/* This macro is to work around compilers with missing or broken + * structure assignment.  You'll need to fix this code if you have + * such a compiler and you change MAX_COMPS_IN_SCAN. + */ + +#ifndef NO_STRUCT_ASSIGN +#define ASSIGN_STATE(dest,src)  ((dest) = (src)) +#else +#if MAX_COMPS_IN_SCAN == 4 +#define ASSIGN_STATE(dest,src)  \ +	((dest).EOBRUN = (src).EOBRUN, \ +	 (dest).last_dc_val[0] = (src).last_dc_val[0], \ +	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ +	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ +	 (dest).last_dc_val[3] = (src).last_dc_val[3]) +#endif +#endif + + +typedef struct { +  struct jpeg_entropy_decoder pub; /* public fields */ + +  /* These fields are loaded into local variables at start of each MCU. +   * In case of suspension, we exit WITHOUT updating them. +   */ +  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */ +  savable_state saved;		/* Other state at start of MCU */ + +  /* These fields are NOT loaded into local working state. */ +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ + +  /* Pointers to derived tables (these workspaces have image lifespan) */ +  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; + +  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ +} phuff_entropy_decoder; + +typedef phuff_entropy_decoder * phuff_entropy_ptr; + +/* Forward declarations */ +METHODDEF boolean decode_mcu_DC_first JPP((j_decompress_ptr cinfo, +					   JBLOCKROW *MCU_data)); +METHODDEF boolean decode_mcu_AC_first JPP((j_decompress_ptr cinfo, +					   JBLOCKROW *MCU_data)); +METHODDEF boolean decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, +					    JBLOCKROW *MCU_data)); +METHODDEF boolean decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, +					    JBLOCKROW *MCU_data)); + + +/* + * Initialize for a Huffman-compressed scan. + */ + +METHODDEF void +start_pass_phuff_decoder (j_decompress_ptr cinfo) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  boolean is_DC_band, bad; +  int ci, coefi, tbl; +  int *coef_bit_ptr; +  jpeg_component_info * compptr; + +  is_DC_band = (cinfo->Ss == 0); + +  /* Validate scan parameters */ +  bad = FALSE; +  if (is_DC_band) { +    if (cinfo->Se != 0) +      bad = TRUE; +  } else { +    /* need not check Ss/Se < 0 since they came from unsigned bytes */ +    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) +      bad = TRUE; +    /* AC scans may have only one component */ +    if (cinfo->comps_in_scan != 1) +      bad = TRUE; +  } +  if (cinfo->Ah != 0) { +    /* Successive approximation refinement scan: must have Al = Ah-1. */ +    if (cinfo->Al != cinfo->Ah-1) +      bad = TRUE; +  } +  if (cinfo->Al > 13)		/* need not check for < 0 */ +    bad = TRUE; +  if (bad) +    ERREXIT4(cinfo, JERR_BAD_PROGRESSION, +	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); +  /* Update progression status, and verify that scan order is legal. +   * Note that inter-scan inconsistencies are treated as warnings +   * not fatal errors ... not clear if this is right way to behave. +   */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    int cindex = cinfo->cur_comp_info[ci]->component_index; +    coef_bit_ptr = & cinfo->coef_bits[cindex][0]; +    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ +      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); +    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { +      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; +      if (cinfo->Ah != expected) +	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); +      coef_bit_ptr[coefi] = cinfo->Al; +    } +  } + +  /* Select MCU decoding routine */ +  if (cinfo->Ah == 0) { +    if (is_DC_band) +      entropy->pub.decode_mcu = decode_mcu_DC_first; +    else +      entropy->pub.decode_mcu = decode_mcu_AC_first; +  } else { +    if (is_DC_band) +      entropy->pub.decode_mcu = decode_mcu_DC_refine; +    else +      entropy->pub.decode_mcu = decode_mcu_AC_refine; +  } + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    /* Make sure requested tables are present, and compute derived tables. +     * We may build same derived table more than once, but it's not expensive. +     */ +    if (is_DC_band) { +      if (cinfo->Ah == 0) {	/* DC refinement needs no table */ +	tbl = compptr->dc_tbl_no; +	if (tbl < 0 || tbl >= NUM_HUFF_TBLS || +	    cinfo->dc_huff_tbl_ptrs[tbl] == NULL) +	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); +	jpeg_make_d_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[tbl], +				& entropy->derived_tbls[tbl]); +      } +    } else { +      tbl = compptr->ac_tbl_no; +      if (tbl < 0 || tbl >= NUM_HUFF_TBLS || +          cinfo->ac_huff_tbl_ptrs[tbl] == NULL) +        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); +      jpeg_make_d_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[tbl], +			      & entropy->derived_tbls[tbl]); +      /* remember the single active table */ +      entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; +    } +    /* Initialize DC predictions to 0 */ +    entropy->saved.last_dc_val[ci] = 0; +  } + +  /* Initialize bitread state variables */ +  entropy->bitstate.bits_left = 0; +  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ +  entropy->bitstate.printed_eod = FALSE; + +  /* Initialize private state variables */ +  entropy->saved.EOBRUN = 0; + +  /* Initialize restart counter */ +  entropy->restarts_to_go = cinfo->restart_interval; +} + + +/* + * Figure F.12: extend sign bit. + * On some machines, a shift and add will be faster than a table lookup. + */ + +#ifdef AVOID_TABLES + +#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) + +#else + +#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) + +static const int extend_test[16] =   /* entry n is 2**(n-1) */ +  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, +    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; + +static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ +  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, +    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, +    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, +    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; + +#endif /* AVOID_TABLES */ + + +/* + * Check for a restart marker & resynchronize decoder. + * Returns FALSE if must suspend. + */ + +LOCAL boolean +process_restart (j_decompress_ptr cinfo) +{ +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  int ci; + +  /* Throw away any unused bits remaining in bit buffer; */ +  /* include any full bytes in next_marker's count of discarded bytes */ +  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; +  entropy->bitstate.bits_left = 0; + +  /* Advance past the RSTn marker */ +  if (! (*cinfo->marker->read_restart_marker) (cinfo)) +    return FALSE; + +  /* Re-initialize DC predictions to 0 */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) +    entropy->saved.last_dc_val[ci] = 0; +  /* Re-init EOB run count, too */ +  entropy->saved.EOBRUN = 0; + +  /* Reset restart counter */ +  entropy->restarts_to_go = cinfo->restart_interval; + +  /* Next segment can get another out-of-data warning */ +  entropy->bitstate.printed_eod = FALSE; + +  return TRUE; +} + + +/* + * Huffman MCU decoding. + * Each of these routines decodes and returns one MCU's worth of + * Huffman-compressed coefficients.  + * The coefficients are reordered from zigzag order into natural array order, + * but are not dequantized. + * + * The i'th block of the MCU is stored into the block pointed to by + * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. + * + * We return FALSE if data source requested suspension.  In that case no + * changes have been made to permanent state.  (Exception: some output + * coefficients may already have been assigned.  This is harmless for + * spectral selection, since we'll just re-assign them on the next call. + * Successive approximation AC refinement has to be more careful, however.) + */ + +/* + * MCU decoding for DC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF boolean +decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  int Al = cinfo->Al; +  register int s, r; +  int blkn, ci; +  JBLOCKROW block; +  BITREAD_STATE_VARS; +  savable_state state; +  d_derived_tbl * tbl; +  jpeg_component_info * compptr; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* Load up working state */ +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +  ASSIGN_STATE(state, entropy->saved); + +  /* Outer loop handles each block in the MCU */ + +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; +    tbl = entropy->derived_tbls[compptr->dc_tbl_no]; + +    /* Decode a single block's worth of coefficients */ + +    /* Section F.2.2.1: decode the DC coefficient difference */ +    HUFF_DECODE(s, br_state, tbl, return FALSE, label1); +    if (s) { +      CHECK_BIT_BUFFER(br_state, s, return FALSE); +      r = GET_BITS(s); +      s = HUFF_EXTEND(r, s); +    } + +    /* Convert DC difference to actual value, update last_dc_val */ +    s += state.last_dc_val[ci]; +    state.last_dc_val[ci] = s; +    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ +    (*block)[0] = (JCOEF) (s << Al); +  } + +  /* Completed MCU, so update state */ +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +  ASSIGN_STATE(entropy->saved, state); + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * MCU decoding for AC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF boolean +decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  int Se = cinfo->Se; +  int Al = cinfo->Al; +  register int s, k, r; +  unsigned int EOBRUN; +  JBLOCKROW block; +  BITREAD_STATE_VARS; +  d_derived_tbl * tbl; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* Load up working state. +   * We can avoid loading/saving bitread state if in an EOB run. +   */ +  EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we care about */ + +  /* There is always only one block per MCU */ + +  if (EOBRUN > 0)		/* if it's a band of zeroes... */ +    EOBRUN--;			/* ...process it now (we do nothing) */ +  else { +    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +    block = MCU_data[0]; +    tbl = entropy->ac_derived_tbl; + +    for (k = cinfo->Ss; k <= Se; k++) { +      HUFF_DECODE(s, br_state, tbl, return FALSE, label2); +      r = s >> 4; +      s &= 15; +      if (s) { +        k += r; +        CHECK_BIT_BUFFER(br_state, s, return FALSE); +        r = GET_BITS(s); +        s = HUFF_EXTEND(r, s); +	/* Scale and output coefficient in natural (dezigzagged) order */ +        (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); +      } else { +        if (r == 15) {		/* ZRL */ +          k += 15;		/* skip 15 zeroes in band */ +        } else {		/* EOBr, run length is 2^r + appended bits */ +          EOBRUN = 1 << r; +          if (r) {		/* EOBr, r > 0 */ +	    CHECK_BIT_BUFFER(br_state, r, return FALSE); +            r = GET_BITS(r); +            EOBRUN += r; +          } +	  EOBRUN--;		/* this band is processed at this moment */ +	  break;		/* force end-of-band */ +	} +      } +    } + +    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +  } + +  /* Completed MCU, so update state */ +  entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we care about */ + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * MCU decoding for DC successive approximation refinement scan. + * Note: we assume such scans can be multi-component, although the spec + * is not very clear on the point. + */ + +METHODDEF boolean +decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ +  int blkn; +  JBLOCKROW block; +  BITREAD_STATE_VARS; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* Load up working state */ +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + +  /* Outer loop handles each block in the MCU */ + +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; + +    /* Encoded data is simply the next bit of the two's-complement DC value */ +    CHECK_BIT_BUFFER(br_state, 1, return FALSE); +    if (GET_BITS(1)) +      (*block)[0] |= p1; +    /* Note: since we use |=, repeating the assignment later is safe */ +  } + +  /* Completed MCU, so update state */ +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * MCU decoding for AC successive approximation refinement scan. + */ + +METHODDEF boolean +decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; +  int Se = cinfo->Se; +  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ +  int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */ +  register int s, k, r; +  unsigned int EOBRUN; +  JBLOCKROW block; +  JCOEFPTR thiscoef; +  BITREAD_STATE_VARS; +  d_derived_tbl * tbl; +  int num_newnz; +  int newnz_pos[DCTSIZE2]; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* Load up working state */ +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +  EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we care about */ + +  /* There is always only one block per MCU */ +  block = MCU_data[0]; +  tbl = entropy->ac_derived_tbl; + +  /* If we are forced to suspend, we must undo the assignments to any newly +   * nonzero coefficients in the block, because otherwise we'd get confused +   * next time about which coefficients were already nonzero. +   * But we need not undo addition of bits to already-nonzero coefficients; +   * instead, we can test the current bit position to see if we already did it. +   */ +  num_newnz = 0; + +  /* initialize coefficient loop counter to start of band */ +  k = cinfo->Ss; + +  if (EOBRUN == 0) { +    for (; k <= Se; k++) { +      HUFF_DECODE(s, br_state, tbl, goto undoit, label3); +      r = s >> 4; +      s &= 15; +      if (s) { +	if (s != 1)		/* size of new coef should always be 1 */ +	  WARNMS(cinfo, JWRN_HUFF_BAD_CODE); +        CHECK_BIT_BUFFER(br_state, 1, goto undoit); +        if (GET_BITS(1)) +	  s = p1;		/* newly nonzero coef is positive */ +	else +	  s = m1;		/* newly nonzero coef is negative */ +      } else { +	if (r != 15) { +	  EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */ +	  if (r) { +	    CHECK_BIT_BUFFER(br_state, r, goto undoit); +	    r = GET_BITS(r); +	    EOBRUN += r; +	  } +	  break;		/* rest of block is handled by EOB logic */ +	} +	/* note s = 0 for processing ZRL */ +      } +      /* Advance over already-nonzero coefs and r still-zero coefs, +       * appending correction bits to the nonzeroes.  A correction bit is 1 +       * if the absolute value of the coefficient must be increased. +       */ +      do { +	thiscoef = *block + jpeg_natural_order[k]; +	if (*thiscoef != 0) { +	  CHECK_BIT_BUFFER(br_state, 1, goto undoit); +	  if (GET_BITS(1)) { +	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ +	      if (*thiscoef >= 0) +		*thiscoef += p1; +	      else +		*thiscoef += m1; +	    } +	  } +	} else { +	  if (--r < 0) +	    break;		/* reached target zero coefficient */ +	} +	k++; +      } while (k <= Se); +      if (s) { +	int pos = jpeg_natural_order[k]; +	/* Output newly nonzero coefficient */ +	(*block)[pos] = (JCOEF) s; +	/* Remember its position in case we have to suspend */ +	newnz_pos[num_newnz++] = pos; +      } +    } +  } + +  if (EOBRUN > 0) { +    /* Scan any remaining coefficient positions after the end-of-band +     * (the last newly nonzero coefficient, if any).  Append a correction +     * bit to each already-nonzero coefficient.  A correction bit is 1 +     * if the absolute value of the coefficient must be increased. +     */ +    for (; k <= Se; k++) { +      thiscoef = *block + jpeg_natural_order[k]; +      if (*thiscoef != 0) { +	CHECK_BIT_BUFFER(br_state, 1, goto undoit); +	if (GET_BITS(1)) { +	  if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ +	    if (*thiscoef >= 0) +	      *thiscoef += p1; +	    else +	      *thiscoef += m1; +	  } +	} +      } +    } +    /* Count one block completed in EOB run */ +    EOBRUN--; +  } + +  /* Completed MCU, so update state */ +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +  entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we care about */ + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; + +undoit: +  /* Re-zero any output coefficients that we made newly nonzero */ +  while (num_newnz > 0) +    (*block)[newnz_pos[--num_newnz]] = 0; + +  return FALSE; +} + + +/* + * Module initialization routine for progressive Huffman entropy decoding. + */ + +GLOBAL void +jinit_phuff_decoder (j_decompress_ptr cinfo) +{ +  phuff_entropy_ptr entropy; +  int *coef_bit_ptr; +  int ci, i; + +  entropy = (phuff_entropy_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(phuff_entropy_decoder)); +  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; +  entropy->pub.start_pass = start_pass_phuff_decoder; + +  /* Mark derived tables unallocated */ +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    entropy->derived_tbls[i] = NULL; +  } + +  /* Create progression status table */ +  cinfo->coef_bits = (int (*)[DCTSIZE2]) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				cinfo->num_components*DCTSIZE2*SIZEOF(int)); +  coef_bit_ptr = & cinfo->coef_bits[0][0]; +  for (ci = 0; ci < cinfo->num_components; ci++)  +    for (i = 0; i < DCTSIZE2; i++) +      *coef_bit_ptr++ = -1; +} + +#endif /* D_PROGRESSIVE_SUPPORTED */ diff --git a/src/jpeg-6/jdpostct.c b/src/jpeg-6/jdpostct.c new file mode 100644 index 00000000..f6120023 --- /dev/null +++ b/src/jpeg-6/jdpostct.c @@ -0,0 +1,290 @@ +/* + * jdpostct.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the decompression postprocessing controller. + * This controller manages the upsampling, color conversion, and color + * quantization/reduction steps; specifically, it controls the buffering + * between upsample/color conversion and color quantization/reduction. + * + * If no color quantization/reduction is required, then this module has no + * work to do, and it just hands off to the upsample/color conversion code. + * An integrated upsample/convert/quantize process would replace this module + * entirely. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Private buffer controller object */ + +typedef struct { +  struct jpeg_d_post_controller pub; /* public fields */ + +  /* Color quantization source buffer: this holds output data from +   * the upsample/color conversion step to be passed to the quantizer. +   * For two-pass color quantization, we need a full-image buffer; +   * for one-pass operation, a strip buffer is sufficient. +   */ +  jvirt_sarray_ptr whole_image;	/* virtual array, or NULL if one-pass */ +  JSAMPARRAY buffer;		/* strip buffer, or current strip of virtual */ +  JDIMENSION strip_height;	/* buffer size in rows */ +  /* for two-pass mode only: */ +  JDIMENSION starting_row;	/* row # of first row in current strip */ +  JDIMENSION next_row;		/* index of next row to fill/empty in strip */ +} my_post_controller; + +typedef my_post_controller * my_post_ptr; + + +/* Forward declarations */ +METHODDEF void post_process_1pass +	JPP((j_decompress_ptr cinfo, +	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +	     JDIMENSION in_row_groups_avail, +	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +	     JDIMENSION out_rows_avail)); +#ifdef QUANT_2PASS_SUPPORTED +METHODDEF void post_process_prepass +	JPP((j_decompress_ptr cinfo, +	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +	     JDIMENSION in_row_groups_avail, +	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +	     JDIMENSION out_rows_avail)); +METHODDEF void post_process_2pass +	JPP((j_decompress_ptr cinfo, +	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +	     JDIMENSION in_row_groups_avail, +	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +	     JDIMENSION out_rows_avail)); +#endif + + +/* + * Initialize for a processing pass. + */ + +METHODDEF void +start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) +{ +  my_post_ptr post = (my_post_ptr) cinfo->post; + +  switch (pass_mode) { +  case JBUF_PASS_THRU: +    if (cinfo->quantize_colors) { +      /* Single-pass processing with color quantization. */ +      post->pub.post_process_data = post_process_1pass; +      /* We could be doing buffered-image output before starting a 2-pass +       * color quantization; in that case, jinit_d_post_controller did not +       * allocate a strip buffer.  Use the virtual-array buffer as workspace. +       */ +      if (post->buffer == NULL) { +	post->buffer = (*cinfo->mem->access_virt_sarray) +	  ((j_common_ptr) cinfo, post->whole_image, +	   (JDIMENSION) 0, post->strip_height, TRUE); +      } +    } else { +      /* For single-pass processing without color quantization, +       * I have no work to do; just call the upsampler directly. +       */ +      post->pub.post_process_data = cinfo->upsample->upsample; +    } +    break; +#ifdef QUANT_2PASS_SUPPORTED +  case JBUF_SAVE_AND_PASS: +    /* First pass of 2-pass quantization */ +    if (post->whole_image == NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    post->pub.post_process_data = post_process_prepass; +    break; +  case JBUF_CRANK_DEST: +    /* Second pass of 2-pass quantization */ +    if (post->whole_image == NULL) +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    post->pub.post_process_data = post_process_2pass; +    break; +#endif /* QUANT_2PASS_SUPPORTED */ +  default: +    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +    break; +  } +  post->starting_row = post->next_row = 0; +} + + +/* + * Process some data in the one-pass (strip buffer) case. + * This is used for color precision reduction as well as one-pass quantization. + */ + +METHODDEF void +post_process_1pass (j_decompress_ptr cinfo, +		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +		    JDIMENSION in_row_groups_avail, +		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +		    JDIMENSION out_rows_avail) +{ +  my_post_ptr post = (my_post_ptr) cinfo->post; +  JDIMENSION num_rows, max_rows; + +  /* Fill the buffer, but not more than what we can dump out in one go. */ +  /* Note we rely on the upsampler to detect bottom of image. */ +  max_rows = out_rows_avail - *out_row_ctr; +  if (max_rows > post->strip_height) +    max_rows = post->strip_height; +  num_rows = 0; +  (*cinfo->upsample->upsample) (cinfo, +		input_buf, in_row_group_ctr, in_row_groups_avail, +		post->buffer, &num_rows, max_rows); +  /* Quantize and emit data. */ +  (*cinfo->cquantize->color_quantize) (cinfo, +		post->buffer, output_buf + *out_row_ctr, (int) num_rows); +  *out_row_ctr += num_rows; +} + + +#ifdef QUANT_2PASS_SUPPORTED + +/* + * Process some data in the first pass of 2-pass quantization. + */ + +METHODDEF void +post_process_prepass (j_decompress_ptr cinfo, +		      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +		      JDIMENSION in_row_groups_avail, +		      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +		      JDIMENSION out_rows_avail) +{ +  my_post_ptr post = (my_post_ptr) cinfo->post; +  JDIMENSION old_next_row, num_rows; + +  /* Reposition virtual buffer if at start of strip. */ +  if (post->next_row == 0) { +    post->buffer = (*cinfo->mem->access_virt_sarray) +	((j_common_ptr) cinfo, post->whole_image, +	 post->starting_row, post->strip_height, TRUE); +  } + +  /* Upsample some data (up to a strip height's worth). */ +  old_next_row = post->next_row; +  (*cinfo->upsample->upsample) (cinfo, +		input_buf, in_row_group_ctr, in_row_groups_avail, +		post->buffer, &post->next_row, post->strip_height); + +  /* Allow quantizer to scan new data.  No data is emitted, */ +  /* but we advance out_row_ctr so outer loop can tell when we're done. */ +  if (post->next_row > old_next_row) { +    num_rows = post->next_row - old_next_row; +    (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, +					 (JSAMPARRAY) NULL, (int) num_rows); +    *out_row_ctr += num_rows; +  } + +  /* Advance if we filled the strip. */ +  if (post->next_row >= post->strip_height) { +    post->starting_row += post->strip_height; +    post->next_row = 0; +  } +} + + +/* + * Process some data in the second pass of 2-pass quantization. + */ + +METHODDEF void +post_process_2pass (j_decompress_ptr cinfo, +		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +		    JDIMENSION in_row_groups_avail, +		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +		    JDIMENSION out_rows_avail) +{ +  my_post_ptr post = (my_post_ptr) cinfo->post; +  JDIMENSION num_rows, max_rows; + +  /* Reposition virtual buffer if at start of strip. */ +  if (post->next_row == 0) { +    post->buffer = (*cinfo->mem->access_virt_sarray) +	((j_common_ptr) cinfo, post->whole_image, +	 post->starting_row, post->strip_height, FALSE); +  } + +  /* Determine number of rows to emit. */ +  num_rows = post->strip_height - post->next_row; /* available in strip */ +  max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ +  if (num_rows > max_rows) +    num_rows = max_rows; +  /* We have to check bottom of image here, can't depend on upsampler. */ +  max_rows = cinfo->output_height - post->starting_row; +  if (num_rows > max_rows) +    num_rows = max_rows; + +  /* Quantize and emit data. */ +  (*cinfo->cquantize->color_quantize) (cinfo, +		post->buffer + post->next_row, output_buf + *out_row_ctr, +		(int) num_rows); +  *out_row_ctr += num_rows; + +  /* Advance if we filled the strip. */ +  post->next_row += num_rows; +  if (post->next_row >= post->strip_height) { +    post->starting_row += post->strip_height; +    post->next_row = 0; +  } +} + +#endif /* QUANT_2PASS_SUPPORTED */ + + +/* + * Initialize postprocessing controller. + */ + +GLOBAL void +jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) +{ +  my_post_ptr post; + +  post = (my_post_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_post_controller)); +  cinfo->post = (struct jpeg_d_post_controller *) post; +  post->pub.start_pass = start_pass_dpost; +  post->whole_image = NULL;	/* flag for no virtual arrays */ +  post->buffer = NULL;		/* flag for no strip buffer */ + +  /* Create the quantization buffer, if needed */ +  if (cinfo->quantize_colors) { +    /* The buffer strip height is max_v_samp_factor, which is typically +     * an efficient number of rows for upsampling to return. +     * (In the presence of output rescaling, we might want to be smarter?) +     */ +    post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; +    if (need_full_buffer) { +      /* Two-pass color quantization: need full-image storage. */ +      /* We round up the number of rows to a multiple of the strip height. */ +#ifdef QUANT_2PASS_SUPPORTED +      post->whole_image = (*cinfo->mem->request_virt_sarray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, +	 cinfo->output_width * cinfo->out_color_components, +	 (JDIMENSION) jround_up((long) cinfo->output_height, +				(long) post->strip_height), +	 post->strip_height); +#else +      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); +#endif /* QUANT_2PASS_SUPPORTED */ +    } else { +      /* One-pass color quantization: just make a strip buffer. */ +      post->buffer = (*cinfo->mem->alloc_sarray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, +	 cinfo->output_width * cinfo->out_color_components, +	 post->strip_height); +    } +  } +} diff --git a/src/jpeg-6/jdsample.c b/src/jpeg-6/jdsample.c new file mode 100644 index 00000000..661e198d --- /dev/null +++ b/src/jpeg-6/jdsample.c @@ -0,0 +1,478 @@ +/* + * jdsample.c + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains upsampling routines. + * + * Upsampling input data is counted in "row groups".  A row group + * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) + * sample rows of each component.  Upsampling will normally produce + * max_v_samp_factor pixel rows from each row group (but this could vary + * if the upsampler is applying a scale factor of its own). + * + * An excellent reference for image resampling is + *   Digital Image Warping, George Wolberg, 1990. + *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Pointer to routine to upsample a single component */ +typedef JMETHOD(void, upsample1_ptr, +		(j_decompress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); + +/* Private subobject */ + +typedef struct { +  struct jpeg_upsampler pub;	/* public fields */ + +  /* Color conversion buffer.  When using separate upsampling and color +   * conversion steps, this buffer holds one upsampled row group until it +   * has been color converted and output. +   * Note: we do not allocate any storage for component(s) which are full-size, +   * ie do not need rescaling.  The corresponding entry of color_buf[] is +   * simply set to point to the input data array, thereby avoiding copying. +   */ +  JSAMPARRAY color_buf[MAX_COMPONENTS]; + +  /* Per-component upsampling method pointers */ +  upsample1_ptr methods[MAX_COMPONENTS]; + +  int next_row_out;		/* counts rows emitted from color_buf */ +  JDIMENSION rows_to_go;	/* counts rows remaining in image */ + +  /* Height of an input row group for each component. */ +  int rowgroup_height[MAX_COMPONENTS]; + +  /* These arrays save pixel expansion factors so that int_expand need not +   * recompute them each time.  They are unused for other upsampling methods. +   */ +  UINT8 h_expand[MAX_COMPONENTS]; +  UINT8 v_expand[MAX_COMPONENTS]; +} my_upsampler; + +typedef my_upsampler * my_upsample_ptr; + + +/* + * Initialize for an upsampling pass. + */ + +METHODDEF void +start_pass_upsample (j_decompress_ptr cinfo) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; + +  /* Mark the conversion buffer empty */ +  upsample->next_row_out = cinfo->max_v_samp_factor; +  /* Initialize total-height counter for detecting bottom of image */ +  upsample->rows_to_go = cinfo->output_height; +} + + +/* + * Control routine to do upsampling (and color conversion). + * + * In this version we upsample each component independently. + * We upsample one row group into the conversion buffer, then apply + * color conversion a row at a time. + */ + +METHODDEF void +sep_upsample (j_decompress_ptr cinfo, +	      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, +	      JDIMENSION in_row_groups_avail, +	      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +	      JDIMENSION out_rows_avail) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; +  int ci; +  jpeg_component_info * compptr; +  JDIMENSION num_rows; + +  /* Fill the conversion buffer, if it's empty */ +  if (upsample->next_row_out >= cinfo->max_v_samp_factor) { +    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +	 ci++, compptr++) { +      /* Invoke per-component upsample method.  Notice we pass a POINTER +       * to color_buf[ci], so that fullsize_upsample can change it. +       */ +      (*upsample->methods[ci]) (cinfo, compptr, +	input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), +	upsample->color_buf + ci); +    } +    upsample->next_row_out = 0; +  } + +  /* Color-convert and emit rows */ + +  /* How many we have in the buffer: */ +  num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); +  /* Not more than the distance to the end of the image.  Need this test +   * in case the image height is not a multiple of max_v_samp_factor: +   */ +  if (num_rows > upsample->rows_to_go)  +    num_rows = upsample->rows_to_go; +  /* And not more than what the client can accept: */ +  out_rows_avail -= *out_row_ctr; +  if (num_rows > out_rows_avail) +    num_rows = out_rows_avail; + +  (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, +				     (JDIMENSION) upsample->next_row_out, +				     output_buf + *out_row_ctr, +				     (int) num_rows); + +  /* Adjust counts */ +  *out_row_ctr += num_rows; +  upsample->rows_to_go -= num_rows; +  upsample->next_row_out += num_rows; +  /* When the buffer is emptied, declare this input row group consumed */ +  if (upsample->next_row_out >= cinfo->max_v_samp_factor) +    (*in_row_group_ctr)++; +} + + +/* + * These are the routines invoked by sep_upsample to upsample pixel values + * of a single component.  One row group is processed per call. + */ + + +/* + * For full-size components, we just make color_buf[ci] point at the + * input buffer, and thus avoid copying any data.  Note that this is + * safe only because sep_upsample doesn't declare the input row group + * "consumed" until we are done color converting and emitting it. + */ + +METHODDEF void +fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		   JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  *output_data_ptr = input_data; +} + + +/* + * This is a no-op version used for "uninteresting" components. + * These components will not be referenced by color conversion. + */ + +METHODDEF void +noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  *output_data_ptr = NULL;	/* safety check */ +} + + +/* + * This version handles any integral sampling ratios. + * This is not used for typical JPEG files, so it need not be fast. + * Nor, for that matter, is it particularly accurate: the algorithm is + * simple replication of the input pixel onto the corresponding output + * pixels.  The hi-falutin sampling literature refers to this as a + * "box filter".  A box filter tends to introduce visible artifacts, + * so if you are actually going to use 3:1 or 4:1 sampling ratios + * you would be well advised to improve this code. + */ + +METHODDEF void +int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; +  JSAMPARRAY output_data = *output_data_ptr; +  register JSAMPROW inptr, outptr; +  register JSAMPLE invalue; +  register int h; +  JSAMPROW outend; +  int h_expand, v_expand; +  int inrow, outrow; + +  h_expand = upsample->h_expand[compptr->component_index]; +  v_expand = upsample->v_expand[compptr->component_index]; + +  inrow = outrow = 0; +  while (outrow < cinfo->max_v_samp_factor) { +    /* Generate one output row with proper horizontal expansion */ +    inptr = input_data[inrow]; +    outptr = output_data[outrow]; +    outend = outptr + cinfo->output_width; +    while (outptr < outend) { +      invalue = *inptr++;	/* don't need GETJSAMPLE() here */ +      for (h = h_expand; h > 0; h--) { +	*outptr++ = invalue; +      } +    } +    /* Generate any additional output rows by duplicating the first one */ +    if (v_expand > 1) { +      jcopy_sample_rows(output_data, outrow, output_data, outrow+1, +			v_expand-1, cinfo->output_width); +    } +    inrow++; +    outrow += v_expand; +  } +} + + +/* + * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. + * It's still a box filter. + */ + +METHODDEF void +h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  JSAMPARRAY output_data = *output_data_ptr; +  register JSAMPROW inptr, outptr; +  register JSAMPLE invalue; +  JSAMPROW outend; +  int inrow; + +  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { +    inptr = input_data[inrow]; +    outptr = output_data[inrow]; +    outend = outptr + cinfo->output_width; +    while (outptr < outend) { +      invalue = *inptr++;	/* don't need GETJSAMPLE() here */ +      *outptr++ = invalue; +      *outptr++ = invalue; +    } +  } +} + + +/* + * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. + * It's still a box filter. + */ + +METHODDEF void +h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  JSAMPARRAY output_data = *output_data_ptr; +  register JSAMPROW inptr, outptr; +  register JSAMPLE invalue; +  JSAMPROW outend; +  int inrow, outrow; + +  inrow = outrow = 0; +  while (outrow < cinfo->max_v_samp_factor) { +    inptr = input_data[inrow]; +    outptr = output_data[outrow]; +    outend = outptr + cinfo->output_width; +    while (outptr < outend) { +      invalue = *inptr++;	/* don't need GETJSAMPLE() here */ +      *outptr++ = invalue; +      *outptr++ = invalue; +    } +    jcopy_sample_rows(output_data, outrow, output_data, outrow+1, +		      1, cinfo->output_width); +    inrow++; +    outrow += 2; +  } +} + + +/* + * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. + * + * The upsampling algorithm is linear interpolation between pixel centers, + * also known as a "triangle filter".  This is a good compromise between + * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4 + * of the way between input pixel centers. + * + * A note about the "bias" calculations: when rounding fractional values to + * integer, we do not want to always round 0.5 up to the next integer. + * If we did that, we'd introduce a noticeable bias towards larger values. + * Instead, this code is arranged so that 0.5 will be rounded up or down at + * alternate pixel locations (a simple ordered dither pattern). + */ + +METHODDEF void +h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  JSAMPARRAY output_data = *output_data_ptr; +  register JSAMPROW inptr, outptr; +  register int invalue; +  register JDIMENSION colctr; +  int inrow; + +  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { +    inptr = input_data[inrow]; +    outptr = output_data[inrow]; +    /* Special case for first column */ +    invalue = GETJSAMPLE(*inptr++); +    *outptr++ = (JSAMPLE) invalue; +    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); + +    for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { +      /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ +      invalue = GETJSAMPLE(*inptr++) * 3; +      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); +      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); +    } + +    /* Special case for last column */ +    invalue = GETJSAMPLE(*inptr); +    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); +    *outptr++ = (JSAMPLE) invalue; +  } +} + + +/* + * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. + * Again a triangle filter; see comments for h2v1 case, above. + * + * It is OK for us to reference the adjacent input rows because we demanded + * context from the main buffer controller (see initialization code). + */ + +METHODDEF void +h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) +{ +  JSAMPARRAY output_data = *output_data_ptr; +  register JSAMPROW inptr0, inptr1, outptr; +#if BITS_IN_JSAMPLE == 8 +  register int thiscolsum, lastcolsum, nextcolsum; +#else +  register INT32 thiscolsum, lastcolsum, nextcolsum; +#endif +  register JDIMENSION colctr; +  int inrow, outrow, v; + +  inrow = outrow = 0; +  while (outrow < cinfo->max_v_samp_factor) { +    for (v = 0; v < 2; v++) { +      /* inptr0 points to nearest input row, inptr1 points to next nearest */ +      inptr0 = input_data[inrow]; +      if (v == 0)		/* next nearest is row above */ +	inptr1 = input_data[inrow-1]; +      else			/* next nearest is row below */ +	inptr1 = input_data[inrow+1]; +      outptr = output_data[outrow++]; + +      /* Special case for first column */ +      thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); +      nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); +      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); +      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); +      lastcolsum = thiscolsum; thiscolsum = nextcolsum; + +      for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { +	/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ +	/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ +	nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); +	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); +	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); +	lastcolsum = thiscolsum; thiscolsum = nextcolsum; +      } + +      /* Special case for last column */ +      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); +      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); +    } +    inrow++; +  } +} + + +/* + * Module initialization routine for upsampling. + */ + +GLOBAL void +jinit_upsampler (j_decompress_ptr cinfo) +{ +  my_upsample_ptr upsample; +  int ci; +  jpeg_component_info * compptr; +  boolean need_buffer, do_fancy; +  int h_in_group, v_in_group, h_out_group, v_out_group; + +  upsample = (my_upsample_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_upsampler)); +  cinfo->upsample = (struct jpeg_upsampler *) upsample; +  upsample->pub.start_pass = start_pass_upsample; +  upsample->pub.upsample = sep_upsample; +  upsample->pub.need_context_rows = FALSE; /* until we find out differently */ + +  if (cinfo->CCIR601_sampling)	/* this isn't supported */ +    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); + +  /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, +   * so don't ask for it. +   */ +  do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; + +  /* Verify we can handle the sampling factors, select per-component methods, +   * and create storage as needed. +   */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Compute size of an "input group" after IDCT scaling.  This many samples +     * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. +     */ +    h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / +		 cinfo->min_DCT_scaled_size; +    v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / +		 cinfo->min_DCT_scaled_size; +    h_out_group = cinfo->max_h_samp_factor; +    v_out_group = cinfo->max_v_samp_factor; +    upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ +    need_buffer = TRUE; +    if (! compptr->component_needed) { +      /* Don't bother to upsample an uninteresting component. */ +      upsample->methods[ci] = noop_upsample; +      need_buffer = FALSE; +    } else if (h_in_group == h_out_group && v_in_group == v_out_group) { +      /* Fullsize components can be processed without any work. */ +      upsample->methods[ci] = fullsize_upsample; +      need_buffer = FALSE; +    } else if (h_in_group * 2 == h_out_group && +	       v_in_group == v_out_group) { +      /* Special cases for 2h1v upsampling */ +      if (do_fancy && compptr->downsampled_width > 2) +	upsample->methods[ci] = h2v1_fancy_upsample; +      else +	upsample->methods[ci] = h2v1_upsample; +    } else if (h_in_group * 2 == h_out_group && +	       v_in_group * 2 == v_out_group) { +      /* Special cases for 2h2v upsampling */ +      if (do_fancy && compptr->downsampled_width > 2) { +	upsample->methods[ci] = h2v2_fancy_upsample; +	upsample->pub.need_context_rows = TRUE; +      } else +	upsample->methods[ci] = h2v2_upsample; +    } else if ((h_out_group % h_in_group) == 0 && +	       (v_out_group % v_in_group) == 0) { +      /* Generic integral-factors upsampling method */ +      upsample->methods[ci] = int_upsample; +      upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); +      upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); +    } else +      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); +    if (need_buffer) { +      upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) +	((j_common_ptr) cinfo, JPOOL_IMAGE, +	 (JDIMENSION) jround_up((long) cinfo->output_width, +				(long) cinfo->max_h_samp_factor), +	 (JDIMENSION) cinfo->max_v_samp_factor); +    } +  } +} diff --git a/src/jpeg-6/jdtrans.c b/src/jpeg-6/jdtrans.c new file mode 100644 index 00000000..5c14adc6 --- /dev/null +++ b/src/jpeg-6/jdtrans.c @@ -0,0 +1,122 @@ +/* + * jdtrans.c + * + * Copyright (C) 1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains library routines for transcoding decompression, + * that is, reading raw DCT coefficient arrays from an input JPEG file. + * The routines in jdapimin.c will also be needed by a transcoder. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Forward declarations */ +LOCAL void transdecode_master_selection JPP((j_decompress_ptr cinfo)); + + +/* + * Read the coefficient arrays from a JPEG file. + * jpeg_read_header must be completed before calling this. + * + * The entire image is read into a set of virtual coefficient-block arrays, + * one per component.  The return value is a pointer to the array of + * virtual-array descriptors.  These can be manipulated directly via the + * JPEG memory manager, or handed off to jpeg_write_coefficients(). + * To release the memory occupied by the virtual arrays, call + * jpeg_finish_decompress() when done with the data. + * + * Returns NULL if suspended.  This case need be checked only if + * a suspending data source is used. + */ + +GLOBAL jvirt_barray_ptr * +jpeg_read_coefficients (j_decompress_ptr cinfo) +{ +  if (cinfo->global_state == DSTATE_READY) { +    /* First call: initialize active modules */ +    transdecode_master_selection(cinfo); +    cinfo->global_state = DSTATE_RDCOEFS; +  } else if (cinfo->global_state != DSTATE_RDCOEFS) +    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); +  /* Absorb whole file into the coef buffer */ +  for (;;) { +    int retcode; +    /* Call progress monitor hook if present */ +    if (cinfo->progress != NULL) +      (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); +    /* Absorb some more input */ +    retcode = (*cinfo->inputctl->consume_input) (cinfo); +    if (retcode == JPEG_SUSPENDED) +      return NULL; +    if (retcode == JPEG_REACHED_EOI) +      break; +    /* Advance progress counter if appropriate */ +    if (cinfo->progress != NULL && +	(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { +      if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { +	/* startup underestimated number of scans; ratchet up one scan */ +	cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; +      } +    } +  } +  /* Set state so that jpeg_finish_decompress does the right thing */ +  cinfo->global_state = DSTATE_STOPPING; +  return cinfo->coef->coef_arrays; +} + + +/* + * Master selection of decompression modules for transcoding. + * This substitutes for jdmaster.c's initialization of the full decompressor. + */ + +LOCAL void +transdecode_master_selection (j_decompress_ptr cinfo) +{ +  /* Entropy decoding: either Huffman or arithmetic coding. */ +  if (cinfo->arith_code) { +    ERREXIT(cinfo, JERR_ARITH_NOTIMPL); +  } else { +    if (cinfo->progressive_mode) { +#ifdef D_PROGRESSIVE_SUPPORTED +      jinit_phuff_decoder(cinfo); +#else +      ERREXIT(cinfo, JERR_NOT_COMPILED); +#endif +    } else +      jinit_huff_decoder(cinfo); +  } + +  /* Always get a full-image coefficient buffer. */ +  jinit_d_coef_controller(cinfo, TRUE); + +  /* We can now tell the memory manager to allocate virtual arrays. */ +  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); + +  /* Initialize input side of decompressor to consume first scan. */ +  (*cinfo->inputctl->start_input_pass) (cinfo); + +  /* Initialize progress monitoring. */ +  if (cinfo->progress != NULL) { +    int nscans; +    /* Estimate number of scans to set pass_limit. */ +    if (cinfo->progressive_mode) { +      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ +      nscans = 2 + 3 * cinfo->num_components; +    } else if (cinfo->inputctl->has_multiple_scans) { +      /* For a nonprogressive multiscan file, estimate 1 scan per component. */ +      nscans = cinfo->num_components; +    } else { +      nscans = 1; +    } +    cinfo->progress->pass_counter = 0L; +    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; +    cinfo->progress->completed_passes = 0; +    cinfo->progress->total_passes = 1; +  } +} diff --git a/src/jpeg-6/jerror.c b/src/jpeg-6/jerror.c new file mode 100644 index 00000000..255c0921 --- /dev/null +++ b/src/jpeg-6/jerror.c @@ -0,0 +1,232 @@ +/* + * jerror.c + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains simple error-reporting and trace-message routines. + * These are suitable for Unix-like systems and others where writing to + * stderr is the right thing to do.  Many applications will want to replace + * some or all of these routines. + * + * These routines are used by both the compression and decompression code. + */ + +/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ +#include "jinclude.h" +#include "jpeglib.h" +#include "jversion.h" +#include "jerror.h" + +#include "../renderer/tr_local.h" + +#ifndef EXIT_FAILURE		/* define exit() codes if not provided */ +#define EXIT_FAILURE  1 +#endif + + +/* + * Create the message string table. + * We do this from the master message list in jerror.h by re-reading + * jerror.h with a suitable definition for macro JMESSAGE. + * The message table is made an external symbol just in case any applications + * want to refer to it directly. + */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jpeg_std_message_table	jMsgTable +#endif + +#define JMESSAGE(code,string)	string , + +const char * const jpeg_std_message_table[] = { +#include "jerror.h" +  NULL +}; + + +/* + * Error exit handler: must not return to caller. + * + * Applications may override this if they want to get control back after + * an error.  Typically one would longjmp somewhere instead of exiting. + * The setjmp buffer can be made a private field within an expanded error + * handler object.  Note that the info needed to generate an error message + * is stored in the error object, so you can generate the message now or + * later, at your convenience. + * You should make sure that the JPEG object is cleaned up (with jpeg_abort + * or jpeg_destroy) at some point. + */ + +METHODDEF void +error_exit (j_common_ptr cinfo) +{ +  char buffer[JMSG_LENGTH_MAX]; + +  /* Create the message */ +  (*cinfo->err->format_message) (cinfo, buffer); + +  /* Let the memory manager delete any temp files before we die */ +  jpeg_destroy(cinfo); + +  ri.Error( ERR_FATAL, "%s\n", buffer ); +} + + +/* + * Actual output of an error or trace message. + * Applications may override this method to send JPEG messages somewhere + * other than stderr. + */ + +METHODDEF void +output_message (j_common_ptr cinfo) +{ +  char buffer[JMSG_LENGTH_MAX]; + +  /* Create the message */ +  (*cinfo->err->format_message) (cinfo, buffer); + +  /* Send it to stderr, adding a newline */ +  ri.Printf(PRINT_ALL, "%s\n", buffer); +} + + +/* + * Decide whether to emit a trace or warning message. + * msg_level is one of: + *   -1: recoverable corrupt-data warning, may want to abort. + *    0: important advisory messages (always display to user). + *    1: first level of tracing detail. + *    2,3,...: successively more detailed tracing messages. + * An application might override this method if it wanted to abort on warnings + * or change the policy about which messages to display. + */ + +METHODDEF void +emit_message (j_common_ptr cinfo, int msg_level) +{ +  struct jpeg_error_mgr * err = cinfo->err; + +  if (msg_level < 0) { +    /* It's a warning message.  Since corrupt files may generate many warnings, +     * the policy implemented here is to show only the first warning, +     * unless trace_level >= 3. +     */ +    if (err->num_warnings == 0 || err->trace_level >= 3) +      (*err->output_message) (cinfo); +    /* Always count warnings in num_warnings. */ +    err->num_warnings++; +  } else { +    /* It's a trace message.  Show it if trace_level >= msg_level. */ +    if (err->trace_level >= msg_level) +      (*err->output_message) (cinfo); +  } +} + + +/* + * Format a message string for the most recent JPEG error or message. + * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX + * characters.  Note that no '\n' character is added to the string. + * Few applications should need to override this method. + */ + +METHODDEF void +format_message (j_common_ptr cinfo, char * buffer) +{ +  struct jpeg_error_mgr * err = cinfo->err; +  int msg_code = err->msg_code; +  const char * msgtext = NULL; +  const char * msgptr; +  char ch; +  boolean isstring; + +  /* Look up message string in proper table */ +  if (msg_code > 0 && msg_code <= err->last_jpeg_message) { +    msgtext = err->jpeg_message_table[msg_code]; +  } else if (err->addon_message_table != NULL && +	     msg_code >= err->first_addon_message && +	     msg_code <= err->last_addon_message) { +    msgtext = err->addon_message_table[msg_code - err->first_addon_message]; +  } + +  /* Defend against bogus message number */ +  if (msgtext == NULL) { +    err->msg_parm.i[0] = msg_code; +    msgtext = err->jpeg_message_table[0]; +  } + +  /* Check for string parameter, as indicated by %s in the message text */ +  isstring = FALSE; +  msgptr = msgtext; +  while ((ch = *msgptr++) != '\0') { +    if (ch == '%') { +      if (*msgptr == 's') isstring = TRUE; +      break; +    } +  } + +  /* Format the message into the passed buffer */ +  if (isstring) +    sprintf(buffer, msgtext, err->msg_parm.s); +  else +    sprintf(buffer, msgtext, +	    err->msg_parm.i[0], err->msg_parm.i[1], +	    err->msg_parm.i[2], err->msg_parm.i[3], +	    err->msg_parm.i[4], err->msg_parm.i[5], +	    err->msg_parm.i[6], err->msg_parm.i[7]); +} + + +/* + * Reset error state variables at start of a new image. + * This is called during compression startup to reset trace/error + * processing to default state, without losing any application-specific + * method pointers.  An application might possibly want to override + * this method if it has additional error processing state. + */ + +METHODDEF void +reset_error_mgr (j_common_ptr cinfo) +{ +  cinfo->err->num_warnings = 0; +  /* trace_level is not reset since it is an application-supplied parameter */ +  cinfo->err->msg_code = 0;	/* may be useful as a flag for "no error" */ +} + + +/* + * Fill in the standard error-handling methods in a jpeg_error_mgr object. + * Typical call is: + *	struct jpeg_compress_struct cinfo; + *	struct jpeg_error_mgr err; + * + *	cinfo.err = jpeg_std_error(&err); + * after which the application may override some of the methods. + */ + +GLOBAL struct jpeg_error_mgr * +jpeg_std_error (struct jpeg_error_mgr * err) +{ +  err->error_exit = error_exit; +  err->emit_message = emit_message; +  err->output_message = output_message; +  err->format_message = format_message; +  err->reset_error_mgr = reset_error_mgr; + +  err->trace_level = 0;		/* default = no tracing */ +  err->num_warnings = 0;	/* no warnings emitted yet */ +  err->msg_code = 0;		/* may be useful as a flag for "no error" */ + +  /* Initialize message table pointers */ +  err->jpeg_message_table = jpeg_std_message_table; +  err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; + +  err->addon_message_table = NULL; +  err->first_addon_message = 0;	/* for safety */ +  err->last_addon_message = 0; + +  return err; +} diff --git a/src/jpeg-6/jerror.h b/src/jpeg-6/jerror.h new file mode 100644 index 00000000..bf60e7ec --- /dev/null +++ b/src/jpeg-6/jerror.h @@ -0,0 +1,273 @@ +/* + * jerror.h + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file defines the error and message codes for the JPEG library. + * Edit this file to add new codes, or to translate the message strings to + * some other language. + * A set of error-reporting macros are defined too.  Some applications using + * the JPEG library may wish to include this file to get the error codes + * and/or the macros. + */ + +/* + * To define the enum list of message codes, include this file without + * defining macro JMESSAGE.  To create a message string table, include it + * again with a suitable JMESSAGE definition (see jerror.c for an example). + */ +#ifndef JMESSAGE +#ifndef JERROR_H +/* First time through, define the enum list */ +#define JMAKE_ENUM_LIST +#else +/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ +#define JMESSAGE(code,string) +#endif /* JERROR_H */ +#endif /* JMESSAGE */ + +#ifdef JMAKE_ENUM_LIST + +typedef enum { + +#define JMESSAGE(code,string)	code , + +#endif /* JMAKE_ENUM_LIST */ + +JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ + +/* For maintenance convenience, list is alphabetical by message code name */ +JMESSAGE(JERR_ARITH_NOTIMPL, +	 "Sorry, there are legal restrictions on arithmetic coding") +JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") +JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") +JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") +JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") +JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported") +JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") +JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") +JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") +JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") +JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") +JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") +JMESSAGE(JERR_BAD_PROGRESSION, +	 "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") +JMESSAGE(JERR_BAD_PROG_SCRIPT, +	 "Invalid progressive parameters at scan script entry %d") +JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") +JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") +JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") +JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") +JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") +JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") +JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") +JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") +JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") +JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") +JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") +JMESSAGE(JERR_DHT_COUNTS, "Bogus DHT counts") +JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") +JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") +JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") +JMESSAGE(JERR_EMS_READ, "Read from EMS failed") +JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") +JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") +JMESSAGE(JERR_FILE_READ, "Input file read error") +JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") +JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") +JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") +JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") +JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") +JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") +JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") +JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, +	 "Cannot transcode due to multiple use of quantization table %d") +JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") +JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") +JMESSAGE(JERR_NOTIMPL, "Not implemented yet") +JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") +JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") +JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") +JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") +JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") +JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") +JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") +JMESSAGE(JERR_QUANT_COMPONENTS, +	 "Cannot quantize more than %d color components") +JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") +JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") +JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") +JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") +JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") +JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") +JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") +JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") +JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") +JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") +JMESSAGE(JERR_TFILE_WRITE, +	 "Write failed on temporary file --- out of disk space?") +JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") +JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") +JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") +JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") +JMESSAGE(JERR_XMS_READ, "Read from XMS failed") +JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") +JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) +JMESSAGE(JMSG_VERSION, JVERSION) +JMESSAGE(JTRC_16BIT_TABLES, +	 "Caution: quantization tables are too coarse for baseline JPEG") +JMESSAGE(JTRC_ADOBE, +	 "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") +JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") +JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") +JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") +JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") +JMESSAGE(JTRC_DQT, "Define Quantization Table %d  precision %d") +JMESSAGE(JTRC_DRI, "Define Restart Interval %u") +JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") +JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") +JMESSAGE(JTRC_EOI, "End Of Image") +JMESSAGE(JTRC_HUFFBITS, "        %3d %3d %3d %3d %3d %3d %3d %3d") +JMESSAGE(JTRC_JFIF, "JFIF APP0 marker, density %dx%d  %d") +JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, +	 "Warning: thumbnail image size does not match data length %u") +JMESSAGE(JTRC_JFIF_MINOR, "Unknown JFIF minor revision number %d.%02d") +JMESSAGE(JTRC_JFIF_THUMBNAIL, "    with %d x %d thumbnail image") +JMESSAGE(JTRC_MISC_MARKER, "Skipping marker 0x%02x, length %u") +JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") +JMESSAGE(JTRC_QUANTVALS, "        %4u %4u %4u %4u %4u %4u %4u %4u") +JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") +JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") +JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") +JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") +JMESSAGE(JTRC_RST, "RST%d") +JMESSAGE(JTRC_SMOOTH_NOTIMPL, +	 "Smoothing not supported with nonstandard sampling ratios") +JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") +JMESSAGE(JTRC_SOF_COMPONENT, "    Component %d: %dhx%dv q=%d") +JMESSAGE(JTRC_SOI, "Start of Image") +JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") +JMESSAGE(JTRC_SOS_COMPONENT, "    Component %d: dc=%d ac=%d") +JMESSAGE(JTRC_SOS_PARAMS, "  Ss=%d, Se=%d, Ah=%d, Al=%d") +JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") +JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") +JMESSAGE(JTRC_UNKNOWN_IDS, +	 "Unrecognized component IDs %d %d %d, assuming YCbCr") +JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") +JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") +JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") +JMESSAGE(JWRN_BOGUS_PROGRESSION, +	 "Inconsistent progression sequence for component %d coefficient %d") +JMESSAGE(JWRN_EXTRANEOUS_DATA, +	 "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") +JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") +JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") +JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") +JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") +JMESSAGE(JWRN_MUST_RESYNC, +	 "Corrupt JPEG data: found marker 0x%02x instead of RST%d") +JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") +JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") + +#ifdef JMAKE_ENUM_LIST + +  JMSG_LASTMSGCODE +} J_MESSAGE_CODE; + +#undef JMAKE_ENUM_LIST +#endif /* JMAKE_ENUM_LIST */ + +/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ +#undef JMESSAGE + + +#ifndef JERROR_H +#define JERROR_H + +/* Macros to simplify using the error and trace message stuff */ +/* The first parameter is either type of cinfo pointer */ + +/* Fatal errors (print message and exit) */ +#define ERREXIT(cinfo,code)  \ +  ((cinfo)->err->msg_code = (code), \ +   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) +#define ERREXIT1(cinfo,code,p1)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) +#define ERREXIT2(cinfo,code,p1,p2)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (cinfo)->err->msg_parm.i[1] = (p2), \ +   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) +#define ERREXIT3(cinfo,code,p1,p2,p3)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (cinfo)->err->msg_parm.i[1] = (p2), \ +   (cinfo)->err->msg_parm.i[2] = (p3), \ +   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) +#define ERREXIT4(cinfo,code,p1,p2,p3,p4)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (cinfo)->err->msg_parm.i[1] = (p2), \ +   (cinfo)->err->msg_parm.i[2] = (p3), \ +   (cinfo)->err->msg_parm.i[3] = (p4), \ +   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) +#define ERREXITS(cinfo,code,str)  \ +  ((cinfo)->err->msg_code = (code), \ +   strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ +   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) + +#define MAKESTMT(stuff)		do { stuff } while (0) + +/* Nonfatal errors (we can keep going, but the data is probably corrupt) */ +#define WARNMS(cinfo,code)  \ +  ((cinfo)->err->msg_code = (code), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) +#define WARNMS1(cinfo,code,p1)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) +#define WARNMS2(cinfo,code,p1,p2)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (cinfo)->err->msg_parm.i[1] = (p2), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) + +/* Informational/debugging messages */ +#define TRACEMS(cinfo,lvl,code)  \ +  ((cinfo)->err->msg_code = (code), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) +#define TRACEMS1(cinfo,lvl,code,p1)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) +#define TRACEMS2(cinfo,lvl,code,p1,p2)  \ +  ((cinfo)->err->msg_code = (code), \ +   (cinfo)->err->msg_parm.i[0] = (p1), \ +   (cinfo)->err->msg_parm.i[1] = (p2), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) +#define TRACEMS3(cinfo,lvl,code,p1,p2,p3)  \ +  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ +	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ +	   (cinfo)->err->msg_code = (code); \ +	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) +#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4)  \ +  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ +	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ +	   (cinfo)->err->msg_code = (code); \ +	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) +#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8)  \ +  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ +	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ +	   _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ +	   (cinfo)->err->msg_code = (code); \ +	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) +#define TRACEMSS(cinfo,lvl,code,str)  \ +  ((cinfo)->err->msg_code = (code), \ +   strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ +   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) + +#endif /* JERROR_H */ diff --git a/src/jpeg-6/jfdctflt.c b/src/jpeg-6/jfdctflt.c new file mode 100644 index 00000000..21371eb8 --- /dev/null +++ b/src/jpeg-6/jfdctflt.c @@ -0,0 +1,168 @@ +/* + * jfdctflt.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a floating-point implementation of the + * forward DCT (Discrete Cosine Transform). + * + * This implementation should be more accurate than either of the integer + * DCT implementations.  However, it may not give the same results on all + * machines because of differences in roundoff behavior.  Speed will depend + * on the hardware's floating point capacity. + * + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT + * on each column.  Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README).  The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs.  These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries.  The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with a fixed-point + * implementation, accuracy is lost due to imprecise representation of the + * scaled quantization values.  However, that problem does not arise if + * we use floating point arithmetic. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_FLOAT_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * Perform the forward DCT on one block of samples. + */ + +GLOBAL void +jpeg_fdct_float (FAST_FLOAT * data) +{ +  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; +  FAST_FLOAT tmp10, tmp11, tmp12, tmp13; +  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; +  FAST_FLOAT *dataptr; +  int ctr; + +  /* Pass 1: process rows. */ + +  dataptr = data; +  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { +    tmp0 = dataptr[0] + dataptr[7]; +    tmp7 = dataptr[0] - dataptr[7]; +    tmp1 = dataptr[1] + dataptr[6]; +    tmp6 = dataptr[1] - dataptr[6]; +    tmp2 = dataptr[2] + dataptr[5]; +    tmp5 = dataptr[2] - dataptr[5]; +    tmp3 = dataptr[3] + dataptr[4]; +    tmp4 = dataptr[3] - dataptr[4]; +     +    /* Even part */ +     +    tmp10 = tmp0 + tmp3;	/* phase 2 */ +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    dataptr[0] = tmp10 + tmp11; /* phase 3 */ +    dataptr[4] = tmp10 - tmp11; +     +    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ +    dataptr[2] = tmp13 + z1;	/* phase 5 */ +    dataptr[6] = tmp13 - z1; +     +    /* Odd part */ + +    tmp10 = tmp4 + tmp5;	/* phase 2 */ +    tmp11 = tmp5 + tmp6; +    tmp12 = tmp6 + tmp7; + +    /* The rotator is modified from fig 4-8 to avoid extra negations. */ +    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ +    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ +    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ +    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ + +    z11 = tmp7 + z3;		/* phase 5 */ +    z13 = tmp7 - z3; + +    dataptr[5] = z13 + z2;	/* phase 6 */ +    dataptr[3] = z13 - z2; +    dataptr[1] = z11 + z4; +    dataptr[7] = z11 - z4; + +    dataptr += DCTSIZE;		/* advance pointer to next row */ +  } + +  /* Pass 2: process columns. */ + +  dataptr = data; +  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { +    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; +    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; +    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; +    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; +    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; +    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; +    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; +    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; +     +    /* Even part */ +     +    tmp10 = tmp0 + tmp3;	/* phase 2 */ +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ +    dataptr[DCTSIZE*4] = tmp10 - tmp11; +     +    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ +    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ +    dataptr[DCTSIZE*6] = tmp13 - z1; +     +    /* Odd part */ + +    tmp10 = tmp4 + tmp5;	/* phase 2 */ +    tmp11 = tmp5 + tmp6; +    tmp12 = tmp6 + tmp7; + +    /* The rotator is modified from fig 4-8 to avoid extra negations. */ +    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ +    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ +    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ +    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ + +    z11 = tmp7 + z3;		/* phase 5 */ +    z13 = tmp7 - z3; + +    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ +    dataptr[DCTSIZE*3] = z13 - z2; +    dataptr[DCTSIZE*1] = z11 + z4; +    dataptr[DCTSIZE*7] = z11 - z4; + +    dataptr++;			/* advance pointer to next column */ +  } +} + +#endif /* DCT_FLOAT_SUPPORTED */ diff --git a/src/jpeg-6/jfdctfst.c b/src/jpeg-6/jfdctfst.c new file mode 100644 index 00000000..a52d7b73 --- /dev/null +++ b/src/jpeg-6/jfdctfst.c @@ -0,0 +1,224 @@ +/* + * jfdctfst.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a fast, not so accurate integer implementation of the + * forward DCT (Discrete Cosine Transform). + * + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT + * on each column.  Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README).  The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs.  These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries.  The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with fixed-point math, + * accuracy is lost due to imprecise representation of the scaled + * quantization values.  The smaller the quantization table entry, the less + * precise the scaled value, so this implementation does worse with high- + * quality-setting files than with low-quality ones. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_IFAST_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Scaling decisions are generally the same as in the LL&M algorithm; + * see jfdctint.c for more details.  However, we choose to descale + * (right shift) multiplication products as soon as they are formed, + * rather than carrying additional fractional bits into subsequent additions. + * This compromises accuracy slightly, but it lets us save a few shifts. + * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) + * everywhere except in the multiplications proper; this saves a good deal + * of work on 16-bit-int machines. + * + * Again to save a few shifts, the intermediate results between pass 1 and + * pass 2 are not upscaled, but are represented only to integral precision. + * + * A final compromise is to represent the multiplicative constants to only + * 8 fractional bits, rather than 13.  This saves some shifting work on some + * machines, and may also reduce the cost of multiplication (since there + * are fewer one-bits in the constants). + */ + +#define CONST_BITS  8 + + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 8 +#define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */ +#define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */ +#define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */ +#define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */ +#else +#define FIX_0_382683433  FIX(0.382683433) +#define FIX_0_541196100  FIX(0.541196100) +#define FIX_0_707106781  FIX(0.707106781) +#define FIX_1_306562965  FIX(1.306562965) +#endif + + +/* We can gain a little more speed, with a further compromise in accuracy, + * by omitting the addition in a descaling shift.  This yields an incorrectly + * rounded result half the time... + */ + +#ifndef USE_ACCURATE_ROUNDING +#undef DESCALE +#define DESCALE(x,n)  RIGHT_SHIFT(x, n) +#endif + + +/* Multiply a DCTELEM variable by an INT32 constant, and immediately + * descale to yield a DCTELEM result. + */ + +#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) + + +/* + * Perform the forward DCT on one block of samples. + */ + +GLOBAL void +jpeg_fdct_ifast (DCTELEM * data) +{ +  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; +  DCTELEM tmp10, tmp11, tmp12, tmp13; +  DCTELEM z1, z2, z3, z4, z5, z11, z13; +  DCTELEM *dataptr; +  int ctr; +  SHIFT_TEMPS + +  /* Pass 1: process rows. */ + +  dataptr = data; +  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { +    tmp0 = dataptr[0] + dataptr[7]; +    tmp7 = dataptr[0] - dataptr[7]; +    tmp1 = dataptr[1] + dataptr[6]; +    tmp6 = dataptr[1] - dataptr[6]; +    tmp2 = dataptr[2] + dataptr[5]; +    tmp5 = dataptr[2] - dataptr[5]; +    tmp3 = dataptr[3] + dataptr[4]; +    tmp4 = dataptr[3] - dataptr[4]; +     +    /* Even part */ +     +    tmp10 = tmp0 + tmp3;	/* phase 2 */ +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    dataptr[0] = tmp10 + tmp11; /* phase 3 */ +    dataptr[4] = tmp10 - tmp11; +     +    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ +    dataptr[2] = tmp13 + z1;	/* phase 5 */ +    dataptr[6] = tmp13 - z1; +     +    /* Odd part */ + +    tmp10 = tmp4 + tmp5;	/* phase 2 */ +    tmp11 = tmp5 + tmp6; +    tmp12 = tmp6 + tmp7; + +    /* The rotator is modified from fig 4-8 to avoid extra negations. */ +    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ +    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ +    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ +    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ + +    z11 = tmp7 + z3;		/* phase 5 */ +    z13 = tmp7 - z3; + +    dataptr[5] = z13 + z2;	/* phase 6 */ +    dataptr[3] = z13 - z2; +    dataptr[1] = z11 + z4; +    dataptr[7] = z11 - z4; + +    dataptr += DCTSIZE;		/* advance pointer to next row */ +  } + +  /* Pass 2: process columns. */ + +  dataptr = data; +  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { +    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; +    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; +    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; +    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; +    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; +    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; +    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; +    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; +     +    /* Even part */ +     +    tmp10 = tmp0 + tmp3;	/* phase 2 */ +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ +    dataptr[DCTSIZE*4] = tmp10 - tmp11; +     +    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ +    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ +    dataptr[DCTSIZE*6] = tmp13 - z1; +     +    /* Odd part */ + +    tmp10 = tmp4 + tmp5;	/* phase 2 */ +    tmp11 = tmp5 + tmp6; +    tmp12 = tmp6 + tmp7; + +    /* The rotator is modified from fig 4-8 to avoid extra negations. */ +    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ +    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ +    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ +    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ + +    z11 = tmp7 + z3;		/* phase 5 */ +    z13 = tmp7 - z3; + +    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ +    dataptr[DCTSIZE*3] = z13 - z2; +    dataptr[DCTSIZE*1] = z11 + z4; +    dataptr[DCTSIZE*7] = z11 - z4; + +    dataptr++;			/* advance pointer to next column */ +  } +} + +#endif /* DCT_IFAST_SUPPORTED */ diff --git a/src/jpeg-6/jfdctint.c b/src/jpeg-6/jfdctint.c new file mode 100644 index 00000000..7df04330 --- /dev/null +++ b/src/jpeg-6/jfdctint.c @@ -0,0 +1,283 @@ +/* + * jfdctint.c + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a slow-but-accurate integer implementation of the + * forward DCT (Discrete Cosine Transform). + * + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT + * on each column.  Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * This implementation is based on an algorithm described in + *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_ISLOW_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * The poop on this scaling stuff is as follows: + * + * Each 1-D DCT step produces outputs which are a factor of sqrt(N) + * larger than the true DCT outputs.  The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm.  The advantage of + * this arrangement is that we save two multiplications per 1-D DCT, + * because the y0 and y4 outputs need not be divided by sqrt(N). + * In the IJG code, this factor of 8 is removed by the quantization step + * (in jcdctmgr.c), NOT in this module. + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic.  We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants).  After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output.  This division can be done + * cheaply as a right shift of CONST_BITS bits.  We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision.  These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling.  (For 12-bit sample data, the intermediate + * array is INT32 anyway.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis + * shows that the values given below are the most effective. + */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS  13 +#define PASS1_BITS  2 +#else +#define CONST_BITS  13 +#define PASS1_BITS  1		/* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */ +#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */ +#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */ +#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */ +#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */ +#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */ +#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */ +#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */ +#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */ +#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */ +#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */ +#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */ +#else +#define FIX_0_298631336  FIX(0.298631336) +#define FIX_0_390180644  FIX(0.390180644) +#define FIX_0_541196100  FIX(0.541196100) +#define FIX_0_765366865  FIX(0.765366865) +#define FIX_0_899976223  FIX(0.899976223) +#define FIX_1_175875602  FIX(1.175875602) +#define FIX_1_501321110  FIX(1.501321110) +#define FIX_1_847759065  FIX(1.847759065) +#define FIX_1_961570560  FIX(1.961570560) +#define FIX_2_053119869  FIX(2.053119869) +#define FIX_2_562915447  FIX(2.562915447) +#define FIX_3_072711026  FIX(3.072711026) +#endif + + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. + * For 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MULTIPLY(var,const)  MULTIPLY16C16(var,const) +#else +#define MULTIPLY(var,const)  ((var) * (const)) +#endif + + +/* + * Perform the forward DCT on one block of samples. + */ + +GLOBAL void +jpeg_fdct_islow (DCTELEM * data) +{ +  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; +  INT32 tmp10, tmp11, tmp12, tmp13; +  INT32 z1, z2, z3, z4, z5; +  DCTELEM *dataptr; +  int ctr; +  SHIFT_TEMPS + +  /* Pass 1: process rows. */ +  /* Note results are scaled up by sqrt(8) compared to a true DCT; */ +  /* furthermore, we scale the results by 2**PASS1_BITS. */ + +  dataptr = data; +  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { +    tmp0 = dataptr[0] + dataptr[7]; +    tmp7 = dataptr[0] - dataptr[7]; +    tmp1 = dataptr[1] + dataptr[6]; +    tmp6 = dataptr[1] - dataptr[6]; +    tmp2 = dataptr[2] + dataptr[5]; +    tmp5 = dataptr[2] - dataptr[5]; +    tmp3 = dataptr[3] + dataptr[4]; +    tmp4 = dataptr[3] - dataptr[4]; +     +    /* Even part per LL&M figure 1 --- note that published figure is faulty; +     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". +     */ +     +    tmp10 = tmp0 + tmp3; +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); +    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); +     +    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); +    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), +				   CONST_BITS-PASS1_BITS); +    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), +				   CONST_BITS-PASS1_BITS); +     +    /* Odd part per figure 8 --- note paper omits factor of sqrt(2). +     * cK represents cos(K*pi/16). +     * i0..i3 in the paper are tmp4..tmp7 here. +     */ +     +    z1 = tmp4 + tmp7; +    z2 = tmp5 + tmp6; +    z3 = tmp4 + tmp6; +    z4 = tmp5 + tmp7; +    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ +     +    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ +    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ +    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ +    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ +    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ +    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ +    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ +    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ +     +    z3 += z5; +    z4 += z5; +     +    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); +    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); +    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); +    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); +     +    dataptr += DCTSIZE;		/* advance pointer to next row */ +  } + +  /* Pass 2: process columns. +   * We remove the PASS1_BITS scaling, but leave the results scaled up +   * by an overall factor of 8. +   */ + +  dataptr = data; +  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { +    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; +    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; +    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; +    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; +    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; +    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; +    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; +    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; +     +    /* Even part per LL&M figure 1 --- note that published figure is faulty; +     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". +     */ +     +    tmp10 = tmp0 + tmp3; +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); +    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); +     +    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); +    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), +					   CONST_BITS+PASS1_BITS); +    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), +					   CONST_BITS+PASS1_BITS); +     +    /* Odd part per figure 8 --- note paper omits factor of sqrt(2). +     * cK represents cos(K*pi/16). +     * i0..i3 in the paper are tmp4..tmp7 here. +     */ +     +    z1 = tmp4 + tmp7; +    z2 = tmp5 + tmp6; +    z3 = tmp4 + tmp6; +    z4 = tmp5 + tmp7; +    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ +     +    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ +    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ +    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ +    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ +    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ +    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ +    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ +    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ +     +    z3 += z5; +    z4 += z5; +     +    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, +					   CONST_BITS+PASS1_BITS); +    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, +					   CONST_BITS+PASS1_BITS); +    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, +					   CONST_BITS+PASS1_BITS); +    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, +					   CONST_BITS+PASS1_BITS); +     +    dataptr++;			/* advance pointer to next column */ +  } +} + +#endif /* DCT_ISLOW_SUPPORTED */ diff --git a/src/jpeg-6/jidctflt.c b/src/jpeg-6/jidctflt.c new file mode 100644 index 00000000..847919ee --- /dev/null +++ b/src/jpeg-6/jidctflt.c @@ -0,0 +1,241 @@ +/* + * jidctflt.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a floating-point implementation of the + * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine + * must also perform dequantization of the input coefficients. + * + * This implementation should be more accurate than either of the integer + * IDCT implementations.  However, it may not give the same results on all + * machines because of differences in roundoff behavior.  Speed will depend + * on the hardware's floating point capacity. + * + * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT + * on each row (or vice versa, but it's more convenient to emit a row at + * a time).  Direct algorithms are also available, but they are much more + * complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README).  The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs.  These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries.  The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with a fixed-point + * implementation, accuracy is lost due to imprecise representation of the + * scaled quantization values.  However, that problem does not arise if + * we use floating point arithmetic. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_FLOAT_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce a float result. + */ + +#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval)) + + +/* + * Perform dequantization and inverse DCT on one block of coefficients. + */ + +GLOBAL void +jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		 JCOEFPTR coef_block, +		 JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; +  FAST_FLOAT tmp10, tmp11, tmp12, tmp13; +  FAST_FLOAT z5, z10, z11, z12, z13; +  JCOEFPTR inptr; +  FLOAT_MULT_TYPE * quantptr; +  FAST_FLOAT * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ +  SHIFT_TEMPS + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; ctr--) { +    /* Due to quantization, we will usually find that many of the input +     * coefficients are zero, especially the AC terms.  We can exploit this +     * by short-circuiting the IDCT calculation for any column in which all +     * the AC terms are zero.  In that case each output is equal to the +     * DC coefficient (with scale factor as needed). +     * With typical images and quantization tables, half or more of the +     * column DCT calculations can be simplified this way. +     */ +     +    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] | +	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | +	 inptr[DCTSIZE*7]) == 0) { +      /* AC terms all zero */ +      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +       +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +      wsptr[DCTSIZE*2] = dcval; +      wsptr[DCTSIZE*3] = dcval; +      wsptr[DCTSIZE*4] = dcval; +      wsptr[DCTSIZE*5] = dcval; +      wsptr[DCTSIZE*6] = dcval; +      wsptr[DCTSIZE*7] = dcval; +       +      inptr++;			/* advance pointers to next column */ +      quantptr++; +      wsptr++; +      continue; +    } +     +    /* Even part */ + +    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); +    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); +    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + +    tmp10 = tmp0 + tmp2;	/* phase 3 */ +    tmp11 = tmp0 - tmp2; + +    tmp13 = tmp1 + tmp3;	/* phases 5-3 */ +    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ + +    tmp0 = tmp10 + tmp13;	/* phase 2 */ +    tmp3 = tmp10 - tmp13; +    tmp1 = tmp11 + tmp12; +    tmp2 = tmp11 - tmp12; +     +    /* Odd part */ + +    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); + +    z13 = tmp6 + tmp5;		/* phase 6 */ +    z10 = tmp6 - tmp5; +    z11 = tmp4 + tmp7; +    z12 = tmp4 - tmp7; + +    tmp7 = z11 + z13;		/* phase 5 */ +    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ + +    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ +    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ +    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ + +    tmp6 = tmp12 - tmp7;	/* phase 2 */ +    tmp5 = tmp11 - tmp6; +    tmp4 = tmp10 + tmp5; + +    wsptr[DCTSIZE*0] = tmp0 + tmp7; +    wsptr[DCTSIZE*7] = tmp0 - tmp7; +    wsptr[DCTSIZE*1] = tmp1 + tmp6; +    wsptr[DCTSIZE*6] = tmp1 - tmp6; +    wsptr[DCTSIZE*2] = tmp2 + tmp5; +    wsptr[DCTSIZE*5] = tmp2 - tmp5; +    wsptr[DCTSIZE*4] = tmp3 + tmp4; +    wsptr[DCTSIZE*3] = tmp3 - tmp4; + +    inptr++;			/* advance pointers to next column */ +    quantptr++; +    wsptr++; +  } +   +  /* Pass 2: process rows from work array, store into output array. */ +  /* Note that we must descale the results by a factor of 8 == 2**3. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < DCTSIZE; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* Rows of zeroes can be exploited in the same way as we did with columns. +     * However, the column calculation has created many nonzero AC terms, so +     * the simplification applies less often (typically 5% to 10% of the time). +     * And testing floats for zero is relatively expensive, so we don't bother. +     */ +     +    /* Even part */ + +    tmp10 = wsptr[0] + wsptr[4]; +    tmp11 = wsptr[0] - wsptr[4]; + +    tmp13 = wsptr[2] + wsptr[6]; +    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; + +    tmp0 = tmp10 + tmp13; +    tmp3 = tmp10 - tmp13; +    tmp1 = tmp11 + tmp12; +    tmp2 = tmp11 - tmp12; + +    /* Odd part */ + +    z13 = wsptr[5] + wsptr[3]; +    z10 = wsptr[5] - wsptr[3]; +    z11 = wsptr[1] + wsptr[7]; +    z12 = wsptr[1] - wsptr[7]; + +    tmp7 = z11 + z13; +    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); + +    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ +    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ +    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ + +    tmp6 = tmp12 - tmp7; +    tmp5 = tmp11 - tmp6; +    tmp4 = tmp10 + tmp5; + +    /* Final output stage: scale down by a factor of 8 and range-limit */ + +    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) +			    & RANGE_MASK]; +    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) +			    & RANGE_MASK]; +    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) +			    & RANGE_MASK]; +    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) +			    & RANGE_MASK]; +    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) +			    & RANGE_MASK]; +    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) +			    & RANGE_MASK]; +    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) +			    & RANGE_MASK]; +    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) +			    & RANGE_MASK]; +     +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + +#endif /* DCT_FLOAT_SUPPORTED */ diff --git a/src/jpeg-6/jidctfst.c b/src/jpeg-6/jidctfst.c new file mode 100644 index 00000000..5736817e --- /dev/null +++ b/src/jpeg-6/jidctfst.c @@ -0,0 +1,367 @@ +/* + * jidctfst.c + * + * Copyright (C) 1994-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a fast, not so accurate integer implementation of the + * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine + * must also perform dequantization of the input coefficients. + * + * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT + * on each row (or vice versa, but it's more convenient to emit a row at + * a time).  Direct algorithms are also available, but they are much more + * complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README).  The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs.  These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries.  The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with fixed-point math, + * accuracy is lost due to imprecise representation of the scaled + * quantization values.  The smaller the quantization table entry, the less + * precise the scaled value, so this implementation does worse with high- + * quality-setting files than with low-quality ones. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_IFAST_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Scaling decisions are generally the same as in the LL&M algorithm; + * see jidctint.c for more details.  However, we choose to descale + * (right shift) multiplication products as soon as they are formed, + * rather than carrying additional fractional bits into subsequent additions. + * This compromises accuracy slightly, but it lets us save a few shifts. + * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) + * everywhere except in the multiplications proper; this saves a good deal + * of work on 16-bit-int machines. + * + * The dequantized coefficients are not integers because the AA&N scaling + * factors have been incorporated.  We represent them scaled up by PASS1_BITS, + * so that the first and second IDCT rounds have the same input scaling. + * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to + * avoid a descaling shift; this compromises accuracy rather drastically + * for small quantization table entries, but it saves a lot of shifts. + * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, + * so we use a much larger scaling factor to preserve accuracy. + * + * A final compromise is to represent the multiplicative constants to only + * 8 fractional bits, rather than 13.  This saves some shifting work on some + * machines, and may also reduce the cost of multiplication (since there + * are fewer one-bits in the constants). + */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS  8 +#define PASS1_BITS  2 +#else +#define CONST_BITS  8 +#define PASS1_BITS  1		/* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 8 +#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */ +#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */ +#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */ +#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */ +#else +#define FIX_1_082392200  FIX(1.082392200) +#define FIX_1_414213562  FIX(1.414213562) +#define FIX_1_847759065  FIX(1.847759065) +#define FIX_2_613125930  FIX(2.613125930) +#endif + + +/* We can gain a little more speed, with a further compromise in accuracy, + * by omitting the addition in a descaling shift.  This yields an incorrectly + * rounded result half the time... + */ + +#ifndef USE_ACCURATE_ROUNDING +#undef DESCALE +#define DESCALE(x,n)  RIGHT_SHIFT(x, n) +#endif + + +/* Multiply a DCTELEM variable by an INT32 constant, and immediately + * descale to yield a DCTELEM result. + */ + +#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16 + * multiplication will do.  For 12-bit data, the multiplier table is + * declared INT32, so a 32-bit multiply will be used. + */ + +#if BITS_IN_JSAMPLE == 8 +#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval)) +#else +#define DEQUANTIZE(coef,quantval)  \ +	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) +#endif + + +/* Like DESCALE, but applies to a DCTELEM and produces an int. + * We assume that int right shift is unsigned if INT32 right shift is. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define ISHIFT_TEMPS	DCTELEM ishift_temp; +#if BITS_IN_JSAMPLE == 8 +#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */ +#else +#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */ +#endif +#define IRIGHT_SHIFT(x,shft)  \ +    ((ishift_temp = (x)) < 0 ? \ +     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ +     (ishift_temp >> (shft))) +#else +#define ISHIFT_TEMPS +#define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) +#endif + +#ifdef USE_ACCURATE_ROUNDING +#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) +#else +#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n)) +#endif + + +/* + * Perform dequantization and inverse DCT on one block of coefficients. + */ + +GLOBAL void +jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		 JCOEFPTR coef_block, +		 JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; +  DCTELEM tmp10, tmp11, tmp12, tmp13; +  DCTELEM z5, z10, z11, z12, z13; +  JCOEFPTR inptr; +  IFAST_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE2];	/* buffers data between passes */ +  SHIFT_TEMPS			/* for DESCALE */ +  ISHIFT_TEMPS			/* for IDESCALE */ + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; ctr--) { +    /* Due to quantization, we will usually find that many of the input +     * coefficients are zero, especially the AC terms.  We can exploit this +     * by short-circuiting the IDCT calculation for any column in which all +     * the AC terms are zero.  In that case each output is equal to the +     * DC coefficient (with scale factor as needed). +     * With typical images and quantization tables, half or more of the +     * column DCT calculations can be simplified this way. +     */ +     +    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] | +	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | +	 inptr[DCTSIZE*7]) == 0) { +      /* AC terms all zero */ +      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); + +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +      wsptr[DCTSIZE*2] = dcval; +      wsptr[DCTSIZE*3] = dcval; +      wsptr[DCTSIZE*4] = dcval; +      wsptr[DCTSIZE*5] = dcval; +      wsptr[DCTSIZE*6] = dcval; +      wsptr[DCTSIZE*7] = dcval; +       +      inptr++;			/* advance pointers to next column */ +      quantptr++; +      wsptr++; +      continue; +    } +     +    /* Even part */ + +    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); +    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); +    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + +    tmp10 = tmp0 + tmp2;	/* phase 3 */ +    tmp11 = tmp0 - tmp2; + +    tmp13 = tmp1 + tmp3;	/* phases 5-3 */ +    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ + +    tmp0 = tmp10 + tmp13;	/* phase 2 */ +    tmp3 = tmp10 - tmp13; +    tmp1 = tmp11 + tmp12; +    tmp2 = tmp11 - tmp12; +     +    /* Odd part */ + +    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); + +    z13 = tmp6 + tmp5;		/* phase 6 */ +    z10 = tmp6 - tmp5; +    z11 = tmp4 + tmp7; +    z12 = tmp4 - tmp7; + +    tmp7 = z11 + z13;		/* phase 5 */ +    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ + +    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ +    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ +    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ + +    tmp6 = tmp12 - tmp7;	/* phase 2 */ +    tmp5 = tmp11 - tmp6; +    tmp4 = tmp10 + tmp5; + +    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); +    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); +    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); +    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); +    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); +    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); +    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); +    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); + +    inptr++;			/* advance pointers to next column */ +    quantptr++; +    wsptr++; +  } +   +  /* Pass 2: process rows from work array, store into output array. */ +  /* Note that we must descale the results by a factor of 8 == 2**3, */ +  /* and also undo the PASS1_BITS scaling. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < DCTSIZE; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* Rows of zeroes can be exploited in the same way as we did with columns. +     * However, the column calculation has created many nonzero AC terms, so +     * the simplification applies less often (typically 5% to 10% of the time). +     * On machines with very fast multiplication, it's possible that the +     * test takes more time than it's worth.  In that case this section +     * may be commented out. +     */ +     +#ifndef NO_ZERO_ROW_TEST +    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] | +	 wsptr[7]) == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +      outptr[2] = dcval; +      outptr[3] = dcval; +      outptr[4] = dcval; +      outptr[5] = dcval; +      outptr[6] = dcval; +      outptr[7] = dcval; + +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part */ + +    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); +    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); + +    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); +    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) +	    - tmp13; + +    tmp0 = tmp10 + tmp13; +    tmp3 = tmp10 - tmp13; +    tmp1 = tmp11 + tmp12; +    tmp2 = tmp11 - tmp12; + +    /* Odd part */ + +    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; +    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; +    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; +    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; + +    tmp7 = z11 + z13;		/* phase 5 */ +    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ + +    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ +    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ +    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ + +    tmp6 = tmp12 - tmp7;	/* phase 2 */ +    tmp5 = tmp11 - tmp6; +    tmp4 = tmp10 + tmp5; + +    /* Final output stage: scale down by a factor of 8 and range-limit */ + +    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) +			    & RANGE_MASK]; + +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + +#endif /* DCT_IFAST_SUPPORTED */ diff --git a/src/jpeg-6/jidctint.c b/src/jpeg-6/jidctint.c new file mode 100644 index 00000000..f25b08de --- /dev/null +++ b/src/jpeg-6/jidctint.c @@ -0,0 +1,388 @@ +/* + * jidctint.c + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a slow-but-accurate integer implementation of the + * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine + * must also perform dequantization of the input coefficients. + * + * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT + * on each row (or vice versa, but it's more convenient to emit a row at + * a time).  Direct algorithms are also available, but they are much more + * complex and seem not to be any faster when reduced to code. + * + * This implementation is based on an algorithm described in + *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_ISLOW_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * The poop on this scaling stuff is as follows: + * + * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) + * larger than the true IDCT outputs.  The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm.  The advantage of + * this arrangement is that we save two multiplications per 1-D IDCT, + * because the y0 and y4 inputs need not be divided by sqrt(N). + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic.  We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants).  After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output.  This division can be done + * cheaply as a right shift of CONST_BITS bits.  We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision.  These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling.  (To scale up 12-bit sample data further, an + * intermediate INT32 array would be needed.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis + * shows that the values given below are the most effective. + */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS  13 +#define PASS1_BITS  2 +#else +#define CONST_BITS  13 +#define PASS1_BITS  1		/* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */ +#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */ +#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */ +#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */ +#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */ +#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */ +#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */ +#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */ +#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */ +#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */ +#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */ +#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */ +#else +#define FIX_0_298631336  FIX(0.298631336) +#define FIX_0_390180644  FIX(0.390180644) +#define FIX_0_541196100  FIX(0.541196100) +#define FIX_0_765366865  FIX(0.765366865) +#define FIX_0_899976223  FIX(0.899976223) +#define FIX_1_175875602  FIX(1.175875602) +#define FIX_1_501321110  FIX(1.501321110) +#define FIX_1_847759065  FIX(1.847759065) +#define FIX_1_961570560  FIX(1.961570560) +#define FIX_2_053119869  FIX(2.053119869) +#define FIX_2_562915447  FIX(2.562915447) +#define FIX_3_072711026  FIX(3.072711026) +#endif + + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. + * For 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MULTIPLY(var,const)  MULTIPLY16C16(var,const) +#else +#define MULTIPLY(var,const)  ((var) * (const)) +#endif + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce an int result.  In this module, both inputs and result + * are 16 bits or less, so either int or short multiply will work. + */ + +#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval)) + + +/* + * Perform dequantization and inverse DCT on one block of coefficients. + */ + +GLOBAL void +jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		 JCOEFPTR coef_block, +		 JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  INT32 tmp0, tmp1, tmp2, tmp3; +  INT32 tmp10, tmp11, tmp12, tmp13; +  INT32 z1, z2, z3, z4, z5; +  JCOEFPTR inptr; +  ISLOW_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE2];	/* buffers data between passes */ +  SHIFT_TEMPS + +  /* Pass 1: process columns from input, store into work array. */ +  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ +  /* furthermore, we scale the results by 2**PASS1_BITS. */ + +  inptr = coef_block; +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; ctr--) { +    /* Due to quantization, we will usually find that many of the input +     * coefficients are zero, especially the AC terms.  We can exploit this +     * by short-circuiting the IDCT calculation for any column in which all +     * the AC terms are zero.  In that case each output is equal to the +     * DC coefficient (with scale factor as needed). +     * With typical images and quantization tables, half or more of the +     * column DCT calculations can be simplified this way. +     */ +     +    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] | +	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | +	 inptr[DCTSIZE*7]) == 0) { +      /* AC terms all zero */ +      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; +       +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +      wsptr[DCTSIZE*2] = dcval; +      wsptr[DCTSIZE*3] = dcval; +      wsptr[DCTSIZE*4] = dcval; +      wsptr[DCTSIZE*5] = dcval; +      wsptr[DCTSIZE*6] = dcval; +      wsptr[DCTSIZE*7] = dcval; +       +      inptr++;			/* advance pointers to next column */ +      quantptr++; +      wsptr++; +      continue; +    } +     +    /* Even part: reverse the even part of the forward DCT. */ +    /* The rotator is sqrt(2)*c(-6). */ +     +    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); +    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); +     +    z1 = MULTIPLY(z2 + z3, FIX_0_541196100); +    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); +    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); +     +    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); + +    tmp0 = (z2 + z3) << CONST_BITS; +    tmp1 = (z2 - z3) << CONST_BITS; +     +    tmp10 = tmp0 + tmp3; +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    /* Odd part per figure 8; the matrix is unitary and hence its +     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively. +     */ +     +    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); +    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +     +    z1 = tmp0 + tmp3; +    z2 = tmp1 + tmp2; +    z3 = tmp0 + tmp2; +    z4 = tmp1 + tmp3; +    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ +     +    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ +    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ +    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ +    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ +    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ +    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ +    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ +    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ +     +    z3 += z5; +    z4 += z5; +     +    tmp0 += z1 + z3; +    tmp1 += z2 + z4; +    tmp2 += z2 + z3; +    tmp3 += z1 + z4; +     +    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ +     +    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); +    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); +     +    inptr++;			/* advance pointers to next column */ +    quantptr++; +    wsptr++; +  } +   +  /* Pass 2: process rows from work array, store into output array. */ +  /* Note that we must descale the results by a factor of 8 == 2**3, */ +  /* and also undo the PASS1_BITS scaling. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < DCTSIZE; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* Rows of zeroes can be exploited in the same way as we did with columns. +     * However, the column calculation has created many nonzero AC terms, so +     * the simplification applies less often (typically 5% to 10% of the time). +     * On machines with very fast multiplication, it's possible that the +     * test takes more time than it's worth.  In that case this section +     * may be commented out. +     */ +     +#ifndef NO_ZERO_ROW_TEST +    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] | +	 wsptr[7]) == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +      outptr[2] = dcval; +      outptr[3] = dcval; +      outptr[4] = dcval; +      outptr[5] = dcval; +      outptr[6] = dcval; +      outptr[7] = dcval; + +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part: reverse the even part of the forward DCT. */ +    /* The rotator is sqrt(2)*c(-6). */ +     +    z2 = (INT32) wsptr[2]; +    z3 = (INT32) wsptr[6]; +     +    z1 = MULTIPLY(z2 + z3, FIX_0_541196100); +    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); +    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); +     +    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS; +    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS; +     +    tmp10 = tmp0 + tmp3; +    tmp13 = tmp0 - tmp3; +    tmp11 = tmp1 + tmp2; +    tmp12 = tmp1 - tmp2; +     +    /* Odd part per figure 8; the matrix is unitary and hence its +     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively. +     */ +     +    tmp0 = (INT32) wsptr[7]; +    tmp1 = (INT32) wsptr[5]; +    tmp2 = (INT32) wsptr[3]; +    tmp3 = (INT32) wsptr[1]; +     +    z1 = tmp0 + tmp3; +    z2 = tmp1 + tmp2; +    z3 = tmp0 + tmp2; +    z4 = tmp1 + tmp3; +    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ +     +    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ +    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ +    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ +    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ +    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ +    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ +    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ +    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ +     +    z3 += z5; +    z4 += z5; +     +    tmp0 += z1 + z3; +    tmp1 += z2 + z4; +    tmp2 += z2 + z3; +    tmp3 += z1 + z4; +     +    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ +     +    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, +					  CONST_BITS+PASS1_BITS+3) +			    & RANGE_MASK]; +     +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + +#endif /* DCT_ISLOW_SUPPORTED */ diff --git a/src/jpeg-6/jidctred.c b/src/jpeg-6/jidctred.c new file mode 100644 index 00000000..019c339c --- /dev/null +++ b/src/jpeg-6/jidctred.c @@ -0,0 +1,397 @@ +/* + * jidctred.c + * + * Copyright (C) 1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains inverse-DCT routines that produce reduced-size output: + * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. + * + * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) + * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step + * with an 8-to-4 step that produces the four averages of two adjacent outputs + * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). + * These steps were derived by computing the corresponding values at the end + * of the normal LL&M code, then simplifying as much as possible. + * + * 1x1 is trivial: just take the DC coefficient divided by 8. + * + * See jidctint.c for additional comments. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef IDCT_SCALING_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Scaling is the same as in jidctint.c. */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS  13 +#define PASS1_BITS  2 +#else +#define CONST_BITS  13 +#define PASS1_BITS  1		/* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */ +#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */ +#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */ +#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */ +#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */ +#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */ +#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */ +#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */ +#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */ +#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */ +#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */ +#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */ +#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */ +#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */ +#else +#define FIX_0_211164243  FIX(0.211164243) +#define FIX_0_509795579  FIX(0.509795579) +#define FIX_0_601344887  FIX(0.601344887) +#define FIX_0_720959822  FIX(0.720959822) +#define FIX_0_765366865  FIX(0.765366865) +#define FIX_0_850430095  FIX(0.850430095) +#define FIX_0_899976223  FIX(0.899976223) +#define FIX_1_061594337  FIX(1.061594337) +#define FIX_1_272758580  FIX(1.272758580) +#define FIX_1_451774981  FIX(1.451774981) +#define FIX_1_847759065  FIX(1.847759065) +#define FIX_2_172734803  FIX(2.172734803) +#define FIX_2_562915447  FIX(2.562915447) +#define FIX_3_624509785  FIX(3.624509785) +#endif + + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. + * For 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MULTIPLY(var,const)  MULTIPLY16C16(var,const) +#else +#define MULTIPLY(var,const)  ((var) * (const)) +#endif + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce an int result.  In this module, both inputs and result + * are 16 bits or less, so either int or short multiply will work. + */ + +#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval)) + + +/* + * Perform dequantization and inverse DCT on one block of coefficients, + * producing a reduced-size 4x4 output block. + */ + +GLOBAL void +jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JCOEFPTR coef_block, +	       JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  INT32 tmp0, tmp2, tmp10, tmp12; +  INT32 z1, z2, z3, z4; +  JCOEFPTR inptr; +  ISLOW_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE*4];	/* buffers data between passes */ +  SHIFT_TEMPS + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { +    /* Don't bother to process column 4, because second pass won't use it */ +    if (ctr == DCTSIZE-4) +      continue; +    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] | +	 inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) { +      /* AC terms all zero; we need not examine term 4 for 4x4 output */ +      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; +       +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +      wsptr[DCTSIZE*2] = dcval; +      wsptr[DCTSIZE*3] = dcval; +       +      continue; +    } +     +    /* Even part */ +     +    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp0 <<= (CONST_BITS+1); +     +    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); +    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + +    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); +     +    tmp10 = tmp0 + tmp2; +    tmp12 = tmp0 - tmp2; +     +    /* Odd part */ +     +    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); +    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +     +    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ +	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ +	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ +	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ +     +    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ +	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ +	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ +	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ + +    /* Final output stage */ +     +    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); +    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); +    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); +    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); +  } +   +  /* Pass 2: process 4 rows from work array, store into output array. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < 4; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* It's not clear whether a zero row test is worthwhile here ... */ + +#ifndef NO_ZERO_ROW_TEST +    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[5] | wsptr[6] | +	 wsptr[7]) == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +      outptr[2] = dcval; +      outptr[3] = dcval; +       +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part */ +     +    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); +     +    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) +	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); +     +    tmp10 = tmp0 + tmp2; +    tmp12 = tmp0 - tmp2; +     +    /* Odd part */ +     +    z1 = (INT32) wsptr[7]; +    z2 = (INT32) wsptr[5]; +    z3 = (INT32) wsptr[3]; +    z4 = (INT32) wsptr[1]; +     +    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ +	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ +	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ +	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ +     +    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ +	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ +	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ +	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ + +    /* Final output stage */ +     +    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +     +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + + +/* + * Perform dequantization and inverse DCT on one block of coefficients, + * producing a reduced-size 2x2 output block. + */ + +GLOBAL void +jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JCOEFPTR coef_block, +	       JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  INT32 tmp0, tmp10, z1; +  JCOEFPTR inptr; +  ISLOW_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE*2];	/* buffers data between passes */ +  SHIFT_TEMPS + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { +    /* Don't bother to process columns 2,4,6 */ +    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) +      continue; +    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*3] | +	 inptr[DCTSIZE*5] | inptr[DCTSIZE*7]) == 0) { +      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ +      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; +       +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +       +      continue; +    } +     +    /* Even part */ +     +    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp10 = z1 << (CONST_BITS+2); +     +    /* Odd part */ + +    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); +    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ +    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ +    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ +    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ + +    /* Final output stage */ +     +    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); +    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); +  } +   +  /* Pass 2: process 2 rows from work array, store into output array. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < 2; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* It's not clear whether a zero row test is worthwhile here ... */ + +#ifndef NO_ZERO_ROW_TEST +    if ((wsptr[1] | wsptr[3] | wsptr[5] | wsptr[7]) == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +       +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part */ +     +    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); +     +    /* Odd part */ + +    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ +	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ +	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ +	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ + +    /* Final output stage */ +     +    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, +					  CONST_BITS+PASS1_BITS+3+2) +			    & RANGE_MASK]; +    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, +					  CONST_BITS+PASS1_BITS+3+2) +			    & RANGE_MASK]; +     +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + + +/* + * Perform dequantization and inverse DCT on one block of coefficients, + * producing a reduced-size 1x1 output block. + */ + +GLOBAL void +jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JCOEFPTR coef_block, +	       JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  int dcval; +  ISLOW_MULT_TYPE * quantptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  SHIFT_TEMPS + +  /* We hardly need an inverse DCT routine for this: just take the +   * average pixel value, which is one-eighth of the DC coefficient. +   */ +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  dcval = DEQUANTIZE(coef_block[0], quantptr[0]); +  dcval = (int) DESCALE((INT32) dcval, 3); + +  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; +} + +#endif /* IDCT_SCALING_SUPPORTED */ diff --git a/src/jpeg-6/jinclude.h b/src/jpeg-6/jinclude.h new file mode 100644 index 00000000..aede8ec9 --- /dev/null +++ b/src/jpeg-6/jinclude.h @@ -0,0 +1,116 @@ +/* + * jinclude.h + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file exists to provide a single place to fix any problems with + * including the wrong system include files.  (Common problems are taken + * care of by the standard jconfig symbols, but on really weird systems + * you may have to edit this file.) + * + * NOTE: this file is NOT intended to be included by applications using the + * JPEG library.  Most applications need only include jpeglib.h. + */ + + +#ifdef _MSC_VER + +#pragma warning(disable : 4018)     // signed/unsigned mismatch +#pragma warning(disable : 4032) +#pragma warning(disable : 4051) +#pragma warning(disable : 4057)		// slightly different base types +#pragma warning(disable : 4100)		// unreferenced formal parameter +#pragma warning(disable : 4115) +#pragma warning(disable : 4125)		// decimal digit terminates octal escape sequence +#pragma warning(disable : 4127)		// conditional expression is constant +#pragma warning(disable : 4136) +#pragma warning(disable : 4152)		// nonstandard extension, function/data pointer conversion in expression +#pragma warning(disable : 4201) +#pragma warning(disable : 4214) +#pragma warning(disable : 4244) +#pragma warning(disable : 4305)		// truncation from const double to float +#pragma warning(disable : 4310)		// cast truncates constant value +#pragma warning(disable:  4505) 	// unreferenced local function has been removed +#pragma warning(disable : 4514) +#pragma warning(disable : 4702)		// unreachable code +#pragma warning(disable : 4711)		// selected for automatic inline expansion +#pragma warning(disable : 4220)		// varargs matches remaining parameters +#pragma warning(disable : 4761)		// integral size mismatch  +#endif + +/* Include auto-config file to find out which system include files we need. */ + +#include "../jpeg-6/jconfig.h"		/* auto configuration options */ +#define JCONFIG_INCLUDED	/* so that jpeglib.h doesn't do it again */ + +/* + * We need the NULL macro and size_t typedef. + * On an ANSI-conforming system it is sufficient to include <stddef.h>. + * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to + * pull in <sys/types.h> as well. + * Note that the core JPEG library does not require <stdio.h>; + * only the default error handler and data source/destination modules do. + * But we must pull it in because of the references to FILE in jpeglib.h. + * You can remove those references if you want to compile without <stdio.h>. + */ + +#ifdef HAVE_STDDEF_H +#include <stddef.h> +#endif + +#ifdef HAVE_STDLIB_H +#include <stdlib.h> +#endif + +#ifdef NEED_SYS_TYPES_H +#include <sys/types.h> +#endif + +#include <stdio.h> + +/* + * We need memory copying and zeroing functions, plus strncpy(). + * ANSI and System V implementations declare these in <string.h>. + * BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). + * Some systems may declare memset and memcpy in <memory.h>. + * + * NOTE: we assume the size parameters to these functions are of type size_t. + * Change the casts in these macros if not! + */ + +#ifdef NEED_BSD_STRINGS + +#include <strings.h> +#define MEMZERO(target,size)	bzero((void *)(target), (size_t)(size)) +#define MEMCOPY(dest,src,size)	bcopy((const void *)(src), (void *)(dest), (size_t)(size)) + +#else /* not BSD, assume ANSI/SysV string lib */ + +#include <string.h> +#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size)) +#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size)) + +#endif + +/* + * In ANSI C, and indeed any rational implementation, size_t is also the + * type returned by sizeof().  However, it seems there are some irrational + * implementations out there, in which sizeof() returns an int even though + * size_t is defined as long or unsigned long.  To ensure consistent results + * we always use this SIZEOF() macro in place of using sizeof() directly. + */ + +#define SIZEOF(object)	((size_t) sizeof(object)) + +/* + * The modules that use fread() and fwrite() always invoke them through + * these macros.  On some systems you may need to twiddle the argument casts. + * CAUTION: argument order is different from underlying functions! + */ + +#define JFREAD(file,buf,sizeofbuf)  \ +  ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) +#define JFWRITE(file,buf,sizeofbuf)  \ +  ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) diff --git a/src/jpeg-6/jload.c b/src/jpeg-6/jload.c new file mode 100644 index 00000000..29e750b3 --- /dev/null +++ b/src/jpeg-6/jload.c @@ -0,0 +1,145 @@ + +#include "../qcommon/q_shared.h" +#include "../qcommon/qcommon.h" + +/* + * Include file for users of JPEG library. + * You will need to have included system headers that define at least + * the typedefs FILE and size_t before you can include jpeglib.h. + * (stdio.h is sufficient on ANSI-conforming systems.) + * You may also wish to include "jerror.h". + */ + +#include "jpeglib.h" + + +int LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) { +  /* This struct contains the JPEG decompression parameters and pointers to +   * working space (which is allocated as needed by the JPEG library). +   */ +  struct jpeg_decompress_struct cinfo; +  /* We use our private extension JPEG error handler. +   * Note that this struct must live as long as the main JPEG parameter +   * struct, to avoid dangling-pointer problems. +   */ +  /* This struct represents a JPEG error handler.  It is declared separately +   * because applications often want to supply a specialized error handler +   * (see the second half of this file for an example).  But here we just +   * take the easy way out and use the standard error handler, which will +   * print a message on stderr and call exit() if compression fails. +   * Note that this struct must live as long as the main JPEG parameter +   * struct, to avoid dangling-pointer problems. +   */ +  struct jpeg_error_mgr jerr; +  /* More stuff */ +  fileHandle_t infile;		/* source file */ +  JSAMPARRAY buffer;		/* Output row buffer */ +  int row_stride;		/* physical row width in output buffer */ +  unsigned char *out; + +  /* In this example we want to open the input file before doing anything else, +   * so that the setjmp() error recovery below can assume the file is open. +   * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that +   * requires it in order to read binary files. +   */ + +  FS_FOpenFileRead( filename, &infile, qfalse ); +  if (infile == 0) { +    return 0; +  } + +  /* Step 1: allocate and initialize JPEG decompression object */ + +  /* We have to set up the error handler first, in case the initialization +   * step fails.  (Unlikely, but it could happen if you are out of memory.) +   * This routine fills in the contents of struct jerr, and returns jerr's +   * address which we place into the link field in cinfo. +   */ +  cinfo.err = jpeg_std_error(&jerr); + +  /* Now we can initialize the JPEG decompression object. */ +  jpeg_create_decompress(&cinfo); + +  /* Step 2: specify data source (eg, a file) */ + +  jpeg_stdio_src(&cinfo, infile); + +  /* Step 3: read file parameters with jpeg_read_header() */ + +  (void) jpeg_read_header(&cinfo, TRUE); +  /* We can ignore the return value from jpeg_read_header since +   *   (a) suspension is not possible with the stdio data source, and +   *   (b) we passed TRUE to reject a tables-only JPEG file as an error. +   * See libjpeg.doc for more info. +   */ + +  /* Step 4: set parameters for decompression */ + +  /* In this example, we don't need to change any of the defaults set by +   * jpeg_read_header(), so we do nothing here. +   */ + +  /* Step 5: Start decompressor */ + +  (void) jpeg_start_decompress(&cinfo); +  /* We can ignore the return value since suspension is not possible +   * with the stdio data source. +   */ + +  /* We may need to do some setup of our own at this point before reading +   * the data.  After jpeg_start_decompress() we have the correct scaled +   * output image dimensions available, as well as the output colormap +   * if we asked for color quantization. +   * In this example, we need to make an output work buffer of the right size. +   */  +  /* JSAMPLEs per row in output buffer */ +  row_stride = cinfo.output_width * cinfo.output_components; + +  out = Z_Malloc(cinfo.output_width*cinfo.output_height*cinfo.output_components); + +  *pic = out; +  *width = cinfo.output_width; +  *height = cinfo.output_height; + +  /* Step 6: while (scan lines remain to be read) */ +  /*           jpeg_read_scanlines(...); */ + +  /* Here we use the library's state variable cinfo.output_scanline as the +   * loop counter, so that we don't have to keep track ourselves. +   */ +  while (cinfo.output_scanline < cinfo.output_height) { +    /* jpeg_read_scanlines expects an array of pointers to scanlines. +     * Here the array is only one element long, but you could ask for +     * more than one scanline at a time if that's more convenient. +     */ +	buffer = (JSAMPARRAY)out+(row_stride*cinfo.output_scanline); +    (void) jpeg_read_scanlines(&cinfo, buffer, 1); +  } + +  /* Step 7: Finish decompression */ + +  (void) jpeg_finish_decompress(&cinfo); +  /* We can ignore the return value since suspension is not possible +   * with the stdio data source. +   */ + +  /* Step 8: Release JPEG decompression object */ + +  /* This is an important step since it will release a good deal of memory. */ +  jpeg_destroy_decompress(&cinfo); + +  /* After finish_decompress, we can close the input file. +   * Here we postpone it until after no more JPEG errors are possible, +   * so as to simplify the setjmp error logic above.  (Actually, I don't +   * think that jpeg_destroy can do an error exit, but why assume anything...) +   */ +  FS_FCloseFile(infile); + +  /* At this point you may want to check to see whether any corrupt-data +   * warnings occurred (test whether jerr.pub.num_warnings is nonzero). +   */ + +  /* And we're done! */ +  return 1; +} + diff --git a/src/jpeg-6/jmemansi.c b/src/jpeg-6/jmemansi.c new file mode 100644 index 00000000..70010f96 --- /dev/null +++ b/src/jpeg-6/jmemansi.c @@ -0,0 +1,167 @@ +/* + * jmemansi.c + * + * Copyright (C) 1992-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file provides a simple generic implementation of the system- + * dependent portion of the JPEG memory manager.  This implementation + * assumes that you have the ANSI-standard library routine tmpfile(). + * Also, the problem of determining the amount of memory available + * is shoved onto the user. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jmemsys.h"		/* import the system-dependent declarations */ + +#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */ +extern void * malloc JPP((size_t size)); +extern void free JPP((void *ptr)); +#endif + +#ifndef SEEK_SET		/* pre-ANSI systems may not define this; */ +#define SEEK_SET  0		/* if not, assume 0 is correct */ +#endif + + +/* + * Memory allocation and freeing are controlled by the regular library + * routines malloc() and free(). + */ + +GLOBAL void * +jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void *) malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) +{ +  free(object); +} + + +/* + * "Large" objects are treated the same as "small" ones. + * NB: although we include FAR keywords in the routine declarations, + * this file won't actually work in 80x86 small/medium model; at least, + * you probably won't be able to process useful-size images in only 64KB. + */ + +GLOBAL void FAR * +jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void FAR *) malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) +{ +  free(object); +} + + +/* + * This routine computes the total memory space available for allocation. + * It's impossible to do this in a portable way; our current solution is + * to make the user tell us (with a default value set at compile time). + * If you can actually get the available space, it's a good idea to subtract + * a slop factor of 5% or so. + */ + +#ifndef DEFAULT_MAX_MEM		/* so can override from makefile */ +#define DEFAULT_MAX_MEM		1000000L /* default: one megabyte */ +#endif + +GLOBAL long +jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, +		    long max_bytes_needed, long already_allocated) +{ +  return cinfo->mem->max_memory_to_use - already_allocated; +} + + +/* + * Backing store (temporary file) management. + * Backing store objects are only used when the value returned by + * jpeg_mem_available is less than the total space needed.  You can dispense + * with these routines if you have plenty of virtual memory; see jmemnobs.c. + */ + + +METHODDEF void +read_backing_store (j_common_ptr cinfo, backing_store_ptr info, +		    void FAR * buffer_address, +		    long file_offset, long byte_count) +{ +  if (fseek(info->temp_file, file_offset, SEEK_SET)) +    ERREXIT(cinfo, JERR_TFILE_SEEK); +  if (JFREAD(info->temp_file, buffer_address, byte_count) +      != (size_t) byte_count) +    ERREXIT(cinfo, JERR_TFILE_READ); +} + + +METHODDEF void +write_backing_store (j_common_ptr cinfo, backing_store_ptr info, +		     void FAR * buffer_address, +		     long file_offset, long byte_count) +{ +  if (fseek(info->temp_file, file_offset, SEEK_SET)) +    ERREXIT(cinfo, JERR_TFILE_SEEK); +  if (JFWRITE(info->temp_file, buffer_address, byte_count) +      != (size_t) byte_count) +    ERREXIT(cinfo, JERR_TFILE_WRITE); +} + + +METHODDEF void +close_backing_store (j_common_ptr cinfo, backing_store_ptr info) +{ +  fclose(info->temp_file); +  /* Since this implementation uses tmpfile() to create the file, +   * no explicit file deletion is needed. +   */ +} + + +/* + * Initial opening of a backing-store object. + * + * This version uses tmpfile(), which constructs a suitable file name + * behind the scenes.  We don't have to use info->temp_name[] at all; + * indeed, we can't even find out the actual name of the temp file. + */ + +GLOBAL void +jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, +			 long total_bytes_needed) +{ +  if ((info->temp_file = tmpfile()) == NULL) +    ERREXITS(cinfo, JERR_TFILE_CREATE, ""); +  info->read_backing_store = read_backing_store; +  info->write_backing_store = write_backing_store; +  info->close_backing_store = close_backing_store; +} + + +/* + * These routines take care of any system-dependent initialization and + * cleanup required. + */ + +GLOBAL long +jpeg_mem_init (j_common_ptr cinfo) +{ +  return DEFAULT_MAX_MEM;	/* default for max_memory_to_use */ +} + +GLOBAL void +jpeg_mem_term (j_common_ptr cinfo) +{ +  /* no work */ +} diff --git a/src/jpeg-6/jmemdos.c b/src/jpeg-6/jmemdos.c new file mode 100644 index 00000000..4db8ec57 --- /dev/null +++ b/src/jpeg-6/jmemdos.c @@ -0,0 +1,634 @@ +/* + * jmemdos.c + * + * Copyright (C) 1992-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file provides an MS-DOS-compatible implementation of the system- + * dependent portion of the JPEG memory manager.  Temporary data can be + * stored in extended or expanded memory as well as in regular DOS files. + * + * If you use this file, you must be sure that NEED_FAR_POINTERS is defined + * if you compile in a small-data memory model; it should NOT be defined if + * you use a large-data memory model.  This file is not recommended if you + * are using a flat-memory-space 386 environment such as DJGCC or Watcom C. + * Also, this code will NOT work if struct fields are aligned on greater than + * 2-byte boundaries. + * + * Based on code contributed by Ge' Weijers. + */ + +/* + * If you have both extended and expanded memory, you may want to change the + * order in which they are tried in jopen_backing_store.  On a 286 machine + * expanded memory is usually faster, since extended memory access involves + * an expensive protected-mode-and-back switch.  On 386 and better, extended + * memory is usually faster.  As distributed, the code tries extended memory + * first (what? not everyone has a 386? :-). + * + * You can disable use of extended/expanded memory entirely by altering these + * definitions or overriding them from the Makefile (eg, -DEMS_SUPPORTED=0). + */ + +#ifndef XMS_SUPPORTED +#define XMS_SUPPORTED  1 +#endif +#ifndef EMS_SUPPORTED +#define EMS_SUPPORTED  1 +#endif + + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jmemsys.h"		/* import the system-dependent declarations */ + +#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare these */ +extern void * malloc JPP((size_t size)); +extern void free JPP((void *ptr)); +extern char * getenv JPP((const char * name)); +#endif + +#ifdef NEED_FAR_POINTERS + +#ifdef __TURBOC__ +/* These definitions work for Borland C (Turbo C) */ +#include <alloc.h>		/* need farmalloc(), farfree() */ +#define far_malloc(x)	farmalloc(x) +#define far_free(x)	farfree(x) +#else +/* These definitions work for Microsoft C and compatible compilers */ +#include <malloc.h>		/* need _fmalloc(), _ffree() */ +#define far_malloc(x)	_fmalloc(x) +#define far_free(x)	_ffree(x) +#endif + +#else /* not NEED_FAR_POINTERS */ + +#define far_malloc(x)	malloc(x) +#define far_free(x)	free(x) + +#endif /* NEED_FAR_POINTERS */ + +#ifdef DONT_USE_B_MODE		/* define mode parameters for fopen() */ +#define READ_BINARY	"r" +#else +#define READ_BINARY	"rb" +#endif + +#if MAX_ALLOC_CHUNK >= 65535L	/* make sure jconfig.h got this right */ +  MAX_ALLOC_CHUNK should be less than 64K. /* deliberate syntax error */ +#endif + + +/* + * Declarations for assembly-language support routines (see jmemdosa.asm). + * + * The functions are declared "far" as are all pointer arguments; + * this ensures the assembly source code will work regardless of the + * compiler memory model.  We assume "short" is 16 bits, "long" is 32. + */ + +typedef void far * XMSDRIVER;	/* actually a pointer to code */ +typedef struct {		/* registers for calling XMS driver */ +	unsigned short ax, dx, bx; +	void far * ds_si; +      } XMScontext; +typedef struct {		/* registers for calling EMS driver */ +	unsigned short ax, dx, bx; +	void far * ds_si; +      } EMScontext; + +EXTERN short far jdos_open JPP((short far * handle, char far * filename)); +EXTERN short far jdos_close JPP((short handle)); +EXTERN short far jdos_seek JPP((short handle, long offset)); +EXTERN short far jdos_read JPP((short handle, void far * buffer, +				unsigned short count)); +EXTERN short far jdos_write JPP((short handle, void far * buffer, +				 unsigned short count)); +EXTERN void far jxms_getdriver JPP((XMSDRIVER far *)); +EXTERN void far jxms_calldriver JPP((XMSDRIVER, XMScontext far *)); +EXTERN short far jems_available JPP((void)); +EXTERN void far jems_calldriver JPP((EMScontext far *)); + + +/* + * Selection of a file name for a temporary file. + * This is highly system-dependent, and you may want to customize it. + */ + +static int next_file_num;	/* to distinguish among several temp files */ + +LOCAL void +select_file_name (char * fname) +{ +  const char * env; +  char * ptr; +  FILE * tfile; + +  /* Keep generating file names till we find one that's not in use */ +  for (;;) { +    /* Get temp directory name from environment TMP or TEMP variable; +     * if none, use "." +     */ +    if ((env = (const char *) getenv("TMP")) == NULL) +      if ((env = (const char *) getenv("TEMP")) == NULL) +	env = "."; +    if (*env == '\0')		/* null string means "." */ +      env = "."; +    ptr = fname;		/* copy name to fname */ +    while (*env != '\0') +      *ptr++ = *env++; +    if (ptr[-1] != '\\' && ptr[-1] != '/') +      *ptr++ = '\\';		/* append backslash if not in env variable */ +    /* Append a suitable file name */ +    next_file_num++;		/* advance counter */ +    sprintf(ptr, "JPG%03d.TMP", next_file_num); +    /* Probe to see if file name is already in use */ +    if ((tfile = fopen(fname, READ_BINARY)) == NULL) +      break; +    fclose(tfile);		/* oops, it's there; close tfile & try again */ +  } +} + + +/* + * Near-memory allocation and freeing are controlled by the regular library + * routines malloc() and free(). + */ + +GLOBAL void * +jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void *) malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) +{ +  free(object); +} + + +/* + * "Large" objects are allocated in far memory, if possible + */ + +GLOBAL void FAR * +jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void FAR *) far_malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) +{ +  far_free(object); +} + + +/* + * This routine computes the total memory space available for allocation. + * It's impossible to do this in a portable way; our current solution is + * to make the user tell us (with a default value set at compile time). + * If you can actually get the available space, it's a good idea to subtract + * a slop factor of 5% or so. + */ + +#ifndef DEFAULT_MAX_MEM		/* so can override from makefile */ +#define DEFAULT_MAX_MEM		300000L /* for total usage about 450K */ +#endif + +GLOBAL long +jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, +		    long max_bytes_needed, long already_allocated) +{ +  return cinfo->mem->max_memory_to_use - already_allocated; +} + + +/* + * Backing store (temporary file) management. + * Backing store objects are only used when the value returned by + * jpeg_mem_available is less than the total space needed.  You can dispense + * with these routines if you have plenty of virtual memory; see jmemnobs.c. + */ + +/* + * For MS-DOS we support three types of backing storage: + *   1. Conventional DOS files.  We access these by direct DOS calls rather + *      than via the stdio package.  This provides a bit better performance, + *      but the real reason is that the buffers to be read or written are FAR. + *      The stdio library for small-data memory models can't cope with that. + *   2. Extended memory, accessed per the XMS V2.0 specification. + *   3. Expanded memory, accessed per the LIM/EMS 4.0 specification. + * You'll need copies of those specs to make sense of the related code. + * The specs are available by Internet FTP from the SIMTEL archives  + * (oak.oakland.edu and its various mirror sites).  See files + * pub/msdos/microsoft/xms20.arc and pub/msdos/info/limems41.zip. + */ + + +/* + * Access methods for a DOS file. + */ + + +METHODDEF void +read_file_store (j_common_ptr cinfo, backing_store_ptr info, +		 void FAR * buffer_address, +		 long file_offset, long byte_count) +{ +  if (jdos_seek(info->handle.file_handle, file_offset)) +    ERREXIT(cinfo, JERR_TFILE_SEEK); +  /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */ +  if (byte_count > 65535L)	/* safety check */ +    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); +  if (jdos_read(info->handle.file_handle, buffer_address, +		(unsigned short) byte_count)) +    ERREXIT(cinfo, JERR_TFILE_READ); +} + + +METHODDEF void +write_file_store (j_common_ptr cinfo, backing_store_ptr info, +		  void FAR * buffer_address, +		  long file_offset, long byte_count) +{ +  if (jdos_seek(info->handle.file_handle, file_offset)) +    ERREXIT(cinfo, JERR_TFILE_SEEK); +  /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */ +  if (byte_count > 65535L)	/* safety check */ +    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); +  if (jdos_write(info->handle.file_handle, buffer_address, +		 (unsigned short) byte_count)) +    ERREXIT(cinfo, JERR_TFILE_WRITE); +} + + +METHODDEF void +close_file_store (j_common_ptr cinfo, backing_store_ptr info) +{ +  jdos_close(info->handle.file_handle);	/* close the file */ +  remove(info->temp_name);	/* delete the file */ +/* If your system doesn't have remove(), try unlink() instead. + * remove() is the ANSI-standard name for this function, but + * unlink() was more common in pre-ANSI systems. + */ +  TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name); +} + + +LOCAL boolean +open_file_store (j_common_ptr cinfo, backing_store_ptr info, +		 long total_bytes_needed) +{ +  short handle; + +  select_file_name(info->temp_name); +  if (jdos_open((short far *) & handle, (char far *) info->temp_name)) { +    /* might as well exit since jpeg_open_backing_store will fail anyway */ +    ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name); +    return FALSE; +  } +  info->handle.file_handle = handle; +  info->read_backing_store = read_file_store; +  info->write_backing_store = write_file_store; +  info->close_backing_store = close_file_store; +  TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name); +  return TRUE;			/* succeeded */ +} + + +/* + * Access methods for extended memory. + */ + +#if XMS_SUPPORTED + +static XMSDRIVER xms_driver;	/* saved address of XMS driver */ + +typedef union {			/* either long offset or real-mode pointer */ +	long offset; +	void far * ptr; +      } XMSPTR; + +typedef struct {		/* XMS move specification structure */ +	long length; +	XMSH src_handle; +	XMSPTR src; +	XMSH dst_handle; +	XMSPTR dst; +      } XMSspec; + +#define ODD(X)	(((X) & 1L) != 0) + + +METHODDEF void +read_xms_store (j_common_ptr cinfo, backing_store_ptr info, +		void FAR * buffer_address, +		long file_offset, long byte_count) +{ +  XMScontext ctx; +  XMSspec spec; +  char endbuffer[2]; + +  /* The XMS driver can't cope with an odd length, so handle the last byte +   * specially if byte_count is odd.  We don't expect this to be common. +   */ + +  spec.length = byte_count & (~ 1L); +  spec.src_handle = info->handle.xms_handle; +  spec.src.offset = file_offset; +  spec.dst_handle = 0; +  spec.dst.ptr = buffer_address; +   +  ctx.ds_si = (void far *) & spec; +  ctx.ax = 0x0b00;		/* EMB move */ +  jxms_calldriver(xms_driver, (XMScontext far *) & ctx); +  if (ctx.ax != 1) +    ERREXIT(cinfo, JERR_XMS_READ); + +  if (ODD(byte_count)) { +    read_xms_store(cinfo, info, (void FAR *) endbuffer, +		   file_offset + byte_count - 1L, 2L); +    ((char FAR *) buffer_address)[byte_count - 1L] = endbuffer[0]; +  } +} + + +METHODDEF void +write_xms_store (j_common_ptr cinfo, backing_store_ptr info, +		 void FAR * buffer_address, +		 long file_offset, long byte_count) +{ +  XMScontext ctx; +  XMSspec spec; +  char endbuffer[2]; + +  /* The XMS driver can't cope with an odd length, so handle the last byte +   * specially if byte_count is odd.  We don't expect this to be common. +   */ + +  spec.length = byte_count & (~ 1L); +  spec.src_handle = 0; +  spec.src.ptr = buffer_address; +  spec.dst_handle = info->handle.xms_handle; +  spec.dst.offset = file_offset; + +  ctx.ds_si = (void far *) & spec; +  ctx.ax = 0x0b00;		/* EMB move */ +  jxms_calldriver(xms_driver, (XMScontext far *) & ctx); +  if (ctx.ax != 1) +    ERREXIT(cinfo, JERR_XMS_WRITE); + +  if (ODD(byte_count)) { +    read_xms_store(cinfo, info, (void FAR *) endbuffer, +		   file_offset + byte_count - 1L, 2L); +    endbuffer[0] = ((char FAR *) buffer_address)[byte_count - 1L]; +    write_xms_store(cinfo, info, (void FAR *) endbuffer, +		    file_offset + byte_count - 1L, 2L); +  } +} + + +METHODDEF void +close_xms_store (j_common_ptr cinfo, backing_store_ptr info) +{ +  XMScontext ctx; + +  ctx.dx = info->handle.xms_handle; +  ctx.ax = 0x0a00; +  jxms_calldriver(xms_driver, (XMScontext far *) & ctx); +  TRACEMS1(cinfo, 1, JTRC_XMS_CLOSE, info->handle.xms_handle); +  /* we ignore any error return from the driver */ +} + + +LOCAL boolean +open_xms_store (j_common_ptr cinfo, backing_store_ptr info, +		long total_bytes_needed) +{ +  XMScontext ctx; + +  /* Get address of XMS driver */ +  jxms_getdriver((XMSDRIVER far *) & xms_driver); +  if (xms_driver == NULL) +    return FALSE;		/* no driver to be had */ + +  /* Get version number, must be >= 2.00 */ +  ctx.ax = 0x0000; +  jxms_calldriver(xms_driver, (XMScontext far *) & ctx); +  if (ctx.ax < (unsigned short) 0x0200) +    return FALSE; + +  /* Try to get space (expressed in kilobytes) */ +  ctx.dx = (unsigned short) ((total_bytes_needed + 1023L) >> 10); +  ctx.ax = 0x0900; +  jxms_calldriver(xms_driver, (XMScontext far *) & ctx); +  if (ctx.ax != 1) +    return FALSE; + +  /* Succeeded, save the handle and away we go */ +  info->handle.xms_handle = ctx.dx; +  info->read_backing_store = read_xms_store; +  info->write_backing_store = write_xms_store; +  info->close_backing_store = close_xms_store; +  TRACEMS1(cinfo, 1, JTRC_XMS_OPEN, ctx.dx); +  return TRUE;			/* succeeded */ +} + +#endif /* XMS_SUPPORTED */ + + +/* + * Access methods for expanded memory. + */ + +#if EMS_SUPPORTED + +/* The EMS move specification structure requires word and long fields aligned + * at odd byte boundaries.  Some compilers will align struct fields at even + * byte boundaries.  While it's usually possible to force byte alignment, + * that causes an overall performance penalty and may pose problems in merging + * JPEG into a larger application.  Instead we accept some rather dirty code + * here.  Note this code would fail if the hardware did not allow odd-byte + * word & long accesses, but all 80x86 CPUs do. + */ + +typedef void far * EMSPTR; + +typedef union {			/* EMS move specification structure */ +	long length;		/* It's easy to access first 4 bytes */ +	char bytes[18];		/* Misaligned fields in here! */ +      } EMSspec; + +/* Macros for accessing misaligned fields */ +#define FIELD_AT(spec,offset,type)  (*((type *) &(spec.bytes[offset]))) +#define SRC_TYPE(spec)		FIELD_AT(spec,4,char) +#define SRC_HANDLE(spec)	FIELD_AT(spec,5,EMSH) +#define SRC_OFFSET(spec)	FIELD_AT(spec,7,unsigned short) +#define SRC_PAGE(spec)		FIELD_AT(spec,9,unsigned short) +#define SRC_PTR(spec)		FIELD_AT(spec,7,EMSPTR) +#define DST_TYPE(spec)		FIELD_AT(spec,11,char) +#define DST_HANDLE(spec)	FIELD_AT(spec,12,EMSH) +#define DST_OFFSET(spec)	FIELD_AT(spec,14,unsigned short) +#define DST_PAGE(spec)		FIELD_AT(spec,16,unsigned short) +#define DST_PTR(spec)		FIELD_AT(spec,14,EMSPTR) + +#define EMSPAGESIZE	16384L	/* gospel, see the EMS specs */ + +#define HIBYTE(W)  (((W) >> 8) & 0xFF) +#define LOBYTE(W)  ((W) & 0xFF) + + +METHODDEF void +read_ems_store (j_common_ptr cinfo, backing_store_ptr info, +		void FAR * buffer_address, +		long file_offset, long byte_count) +{ +  EMScontext ctx; +  EMSspec spec; + +  spec.length = byte_count; +  SRC_TYPE(spec) = 1; +  SRC_HANDLE(spec) = info->handle.ems_handle; +  SRC_PAGE(spec)   = (unsigned short) (file_offset / EMSPAGESIZE); +  SRC_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE); +  DST_TYPE(spec) = 0; +  DST_HANDLE(spec) = 0; +  DST_PTR(spec)    = buffer_address; +   +  ctx.ds_si = (void far *) & spec; +  ctx.ax = 0x5700;		/* move memory region */ +  jems_calldriver((EMScontext far *) & ctx); +  if (HIBYTE(ctx.ax) != 0) +    ERREXIT(cinfo, JERR_EMS_READ); +} + + +METHODDEF void +write_ems_store (j_common_ptr cinfo, backing_store_ptr info, +		 void FAR * buffer_address, +		 long file_offset, long byte_count) +{ +  EMScontext ctx; +  EMSspec spec; + +  spec.length = byte_count; +  SRC_TYPE(spec) = 0; +  SRC_HANDLE(spec) = 0; +  SRC_PTR(spec)    = buffer_address; +  DST_TYPE(spec) = 1; +  DST_HANDLE(spec) = info->handle.ems_handle; +  DST_PAGE(spec)   = (unsigned short) (file_offset / EMSPAGESIZE); +  DST_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE); +   +  ctx.ds_si = (void far *) & spec; +  ctx.ax = 0x5700;		/* move memory region */ +  jems_calldriver((EMScontext far *) & ctx); +  if (HIBYTE(ctx.ax) != 0) +    ERREXIT(cinfo, JERR_EMS_WRITE); +} + + +METHODDEF void +close_ems_store (j_common_ptr cinfo, backing_store_ptr info) +{ +  EMScontext ctx; + +  ctx.ax = 0x4500; +  ctx.dx = info->handle.ems_handle; +  jems_calldriver((EMScontext far *) & ctx); +  TRACEMS1(cinfo, 1, JTRC_EMS_CLOSE, info->handle.ems_handle); +  /* we ignore any error return from the driver */ +} + + +LOCAL boolean +open_ems_store (j_common_ptr cinfo, backing_store_ptr info, +		long total_bytes_needed) +{ +  EMScontext ctx; + +  /* Is EMS driver there? */ +  if (! jems_available()) +    return FALSE; + +  /* Get status, make sure EMS is OK */ +  ctx.ax = 0x4000; +  jems_calldriver((EMScontext far *) & ctx); +  if (HIBYTE(ctx.ax) != 0) +    return FALSE; + +  /* Get version, must be >= 4.0 */ +  ctx.ax = 0x4600; +  jems_calldriver((EMScontext far *) & ctx); +  if (HIBYTE(ctx.ax) != 0 || LOBYTE(ctx.ax) < 0x40) +    return FALSE; + +  /* Try to allocate requested space */ +  ctx.ax = 0x4300; +  ctx.bx = (unsigned short) ((total_bytes_needed + EMSPAGESIZE-1L) / EMSPAGESIZE); +  jems_calldriver((EMScontext far *) & ctx); +  if (HIBYTE(ctx.ax) != 0) +    return FALSE; + +  /* Succeeded, save the handle and away we go */ +  info->handle.ems_handle = ctx.dx; +  info->read_backing_store = read_ems_store; +  info->write_backing_store = write_ems_store; +  info->close_backing_store = close_ems_store; +  TRACEMS1(cinfo, 1, JTRC_EMS_OPEN, ctx.dx); +  return TRUE;			/* succeeded */ +} + +#endif /* EMS_SUPPORTED */ + + +/* + * Initial opening of a backing-store object. + */ + +GLOBAL void +jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, +			 long total_bytes_needed) +{ +  /* Try extended memory, then expanded memory, then regular file. */ +#if XMS_SUPPORTED +  if (open_xms_store(cinfo, info, total_bytes_needed)) +    return; +#endif +#if EMS_SUPPORTED +  if (open_ems_store(cinfo, info, total_bytes_needed)) +    return; +#endif +  if (open_file_store(cinfo, info, total_bytes_needed)) +    return; +  ERREXITS(cinfo, JERR_TFILE_CREATE, ""); +} + + +/* + * These routines take care of any system-dependent initialization and + * cleanup required. + */ + +GLOBAL long +jpeg_mem_init (j_common_ptr cinfo) +{ +  next_file_num = 0;		/* initialize temp file name generator */ +  return DEFAULT_MAX_MEM;	/* default for max_memory_to_use */ +} + +GLOBAL void +jpeg_mem_term (j_common_ptr cinfo) +{ +  /* Microsoft C, at least in v6.00A, will not successfully reclaim freed +   * blocks of size > 32Kbytes unless we give it a kick in the rear, like so: +   */ +#ifdef NEED_FHEAPMIN +  _fheapmin(); +#endif +} diff --git a/src/jpeg-6/jmemmgr.c b/src/jpeg-6/jmemmgr.c new file mode 100644 index 00000000..dc3e1c76 --- /dev/null +++ b/src/jpeg-6/jmemmgr.c @@ -0,0 +1,1115 @@ +/* + * jmemmgr.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the JPEG system-independent memory management + * routines.  This code is usable across a wide variety of machines; most + * of the system dependencies have been isolated in a separate file. + * The major functions provided here are: + *   * pool-based allocation and freeing of memory; + *   * policy decisions about how to divide available memory among the + *     virtual arrays; + *   * control logic for swapping virtual arrays between main memory and + *     backing storage. + * The separate system-dependent file provides the actual backing-storage + * access code, and it contains the policy decision about how much total + * main memory to use. + * This file is system-dependent in the sense that some of its functions + * are unnecessary in some systems.  For example, if there is enough virtual + * memory so that backing storage will never be used, much of the virtual + * array control logic could be removed.  (Of course, if you have that much + * memory then you shouldn't care about a little bit of unused code...) + */ + +#define JPEG_INTERNALS +#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */ +#include "jinclude.h" +#include "jpeglib.h" +#include "jmemsys.h"		/* import the system-dependent declarations */ + +#ifndef NO_GETENV +#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */ +extern char * getenv JPP((const char * name)); +#endif +#endif + + +/* + * Some important notes: + *   The allocation routines provided here must never return NULL. + *   They should exit to error_exit if unsuccessful. + * + *   It's not a good idea to try to merge the sarray and barray routines, + *   even though they are textually almost the same, because samples are + *   usually stored as bytes while coefficients are shorts or ints.  Thus, + *   in machines where byte pointers have a different representation from + *   word pointers, the resulting machine code could not be the same. + */ + + +/* + * Many machines require storage alignment: longs must start on 4-byte + * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc() + * always returns pointers that are multiples of the worst-case alignment + * requirement, and we had better do so too. + * There isn't any really portable way to determine the worst-case alignment + * requirement.  This module assumes that the alignment requirement is + * multiples of sizeof(ALIGN_TYPE). + * By default, we define ALIGN_TYPE as double.  This is necessary on some + * workstations (where doubles really do need 8-byte alignment) and will work + * fine on nearly everything.  If your machine has lesser alignment needs, + * you can save a few bytes by making ALIGN_TYPE smaller. + * The only place I know of where this will NOT work is certain Macintosh + * 680x0 compilers that define double as a 10-byte IEEE extended float. + * Doing 10-byte alignment is counterproductive because longwords won't be + * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have + * such a compiler. + */ + +#ifndef ALIGN_TYPE		/* so can override from jconfig.h */ +#define ALIGN_TYPE  double +#endif + + +/* + * We allocate objects from "pools", where each pool is gotten with a single + * request to jpeg_get_small() or jpeg_get_large().  There is no per-object + * overhead within a pool, except for alignment padding.  Each pool has a + * header with a link to the next pool of the same class. + * Small and large pool headers are identical except that the latter's + * link pointer must be FAR on 80x86 machines. + * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE + * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple + * of the alignment requirement of ALIGN_TYPE. + */ + +typedef union small_pool_struct * small_pool_ptr; + +typedef union small_pool_struct { +  struct { +    small_pool_ptr next;	/* next in list of pools */ +    size_t bytes_used;		/* how many bytes already used within pool */ +    size_t bytes_left;		/* bytes still available in this pool */ +  } hdr; +  ALIGN_TYPE dummy;		/* included in union to ensure alignment */ +} small_pool_hdr; + +typedef union large_pool_struct FAR * large_pool_ptr; + +typedef union large_pool_struct { +  struct { +    large_pool_ptr next;	/* next in list of pools */ +    size_t bytes_used;		/* how many bytes already used within pool */ +    size_t bytes_left;		/* bytes still available in this pool */ +  } hdr; +  ALIGN_TYPE dummy;		/* included in union to ensure alignment */ +} large_pool_hdr; + + +/* + * Here is the full definition of a memory manager object. + */ + +typedef struct { +  struct jpeg_memory_mgr pub;	/* public fields */ + +  /* Each pool identifier (lifetime class) names a linked list of pools. */ +  small_pool_ptr small_list[JPOOL_NUMPOOLS]; +  large_pool_ptr large_list[JPOOL_NUMPOOLS]; + +  /* Since we only have one lifetime class of virtual arrays, only one +   * linked list is necessary (for each datatype).  Note that the virtual +   * array control blocks being linked together are actually stored somewhere +   * in the small-pool list. +   */ +  jvirt_sarray_ptr virt_sarray_list; +  jvirt_barray_ptr virt_barray_list; + +  /* This counts total space obtained from jpeg_get_small/large */ +  long total_space_allocated; + +  /* alloc_sarray and alloc_barray set this value for use by virtual +   * array routines. +   */ +  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */ +} my_memory_mgr; + +typedef my_memory_mgr * my_mem_ptr; + + +/* + * The control blocks for virtual arrays. + * Note that these blocks are allocated in the "small" pool area. + * System-dependent info for the associated backing store (if any) is hidden + * inside the backing_store_info struct. + */ + +struct jvirt_sarray_control { +  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */ +  JDIMENSION rows_in_array;	/* total virtual array height */ +  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */ +  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */ +  JDIMENSION rows_in_mem;	/* height of memory buffer */ +  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */ +  JDIMENSION cur_start_row;	/* first logical row # in the buffer */ +  JDIMENSION first_undef_row;	/* row # of first uninitialized row */ +  boolean pre_zero;		/* pre-zero mode requested? */ +  boolean dirty;		/* do current buffer contents need written? */ +  boolean b_s_open;		/* is backing-store data valid? */ +  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */ +  backing_store_info b_s_info;	/* System-dependent control info */ +}; + +struct jvirt_barray_control { +  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */ +  JDIMENSION rows_in_array;	/* total virtual array height */ +  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */ +  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */ +  JDIMENSION rows_in_mem;	/* height of memory buffer */ +  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */ +  JDIMENSION cur_start_row;	/* first logical row # in the buffer */ +  JDIMENSION first_undef_row;	/* row # of first uninitialized row */ +  boolean pre_zero;		/* pre-zero mode requested? */ +  boolean dirty;		/* do current buffer contents need written? */ +  boolean b_s_open;		/* is backing-store data valid? */ +  jvirt_barray_ptr next;	/* link to next virtual barray control block */ +  backing_store_info b_s_info;	/* System-dependent control info */ +}; + + +#ifdef MEM_STATS		/* optional extra stuff for statistics */ + +LOCAL void +print_mem_stats (j_common_ptr cinfo, int pool_id) +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  small_pool_ptr shdr_ptr; +  large_pool_ptr lhdr_ptr; + +  /* Since this is only a debugging stub, we can cheat a little by using +   * fprintf directly rather than going through the trace message code. +   * This is helpful because message parm array can't handle longs. +   */ +  fprintf(stderr, "Freeing pool %d, total space = %ld\n", +	  pool_id, mem->total_space_allocated); + +  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; +       lhdr_ptr = lhdr_ptr->hdr.next) { +    fprintf(stderr, "  Large chunk used %ld\n", +	    (long) lhdr_ptr->hdr.bytes_used); +  } + +  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; +       shdr_ptr = shdr_ptr->hdr.next) { +    fprintf(stderr, "  Small chunk used %ld free %ld\n", +	    (long) shdr_ptr->hdr.bytes_used, +	    (long) shdr_ptr->hdr.bytes_left); +  } +} + +#endif /* MEM_STATS */ + + +LOCAL void +out_of_memory (j_common_ptr cinfo, int which) +/* Report an out-of-memory error and stop execution */ +/* If we compiled MEM_STATS support, report alloc requests before dying */ +{ +#ifdef MEM_STATS +  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */ +#endif +  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); +} + + +/* + * Allocation of "small" objects. + * + * For these, we use pooled storage.  When a new pool must be created, + * we try to get enough space for the current request plus a "slop" factor, + * where the slop will be the amount of leftover space in the new pool. + * The speed vs. space tradeoff is largely determined by the slop values. + * A different slop value is provided for each pool class (lifetime), + * and we also distinguish the first pool of a class from later ones. + * NOTE: the values given work fairly well on both 16- and 32-bit-int + * machines, but may be too small if longs are 64 bits or more. + */ + +static const size_t first_pool_slop[JPOOL_NUMPOOLS] =  +{ +	1600,			/* first PERMANENT pool */ +	16000			/* first IMAGE pool */ +}; + +static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =  +{ +	0,			/* additional PERMANENT pools */ +	5000			/* additional IMAGE pools */ +}; + +#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */ + + +METHODDEF void * +alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) +/* Allocate a "small" object */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  small_pool_ptr hdr_ptr, prev_hdr_ptr; +  char * data_ptr; +  size_t odd_bytes, min_request, slop; + +  /* Check for unsatisfiable request (do now to ensure no overflow below) */ +  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) +    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */ + +  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ +  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); +  if (odd_bytes > 0) +    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; + +  /* See if space is available in any existing pool */ +  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) +    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ +  prev_hdr_ptr = NULL; +  hdr_ptr = mem->small_list[pool_id]; +  while (hdr_ptr != NULL) { +    if (hdr_ptr->hdr.bytes_left >= sizeofobject) +      break;			/* found pool with enough space */ +    prev_hdr_ptr = hdr_ptr; +    hdr_ptr = hdr_ptr->hdr.next; +  } + +  /* Time to make a new pool? */ +  if (hdr_ptr == NULL) { +    /* min_request is what we need now, slop is what will be leftover */ +    min_request = sizeofobject + SIZEOF(small_pool_hdr); +    if (prev_hdr_ptr == NULL)	/* first pool in class? */ +      slop = first_pool_slop[pool_id]; +    else +      slop = extra_pool_slop[pool_id]; +    /* Don't ask for more than MAX_ALLOC_CHUNK */ +    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) +      slop = (size_t) (MAX_ALLOC_CHUNK-min_request); +    /* Try to get space, if fail reduce slop and try again */ +    for (;;) { +      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); +      if (hdr_ptr != NULL) +	break; +      slop /= 2; +      if (slop < MIN_SLOP)	/* give up when it gets real small */ +	out_of_memory(cinfo, 2); /* jpeg_get_small failed */ +    } +    mem->total_space_allocated += min_request + slop; +    /* Success, initialize the new pool header and add to end of list */ +    hdr_ptr->hdr.next = NULL; +    hdr_ptr->hdr.bytes_used = 0; +    hdr_ptr->hdr.bytes_left = sizeofobject + slop; +    if (prev_hdr_ptr == NULL)	/* first pool in class? */ +      mem->small_list[pool_id] = hdr_ptr; +    else +      prev_hdr_ptr->hdr.next = hdr_ptr; +  } + +  /* OK, allocate the object from the current pool */ +  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ +  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ +  hdr_ptr->hdr.bytes_used += sizeofobject; +  hdr_ptr->hdr.bytes_left -= sizeofobject; + +  return (void *) data_ptr; +} + + +/* + * Allocation of "large" objects. + * + * The external semantics of these are the same as "small" objects, + * except that FAR pointers are used on 80x86.  However the pool + * management heuristics are quite different.  We assume that each + * request is large enough that it may as well be passed directly to + * jpeg_get_large; the pool management just links everything together + * so that we can free it all on demand. + * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY + * structures.  The routines that create these structures (see below) + * deliberately bunch rows together to ensure a large request size. + */ + +METHODDEF void FAR * +alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) +/* Allocate a "large" object */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  large_pool_ptr hdr_ptr; +  size_t odd_bytes; + +  /* Check for unsatisfiable request (do now to ensure no overflow below) */ +  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) +    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */ + +  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ +  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); +  if (odd_bytes > 0) +    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; + +  /* Always make a new pool */ +  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) +    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ + +  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + +					    SIZEOF(large_pool_hdr)); +  if (hdr_ptr == NULL) +    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */ +  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); + +  /* Success, initialize the new pool header and add to list */ +  hdr_ptr->hdr.next = mem->large_list[pool_id]; +  /* We maintain space counts in each pool header for statistical purposes, +   * even though they are not needed for allocation. +   */ +  hdr_ptr->hdr.bytes_used = sizeofobject; +  hdr_ptr->hdr.bytes_left = 0; +  mem->large_list[pool_id] = hdr_ptr; + +  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ +} + + +/* + * Creation of 2-D sample arrays. + * The pointers are in near heap, the samples themselves in FAR heap. + * + * To minimize allocation overhead and to allow I/O of large contiguous + * blocks, we allocate the sample rows in groups of as many rows as possible + * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. + * NB: the virtual array control routines, later in this file, know about + * this chunking of rows.  The rowsperchunk value is left in the mem manager + * object so that it can be saved away if this sarray is the workspace for + * a virtual array. + */ + +METHODDEF JSAMPARRAY +alloc_sarray (j_common_ptr cinfo, int pool_id, +	      JDIMENSION samplesperrow, JDIMENSION numrows) +/* Allocate a 2-D sample array */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  JSAMPARRAY result; +  JSAMPROW workspace; +  JDIMENSION rowsperchunk, currow, i; +  long ltemp; + +  /* Calculate max # of rows allowed in one allocation chunk */ +  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / +	  ((long) samplesperrow * SIZEOF(JSAMPLE)); +  if (ltemp <= 0) +    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); +  if (ltemp < (long) numrows) +    rowsperchunk = (JDIMENSION) ltemp; +  else +    rowsperchunk = numrows; +  mem->last_rowsperchunk = rowsperchunk; + +  /* Get space for row pointers (small object) */ +  result = (JSAMPARRAY) alloc_small(cinfo, pool_id, +				    (size_t) (numrows * SIZEOF(JSAMPROW))); + +  /* Get the rows themselves (large objects) */ +  currow = 0; +  while (currow < numrows) { +    rowsperchunk = MIN(rowsperchunk, numrows - currow); +    workspace = (JSAMPROW) alloc_large(cinfo, pool_id, +	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow +		  * SIZEOF(JSAMPLE))); +    for (i = rowsperchunk; i > 0; i--) { +      result[currow++] = workspace; +      workspace += samplesperrow; +    } +  } + +  return result; +} + + +/* + * Creation of 2-D coefficient-block arrays. + * This is essentially the same as the code for sample arrays, above. + */ + +METHODDEF JBLOCKARRAY +alloc_barray (j_common_ptr cinfo, int pool_id, +	      JDIMENSION blocksperrow, JDIMENSION numrows) +/* Allocate a 2-D coefficient-block array */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  JBLOCKARRAY result; +  JBLOCKROW workspace; +  JDIMENSION rowsperchunk, currow, i; +  long ltemp; + +  /* Calculate max # of rows allowed in one allocation chunk */ +  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / +	  ((long) blocksperrow * SIZEOF(JBLOCK)); +  if (ltemp <= 0) +    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); +  if (ltemp < (long) numrows) +    rowsperchunk = (JDIMENSION) ltemp; +  else +    rowsperchunk = numrows; +  mem->last_rowsperchunk = rowsperchunk; + +  /* Get space for row pointers (small object) */ +  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, +				     (size_t) (numrows * SIZEOF(JBLOCKROW))); + +  /* Get the rows themselves (large objects) */ +  currow = 0; +  while (currow < numrows) { +    rowsperchunk = MIN(rowsperchunk, numrows - currow); +    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, +	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow +		  * SIZEOF(JBLOCK))); +    for (i = rowsperchunk; i > 0; i--) { +      result[currow++] = workspace; +      workspace += blocksperrow; +    } +  } + +  return result; +} + + +/* + * About virtual array management: + * + * The above "normal" array routines are only used to allocate strip buffers + * (as wide as the image, but just a few rows high).  Full-image-sized buffers + * are handled as "virtual" arrays.  The array is still accessed a strip at a + * time, but the memory manager must save the whole array for repeated + * accesses.  The intended implementation is that there is a strip buffer in + * memory (as high as is possible given the desired memory limit), plus a + * backing file that holds the rest of the array. + * + * The request_virt_array routines are told the total size of the image and + * the maximum number of rows that will be accessed at once.  The in-memory + * buffer must be at least as large as the maxaccess value. + * + * The request routines create control blocks but not the in-memory buffers. + * That is postponed until realize_virt_arrays is called.  At that time the + * total amount of space needed is known (approximately, anyway), so free + * memory can be divided up fairly. + * + * The access_virt_array routines are responsible for making a specific strip + * area accessible (after reading or writing the backing file, if necessary). + * Note that the access routines are told whether the caller intends to modify + * the accessed strip; during a read-only pass this saves having to rewrite + * data to disk.  The access routines are also responsible for pre-zeroing + * any newly accessed rows, if pre-zeroing was requested. + * + * In current usage, the access requests are usually for nonoverlapping + * strips; that is, successive access start_row numbers differ by exactly + * num_rows = maxaccess.  This means we can get good performance with simple + * buffer dump/reload logic, by making the in-memory buffer be a multiple + * of the access height; then there will never be accesses across bufferload + * boundaries.  The code will still work with overlapping access requests, + * but it doesn't handle bufferload overlaps very efficiently. + */ + + +METHODDEF jvirt_sarray_ptr +request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, +		     JDIMENSION samplesperrow, JDIMENSION numrows, +		     JDIMENSION maxaccess) +/* Request a virtual 2-D sample array */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  jvirt_sarray_ptr result; + +  /* Only IMAGE-lifetime virtual arrays are currently supported */ +  if (pool_id != JPOOL_IMAGE) +    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ + +  /* get control block */ +  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, +					  SIZEOF(struct jvirt_sarray_control)); + +  result->mem_buffer = NULL;	/* marks array not yet realized */ +  result->rows_in_array = numrows; +  result->samplesperrow = samplesperrow; +  result->maxaccess = maxaccess; +  result->pre_zero = pre_zero; +  result->b_s_open = FALSE;	/* no associated backing-store object */ +  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ +  mem->virt_sarray_list = result; + +  return result; +} + + +METHODDEF jvirt_barray_ptr +request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, +		     JDIMENSION blocksperrow, JDIMENSION numrows, +		     JDIMENSION maxaccess) +/* Request a virtual 2-D coefficient-block array */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  jvirt_barray_ptr result; + +  /* Only IMAGE-lifetime virtual arrays are currently supported */ +  if (pool_id != JPOOL_IMAGE) +    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ + +  /* get control block */ +  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, +					  SIZEOF(struct jvirt_barray_control)); + +  result->mem_buffer = NULL;	/* marks array not yet realized */ +  result->rows_in_array = numrows; +  result->blocksperrow = blocksperrow; +  result->maxaccess = maxaccess; +  result->pre_zero = pre_zero; +  result->b_s_open = FALSE;	/* no associated backing-store object */ +  result->next = mem->virt_barray_list; /* add to list of virtual arrays */ +  mem->virt_barray_list = result; + +  return result; +} + + +METHODDEF void +realize_virt_arrays (j_common_ptr cinfo) +/* Allocate the in-memory buffers for any unrealized virtual arrays */ +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  long space_per_minheight, maximum_space, avail_mem; +  long minheights, max_minheights; +  jvirt_sarray_ptr sptr; +  jvirt_barray_ptr bptr; + +  /* Compute the minimum space needed (maxaccess rows in each buffer) +   * and the maximum space needed (full image height in each buffer). +   * These may be of use to the system-dependent jpeg_mem_available routine. +   */ +  space_per_minheight = 0; +  maximum_space = 0; +  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { +    if (sptr->mem_buffer == NULL) { /* if not realized yet */ +      space_per_minheight += (long) sptr->maxaccess * +			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE); +      maximum_space += (long) sptr->rows_in_array * +		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE); +    } +  } +  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { +    if (bptr->mem_buffer == NULL) { /* if not realized yet */ +      space_per_minheight += (long) bptr->maxaccess * +			     (long) bptr->blocksperrow * SIZEOF(JBLOCK); +      maximum_space += (long) bptr->rows_in_array * +		       (long) bptr->blocksperrow * SIZEOF(JBLOCK); +    } +  } + +  if (space_per_minheight <= 0) +    return;			/* no unrealized arrays, no work */ + +  /* Determine amount of memory to actually use; this is system-dependent. */ +  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, +				 mem->total_space_allocated); + +  /* If the maximum space needed is available, make all the buffers full +   * height; otherwise parcel it out with the same number of minheights +   * in each buffer. +   */ +  if (avail_mem >= maximum_space) +    max_minheights = 1000000000L; +  else { +    max_minheights = avail_mem / space_per_minheight; +    /* If there doesn't seem to be enough space, try to get the minimum +     * anyway.  This allows a "stub" implementation of jpeg_mem_available(). +     */ +    if (max_minheights <= 0) +      max_minheights = 1; +  } + +  /* Allocate the in-memory buffers and initialize backing store as needed. */ + +  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { +    if (sptr->mem_buffer == NULL) { /* if not realized yet */ +      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; +      if (minheights <= max_minheights) { +	/* This buffer fits in memory */ +	sptr->rows_in_mem = sptr->rows_in_array; +      } else { +	/* It doesn't fit in memory, create backing store. */ +	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); +	jpeg_open_backing_store(cinfo, & sptr->b_s_info, +				(long) sptr->rows_in_array * +				(long) sptr->samplesperrow * +				(long) SIZEOF(JSAMPLE)); +	sptr->b_s_open = TRUE; +      } +      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, +				      sptr->samplesperrow, sptr->rows_in_mem); +      sptr->rowsperchunk = mem->last_rowsperchunk; +      sptr->cur_start_row = 0; +      sptr->first_undef_row = 0; +      sptr->dirty = FALSE; +    } +  } + +  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { +    if (bptr->mem_buffer == NULL) { /* if not realized yet */ +      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; +      if (minheights <= max_minheights) { +	/* This buffer fits in memory */ +	bptr->rows_in_mem = bptr->rows_in_array; +      } else { +	/* It doesn't fit in memory, create backing store. */ +	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); +	jpeg_open_backing_store(cinfo, & bptr->b_s_info, +				(long) bptr->rows_in_array * +				(long) bptr->blocksperrow * +				(long) SIZEOF(JBLOCK)); +	bptr->b_s_open = TRUE; +      } +      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, +				      bptr->blocksperrow, bptr->rows_in_mem); +      bptr->rowsperchunk = mem->last_rowsperchunk; +      bptr->cur_start_row = 0; +      bptr->first_undef_row = 0; +      bptr->dirty = FALSE; +    } +  } +} + + +LOCAL void +do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) +/* Do backing store read or write of a virtual sample array */ +{ +  long bytesperrow, file_offset, byte_count, rows, thisrow, i; + +  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); +  file_offset = ptr->cur_start_row * bytesperrow; +  /* Loop to read or write each allocation chunk in mem_buffer */ +  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { +    /* One chunk, but check for short chunk at end of buffer */ +    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); +    /* Transfer no more than is currently defined */ +    thisrow = (long) ptr->cur_start_row + i; +    rows = MIN(rows, (long) ptr->first_undef_row - thisrow); +    /* Transfer no more than fits in file */ +    rows = MIN(rows, (long) ptr->rows_in_array - thisrow); +    if (rows <= 0)		/* this chunk might be past end of file! */ +      break; +    byte_count = rows * bytesperrow; +    if (writing) +      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, +					    (void FAR *) ptr->mem_buffer[i], +					    file_offset, byte_count); +    else +      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, +					   (void FAR *) ptr->mem_buffer[i], +					   file_offset, byte_count); +    file_offset += byte_count; +  } +} + + +LOCAL void +do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) +/* Do backing store read or write of a virtual coefficient-block array */ +{ +  long bytesperrow, file_offset, byte_count, rows, thisrow, i; + +  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); +  file_offset = ptr->cur_start_row * bytesperrow; +  /* Loop to read or write each allocation chunk in mem_buffer */ +  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { +    /* One chunk, but check for short chunk at end of buffer */ +    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); +    /* Transfer no more than is currently defined */ +    thisrow = (long) ptr->cur_start_row + i; +    rows = MIN(rows, (long) ptr->first_undef_row - thisrow); +    /* Transfer no more than fits in file */ +    rows = MIN(rows, (long) ptr->rows_in_array - thisrow); +    if (rows <= 0)		/* this chunk might be past end of file! */ +      break; +    byte_count = rows * bytesperrow; +    if (writing) +      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, +					    (void FAR *) ptr->mem_buffer[i], +					    file_offset, byte_count); +    else +      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, +					   (void FAR *) ptr->mem_buffer[i], +					   file_offset, byte_count); +    file_offset += byte_count; +  } +} + + +METHODDEF JSAMPARRAY +access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, +		    JDIMENSION start_row, JDIMENSION num_rows, +		    boolean writable) +/* Access the part of a virtual sample array starting at start_row */ +/* and extending for num_rows rows.  writable is true if  */ +/* caller intends to modify the accessed area. */ +{ +  JDIMENSION end_row = start_row + num_rows; +  JDIMENSION undef_row; + +  /* debugging check */ +  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || +      ptr->mem_buffer == NULL) +    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); + +  /* Make the desired part of the virtual array accessible */ +  if (start_row < ptr->cur_start_row || +      end_row > ptr->cur_start_row+ptr->rows_in_mem) { +    if (! ptr->b_s_open) +      ERREXIT(cinfo, JERR_VIRTUAL_BUG); +    /* Flush old buffer contents if necessary */ +    if (ptr->dirty) { +      do_sarray_io(cinfo, ptr, TRUE); +      ptr->dirty = FALSE; +    } +    /* Decide what part of virtual array to access. +     * Algorithm: if target address > current window, assume forward scan, +     * load starting at target address.  If target address < current window, +     * assume backward scan, load so that target area is top of window. +     * Note that when switching from forward write to forward read, will have +     * start_row = 0, so the limiting case applies and we load from 0 anyway. +     */ +    if (start_row > ptr->cur_start_row) { +      ptr->cur_start_row = start_row; +    } else { +      /* use long arithmetic here to avoid overflow & unsigned problems */ +      long ltemp; + +      ltemp = (long) end_row - (long) ptr->rows_in_mem; +      if (ltemp < 0) +	ltemp = 0;		/* don't fall off front end of file */ +      ptr->cur_start_row = (JDIMENSION) ltemp; +    } +    /* Read in the selected part of the array. +     * During the initial write pass, we will do no actual read +     * because the selected part is all undefined. +     */ +    do_sarray_io(cinfo, ptr, FALSE); +  } +  /* Ensure the accessed part of the array is defined; prezero if needed. +   * To improve locality of access, we only prezero the part of the array +   * that the caller is about to access, not the entire in-memory array. +   */ +  if (ptr->first_undef_row < end_row) { +    if (ptr->first_undef_row < start_row) { +      if (writable)		/* writer skipped over a section of array */ +	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); +      undef_row = start_row;	/* but reader is allowed to read ahead */ +    } else { +      undef_row = ptr->first_undef_row; +    } +    if (writable) +      ptr->first_undef_row = end_row; +    if (ptr->pre_zero) { +      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); +      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ +      end_row -= ptr->cur_start_row; +      while (undef_row < end_row) { +	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); +	undef_row++; +      } +    } else { +      if (! writable)		/* reader looking at undefined data */ +	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); +    } +  } +  /* Flag the buffer dirty if caller will write in it */ +  if (writable) +    ptr->dirty = TRUE; +  /* Return address of proper part of the buffer */ +  return ptr->mem_buffer + (start_row - ptr->cur_start_row); +} + + +METHODDEF JBLOCKARRAY +access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, +		    JDIMENSION start_row, JDIMENSION num_rows, +		    boolean writable) +/* Access the part of a virtual block array starting at start_row */ +/* and extending for num_rows rows.  writable is true if  */ +/* caller intends to modify the accessed area. */ +{ +  JDIMENSION end_row = start_row + num_rows; +  JDIMENSION undef_row; + +  /* debugging check */ +  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || +      ptr->mem_buffer == NULL) +    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); + +  /* Make the desired part of the virtual array accessible */ +  if (start_row < ptr->cur_start_row || +      end_row > ptr->cur_start_row+ptr->rows_in_mem) { +    if (! ptr->b_s_open) +      ERREXIT(cinfo, JERR_VIRTUAL_BUG); +    /* Flush old buffer contents if necessary */ +    if (ptr->dirty) { +      do_barray_io(cinfo, ptr, TRUE); +      ptr->dirty = FALSE; +    } +    /* Decide what part of virtual array to access. +     * Algorithm: if target address > current window, assume forward scan, +     * load starting at target address.  If target address < current window, +     * assume backward scan, load so that target area is top of window. +     * Note that when switching from forward write to forward read, will have +     * start_row = 0, so the limiting case applies and we load from 0 anyway. +     */ +    if (start_row > ptr->cur_start_row) { +      ptr->cur_start_row = start_row; +    } else { +      /* use long arithmetic here to avoid overflow & unsigned problems */ +      long ltemp; + +      ltemp = (long) end_row - (long) ptr->rows_in_mem; +      if (ltemp < 0) +	ltemp = 0;		/* don't fall off front end of file */ +      ptr->cur_start_row = (JDIMENSION) ltemp; +    } +    /* Read in the selected part of the array. +     * During the initial write pass, we will do no actual read +     * because the selected part is all undefined. +     */ +    do_barray_io(cinfo, ptr, FALSE); +  } +  /* Ensure the accessed part of the array is defined; prezero if needed. +   * To improve locality of access, we only prezero the part of the array +   * that the caller is about to access, not the entire in-memory array. +   */ +  if (ptr->first_undef_row < end_row) { +    if (ptr->first_undef_row < start_row) { +      if (writable)		/* writer skipped over a section of array */ +	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); +      undef_row = start_row;	/* but reader is allowed to read ahead */ +    } else { +      undef_row = ptr->first_undef_row; +    } +    if (writable) +      ptr->first_undef_row = end_row; +    if (ptr->pre_zero) { +      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); +      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ +      end_row -= ptr->cur_start_row; +      while (undef_row < end_row) { +	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); +	undef_row++; +      } +    } else { +      if (! writable)		/* reader looking at undefined data */ +	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); +    } +  } +  /* Flag the buffer dirty if caller will write in it */ +  if (writable) +    ptr->dirty = TRUE; +  /* Return address of proper part of the buffer */ +  return ptr->mem_buffer + (start_row - ptr->cur_start_row); +} + + +/* + * Release all objects belonging to a specified pool. + */ + +METHODDEF void +free_pool (j_common_ptr cinfo, int pool_id) +{ +  my_mem_ptr mem = (my_mem_ptr) cinfo->mem; +  small_pool_ptr shdr_ptr; +  large_pool_ptr lhdr_ptr; +  size_t space_freed; + +  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) +    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ + +#ifdef MEM_STATS +  if (cinfo->err->trace_level > 1) +    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ +#endif + +  /* If freeing IMAGE pool, close any virtual arrays first */ +  if (pool_id == JPOOL_IMAGE) { +    jvirt_sarray_ptr sptr; +    jvirt_barray_ptr bptr; + +    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { +      if (sptr->b_s_open) {	/* there may be no backing store */ +	sptr->b_s_open = FALSE;	/* prevent recursive close if error */ +	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); +      } +    } +    mem->virt_sarray_list = NULL; +    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { +      if (bptr->b_s_open) {	/* there may be no backing store */ +	bptr->b_s_open = FALSE;	/* prevent recursive close if error */ +	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); +      } +    } +    mem->virt_barray_list = NULL; +  } + +  /* Release large objects */ +  lhdr_ptr = mem->large_list[pool_id]; +  mem->large_list[pool_id] = NULL; + +  while (lhdr_ptr != NULL) { +    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; +    space_freed = lhdr_ptr->hdr.bytes_used + +		  lhdr_ptr->hdr.bytes_left + +		  SIZEOF(large_pool_hdr); +    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); +    mem->total_space_allocated -= space_freed; +    lhdr_ptr = next_lhdr_ptr; +  } + +  /* Release small objects */ +  shdr_ptr = mem->small_list[pool_id]; +  mem->small_list[pool_id] = NULL; + +  while (shdr_ptr != NULL) { +    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; +    space_freed = shdr_ptr->hdr.bytes_used + +		  shdr_ptr->hdr.bytes_left + +		  SIZEOF(small_pool_hdr); +    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); +    mem->total_space_allocated -= space_freed; +    shdr_ptr = next_shdr_ptr; +  } +} + + +/* + * Close up shop entirely. + * Note that this cannot be called unless cinfo->mem is non-NULL. + */ + +METHODDEF void +self_destruct (j_common_ptr cinfo) +{ +  int pool; + +  /* Close all backing store, release all memory. +   * Releasing pools in reverse order might help avoid fragmentation +   * with some (brain-damaged) malloc libraries. +   */ +  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { +    free_pool(cinfo, pool); +  } + +  /* Release the memory manager control block too. */ +  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); +  cinfo->mem = NULL;		/* ensures I will be called only once */ + +  jpeg_mem_term(cinfo);		/* system-dependent cleanup */ +} + + +/* + * Memory manager initialization. + * When this is called, only the error manager pointer is valid in cinfo! + */ + +GLOBAL void +jinit_memory_mgr (j_common_ptr cinfo) +{ +  my_mem_ptr mem; +  long max_to_use; +  int pool; +  size_t test_mac; + +  cinfo->mem = NULL;		/* for safety if init fails */ + +  /* Check for configuration errors. +   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably +   * doesn't reflect any real hardware alignment requirement. +   * The test is a little tricky: for X>0, X and X-1 have no one-bits +   * in common if and only if X is a power of 2, ie has only one one-bit. +   * Some compilers may give an "unreachable code" warning here; ignore it. +   */ +  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) +    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); +  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be +   * a multiple of SIZEOF(ALIGN_TYPE). +   * Again, an "unreachable code" warning may be ignored here. +   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. +   */ +  test_mac = (size_t) MAX_ALLOC_CHUNK; +  if ((long) test_mac != MAX_ALLOC_CHUNK || +      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) +    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); + +  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ + +  /* Attempt to allocate memory manager's control block */ +  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); + +  if (mem == NULL) { +    jpeg_mem_term(cinfo);	/* system-dependent cleanup */ +    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); +  } + +  /* OK, fill in the method pointers */ +  mem->pub.alloc_small = alloc_small; +  mem->pub.alloc_large = alloc_large; +  mem->pub.alloc_sarray = alloc_sarray; +  mem->pub.alloc_barray = alloc_barray; +  mem->pub.request_virt_sarray = request_virt_sarray; +  mem->pub.request_virt_barray = request_virt_barray; +  mem->pub.realize_virt_arrays = realize_virt_arrays; +  mem->pub.access_virt_sarray = access_virt_sarray; +  mem->pub.access_virt_barray = access_virt_barray; +  mem->pub.free_pool = free_pool; +  mem->pub.self_destruct = self_destruct; + +  /* Initialize working state */ +  mem->pub.max_memory_to_use = max_to_use; + +  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { +    mem->small_list[pool] = NULL; +    mem->large_list[pool] = NULL; +  } +  mem->virt_sarray_list = NULL; +  mem->virt_barray_list = NULL; + +  mem->total_space_allocated = SIZEOF(my_memory_mgr); + +  /* Declare ourselves open for business */ +  cinfo->mem = & mem->pub; + +  /* Check for an environment variable JPEGMEM; if found, override the +   * default max_memory setting from jpeg_mem_init.  Note that the +   * surrounding application may again override this value. +   * If your system doesn't support getenv(), define NO_GETENV to disable +   * this feature. +   */ +#ifndef NO_GETENV +  { char * memenv; + +    if ((memenv = getenv("JPEGMEM")) != NULL) { +      char ch = 'x'; + +      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { +	if (ch == 'm' || ch == 'M') +	  max_to_use *= 1000L; +	mem->pub.max_memory_to_use = max_to_use * 1000L; +      } +    } +  } +#endif + +} diff --git a/src/jpeg-6/jmemname.c b/src/jpeg-6/jmemname.c new file mode 100644 index 00000000..ba826fbb --- /dev/null +++ b/src/jpeg-6/jmemname.c @@ -0,0 +1,271 @@ +/* + * jmemname.c + * + * Copyright (C) 1992-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file provides a generic implementation of the system-dependent + * portion of the JPEG memory manager.  This implementation assumes that + * you must explicitly construct a name for each temp file. + * Also, the problem of determining the amount of memory available + * is shoved onto the user. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jmemsys.h"		/* import the system-dependent declarations */ + +#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */ +extern void * malloc JPP((size_t size)); +extern void free JPP((void *ptr)); +#endif + +#ifndef SEEK_SET		/* pre-ANSI systems may not define this; */ +#define SEEK_SET  0		/* if not, assume 0 is correct */ +#endif + +#ifdef DONT_USE_B_MODE		/* define mode parameters for fopen() */ +#define READ_BINARY	"r" +#define RW_BINARY	"w+" +#else +#define READ_BINARY	"rb" +#define RW_BINARY	"w+b" +#endif + + +/* + * Selection of a file name for a temporary file. + * This is system-dependent! + * + * The code as given is suitable for most Unix systems, and it is easily + * modified for most non-Unix systems.  Some notes: + *  1.  The temp file is created in the directory named by TEMP_DIRECTORY. + *      The default value is /usr/tmp, which is the conventional place for + *      creating large temp files on Unix.  On other systems you'll probably + *      want to change the file location.  You can do this by editing the + *      #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h. + * + *  2.  If you need to change the file name as well as its location, + *      you can override the TEMP_FILE_NAME macro.  (Note that this is + *      actually a printf format string; it must contain %s and %d.) + *      Few people should need to do this. + * + *  3.  mktemp() is used to ensure that multiple processes running + *      simultaneously won't select the same file names.  If your system + *      doesn't have mktemp(), define NO_MKTEMP to do it the hard way. + *      (If you don't have <errno.h>, also define NO_ERRNO_H.) + * + *  4.  You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c + *      will cause the temp files to be removed if you stop the program early. + */ + +#ifndef TEMP_DIRECTORY		/* can override from jconfig.h or Makefile */ +#define TEMP_DIRECTORY  "/usr/tmp/" /* recommended setting for Unix */ +#endif + +static int next_file_num;	/* to distinguish among several temp files */ + +#ifdef NO_MKTEMP + +#ifndef TEMP_FILE_NAME		/* can override from jconfig.h or Makefile */ +#define TEMP_FILE_NAME  "%sJPG%03d.TMP" +#endif + +#ifndef NO_ERRNO_H +#include <errno.h>		/* to define ENOENT */ +#endif + +/* ANSI C specifies that errno is a macro, but on older systems it's more + * likely to be a plain int variable.  And not all versions of errno.h + * bother to declare it, so we have to in order to be most portable.  Thus: + */ +#ifndef errno +extern int errno; +#endif + + +LOCAL void +select_file_name (char * fname) +{ +  FILE * tfile; + +  /* Keep generating file names till we find one that's not in use */ +  for (;;) { +    next_file_num++;		/* advance counter */ +    sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num); +    if ((tfile = fopen(fname, READ_BINARY)) == NULL) { +      /* fopen could have failed for a reason other than the file not +       * being there; for example, file there but unreadable. +       * If <errno.h> isn't available, then we cannot test the cause. +       */ +#ifdef ENOENT +      if (errno != ENOENT) +	continue; +#endif +      break; +    } +    fclose(tfile);		/* oops, it's there; close tfile & try again */ +  } +} + +#else /* ! NO_MKTEMP */ + +/* Note that mktemp() requires the initial filename to end in six X's */ +#ifndef TEMP_FILE_NAME		/* can override from jconfig.h or Makefile */ +#define TEMP_FILE_NAME  "%sJPG%dXXXXXX" +#endif + +LOCAL void +select_file_name (char * fname) +{ +  next_file_num++;		/* advance counter */ +  sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num); +  mktemp(fname);		/* make sure file name is unique */ +  /* mktemp replaces the trailing XXXXXX with a unique string of characters */ +} + +#endif /* NO_MKTEMP */ + + +/* + * Memory allocation and freeing are controlled by the regular library + * routines malloc() and free(). + */ + +GLOBAL void * +jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void *) malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) +{ +  free(object); +} + + +/* + * "Large" objects are treated the same as "small" ones. + * NB: although we include FAR keywords in the routine declarations, + * this file won't actually work in 80x86 small/medium model; at least, + * you probably won't be able to process useful-size images in only 64KB. + */ + +GLOBAL void FAR * +jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void FAR *) malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) +{ +  free(object); +} + + +/* + * This routine computes the total memory space available for allocation. + * It's impossible to do this in a portable way; our current solution is + * to make the user tell us (with a default value set at compile time). + * If you can actually get the available space, it's a good idea to subtract + * a slop factor of 5% or so. + */ + +#ifndef DEFAULT_MAX_MEM		/* so can override from makefile */ +#define DEFAULT_MAX_MEM		1000000L /* default: one megabyte */ +#endif + +GLOBAL long +jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, +		    long max_bytes_needed, long already_allocated) +{ +  return cinfo->mem->max_memory_to_use - already_allocated; +} + + +/* + * Backing store (temporary file) management. + * Backing store objects are only used when the value returned by + * jpeg_mem_available is less than the total space needed.  You can dispense + * with these routines if you have plenty of virtual memory; see jmemnobs.c. + */ + + +METHODDEF void +read_backing_store (j_common_ptr cinfo, backing_store_ptr info, +		    void FAR * buffer_address, +		    long file_offset, long byte_count) +{ +  if (fseek(info->temp_file, file_offset, SEEK_SET)) +    ERREXIT(cinfo, JERR_TFILE_SEEK); +  if (JFREAD(info->temp_file, buffer_address, byte_count) +      != (size_t) byte_count) +    ERREXIT(cinfo, JERR_TFILE_READ); +} + + +METHODDEF void +write_backing_store (j_common_ptr cinfo, backing_store_ptr info, +		     void FAR * buffer_address, +		     long file_offset, long byte_count) +{ +  if (fseek(info->temp_file, file_offset, SEEK_SET)) +    ERREXIT(cinfo, JERR_TFILE_SEEK); +  if (JFWRITE(info->temp_file, buffer_address, byte_count) +      != (size_t) byte_count) +    ERREXIT(cinfo, JERR_TFILE_WRITE); +} + + +METHODDEF void +close_backing_store (j_common_ptr cinfo, backing_store_ptr info) +{ +  fclose(info->temp_file);	/* close the file */ +  unlink(info->temp_name);	/* delete the file */ +/* If your system doesn't have unlink(), use remove() instead. + * remove() is the ANSI-standard name for this function, but if + * your system was ANSI you'd be using jmemansi.c, right? + */ +  TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name); +} + + +/* + * Initial opening of a backing-store object. + */ + +GLOBAL void +jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, +			 long total_bytes_needed) +{ +  select_file_name(info->temp_name); +  if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL) +    ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name); +  info->read_backing_store = read_backing_store; +  info->write_backing_store = write_backing_store; +  info->close_backing_store = close_backing_store; +  TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name); +} + + +/* + * These routines take care of any system-dependent initialization and + * cleanup required. + */ + +GLOBAL long +jpeg_mem_init (j_common_ptr cinfo) +{ +  next_file_num = 0;		/* initialize temp file name generator */ +  return DEFAULT_MAX_MEM;	/* default for max_memory_to_use */ +} + +GLOBAL void +jpeg_mem_term (j_common_ptr cinfo) +{ +  /* no work */ +} diff --git a/src/jpeg-6/jmemnobs.c b/src/jpeg-6/jmemnobs.c new file mode 100644 index 00000000..ea7ead71 --- /dev/null +++ b/src/jpeg-6/jmemnobs.c @@ -0,0 +1,105 @@ +/* + * jmemnobs.c + * + * Copyright (C) 1992-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file provides a really simple implementation of the system- + * dependent portion of the JPEG memory manager.  This implementation + * assumes that no backing-store files are needed: all required space + * can be obtained from ri.Malloc(). + * This is very portable in the sense that it'll compile on almost anything, + * but you'd better have lots of main memory (or virtual memory) if you want + * to process big images. + * Note that the max_memory_to_use option is ignored by this implementation. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jmemsys.h"		/* import the system-dependent declarations */ + +#include "../renderer/tr_local.h" + +/* + * Memory allocation and ri.Freeing are controlled by the regular library + * routines ri.Malloc() and ri.Free(). + */ + +GLOBAL void * +jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void *) ri.Malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) +{ +  ri.Free(object); +} + + +/* + * "Large" objects are treated the same as "small" ones. + * NB: although we include FAR keywords in the routine declarations, + * this file won't actually work in 80x86 small/medium model; at least, + * you probably won't be able to process useful-size images in only 64KB. + */ + +GLOBAL void FAR * +jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) +{ +  return (void FAR *) ri.Malloc(sizeofobject); +} + +GLOBAL void +jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) +{ +  ri.Free(object); +} + + +/* + * This routine computes the total memory space available for allocation. + * Here we always say, "we got all you want bud!" + */ + +GLOBAL long +jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, +		    long max_bytes_needed, long already_allocated) +{ +  return max_bytes_needed; +} + + +/* + * Backing store (temporary file) management. + * Since jpeg_mem_available always promised the moon, + * this should never be called and we can just error out. + */ + +GLOBAL void +jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, +			 long total_bytes_needed) +{ +  ERREXIT(cinfo, JERR_NO_BACKING_STORE); +} + + +/* + * These routines take care of any system-dependent initialization and + * cleanup required.  Here, there isn't any. + */ + +GLOBAL long +jpeg_mem_init (j_common_ptr cinfo) +{ +  return 0;			/* just set max_memory_to_use to 0 */ +} + +GLOBAL void +jpeg_mem_term (j_common_ptr cinfo) +{ +  /* no work */ +} diff --git a/src/jpeg-6/jmemsys.h b/src/jpeg-6/jmemsys.h new file mode 100644 index 00000000..033d29a7 --- /dev/null +++ b/src/jpeg-6/jmemsys.h @@ -0,0 +1,182 @@ +/* + * jmemsys.h + * + * Copyright (C) 1992-1994, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This include file defines the interface between the system-independent + * and system-dependent portions of the JPEG memory manager.  No other + * modules need include it.  (The system-independent portion is jmemmgr.c; + * there are several different versions of the system-dependent portion.) + * + * This file works as-is for the system-dependent memory managers supplied + * in the IJG distribution.  You may need to modify it if you write a + * custom memory manager.  If system-dependent changes are needed in + * this file, the best method is to #ifdef them based on a configuration + * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR. + */ + + +/* Short forms of external names for systems with brain-damaged linkers. */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jpeg_get_small		jGetSmall +#define jpeg_free_small		jFreeSmall +#define jpeg_get_large		jGetLarge +#define jpeg_free_large		jFreeLarge +#define jpeg_mem_available	jMemAvail +#define jpeg_open_backing_store	jOpenBackStore +#define jpeg_mem_init		jMemInit +#define jpeg_mem_term		jMemTerm +#endif /* NEED_SHORT_EXTERNAL_NAMES */ + + +/* + * These two functions are used to allocate and release small chunks of + * memory.  (Typically the total amount requested through jpeg_get_small is + * no more than 20K or so; this will be requested in chunks of a few K each.) + * Behavior should be the same as for the standard library functions malloc + * and free; in particular, jpeg_get_small must return NULL on failure. + * On most systems, these ARE malloc and free.  jpeg_free_small is passed the + * size of the object being freed, just in case it's needed. + * On an 80x86 machine using small-data memory model, these manage near heap. + */ + +EXTERN void * jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject)); +EXTERN void jpeg_free_small JPP((j_common_ptr cinfo, void * object, +				 size_t sizeofobject)); + +/* + * These two functions are used to allocate and release large chunks of + * memory (up to the total free space designated by jpeg_mem_available). + * The interface is the same as above, except that on an 80x86 machine, + * far pointers are used.  On most other machines these are identical to + * the jpeg_get/free_small routines; but we keep them separate anyway, + * in case a different allocation strategy is desirable for large chunks. + */ + +EXTERN void FAR * jpeg_get_large JPP((j_common_ptr cinfo,size_t sizeofobject)); +EXTERN void jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object, +				 size_t sizeofobject)); + +/* + * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may + * be requested in a single call to jpeg_get_large (and jpeg_get_small for that + * matter, but that case should never come into play).  This macro is needed + * to model the 64Kb-segment-size limit of far addressing on 80x86 machines. + * On those machines, we expect that jconfig.h will provide a proper value. + * On machines with 32-bit flat address spaces, any large constant may be used. + * + * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type + * size_t and will be a multiple of sizeof(align_type). + */ + +#ifndef MAX_ALLOC_CHUNK		/* may be overridden in jconfig.h */ +#define MAX_ALLOC_CHUNK  1000000000L +#endif + +/* + * This routine computes the total space still available for allocation by + * jpeg_get_large.  If more space than this is needed, backing store will be + * used.  NOTE: any memory already allocated must not be counted. + * + * There is a minimum space requirement, corresponding to the minimum + * feasible buffer sizes; jmemmgr.c will request that much space even if + * jpeg_mem_available returns zero.  The maximum space needed, enough to hold + * all working storage in memory, is also passed in case it is useful. + * Finally, the total space already allocated is passed.  If no better + * method is available, cinfo->mem->max_memory_to_use - already_allocated + * is often a suitable calculation. + * + * It is OK for jpeg_mem_available to underestimate the space available + * (that'll just lead to more backing-store access than is really necessary). + * However, an overestimate will lead to failure.  Hence it's wise to subtract + * a slop factor from the true available space.  5% should be enough. + * + * On machines with lots of virtual memory, any large constant may be returned. + * Conversely, zero may be returned to always use the minimum amount of memory. + */ + +EXTERN long jpeg_mem_available JPP((j_common_ptr cinfo, +				    long min_bytes_needed, +				    long max_bytes_needed, +				    long already_allocated)); + + +/* + * This structure holds whatever state is needed to access a single + * backing-store object.  The read/write/close method pointers are called + * by jmemmgr.c to manipulate the backing-store object; all other fields + * are private to the system-dependent backing store routines. + */ + +#define TEMP_NAME_LENGTH   64	/* max length of a temporary file's name */ + +#ifdef USE_MSDOS_MEMMGR		/* DOS-specific junk */ + +typedef unsigned short XMSH;	/* type of extended-memory handles */ +typedef unsigned short EMSH;	/* type of expanded-memory handles */ + +typedef union { +  short file_handle;		/* DOS file handle if it's a temp file */ +  XMSH xms_handle;		/* handle if it's a chunk of XMS */ +  EMSH ems_handle;		/* handle if it's a chunk of EMS */ +} handle_union; + +#endif /* USE_MSDOS_MEMMGR */ + +typedef struct backing_store_struct * backing_store_ptr; + +typedef struct backing_store_struct { +  /* Methods for reading/writing/closing this backing-store object */ +  JMETHOD(void, read_backing_store, (j_common_ptr cinfo, +				     backing_store_ptr info, +				     void FAR * buffer_address, +				     long file_offset, long byte_count)); +  JMETHOD(void, write_backing_store, (j_common_ptr cinfo, +				      backing_store_ptr info, +				      void FAR * buffer_address, +				      long file_offset, long byte_count)); +  JMETHOD(void, close_backing_store, (j_common_ptr cinfo, +				      backing_store_ptr info)); + +  /* Private fields for system-dependent backing-store management */ +#ifdef USE_MSDOS_MEMMGR +  /* For the MS-DOS manager (jmemdos.c), we need: */ +  handle_union handle;		/* reference to backing-store storage object */ +  char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ +#else +  /* For a typical implementation with temp files, we need: */ +  FILE * temp_file;		/* stdio reference to temp file */ +  char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ +#endif +} backing_store_info; + +/* + * Initial opening of a backing-store object.  This must fill in the + * read/write/close pointers in the object.  The read/write routines + * may take an error exit if the specified maximum file size is exceeded. + * (If jpeg_mem_available always returns a large value, this routine can + * just take an error exit.) + */ + +EXTERN void jpeg_open_backing_store JPP((j_common_ptr cinfo, +					 backing_store_ptr info, +					 long total_bytes_needed)); + + +/* + * These routines take care of any system-dependent initialization and + * cleanup required.  jpeg_mem_init will be called before anything is + * allocated (and, therefore, nothing in cinfo is of use except the error + * manager pointer).  It should return a suitable default value for + * max_memory_to_use; this may subsequently be overridden by the surrounding + * application.  (Note that max_memory_to_use is only important if + * jpeg_mem_available chooses to consult it ... no one else will.) + * jpeg_mem_term may assume that all requested memory has been freed and that + * all opened backing-store objects have been closed. + */ + +EXTERN long jpeg_mem_init JPP((j_common_ptr cinfo)); +EXTERN void jpeg_mem_term JPP((j_common_ptr cinfo)); diff --git a/src/jpeg-6/jmorecfg.h b/src/jpeg-6/jmorecfg.h new file mode 100644 index 00000000..a2fea833 --- /dev/null +++ b/src/jpeg-6/jmorecfg.h @@ -0,0 +1,350 @@ +/* + * jmorecfg.h + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains additional configuration options that customize the + * JPEG software for special applications or support machine-dependent + * optimizations.  Most users will not need to touch this file. + */ + + +/* + * Define BITS_IN_JSAMPLE as either + *   8   for 8-bit sample values (the usual setting) + *   12  for 12-bit sample values + * Only 8 and 12 are legal data precisions for lossy JPEG according to the + * JPEG standard, and the IJG code does not support anything else! + * We do not support run-time selection of data precision, sorry. + */ + +#define BITS_IN_JSAMPLE  8	/* use 8 or 12 */ + + +/* + * Maximum number of components (color channels) allowed in JPEG image. + * To meet the letter of the JPEG spec, set this to 255.  However, darn + * few applications need more than 4 channels (maybe 5 for CMYK + alpha + * mask).  We recommend 10 as a reasonable compromise; use 4 if you are + * really short on memory.  (Each allowed component costs a hundred or so + * bytes of storage, whether actually used in an image or not.) + */ + +#define MAX_COMPONENTS  10	/* maximum number of image components */ + + +/* + * Basic data types. + * You may need to change these if you have a machine with unusual data + * type sizes; for example, "char" not 8 bits, "short" not 16 bits, + * or "long" not 32 bits.  We don't care whether "int" is 16 or 32 bits, + * but it had better be at least 16. + */ + +/* Representation of a single sample (pixel element value). + * We frequently allocate large arrays of these, so it's important to keep + * them small.  But if you have memory to burn and access to char or short + * arrays is very slow on your hardware, you might want to change these. + */ + +#if BITS_IN_JSAMPLE == 8 +/* JSAMPLE should be the smallest type that will hold the values 0..255. + * You can use a signed char by having GETJSAMPLE mask it with 0xFF. + */ + +#ifdef HAVE_UNSIGNED_CHAR + +typedef unsigned char JSAMPLE; +#define GETJSAMPLE(value)  ((int) (value)) + +#else /* not HAVE_UNSIGNED_CHAR */ + +typedef char JSAMPLE; +#ifdef CHAR_IS_UNSIGNED +#define GETJSAMPLE(value)  ((int) (value)) +#else +#define GETJSAMPLE(value)  ((int) (value) & 0xFF) +#endif /* CHAR_IS_UNSIGNED */ + +#endif /* HAVE_UNSIGNED_CHAR */ + +#define MAXJSAMPLE	255 +#define CENTERJSAMPLE	128 + +#endif /* BITS_IN_JSAMPLE == 8 */ + + +#if BITS_IN_JSAMPLE == 12 +/* JSAMPLE should be the smallest type that will hold the values 0..4095. + * On nearly all machines "short" will do nicely. + */ + +typedef short JSAMPLE; +#define GETJSAMPLE(value)  ((int) (value)) + +#define MAXJSAMPLE	4095 +#define CENTERJSAMPLE	2048 + +#endif /* BITS_IN_JSAMPLE == 12 */ + + +/* Representation of a DCT frequency coefficient. + * This should be a signed value of at least 16 bits; "short" is usually OK. + * Again, we allocate large arrays of these, but you can change to int + * if you have memory to burn and "short" is really slow. + */ + +typedef short JCOEF; + + +/* Compressed datastreams are represented as arrays of JOCTET. + * These must be EXACTLY 8 bits wide, at least once they are written to + * external storage.  Note that when using the stdio data source/destination + * managers, this is also the data type passed to fread/fwrite. + */ + +#ifdef HAVE_UNSIGNED_CHAR + +typedef unsigned char JOCTET; +#define GETJOCTET(value)  (value) + +#else /* not HAVE_UNSIGNED_CHAR */ + +typedef char JOCTET; +#ifdef CHAR_IS_UNSIGNED +#define GETJOCTET(value)  (value) +#else +#define GETJOCTET(value)  ((value) & 0xFF) +#endif /* CHAR_IS_UNSIGNED */ + +#endif /* HAVE_UNSIGNED_CHAR */ + + +/* These typedefs are used for various table entries and so forth. + * They must be at least as wide as specified; but making them too big + * won't cost a huge amount of memory, so we don't provide special + * extraction code like we did for JSAMPLE.  (In other words, these + * typedefs live at a different point on the speed/space tradeoff curve.) + */ + +/* UINT8 must hold at least the values 0..255. */ + +#ifdef HAVE_UNSIGNED_CHAR +typedef unsigned char UINT8; +#else /* not HAVE_UNSIGNED_CHAR */ +#ifdef CHAR_IS_UNSIGNED +typedef char UINT8; +#else /* not CHAR_IS_UNSIGNED */ +typedef short UINT8; +#endif /* CHAR_IS_UNSIGNED */ +#endif /* HAVE_UNSIGNED_CHAR */ + +/* UINT16 must hold at least the values 0..65535. */ + +#ifdef HAVE_UNSIGNED_SHORT +typedef unsigned short UINT16; +#else /* not HAVE_UNSIGNED_SHORT */ +typedef unsigned int UINT16; +#endif /* HAVE_UNSIGNED_SHORT */ + +#ifndef DONT_TYPEDEF_INT32 +typedef long INT32; +#endif + +/* INT16 must hold at least the values -32768..32767. */ + +#ifndef XMD_H			/* X11/xmd.h correctly defines INT16 */ +typedef short INT16; +#endif + +/* INT32 must hold at least signed 32-bit values. */ + +//#ifndef XMD_H			/* X11/xmd.h correctly defines INT32 */ +//typedef long INT32; +//#endif + +/* Datatype used for image dimensions.  The JPEG standard only supports + * images up to 64K*64K due to 16-bit fields in SOF markers.  Therefore + * "unsigned int" is sufficient on all machines.  However, if you need to + * handle larger images and you don't mind deviating from the spec, you + * can change this datatype. + */ + +typedef unsigned int JDIMENSION; + +#define JPEG_MAX_DIMENSION  65500L  /* a tad under 64K to prevent overflows */ + + +/* These defines are used in all function definitions and extern declarations. + * You could modify them if you need to change function linkage conventions. + * Another application is to make all functions global for use with debuggers + * or code profilers that require it. + */ + +#define METHODDEF static	/* a function called through method pointers */ +#define LOCAL	  static	/* a function used only in its module */ +#define GLOBAL			/* a function referenced thru EXTERNs */ +#define EXTERN	  extern	/* a reference to a GLOBAL function */ + + +/* Here is the pseudo-keyword for declaring pointers that must be "far" + * on 80x86 machines.  Most of the specialized coding for 80x86 is handled + * by just saying "FAR *" where such a pointer is needed.  In a few places + * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. + */ + +#ifdef NEED_FAR_POINTERS +#undef FAR +#define FAR  far +#else +#undef FAR +#define FAR +#endif + + +/* + * On a few systems, type boolean and/or its values FALSE, TRUE may appear + * in standard header files.  Or you may have conflicts with application- + * specific header files that you want to include together with these files. + * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. + */ + +//#ifndef HAVE_BOOLEAN +//typedef int boolean; +//#endif +#ifndef FALSE			/* in case these macros already exist */ +#define FALSE	0		/* values of boolean */ +#endif +#ifndef TRUE +#define TRUE	1 +#endif + + +/* + * The remaining options affect code selection within the JPEG library, + * but they don't need to be visible to most applications using the library. + * To minimize application namespace pollution, the symbols won't be + * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. + */ + +#ifdef JPEG_INTERNALS +#define JPEG_INTERNAL_OPTIONS +#endif + +#ifdef JPEG_INTERNAL_OPTIONS + + +/* + * These defines indicate whether to include various optional functions. + * Undefining some of these symbols will produce a smaller but less capable + * library.  Note that you can leave certain source files out of the + * compilation/linking process if you've #undef'd the corresponding symbols. + * (You may HAVE to do that if your compiler doesn't like null source files.) + */ + +/* Arithmetic coding is unsupported for legal reasons.  Complaints to IBM. */ + +/* Capability options common to encoder and decoder: */ + +#undef DCT_ISLOW_SUPPORTED	/* slow but accurate integer algorithm */ +#undef DCT_IFAST_SUPPORTED	/* faster, less accurate integer method */ +#define DCT_FLOAT_SUPPORTED	/* floating-point: accurate, fast on fast HW */ + +/* Encoder capability options: */ + +#undef  C_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */ +#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ +#define C_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/ +#define ENTROPY_OPT_SUPPORTED	    /* Optimization of entropy coding parms? */ +/* Note: if you selected 12-bit data precision, it is dangerous to turn off + * ENTROPY_OPT_SUPPORTED.  The standard Huffman tables are only good for 8-bit + * precision, so jchuff.c normally uses entropy optimization to compute + * usable tables for higher precision.  If you don't want to do optimization, + * you'll have to supply different default Huffman tables. + * The exact same statements apply for progressive JPEG: the default tables + * don't work for progressive mode.  (This may get fixed, however.) + */ +#define INPUT_SMOOTHING_SUPPORTED   /* Input image smoothing option? */ + +/* Decoder capability options: */ + +#undef  D_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */ +#undef D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ +#undef D_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/ +#undef BLOCK_SMOOTHING_SUPPORTED   /* Block smoothing? (Progressive only) */ +#undef IDCT_SCALING_SUPPORTED	    /* Output rescaling via IDCT? */ +#undef  UPSAMPLE_SCALING_SUPPORTED  /* Output rescaling at upsample stage? */ +#undef UPSAMPLE_MERGING_SUPPORTED  /* Fast path for sloppy upsampling? */ +#undef QUANT_1PASS_SUPPORTED	    /* 1-pass color quantization? */ +#undef QUANT_2PASS_SUPPORTED	    /* 2-pass color quantization? */ + +/* more capability options later, no doubt */ + + +/* + * Ordering of RGB data in scanlines passed to or from the application. + * If your application wants to deal with data in the order B,G,R, just + * change these macros.  You can also deal with formats such as R,G,B,X + * (one extra byte per pixel) by changing RGB_PIXELSIZE.  Note that changing + * the offsets will also change the order in which colormap data is organized. + * RESTRICTIONS: + * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. + * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not + *    useful if you are using JPEG color spaces other than YCbCr or grayscale. + * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE + *    is not 3 (they don't understand about dummy color components!).  So you + *    can't use color quantization if you change that value. + */ + +#define RGB_RED		0	/* Offset of Red in an RGB scanline element */ +#define RGB_GREEN	1	/* Offset of Green */ +#define RGB_BLUE	2	/* Offset of Blue */ +#define RGB_PIXELSIZE	4	/* JSAMPLEs per RGB scanline element */ + + +/* Definitions for speed-related optimizations. */ + + +/* If your compiler supports inline functions, define INLINE + * as the inline keyword; otherwise define it as empty. + */ + +#ifndef INLINE +#ifdef __GNUC__			/* for instance, GNU C knows about inline */ +#define INLINE __inline__ +#endif +#ifndef INLINE +#define INLINE			/* default is to define it as empty */ +#endif +#endif + + +/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying + * two 16-bit shorts is faster than multiplying two ints.  Define MULTIPLIER + * as short on such a machine.  MULTIPLIER must be at least 16 bits wide. + */ + +#ifndef MULTIPLIER +#define MULTIPLIER  int		/* type for fastest integer multiply */ +#endif + + +/* FAST_FLOAT should be either float or double, whichever is done faster + * by your compiler.  (Note that this type is only used in the floating point + * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) + * Typically, float is faster in ANSI C compilers, while double is faster in + * pre-ANSI compilers (because they insist on converting to double anyway). + * The code below therefore chooses float if we have ANSI-style prototypes. + */ + +#ifndef FAST_FLOAT +#ifdef HAVE_PROTOTYPES +#define FAST_FLOAT  float +#else +#define FAST_FLOAT  double +#endif +#endif + +#endif /* JPEG_INTERNAL_OPTIONS */ diff --git a/src/jpeg-6/jpegint.h b/src/jpeg-6/jpegint.h new file mode 100644 index 00000000..ab5bee2c --- /dev/null +++ b/src/jpeg-6/jpegint.h @@ -0,0 +1,388 @@ +/* + * jpegint.h + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file provides common declarations for the various JPEG modules. + * These declarations are considered internal to the JPEG library; most + * applications using the library shouldn't need to include this file. + */ + + +/* Declarations for both compression & decompression */ + +typedef enum {			/* Operating modes for buffer controllers */ +	JBUF_PASS_THRU,		/* Plain stripwise operation */ +	/* Remaining modes require a full-image buffer to have been created */ +	JBUF_SAVE_SOURCE,	/* Run source subobject only, save output */ +	JBUF_CRANK_DEST,	/* Run dest subobject only, using saved data */ +	JBUF_SAVE_AND_PASS	/* Run both subobjects, save output */ +} J_BUF_MODE; + +/* Values of global_state field (jdapi.c has some dependencies on ordering!) */ +#define CSTATE_START	100	/* after create_compress */ +#define CSTATE_SCANNING	101	/* start_compress done, write_scanlines OK */ +#define CSTATE_RAW_OK	102	/* start_compress done, write_raw_data OK */ +#define CSTATE_WRCOEFS	103	/* jpeg_write_coefficients done */ +#define DSTATE_START	200	/* after create_decompress */ +#define DSTATE_INHEADER	201	/* reading header markers, no SOS yet */ +#define DSTATE_READY	202	/* found SOS, ready for start_decompress */ +#define DSTATE_PRELOAD	203	/* reading multiscan file in start_decompress*/ +#define DSTATE_PRESCAN	204	/* performing dummy pass for 2-pass quant */ +#define DSTATE_SCANNING	205	/* start_decompress done, read_scanlines OK */ +#define DSTATE_RAW_OK	206	/* start_decompress done, read_raw_data OK */ +#define DSTATE_BUFIMAGE	207	/* expecting jpeg_start_output */ +#define DSTATE_BUFPOST	208	/* looking for SOS/EOI in jpeg_finish_output */ +#define DSTATE_RDCOEFS	209	/* reading file in jpeg_read_coefficients */ +#define DSTATE_STOPPING	210	/* looking for EOI in jpeg_finish_decompress */ + + +/* Declarations for compression modules */ + +/* Master control module */ +struct jpeg_comp_master { +  JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo)); +  JMETHOD(void, pass_startup, (j_compress_ptr cinfo)); +  JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); + +  /* State variables made visible to other modules */ +  boolean call_pass_startup;	/* True if pass_startup must be called */ +  boolean is_last_pass;		/* True during last pass */ +}; + +/* Main buffer control (downsampled-data buffer) */ +struct jpeg_c_main_controller { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); +  JMETHOD(void, process_data, (j_compress_ptr cinfo, +			       JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, +			       JDIMENSION in_rows_avail)); +}; + +/* Compression preprocessing (downsampling input buffer control) */ +struct jpeg_c_prep_controller { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); +  JMETHOD(void, pre_process_data, (j_compress_ptr cinfo, +				   JSAMPARRAY input_buf, +				   JDIMENSION *in_row_ctr, +				   JDIMENSION in_rows_avail, +				   JSAMPIMAGE output_buf, +				   JDIMENSION *out_row_group_ctr, +				   JDIMENSION out_row_groups_avail)); +}; + +/* Coefficient buffer control */ +struct jpeg_c_coef_controller { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); +  JMETHOD(boolean, compress_data, (j_compress_ptr cinfo, +				   JSAMPIMAGE input_buf)); +}; + +/* Colorspace conversion */ +struct jpeg_color_converter { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo)); +  JMETHOD(void, color_convert, (j_compress_ptr cinfo, +				JSAMPARRAY input_buf, JSAMPIMAGE output_buf, +				JDIMENSION output_row, int num_rows)); +}; + +/* Downsampling */ +struct jpeg_downsampler { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo)); +  JMETHOD(void, downsample, (j_compress_ptr cinfo, +			     JSAMPIMAGE input_buf, JDIMENSION in_row_index, +			     JSAMPIMAGE output_buf, +			     JDIMENSION out_row_group_index)); + +  boolean need_context_rows;	/* TRUE if need rows above & below */ +}; + +/* Forward DCT (also controls coefficient quantization) */ +struct jpeg_forward_dct { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo)); +  /* perhaps this should be an array??? */ +  JMETHOD(void, forward_DCT, (j_compress_ptr cinfo, +			      jpeg_component_info * compptr, +			      JSAMPARRAY sample_data, JBLOCKROW coef_blocks, +			      JDIMENSION start_row, JDIMENSION start_col, +			      JDIMENSION num_blocks)); +}; + +/* Entropy encoding */ +struct jpeg_entropy_encoder { +  JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics)); +  JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data)); +  JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); +}; + +/* Marker writing */ +struct jpeg_marker_writer { +  /* write_any_marker is exported for use by applications */ +  /* Probably only COM and APPn markers should be written */ +  JMETHOD(void, write_any_marker, (j_compress_ptr cinfo, int marker, +				   const JOCTET *dataptr, unsigned int datalen)); +  JMETHOD(void, write_file_header, (j_compress_ptr cinfo)); +  JMETHOD(void, write_frame_header, (j_compress_ptr cinfo)); +  JMETHOD(void, write_scan_header, (j_compress_ptr cinfo)); +  JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo)); +  JMETHOD(void, write_tables_only, (j_compress_ptr cinfo)); +}; + + +/* Declarations for decompression modules */ + +/* Master control module */ +struct jpeg_decomp_master { +  JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo)); +  JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo)); + +  /* State variables made visible to other modules */ +  boolean is_dummy_pass;	/* True during 1st pass for 2-pass quant */ +}; + +/* Input control module */ +struct jpeg_input_controller { +  JMETHOD(int, consume_input, (j_decompress_ptr cinfo)); +  JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo)); +  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); +  JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo)); + +  /* State variables made visible to other modules */ +  boolean has_multiple_scans;	/* True if file has multiple scans */ +  boolean eoi_reached;		/* True when EOI has been consumed */ +}; + +/* Main buffer control (downsampled-data buffer) */ +struct jpeg_d_main_controller { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); +  JMETHOD(void, process_data, (j_decompress_ptr cinfo, +			       JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, +			       JDIMENSION out_rows_avail)); +}; + +/* Coefficient buffer control */ +struct jpeg_d_coef_controller { +  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); +  JMETHOD(int, consume_data, (j_decompress_ptr cinfo)); +  JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo)); +  JMETHOD(int, decompress_data, (j_decompress_ptr cinfo, +				 JSAMPIMAGE output_buf)); +  /* Pointer to array of coefficient virtual arrays, or NULL if none */ +  jvirt_barray_ptr *coef_arrays; +}; + +/* Decompression postprocessing (color quantization buffer control) */ +struct jpeg_d_post_controller { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); +  JMETHOD(void, post_process_data, (j_decompress_ptr cinfo, +				    JSAMPIMAGE input_buf, +				    JDIMENSION *in_row_group_ctr, +				    JDIMENSION in_row_groups_avail, +				    JSAMPARRAY output_buf, +				    JDIMENSION *out_row_ctr, +				    JDIMENSION out_rows_avail)); +}; + +/* Marker reading & parsing */ +struct jpeg_marker_reader { +  JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo)); +  /* Read markers until SOS or EOI. +   * Returns same codes as are defined for jpeg_consume_input: +   * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. +   */ +  JMETHOD(int, read_markers, (j_decompress_ptr cinfo)); +  /* Read a restart marker --- exported for use by entropy decoder only */ +  jpeg_marker_parser_method read_restart_marker; +  /* Application-overridable marker processing methods */ +  jpeg_marker_parser_method process_COM; +  jpeg_marker_parser_method process_APPn[16]; + +  /* State of marker reader --- nominally internal, but applications +   * supplying COM or APPn handlers might like to know the state. +   */ +  boolean saw_SOI;		/* found SOI? */ +  boolean saw_SOF;		/* found SOF? */ +  int next_restart_num;		/* next restart number expected (0-7) */ +  unsigned int discarded_bytes;	/* # of bytes skipped looking for a marker */ +}; + +/* Entropy decoding */ +struct jpeg_entropy_decoder { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); +  JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, +				JBLOCKROW *MCU_data)); +}; + +/* Inverse DCT (also performs dequantization) */ +typedef JMETHOD(void, inverse_DCT_method_ptr, +		(j_decompress_ptr cinfo, jpeg_component_info * compptr, +		 JCOEFPTR coef_block, +		 JSAMPARRAY output_buf, JDIMENSION output_col)); + +struct jpeg_inverse_dct { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); +  /* It is useful to allow each component to have a separate IDCT method. */ +  inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; +}; + +/* Upsampling (note that upsampler must also call color converter) */ +struct jpeg_upsampler { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); +  JMETHOD(void, upsample, (j_decompress_ptr cinfo, +			   JSAMPIMAGE input_buf, +			   JDIMENSION *in_row_group_ctr, +			   JDIMENSION in_row_groups_avail, +			   JSAMPARRAY output_buf, +			   JDIMENSION *out_row_ctr, +			   JDIMENSION out_rows_avail)); + +  boolean need_context_rows;	/* TRUE if need rows above & below */ +}; + +/* Colorspace conversion */ +struct jpeg_color_deconverter { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); +  JMETHOD(void, color_convert, (j_decompress_ptr cinfo, +				JSAMPIMAGE input_buf, JDIMENSION input_row, +				JSAMPARRAY output_buf, int num_rows)); +}; + +/* Color quantization or color precision reduction */ +struct jpeg_color_quantizer { +  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan)); +  JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, +				 JSAMPARRAY input_buf, JSAMPARRAY output_buf, +				 int num_rows)); +  JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); +  JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); +}; + + +/* Miscellaneous useful macros */ + +#undef MAX +#define MAX(a,b)	((a) > (b) ? (a) : (b)) +#undef MIN +#define MIN(a,b)	((a) < (b) ? (a) : (b)) + + +/* We assume that right shift corresponds to signed division by 2 with + * rounding towards minus infinity.  This is correct for typical "arithmetic + * shift" instructions that shift in copies of the sign bit.  But some + * C compilers implement >> with an unsigned shift.  For these machines you + * must define RIGHT_SHIFT_IS_UNSIGNED. + * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. + * It is only applied with constant shift counts.  SHIFT_TEMPS must be + * included in the variables of any routine using RIGHT_SHIFT. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define SHIFT_TEMPS	INT32 shift_temp; +#define RIGHT_SHIFT(x,shft)  \ +	((shift_temp = (x)) < 0 ? \ +	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ +	 (shift_temp >> (shft))) +#else +#define SHIFT_TEMPS +#define RIGHT_SHIFT(x,shft)	((x) >> (shft)) +#endif + + +/* Short forms of external names for systems with brain-damaged linkers. */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jinit_compress_master	jICompress +#define jinit_c_master_control	jICMaster +#define jinit_c_main_controller	jICMainC +#define jinit_c_prep_controller	jICPrepC +#define jinit_c_coef_controller	jICCoefC +#define jinit_color_converter	jICColor +#define jinit_downsampler	jIDownsampler +#define jinit_forward_dct	jIFDCT +#define jinit_huff_encoder	jIHEncoder +#define jinit_phuff_encoder	jIPHEncoder +#define jinit_marker_writer	jIMWriter +#define jinit_master_decompress	jIDMaster +#define jinit_d_main_controller	jIDMainC +#define jinit_d_coef_controller	jIDCoefC +#define jinit_d_post_controller	jIDPostC +#define jinit_input_controller	jIInCtlr +#define jinit_marker_reader	jIMReader +#define jinit_huff_decoder	jIHDecoder +#define jinit_phuff_decoder	jIPHDecoder +#define jinit_inverse_dct	jIIDCT +#define jinit_upsampler		jIUpsampler +#define jinit_color_deconverter	jIDColor +#define jinit_1pass_quantizer	jI1Quant +#define jinit_2pass_quantizer	jI2Quant +#define jinit_merged_upsampler	jIMUpsampler +#define jinit_memory_mgr	jIMemMgr +#define jdiv_round_up		jDivRound +#define jround_up		jRound +#define jcopy_sample_rows	jCopySamples +#define jcopy_block_row		jCopyBlocks +#define jzero_far		jZeroFar +#define jpeg_zigzag_order	jZIGTable +#define jpeg_natural_order	jZAGTable +#endif /* NEED_SHORT_EXTERNAL_NAMES */ + + +/* Compression module initialization routines */ +EXTERN void jinit_compress_master JPP((j_compress_ptr cinfo)); +EXTERN void jinit_c_master_control JPP((j_compress_ptr cinfo, +					boolean transcode_only)); +EXTERN void jinit_c_main_controller JPP((j_compress_ptr cinfo, +					 boolean need_full_buffer)); +EXTERN void jinit_c_prep_controller JPP((j_compress_ptr cinfo, +					 boolean need_full_buffer)); +EXTERN void jinit_c_coef_controller JPP((j_compress_ptr cinfo, +					 boolean need_full_buffer)); +EXTERN void jinit_color_converter JPP((j_compress_ptr cinfo)); +EXTERN void jinit_downsampler JPP((j_compress_ptr cinfo)); +EXTERN void jinit_forward_dct JPP((j_compress_ptr cinfo)); +EXTERN void jinit_huff_encoder JPP((j_compress_ptr cinfo)); +EXTERN void jinit_phuff_encoder JPP((j_compress_ptr cinfo)); +EXTERN void jinit_marker_writer JPP((j_compress_ptr cinfo)); +/* Decompression module initialization routines */ +EXTERN void jinit_master_decompress JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_d_main_controller JPP((j_decompress_ptr cinfo, +					 boolean need_full_buffer)); +EXTERN void jinit_d_coef_controller JPP((j_decompress_ptr cinfo, +					 boolean need_full_buffer)); +EXTERN void jinit_d_post_controller JPP((j_decompress_ptr cinfo, +					 boolean need_full_buffer)); +EXTERN void jinit_input_controller JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_marker_reader JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_huff_decoder JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_phuff_decoder JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_inverse_dct JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_upsampler JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_color_deconverter JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_1pass_quantizer JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_2pass_quantizer JPP((j_decompress_ptr cinfo)); +EXTERN void jinit_merged_upsampler JPP((j_decompress_ptr cinfo)); +/* Memory manager initialization */ +EXTERN void jinit_memory_mgr JPP((j_common_ptr cinfo)); + +/* Utility routines in jutils.c */ +EXTERN long jdiv_round_up JPP((long a, long b)); +EXTERN long jround_up JPP((long a, long b)); +EXTERN void jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row, +				   JSAMPARRAY output_array, int dest_row, +				   int num_rows, JDIMENSION num_cols)); +EXTERN void jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row, +				 JDIMENSION num_blocks)); +EXTERN void jzero_far JPP((void FAR * target, size_t bytestozero)); +/* Constant tables in jutils.c */ +extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ +extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ + +/* Suppress undefined-structure complaints if necessary. */ + +#ifdef INCOMPLETE_TYPES_BROKEN +#ifndef AM_MEMORY_MANAGER	/* only jmemmgr.c defines these */ +struct jvirt_sarray_control { long dummy; }; +struct jvirt_barray_control { long dummy; }; +#endif +#endif /* INCOMPLETE_TYPES_BROKEN */ diff --git a/src/jpeg-6/jpeglib.h b/src/jpeg-6/jpeglib.h new file mode 100644 index 00000000..edfdda10 --- /dev/null +++ b/src/jpeg-6/jpeglib.h @@ -0,0 +1,1051 @@ +/* + * jpeglib.h + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file defines the application interface for the JPEG library. + * Most applications using the library need only include this file, + * and perhaps jerror.h if they want to know the exact error codes. + */ + +#ifndef JPEGLIB_H +#define JPEGLIB_H + +typedef unsigned char boolean; +/* + * First we include the configuration files that record how this + * installation of the JPEG library is set up.  jconfig.h can be + * generated automatically for many systems.  jmorecfg.h contains + * manual configuration options that most people need not worry about. + */ + +#ifndef JCONFIG_INCLUDED	/* in case jinclude.h already did */ +#include "../jpeg-6/jconfig.h"		/* widely used configuration options */ +#endif +#include "../jpeg-6/jmorecfg.h"		/* seldom changed options */ + + +/* Version ID for the JPEG library. + * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60". + */ + +#define JPEG_LIB_VERSION  60	/* Version 6 */ + + +/* Various constants determining the sizes of things. + * All of these are specified by the JPEG standard, so don't change them + * if you want to be compatible. + */ + +#define DCTSIZE		    8	/* The basic DCT block is 8x8 samples */ +#define DCTSIZE2	    64	/* DCTSIZE squared; # of elements in a block */ +#define NUM_QUANT_TBLS      4	/* Quantization tables are numbered 0..3 */ +#define NUM_HUFF_TBLS       4	/* Huffman tables are numbered 0..3 */ +#define NUM_ARITH_TBLS      16	/* Arith-coding tables are numbered 0..15 */ +#define MAX_COMPS_IN_SCAN   4	/* JPEG limit on # of components in one scan */ +#define MAX_SAMP_FACTOR     4	/* JPEG limit on sampling factors */ +/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard; + * the PostScript DCT filter can emit files with many more than 10 blocks/MCU. + * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU + * to handle it.  We even let you do this from the jconfig.h file.  However, + * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe + * sometimes emits noncompliant files doesn't mean you should too. + */ +#define C_MAX_BLOCKS_IN_MCU   10 /* compressor's limit on blocks per MCU */ +#ifndef D_MAX_BLOCKS_IN_MCU +#define D_MAX_BLOCKS_IN_MCU   10 /* decompressor's limit on blocks per MCU */ +#endif + + +/* This macro is used to declare a "method", that is, a function pointer. + * We want to supply prototype parameters if the compiler can cope. + * Note that the arglist parameter must be parenthesized! + */ + +#ifdef HAVE_PROTOTYPES +#define JMETHOD(type,methodname,arglist)  type (*methodname) arglist +#else +#define JMETHOD(type,methodname,arglist)  type (*methodname) () +#endif + + +/* Data structures for images (arrays of samples and of DCT coefficients). + * On 80x86 machines, the image arrays are too big for near pointers, + * but the pointer arrays can fit in near memory. + */ + +typedef JSAMPLE FAR *JSAMPROW;	/* ptr to one image row of pixel samples. */ +typedef JSAMPROW *JSAMPARRAY;	/* ptr to some rows (a 2-D sample array) */ +typedef JSAMPARRAY *JSAMPIMAGE;	/* a 3-D sample array: top index is color */ + +typedef JCOEF JBLOCK[DCTSIZE2];	/* one block of coefficients */ +typedef JBLOCK FAR *JBLOCKROW;	/* pointer to one row of coefficient blocks */ +typedef JBLOCKROW *JBLOCKARRAY;		/* a 2-D array of coefficient blocks */ +typedef JBLOCKARRAY *JBLOCKIMAGE;	/* a 3-D array of coefficient blocks */ + +typedef JCOEF FAR *JCOEFPTR;	/* useful in a couple of places */ + + +/* Types for JPEG compression parameters and working tables. */ + + +/* DCT coefficient quantization tables. */ + +typedef struct { +  /* This field directly represents the contents of a JPEG DQT marker. +   * Note: the values are always given in zigzag order. +   */ +  UINT16 quantval[DCTSIZE2];	/* quantization step for each coefficient */ +  /* This field is used only during compression.  It's initialized FALSE when +   * the table is created, and set TRUE when it's been output to the file. +   * You could suppress output of a table by setting this to TRUE. +   * (See jpeg_suppress_tables for an example.) +   */ +  boolean sent_table;		/* TRUE when table has been output */ +} JQUANT_TBL; + + +/* Huffman coding tables. */ + +typedef struct { +  /* These two fields directly represent the contents of a JPEG DHT marker */ +  UINT8 bits[17];		/* bits[k] = # of symbols with codes of */ +				/* length k bits; bits[0] is unused */ +  UINT8 huffval[256];		/* The symbols, in order of incr code length */ +  /* This field is used only during compression.  It's initialized FALSE when +   * the table is created, and set TRUE when it's been output to the file. +   * You could suppress output of a table by setting this to TRUE. +   * (See jpeg_suppress_tables for an example.) +   */ +  boolean sent_table;		/* TRUE when table has been output */ +} JHUFF_TBL; + + +/* Basic info about one component (color channel). */ + +typedef struct { +  /* These values are fixed over the whole image. */ +  /* For compression, they must be supplied by parameter setup; */ +  /* for decompression, they are read from the SOF marker. */ +  int component_id;		/* identifier for this component (0..255) */ +  int component_index;		/* its index in SOF or cinfo->comp_info[] */ +  int h_samp_factor;		/* horizontal sampling factor (1..4) */ +  int v_samp_factor;		/* vertical sampling factor (1..4) */ +  int quant_tbl_no;		/* quantization table selector (0..3) */ +  /* These values may vary between scans. */ +  /* For compression, they must be supplied by parameter setup; */ +  /* for decompression, they are read from the SOS marker. */ +  /* The decompressor output side may not use these variables. */ +  int dc_tbl_no;		/* DC entropy table selector (0..3) */ +  int ac_tbl_no;		/* AC entropy table selector (0..3) */ +   +  /* Remaining fields should be treated as private by applications. */ +   +  /* These values are computed during compression or decompression startup: */ +  /* Component's size in DCT blocks. +   * Any dummy blocks added to complete an MCU are not counted; therefore +   * these values do not depend on whether a scan is interleaved or not. +   */ +  JDIMENSION width_in_blocks; +  JDIMENSION height_in_blocks; +  /* Size of a DCT block in samples.  Always DCTSIZE for compression. +   * For decompression this is the size of the output from one DCT block, +   * reflecting any scaling we choose to apply during the IDCT step. +   * Values of 1,2,4,8 are likely to be supported.  Note that different +   * components may receive different IDCT scalings. +   */ +  int DCT_scaled_size; +  /* The downsampled dimensions are the component's actual, unpadded number +   * of samples at the main buffer (preprocessing/compression interface), thus +   * downsampled_width = ceil(image_width * Hi/Hmax) +   * and similarly for height.  For decompression, IDCT scaling is included, so +   * downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE) +   */ +  JDIMENSION downsampled_width;	 /* actual width in samples */ +  JDIMENSION downsampled_height; /* actual height in samples */ +  /* This flag is used only for decompression.  In cases where some of the +   * components will be ignored (eg grayscale output from YCbCr image), +   * we can skip most computations for the unused components. +   */ +  boolean component_needed;	/* do we need the value of this component? */ + +  /* These values are computed before starting a scan of the component. */ +  /* The decompressor output side may not use these variables. */ +  int MCU_width;		/* number of blocks per MCU, horizontally */ +  int MCU_height;		/* number of blocks per MCU, vertically */ +  int MCU_blocks;		/* MCU_width * MCU_height */ +  int MCU_sample_width;		/* MCU width in samples, MCU_width*DCT_scaled_size */ +  int last_col_width;		/* # of non-dummy blocks across in last MCU */ +  int last_row_height;		/* # of non-dummy blocks down in last MCU */ + +  /* Saved quantization table for component; NULL if none yet saved. +   * See jdinput.c comments about the need for this information. +   * This field is not currently used by the compressor. +   */ +  JQUANT_TBL * quant_table; + +  /* Private per-component storage for DCT or IDCT subsystem. */ +  void * dct_table; +} jpeg_component_info; + + +/* The script for encoding a multiple-scan file is an array of these: */ + +typedef struct { +  int comps_in_scan;		/* number of components encoded in this scan */ +  int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */ +  int Ss, Se;			/* progressive JPEG spectral selection parms */ +  int Ah, Al;			/* progressive JPEG successive approx. parms */ +} jpeg_scan_info; + + +/* Known color spaces. */ + +typedef enum { +	JCS_UNKNOWN,		/* error/unspecified */ +	JCS_GRAYSCALE,		/* monochrome */ +	JCS_RGB,		/* red/green/blue */ +	JCS_YCbCr,		/* Y/Cb/Cr (also known as YUV) */ +	JCS_CMYK,		/* C/M/Y/K */ +	JCS_YCCK		/* Y/Cb/Cr/K */ +} J_COLOR_SPACE; + +/* DCT/IDCT algorithm options. */ + +typedef enum { +	JDCT_ISLOW,		/* slow but accurate integer algorithm */ +	JDCT_IFAST,		/* faster, less accurate integer method */ +	JDCT_FLOAT		/* floating-point: accurate, fast on fast HW */ +} J_DCT_METHOD; + +#ifndef JDCT_DEFAULT		/* may be overridden in jconfig.h */ +#define JDCT_DEFAULT  JDCT_ISLOW +#endif +#ifndef JDCT_FASTEST		/* may be overridden in jconfig.h */ +#define JDCT_FASTEST  JDCT_IFAST +#endif + +/* Dithering options for decompression. */ + +typedef enum { +	JDITHER_NONE,		/* no dithering */ +	JDITHER_ORDERED,	/* simple ordered dither */ +	JDITHER_FS		/* Floyd-Steinberg error diffusion dither */ +} J_DITHER_MODE; + + +/* Common fields between JPEG compression and decompression master structs. */ + +#define jpeg_common_fields \ +  struct jpeg_error_mgr * err;	/* Error handler module */\ +  struct jpeg_memory_mgr * mem;	/* Memory manager module */\ +  struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\ +  boolean is_decompressor;	/* so common code can tell which is which */\ +  int global_state		/* for checking call sequence validity */ + +/* Routines that are to be used by both halves of the library are declared + * to receive a pointer to this structure.  There are no actual instances of + * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct. + */ +struct jpeg_common_struct { +  jpeg_common_fields;		/* Fields common to both master struct types */ +  /* Additional fields follow in an actual jpeg_compress_struct or +   * jpeg_decompress_struct.  All three structs must agree on these +   * initial fields!  (This would be a lot cleaner in C++.) +   */ +}; + +typedef struct jpeg_common_struct * j_common_ptr; +typedef struct jpeg_compress_struct * j_compress_ptr; +typedef struct jpeg_decompress_struct * j_decompress_ptr; + + +/* Master record for a compression instance */ + +struct jpeg_compress_struct { +  jpeg_common_fields;		/* Fields shared with jpeg_decompress_struct */ + +  /* Destination for compressed data */ +  struct jpeg_destination_mgr * dest; + +  /* Description of source image --- these fields must be filled in by +   * outer application before starting compression.  in_color_space must +   * be correct before you can even call jpeg_set_defaults(). +   */ + +  JDIMENSION image_width;	/* input image width */ +  JDIMENSION image_height;	/* input image height */ +  int input_components;		/* # of color components in input image */ +  J_COLOR_SPACE in_color_space;	/* colorspace of input image */ + +  double input_gamma;		/* image gamma of input image */ + +  /* Compression parameters --- these fields must be set before calling +   * jpeg_start_compress().  We recommend calling jpeg_set_defaults() to +   * initialize everything to reasonable defaults, then changing anything +   * the application specifically wants to change.  That way you won't get +   * burnt when new parameters are added.  Also note that there are several +   * helper routines to simplify changing parameters. +   */ + +  int data_precision;		/* bits of precision in image data */ + +  int num_components;		/* # of color components in JPEG image */ +  J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ + +  jpeg_component_info * comp_info; +  /* comp_info[i] describes component that appears i'th in SOF */ +   +  JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; +  /* ptrs to coefficient quantization tables, or NULL if not defined */ +   +  JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; +  JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; +  /* ptrs to Huffman coding tables, or NULL if not defined */ +   +  UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ +  UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ +  UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ + +  int num_scans;		/* # of entries in scan_info array */ +  const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */ +  /* The default value of scan_info is NULL, which causes a single-scan +   * sequential JPEG file to be emitted.  To create a multi-scan file, +   * set num_scans and scan_info to point to an array of scan definitions. +   */ + +  boolean raw_data_in;		/* TRUE=caller supplies downsampled data */ +  boolean arith_code;		/* TRUE=arithmetic coding, FALSE=Huffman */ +  boolean optimize_coding;	/* TRUE=optimize entropy encoding parms */ +  boolean CCIR601_sampling;	/* TRUE=first samples are cosited */ +  int smoothing_factor;		/* 1..100, or 0 for no input smoothing */ +  J_DCT_METHOD dct_method;	/* DCT algorithm selector */ + +  /* The restart interval can be specified in absolute MCUs by setting +   * restart_interval, or in MCU rows by setting restart_in_rows +   * (in which case the correct restart_interval will be figured +   * for each scan). +   */ +  unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */ +  int restart_in_rows;		/* if > 0, MCU rows per restart interval */ + +  /* Parameters controlling emission of special markers. */ + +  boolean write_JFIF_header;	/* should a JFIF marker be written? */ +  /* These three values are not used by the JPEG code, merely copied */ +  /* into the JFIF APP0 marker.  density_unit can be 0 for unknown, */ +  /* 1 for dots/inch, or 2 for dots/cm.  Note that the pixel aspect */ +  /* ratio is defined by X_density/Y_density even when density_unit=0. */ +  UINT8 density_unit;		/* JFIF code for pixel size units */ +  UINT16 X_density;		/* Horizontal pixel density */ +  UINT16 Y_density;		/* Vertical pixel density */ +  boolean write_Adobe_marker;	/* should an Adobe marker be written? */ +   +  /* State variable: index of next scanline to be written to +   * jpeg_write_scanlines().  Application may use this to control its +   * processing loop, e.g., "while (next_scanline < image_height)". +   */ + +  JDIMENSION next_scanline;	/* 0 .. image_height-1  */ + +  /* Remaining fields are known throughout compressor, but generally +   * should not be touched by a surrounding application. +   */ + +  /* +   * These fields are computed during compression startup +   */ +  boolean progressive_mode;	/* TRUE if scan script uses progressive mode */ +  int max_h_samp_factor;	/* largest h_samp_factor */ +  int max_v_samp_factor;	/* largest v_samp_factor */ + +  JDIMENSION total_iMCU_rows;	/* # of iMCU rows to be input to coef ctlr */ +  /* The coefficient controller receives data in units of MCU rows as defined +   * for fully interleaved scans (whether the JPEG file is interleaved or not). +   * There are v_samp_factor * DCTSIZE sample rows of each component in an +   * "iMCU" (interleaved MCU) row. +   */ +   +  /* +   * These fields are valid during any one scan. +   * They describe the components and MCUs actually appearing in the scan. +   */ +  int comps_in_scan;		/* # of JPEG components in this scan */ +  jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; +  /* *cur_comp_info[i] describes component that appears i'th in SOS */ +   +  JDIMENSION MCUs_per_row;	/* # of MCUs across the image */ +  JDIMENSION MCU_rows_in_scan;	/* # of MCU rows in the image */ +   +  int blocks_in_MCU;		/* # of DCT blocks per MCU */ +  int MCU_membership[C_MAX_BLOCKS_IN_MCU]; +  /* MCU_membership[i] is index in cur_comp_info of component owning */ +  /* i'th block in an MCU */ + +  int Ss, Se, Ah, Al;		/* progressive JPEG parameters for scan */ + +  /* +   * Links to compression subobjects (methods and private variables of modules) +   */ +  struct jpeg_comp_master * master; +  struct jpeg_c_main_controller * main; +  struct jpeg_c_prep_controller * prep; +  struct jpeg_c_coef_controller * coef; +  struct jpeg_marker_writer * marker; +  struct jpeg_color_converter * cconvert; +  struct jpeg_downsampler * downsample; +  struct jpeg_forward_dct * fdct; +  struct jpeg_entropy_encoder * entropy; +}; + + +/* Master record for a decompression instance */ + +struct jpeg_decompress_struct { +  jpeg_common_fields;		/* Fields shared with jpeg_compress_struct */ + +  /* Source of compressed data */ +  struct jpeg_source_mgr * src; + +  /* Basic description of image --- filled in by jpeg_read_header(). */ +  /* Application may inspect these values to decide how to process image. */ + +  JDIMENSION image_width;	/* nominal image width (from SOF marker) */ +  JDIMENSION image_height;	/* nominal image height */ +  int num_components;		/* # of color components in JPEG image */ +  J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ + +  /* Decompression processing parameters --- these fields must be set before +   * calling jpeg_start_decompress().  Note that jpeg_read_header() initializes +   * them to default values. +   */ + +  J_COLOR_SPACE out_color_space; /* colorspace for output */ + +  unsigned int scale_num, scale_denom; /* fraction by which to scale image */ + +  double output_gamma;		/* image gamma wanted in output */ + +  boolean buffered_image;	/* TRUE=multiple output passes */ +  boolean raw_data_out;		/* TRUE=downsampled data wanted */ + +  J_DCT_METHOD dct_method;	/* IDCT algorithm selector */ +  boolean do_fancy_upsampling;	/* TRUE=apply fancy upsampling */ +  boolean do_block_smoothing;	/* TRUE=apply interblock smoothing */ + +  boolean quantize_colors;	/* TRUE=colormapped output wanted */ +  /* the following are ignored if not quantize_colors: */ +  J_DITHER_MODE dither_mode;	/* type of color dithering to use */ +  boolean two_pass_quantize;	/* TRUE=use two-pass color quantization */ +  int desired_number_of_colors;	/* max # colors to use in created colormap */ +  /* these are significant only in buffered-image mode: */ +  boolean enable_1pass_quant;	/* enable future use of 1-pass quantizer */ +  boolean enable_external_quant;/* enable future use of external colormap */ +  boolean enable_2pass_quant;	/* enable future use of 2-pass quantizer */ + +  /* Description of actual output image that will be returned to application. +   * These fields are computed by jpeg_start_decompress(). +   * You can also use jpeg_calc_output_dimensions() to determine these values +   * in advance of calling jpeg_start_decompress(). +   */ + +  JDIMENSION output_width;	/* scaled image width */ +  JDIMENSION output_height;	/* scaled image height */ +  int out_color_components;	/* # of color components in out_color_space */ +  int output_components;	/* # of color components returned */ +  /* output_components is 1 (a colormap index) when quantizing colors; +   * otherwise it equals out_color_components. +   */ +  int rec_outbuf_height;	/* min recommended height of scanline buffer */ +  /* If the buffer passed to jpeg_read_scanlines() is less than this many rows +   * high, space and time will be wasted due to unnecessary data copying. +   * Usually rec_outbuf_height will be 1 or 2, at most 4. +   */ + +  /* When quantizing colors, the output colormap is described by these fields. +   * The application can supply a colormap by setting colormap non-NULL before +   * calling jpeg_start_decompress; otherwise a colormap is created during +   * jpeg_start_decompress or jpeg_start_output. +   * The map has out_color_components rows and actual_number_of_colors columns. +   */ +  int actual_number_of_colors;	/* number of entries in use */ +  JSAMPARRAY colormap;		/* The color map as a 2-D pixel array */ + +  /* State variables: these variables indicate the progress of decompression. +   * The application may examine these but must not modify them. +   */ + +  /* Row index of next scanline to be read from jpeg_read_scanlines(). +   * Application may use this to control its processing loop, e.g., +   * "while (output_scanline < output_height)". +   */ +  JDIMENSION output_scanline;	/* 0 .. output_height-1  */ + +  /* Current input scan number and number of iMCU rows completed in scan. +   * These indicate the progress of the decompressor input side. +   */ +  int input_scan_number;	/* Number of SOS markers seen so far */ +  JDIMENSION input_iMCU_row;	/* Number of iMCU rows completed */ + +  /* The "output scan number" is the notional scan being displayed by the +   * output side.  The decompressor will not allow output scan/row number +   * to get ahead of input scan/row, but it can fall arbitrarily far behind. +   */ +  int output_scan_number;	/* Nominal scan number being displayed */ +  JDIMENSION output_iMCU_row;	/* Number of iMCU rows read */ + +  /* Current progression status.  coef_bits[c][i] indicates the precision +   * with which component c's DCT coefficient i (in zigzag order) is known. +   * It is -1 when no data has yet been received, otherwise it is the point +   * transform (shift) value for the most recent scan of the coefficient +   * (thus, 0 at completion of the progression). +   * This pointer is NULL when reading a non-progressive file. +   */ +  int (*coef_bits)[DCTSIZE2];	/* -1 or current Al value for each coef */ + +  /* Internal JPEG parameters --- the application usually need not look at +   * these fields.  Note that the decompressor output side may not use +   * any parameters that can change between scans. +   */ + +  /* Quantization and Huffman tables are carried forward across input +   * datastreams when processing abbreviated JPEG datastreams. +   */ + +  JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; +  /* ptrs to coefficient quantization tables, or NULL if not defined */ + +  JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; +  JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; +  /* ptrs to Huffman coding tables, or NULL if not defined */ + +  /* These parameters are never carried across datastreams, since they +   * are given in SOF/SOS markers or defined to be reset by SOI. +   */ + +  int data_precision;		/* bits of precision in image data */ + +  jpeg_component_info * comp_info; +  /* comp_info[i] describes component that appears i'th in SOF */ + +  boolean progressive_mode;	/* TRUE if SOFn specifies progressive mode */ +  boolean arith_code;		/* TRUE=arithmetic coding, FALSE=Huffman */ + +  UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ +  UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ +  UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ + +  unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */ + +  /* These fields record data obtained from optional markers recognized by +   * the JPEG library. +   */ +  boolean saw_JFIF_marker;	/* TRUE iff a JFIF APP0 marker was found */ +  /* Data copied from JFIF marker: */ +  UINT8 density_unit;		/* JFIF code for pixel size units */ +  UINT16 X_density;		/* Horizontal pixel density */ +  UINT16 Y_density;		/* Vertical pixel density */ +  boolean saw_Adobe_marker;	/* TRUE iff an Adobe APP14 marker was found */ +  UINT8 Adobe_transform;	/* Color transform code from Adobe marker */ + +  boolean CCIR601_sampling;	/* TRUE=first samples are cosited */ + +  /* Remaining fields are known throughout decompressor, but generally +   * should not be touched by a surrounding application. +   */ + +  /* +   * These fields are computed during decompression startup +   */ +  int max_h_samp_factor;	/* largest h_samp_factor */ +  int max_v_samp_factor;	/* largest v_samp_factor */ + +  int min_DCT_scaled_size;	/* smallest DCT_scaled_size of any component */ + +  JDIMENSION total_iMCU_rows;	/* # of iMCU rows in image */ +  /* The coefficient controller's input and output progress is measured in +   * units of "iMCU" (interleaved MCU) rows.  These are the same as MCU rows +   * in fully interleaved JPEG scans, but are used whether the scan is +   * interleaved or not.  We define an iMCU row as v_samp_factor DCT block +   * rows of each component.  Therefore, the IDCT output contains +   * v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row. +   */ + +  JSAMPLE * sample_range_limit; /* table for fast range-limiting */ + +  /* +   * These fields are valid during any one scan. +   * They describe the components and MCUs actually appearing in the scan. +   * Note that the decompressor output side must not use these fields. +   */ +  int comps_in_scan;		/* # of JPEG components in this scan */ +  jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; +  /* *cur_comp_info[i] describes component that appears i'th in SOS */ + +  JDIMENSION MCUs_per_row;	/* # of MCUs across the image */ +  JDIMENSION MCU_rows_in_scan;	/* # of MCU rows in the image */ + +  int blocks_in_MCU;		/* # of DCT blocks per MCU */ +  int MCU_membership[D_MAX_BLOCKS_IN_MCU]; +  /* MCU_membership[i] is index in cur_comp_info of component owning */ +  /* i'th block in an MCU */ + +  int Ss, Se, Ah, Al;		/* progressive JPEG parameters for scan */ + +  /* This field is shared between entropy decoder and marker parser. +   * It is either zero or the code of a JPEG marker that has been +   * read from the data source, but has not yet been processed. +   */ +  int unread_marker; + +  /* +   * Links to decompression subobjects (methods, private variables of modules) +   */ +  struct jpeg_decomp_master * master; +  struct jpeg_d_main_controller * main; +  struct jpeg_d_coef_controller * coef; +  struct jpeg_d_post_controller * post; +  struct jpeg_input_controller * inputctl; +  struct jpeg_marker_reader * marker; +  struct jpeg_entropy_decoder * entropy; +  struct jpeg_inverse_dct * idct; +  struct jpeg_upsampler * upsample; +  struct jpeg_color_deconverter * cconvert; +  struct jpeg_color_quantizer * cquantize; +}; + + +/* "Object" declarations for JPEG modules that may be supplied or called + * directly by the surrounding application. + * As with all objects in the JPEG library, these structs only define the + * publicly visible methods and state variables of a module.  Additional + * private fields may exist after the public ones. + */ + + +/* Error handler object */ + +struct jpeg_error_mgr { +  /* Error exit handler: does not return to caller */ +  JMETHOD(void, error_exit, (j_common_ptr cinfo)); +  /* Conditionally emit a trace or warning message */ +  JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level)); +  /* Routine that actually outputs a trace or error message */ +  JMETHOD(void, output_message, (j_common_ptr cinfo)); +  /* Format a message string for the most recent JPEG error or message */ +  JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer)); +#define JMSG_LENGTH_MAX  200	/* recommended size of format_message buffer */ +  /* Reset error state variables at start of a new image */ +  JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo)); +   +  /* The message ID code and any parameters are saved here. +   * A message can have one string parameter or up to 8 int parameters. +   */ +  int msg_code; +#define JMSG_STR_PARM_MAX  80 +  union { +    int i[8]; +    char s[JMSG_STR_PARM_MAX]; +  } msg_parm; +   +  /* Standard state variables for error facility */ +   +  int trace_level;		/* max msg_level that will be displayed */ +   +  /* For recoverable corrupt-data errors, we emit a warning message, +   * but keep going unless emit_message chooses to abort.  emit_message +   * should count warnings in num_warnings.  The surrounding application +   * can check for bad data by seeing if num_warnings is nonzero at the +   * end of processing. +   */ +  long num_warnings;		/* number of corrupt-data warnings */ + +  /* These fields point to the table(s) of error message strings. +   * An application can change the table pointer to switch to a different +   * message list (typically, to change the language in which errors are +   * reported).  Some applications may wish to add additional error codes +   * that will be handled by the JPEG library error mechanism; the second +   * table pointer is used for this purpose. +   * +   * First table includes all errors generated by JPEG library itself. +   * Error code 0 is reserved for a "no such error string" message. +   */ +  const char * const * jpeg_message_table; /* Library errors */ +  int last_jpeg_message;    /* Table contains strings 0..last_jpeg_message */ +  /* Second table can be added by application (see cjpeg/djpeg for example). +   * It contains strings numbered first_addon_message..last_addon_message. +   */ +  const char * const * addon_message_table; /* Non-library errors */ +  int first_addon_message;	/* code for first string in addon table */ +  int last_addon_message;	/* code for last string in addon table */ +}; + + +/* Progress monitor object */ + +struct jpeg_progress_mgr { +  JMETHOD(void, progress_monitor, (j_common_ptr cinfo)); + +  long pass_counter;		/* work units completed in this pass */ +  long pass_limit;		/* total number of work units in this pass */ +  int completed_passes;		/* passes completed so far */ +  int total_passes;		/* total number of passes expected */ +}; + + +/* Data destination object for compression */ + +struct jpeg_destination_mgr { +  JOCTET * next_output_byte;	/* => next byte to write in buffer */ +  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ + +  JMETHOD(void, init_destination, (j_compress_ptr cinfo)); +  JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo)); +  JMETHOD(void, term_destination, (j_compress_ptr cinfo)); +}; + + +/* Data source object for decompression */ + +struct jpeg_source_mgr { +  const JOCTET * next_input_byte; /* => next byte to read from buffer */ +  size_t bytes_in_buffer;	/* # of bytes remaining in buffer */ + +  JMETHOD(void, init_source, (j_decompress_ptr cinfo)); +  JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo)); +  JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes)); +  JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired)); +  JMETHOD(void, term_source, (j_decompress_ptr cinfo)); +}; + + +/* Memory manager object. + * Allocates "small" objects (a few K total), "large" objects (tens of K), + * and "really big" objects (virtual arrays with backing store if needed). + * The memory manager does not allow individual objects to be freed; rather, + * each created object is assigned to a pool, and whole pools can be freed + * at once.  This is faster and more convenient than remembering exactly what + * to free, especially where malloc()/free() are not too speedy. + * NB: alloc routines never return NULL.  They exit to error_exit if not + * successful. + */ + +#define JPOOL_PERMANENT	0	/* lasts until master record is destroyed */ +#define JPOOL_IMAGE	1	/* lasts until done with image/datastream */ +#define JPOOL_NUMPOOLS	2 + +typedef struct jvirt_sarray_control * jvirt_sarray_ptr; +typedef struct jvirt_barray_control * jvirt_barray_ptr; + + +struct jpeg_memory_mgr { +  /* Method pointers */ +  JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id, +				size_t sizeofobject)); +  JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id, +				     size_t sizeofobject)); +  JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id, +				     JDIMENSION samplesperrow, +				     JDIMENSION numrows)); +  JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id, +				      JDIMENSION blocksperrow, +				      JDIMENSION numrows)); +  JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo, +						  int pool_id, +						  boolean pre_zero, +						  JDIMENSION samplesperrow, +						  JDIMENSION numrows, +						  JDIMENSION maxaccess)); +  JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo, +						  int pool_id, +						  boolean pre_zero, +						  JDIMENSION blocksperrow, +						  JDIMENSION numrows, +						  JDIMENSION maxaccess)); +  JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo)); +  JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo, +					   jvirt_sarray_ptr ptr, +					   JDIMENSION start_row, +					   JDIMENSION num_rows, +					   boolean writable)); +  JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo, +					    jvirt_barray_ptr ptr, +					    JDIMENSION start_row, +					    JDIMENSION num_rows, +					    boolean writable)); +  JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id)); +  JMETHOD(void, self_destruct, (j_common_ptr cinfo)); + +  /* Limit on memory allocation for this JPEG object.  (Note that this is +   * merely advisory, not a guaranteed maximum; it only affects the space +   * used for virtual-array buffers.)  May be changed by outer application +   * after creating the JPEG object. +   */ +  long max_memory_to_use; +}; + + +/* Routine signature for application-supplied marker processing methods. + * Need not pass marker code since it is stored in cinfo->unread_marker. + */ +typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo)); + + +/* Declarations for routines called by application. + * The JPP macro hides prototype parameters from compilers that can't cope. + * Note JPP requires double parentheses. + */ + +#ifdef HAVE_PROTOTYPES +#define JPP(arglist)	arglist +#else +#define JPP(arglist)	() +#endif + + +/* Short forms of external names for systems with brain-damaged linkers. + * We shorten external names to be unique in the first six letters, which + * is good enough for all known systems. + * (If your compiler itself needs names to be unique in less than 15  + * characters, you are out of luck.  Get a better compiler.) + */ + +#ifdef NEED_SHORT_EXTERNAL_NAMES +#define jpeg_std_error		jStdError +#define jpeg_create_compress	jCreaCompress +#define jpeg_create_decompress	jCreaDecompress +#define jpeg_destroy_compress	jDestCompress +#define jpeg_destroy_decompress	jDestDecompress +#define jpeg_stdio_dest		jStdDest +#define jpeg_stdio_src		jStdSrc +#define jpeg_set_defaults	jSetDefaults +#define jpeg_set_colorspace	jSetColorspace +#define jpeg_default_colorspace	jDefColorspace +#define jpeg_set_quality	jSetQuality +#define jpeg_set_linear_quality	jSetLQuality +#define jpeg_add_quant_table	jAddQuantTable +#define jpeg_quality_scaling	jQualityScaling +#define jpeg_simple_progression	jSimProgress +#define jpeg_suppress_tables	jSuppressTables +#define jpeg_alloc_quant_table	jAlcQTable +#define jpeg_alloc_huff_table	jAlcHTable +#define jpeg_start_compress	jStrtCompress +#define jpeg_write_scanlines	jWrtScanlines +#define jpeg_finish_compress	jFinCompress +#define jpeg_write_raw_data	jWrtRawData +#define jpeg_write_marker	jWrtMarker +#define jpeg_write_tables	jWrtTables +#define jpeg_read_header	jReadHeader +#define jpeg_start_decompress	jStrtDecompress +#define jpeg_read_scanlines	jReadScanlines +#define jpeg_finish_decompress	jFinDecompress +#define jpeg_read_raw_data	jReadRawData +#define jpeg_has_multiple_scans	jHasMultScn +#define jpeg_start_output	jStrtOutput +#define jpeg_finish_output	jFinOutput +#define jpeg_input_complete	jInComplete +#define jpeg_new_colormap	jNewCMap +#define jpeg_consume_input	jConsumeInput +#define jpeg_calc_output_dimensions	jCalcDimensions +#define jpeg_set_marker_processor	jSetMarker +#define jpeg_read_coefficients	jReadCoefs +#define jpeg_write_coefficients	jWrtCoefs +#define jpeg_copy_critical_parameters	jCopyCrit +#define jpeg_abort_compress	jAbrtCompress +#define jpeg_abort_decompress	jAbrtDecompress +#define jpeg_abort		jAbort +#define jpeg_destroy		jDestroy +#define jpeg_resync_to_restart	jResyncRestart +#endif /* NEED_SHORT_EXTERNAL_NAMES */ + + +/* Default error-management setup */ +EXTERN struct jpeg_error_mgr *jpeg_std_error JPP((struct jpeg_error_mgr *err)); + +/* Initialization and destruction of JPEG compression objects */ +/* NB: you must set up the error-manager BEFORE calling jpeg_create_xxx */ +EXTERN void jpeg_create_compress JPP((j_compress_ptr cinfo)); +EXTERN void jpeg_create_decompress JPP((j_decompress_ptr cinfo)); +EXTERN void jpeg_destroy_compress JPP((j_compress_ptr cinfo)); +EXTERN void jpeg_destroy_decompress JPP((j_decompress_ptr cinfo)); + +/* Standard data source and destination managers: stdio streams. */ +/* Caller is responsible for opening the file before and closing after. */ +EXTERN void jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile)); +EXTERN void jpeg_stdio_src JPP((j_decompress_ptr cinfo, unsigned char *infile)); + +/* Default parameter setup for compression */ +EXTERN void jpeg_set_defaults JPP((j_compress_ptr cinfo)); +/* Compression parameter setup aids */ +EXTERN void jpeg_set_colorspace JPP((j_compress_ptr cinfo, +				     J_COLOR_SPACE colorspace)); +EXTERN void jpeg_default_colorspace JPP((j_compress_ptr cinfo)); +EXTERN void jpeg_set_quality JPP((j_compress_ptr cinfo, int quality, +				  boolean force_baseline)); +EXTERN void jpeg_set_linear_quality JPP((j_compress_ptr cinfo, +					 int scale_factor, +					 boolean force_baseline)); +EXTERN void jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl, +				      const unsigned int *basic_table, +				      int scale_factor, +				      boolean force_baseline)); +EXTERN int jpeg_quality_scaling JPP((int quality)); +EXTERN void jpeg_simple_progression JPP((j_compress_ptr cinfo)); +EXTERN void jpeg_suppress_tables JPP((j_compress_ptr cinfo, +				      boolean suppress)); +EXTERN JQUANT_TBL * jpeg_alloc_quant_table JPP((j_common_ptr cinfo)); +EXTERN JHUFF_TBL * jpeg_alloc_huff_table JPP((j_common_ptr cinfo)); + +/* Main entry points for compression */ +EXTERN void jpeg_start_compress JPP((j_compress_ptr cinfo, +				     boolean write_all_tables)); +EXTERN JDIMENSION jpeg_write_scanlines JPP((j_compress_ptr cinfo, +					    JSAMPARRAY scanlines, +					    JDIMENSION num_lines)); +EXTERN void jpeg_finish_compress JPP((j_compress_ptr cinfo)); + +/* Replaces jpeg_write_scanlines when writing raw downsampled data. */ +EXTERN JDIMENSION jpeg_write_raw_data JPP((j_compress_ptr cinfo, +					   JSAMPIMAGE data, +					   JDIMENSION num_lines)); + +/* Write a special marker.  See libjpeg.doc concerning safe usage. */ +EXTERN void jpeg_write_marker JPP((j_compress_ptr cinfo, int marker, +				   const JOCTET *dataptr, unsigned int datalen)); + +/* Alternate compression function: just write an abbreviated table file */ +EXTERN void jpeg_write_tables JPP((j_compress_ptr cinfo)); + +/* Decompression startup: read start of JPEG datastream to see what's there */ +EXTERN int jpeg_read_header JPP((j_decompress_ptr cinfo, +				 boolean require_image)); +/* Return value is one of: */ +#define JPEG_SUSPENDED		0 /* Suspended due to lack of input data */ +#define JPEG_HEADER_OK		1 /* Found valid image datastream */ +#define JPEG_HEADER_TABLES_ONLY	2 /* Found valid table-specs-only datastream */ +/* If you pass require_image = TRUE (normal case), you need not check for + * a TABLES_ONLY return code; an abbreviated file will cause an error exit. + * JPEG_SUSPENDED is only possible if you use a data source module that can + * give a suspension return (the stdio source module doesn't). + */ + +/* Main entry points for decompression */ +EXTERN boolean jpeg_start_decompress JPP((j_decompress_ptr cinfo)); +EXTERN JDIMENSION jpeg_read_scanlines JPP((j_decompress_ptr cinfo, +					   JSAMPARRAY scanlines, +					   JDIMENSION max_lines)); +EXTERN boolean jpeg_finish_decompress JPP((j_decompress_ptr cinfo)); + +/* Replaces jpeg_read_scanlines when reading raw downsampled data. */ +EXTERN JDIMENSION jpeg_read_raw_data JPP((j_decompress_ptr cinfo, +					  JSAMPIMAGE data, +					  JDIMENSION max_lines)); + +/* Additional entry points for buffered-image mode. */ +EXTERN boolean jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo)); +EXTERN boolean jpeg_start_output JPP((j_decompress_ptr cinfo, +				      int scan_number)); +EXTERN boolean jpeg_finish_output JPP((j_decompress_ptr cinfo)); +EXTERN boolean jpeg_input_complete JPP((j_decompress_ptr cinfo)); +EXTERN void jpeg_new_colormap JPP((j_decompress_ptr cinfo)); +EXTERN int jpeg_consume_input JPP((j_decompress_ptr cinfo)); +/* Return value is one of: */ +/* #define JPEG_SUSPENDED	0    Suspended due to lack of input data */ +#define JPEG_REACHED_SOS	1 /* Reached start of new scan */ +#define JPEG_REACHED_EOI	2 /* Reached end of image */ +#define JPEG_ROW_COMPLETED	3 /* Completed one iMCU row */ +#define JPEG_SCAN_COMPLETED	4 /* Completed last iMCU row of a scan */ + +/* Precalculate output dimensions for current decompression parameters. */ +EXTERN void jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo)); + +/* Install a special processing method for COM or APPn markers. */ +EXTERN void jpeg_set_marker_processor JPP((j_decompress_ptr cinfo, +					   int marker_code, +					   jpeg_marker_parser_method routine)); + +/* Read or write raw DCT coefficients --- useful for lossless transcoding. */ +EXTERN jvirt_barray_ptr * jpeg_read_coefficients JPP((j_decompress_ptr cinfo)); +EXTERN void jpeg_write_coefficients JPP((j_compress_ptr cinfo, +					 jvirt_barray_ptr * coef_arrays)); +EXTERN void jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo, +					       j_compress_ptr dstinfo)); + +/* If you choose to abort compression or decompression before completing + * jpeg_finish_(de)compress, then you need to clean up to release memory, + * temporary files, etc.  You can just call jpeg_destroy_(de)compress + * if you're done with the JPEG object, but if you want to clean it up and + * reuse it, call this: + */ +EXTERN void jpeg_abort_compress JPP((j_compress_ptr cinfo)); +EXTERN void jpeg_abort_decompress JPP((j_decompress_ptr cinfo)); + +/* Generic versions of jpeg_abort and jpeg_destroy that work on either + * flavor of JPEG object.  These may be more convenient in some places. + */ +EXTERN void jpeg_abort JPP((j_common_ptr cinfo)); +EXTERN void jpeg_destroy JPP((j_common_ptr cinfo)); + +/* Default restart-marker-resync procedure for use by data source modules */ +EXTERN boolean jpeg_resync_to_restart JPP((j_decompress_ptr cinfo, +					   int desired)); + + +/* These marker codes are exported since applications and data source modules + * are likely to want to use them. + */ + +#define JPEG_RST0	0xD0	/* RST0 marker code */ +#define JPEG_EOI	0xD9	/* EOI marker code */ +#define JPEG_APP0	0xE0	/* APP0 marker code */ +#define JPEG_COM	0xFE	/* COM marker code */ + + +/* If we have a brain-damaged compiler that emits warnings (or worse, errors) + * for structure definitions that are never filled in, keep it quiet by + * supplying dummy definitions for the various substructures. + */ + +#ifdef INCOMPLETE_TYPES_BROKEN +#ifndef JPEG_INTERNALS		/* will be defined in jpegint.h */ +struct jvirt_sarray_control { long dummy; }; +struct jvirt_barray_control { long dummy; }; +struct jpeg_comp_master { long dummy; }; +struct jpeg_c_main_controller { long dummy; }; +struct jpeg_c_prep_controller { long dummy; }; +struct jpeg_c_coef_controller { long dummy; }; +struct jpeg_marker_writer { long dummy; }; +struct jpeg_color_converter { long dummy; }; +struct jpeg_downsampler { long dummy; }; +struct jpeg_forward_dct { long dummy; }; +struct jpeg_entropy_encoder { long dummy; }; +struct jpeg_decomp_master { long dummy; }; +struct jpeg_d_main_controller { long dummy; }; +struct jpeg_d_coef_controller { long dummy; }; +struct jpeg_d_post_controller { long dummy; }; +struct jpeg_input_controller { long dummy; }; +struct jpeg_marker_reader { long dummy; }; +struct jpeg_entropy_decoder { long dummy; }; +struct jpeg_inverse_dct { long dummy; }; +struct jpeg_upsampler { long dummy; }; +struct jpeg_color_deconverter { long dummy; }; +struct jpeg_color_quantizer { long dummy; }; +#endif /* JPEG_INTERNALS */ +#endif /* INCOMPLETE_TYPES_BROKEN */ + + +/* + * The JPEG library modules define JPEG_INTERNALS before including this file. + * The internal structure declarations are read only when that is true. + * Applications using the library should not include jpegint.h, but may wish + * to include jerror.h. + */ + +#ifdef JPEG_INTERNALS +#include "../jpeg-6/jpegint.h"		/* fetch private declarations */ +#include "../jpeg-6/jerror.h"		/* fetch error codes too */ +#endif + +#endif /* JPEGLIB_H */ diff --git a/src/jpeg-6/jpegtran.c b/src/jpeg-6/jpegtran.c new file mode 100644 index 00000000..f602c6b9 --- /dev/null +++ b/src/jpeg-6/jpegtran.c @@ -0,0 +1,370 @@ +/* + * jpegtran.c + * + * Copyright (C) 1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a command-line user interface for JPEG transcoding. + * It is very similar to cjpeg.c, but provides lossless transcoding between + * different JPEG file formats. + */ + +#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */ +#include "jversion.h"		/* for version message */ + +#ifdef USE_CCOMMAND		/* command-line reader for Macintosh */ +#ifdef __MWERKS__ +#include <SIOUX.h>              /* Metrowerks declares it here */ +#endif +#ifdef THINK_C +#include <console.h>		/* Think declares it here */ +#endif +#endif + + +/* + * Argument-parsing code. + * The switch parser is designed to be useful with DOS-style command line + * syntax, ie, intermixed switches and file names, where only the switches + * to the left of a given file name affect processing of that file. + * The main program in this file doesn't actually use this capability... + */ + + +static const char * progname;	/* program name for error messages */ +static char * outfilename;	/* for -outfile switch */ + + +LOCAL void +usage (void) +/* complain about bad command line */ +{ +  fprintf(stderr, "usage: %s [switches] ", progname); +#ifdef TWO_FILE_COMMANDLINE +  fprintf(stderr, "inputfile outputfile\n"); +#else +  fprintf(stderr, "[inputfile]\n"); +#endif + +  fprintf(stderr, "Switches (names may be abbreviated):\n"); +#ifdef ENTROPY_OPT_SUPPORTED +  fprintf(stderr, "  -optimize      Optimize Huffman table (smaller file, but slow compression)\n"); +#endif +#ifdef C_PROGRESSIVE_SUPPORTED +  fprintf(stderr, "  -progressive   Create progressive JPEG file\n"); +#endif +  fprintf(stderr, "Switches for advanced users:\n"); +  fprintf(stderr, "  -restart N     Set restart interval in rows, or in blocks with B\n"); +  fprintf(stderr, "  -maxmemory N   Maximum memory to use (in kbytes)\n"); +  fprintf(stderr, "  -outfile name  Specify name for output file\n"); +  fprintf(stderr, "  -verbose  or  -debug   Emit debug output\n"); +  fprintf(stderr, "Switches for wizards:\n"); +#ifdef C_ARITH_CODING_SUPPORTED +  fprintf(stderr, "  -arithmetic    Use arithmetic coding\n"); +#endif +#ifdef C_MULTISCAN_FILES_SUPPORTED +  fprintf(stderr, "  -scans file    Create multi-scan JPEG per script file\n"); +#endif +  exit(EXIT_FAILURE); +} + + +LOCAL int +parse_switches (j_compress_ptr cinfo, int argc, char **argv, +		int last_file_arg_seen, boolean for_real) +/* Parse optional switches. + * Returns argv[] index of first file-name argument (== argc if none). + * Any file names with indexes <= last_file_arg_seen are ignored; + * they have presumably been processed in a previous iteration. + * (Pass 0 for last_file_arg_seen on the first or only iteration.) + * for_real is FALSE on the first (dummy) pass; we may skip any expensive + * processing. + */ +{ +  int argn; +  char * arg; +  boolean simple_progressive; +  char * scansarg = NULL;	/* saves -scans parm if any */ + +  /* Set up default JPEG parameters. */ +  simple_progressive = FALSE; +  outfilename = NULL; +  cinfo->err->trace_level = 0; + +  /* Scan command line options, adjust parameters */ + +  for (argn = 1; argn < argc; argn++) { +    arg = argv[argn]; +    if (*arg != '-') { +      /* Not a switch, must be a file name argument */ +      if (argn <= last_file_arg_seen) { +	outfilename = NULL;	/* -outfile applies to just one input file */ +	continue;		/* ignore this name if previously processed */ +      } +      break;			/* else done parsing switches */ +    } +    arg++;			/* advance past switch marker character */ + +    if (keymatch(arg, "arithmetic", 1)) { +      /* Use arithmetic coding. */ +#ifdef C_ARITH_CODING_SUPPORTED +      cinfo->arith_code = TRUE; +#else +      fprintf(stderr, "%s: sorry, arithmetic coding not supported\n", +	      progname); +      exit(EXIT_FAILURE); +#endif + +    } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { +      /* Enable debug printouts. */ +      /* On first -d, print version identification */ +      static boolean printed_version = FALSE; + +      if (! printed_version) { +	fprintf(stderr, "Independent JPEG Group's JPEGTRAN, version %s\n%s\n", +		JVERSION, JCOPYRIGHT); +	printed_version = TRUE; +      } +      cinfo->err->trace_level++; + +    } else if (keymatch(arg, "maxmemory", 3)) { +      /* Maximum memory in Kb (or Mb with 'm'). */ +      long lval; +      char ch = 'x'; + +      if (++argn >= argc)	/* advance to next argument */ +	usage(); +      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) +	usage(); +      if (ch == 'm' || ch == 'M') +	lval *= 1000L; +      cinfo->mem->max_memory_to_use = lval * 1000L; + +    } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) { +      /* Enable entropy parm optimization. */ +#ifdef ENTROPY_OPT_SUPPORTED +      cinfo->optimize_coding = TRUE; +#else +      fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n", +	      progname); +      exit(EXIT_FAILURE); +#endif + +    } else if (keymatch(arg, "outfile", 4)) { +      /* Set output file name. */ +      if (++argn >= argc)	/* advance to next argument */ +	usage(); +      outfilename = argv[argn];	/* save it away for later use */ + +    } else if (keymatch(arg, "progressive", 1)) { +      /* Select simple progressive mode. */ +#ifdef C_PROGRESSIVE_SUPPORTED +      simple_progressive = TRUE; +      /* We must postpone execution until num_components is known. */ +#else +      fprintf(stderr, "%s: sorry, progressive output was not compiled\n", +	      progname); +      exit(EXIT_FAILURE); +#endif + +    } else if (keymatch(arg, "restart", 1)) { +      /* Restart interval in MCU rows (or in MCUs with 'b'). */ +      long lval; +      char ch = 'x'; + +      if (++argn >= argc)	/* advance to next argument */ +	usage(); +      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) +	usage(); +      if (lval < 0 || lval > 65535L) +	usage(); +      if (ch == 'b' || ch == 'B') { +	cinfo->restart_interval = (unsigned int) lval; +	cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */ +      } else { +	cinfo->restart_in_rows = (int) lval; +	/* restart_interval will be computed during startup */ +      } + +    } else if (keymatch(arg, "scans", 2)) { +      /* Set scan script. */ +#ifdef C_MULTISCAN_FILES_SUPPORTED +      if (++argn >= argc)	/* advance to next argument */ +	usage(); +      scansarg = argv[argn]; +      /* We must postpone reading the file in case -progressive appears. */ +#else +      fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n", +	      progname); +      exit(EXIT_FAILURE); +#endif + +    } else { +      usage();			/* bogus switch */ +    } +  } + +  /* Post-switch-scanning cleanup */ + +  if (for_real) { + +#ifdef C_PROGRESSIVE_SUPPORTED +    if (simple_progressive)	/* process -progressive; -scans can override */ +      jpeg_simple_progression(cinfo); +#endif + +#ifdef C_MULTISCAN_FILES_SUPPORTED +    if (scansarg != NULL)	/* process -scans if it was present */ +      if (! read_scan_script(cinfo, scansarg)) +	usage(); +#endif +  } + +  return argn;			/* return index of next arg (file name) */ +} + + +/* + * The main program. + */ + +GLOBAL int +main (int argc, char **argv) +{ +  struct jpeg_decompress_struct srcinfo; +  struct jpeg_compress_struct dstinfo; +  struct jpeg_error_mgr jsrcerr, jdsterr; +#ifdef PROGRESS_REPORT +  struct cdjpeg_progress_mgr progress; +#endif +  jvirt_barray_ptr * coef_arrays; +  int file_index; +  FILE * input_file; +  FILE * output_file; + +  /* On Mac, fetch a command line. */ +#ifdef USE_CCOMMAND +  argc = ccommand(&argv); +#endif + +  progname = argv[0]; +  if (progname == NULL || progname[0] == 0) +    progname = "jpegtran";	/* in case C library doesn't provide it */ + +  /* Initialize the JPEG decompression object with default error handling. */ +  srcinfo.err = jpeg_std_error(&jsrcerr); +  jpeg_create_decompress(&srcinfo); +  /* Initialize the JPEG compression object with default error handling. */ +  dstinfo.err = jpeg_std_error(&jdsterr); +  jpeg_create_compress(&dstinfo); + +  /* Now safe to enable signal catcher. +   * Note: we assume only the decompression object will have virtual arrays. +   */ +#ifdef NEED_SIGNAL_CATCHER +  enable_signal_catcher((j_common_ptr) &srcinfo); +#endif + +  /* Scan command line to find file names. +   * It is convenient to use just one switch-parsing routine, but the switch +   * values read here are ignored; we will rescan the switches after opening +   * the input file. +   */ + +  file_index = parse_switches(&dstinfo, argc, argv, 0, FALSE); +  jsrcerr.trace_level = jdsterr.trace_level; + +#ifdef TWO_FILE_COMMANDLINE +  /* Must have either -outfile switch or explicit output file name */ +  if (outfilename == NULL) { +    if (file_index != argc-2) { +      fprintf(stderr, "%s: must name one input and one output file\n", +	      progname); +      usage(); +    } +    outfilename = argv[file_index+1]; +  } else { +    if (file_index != argc-1) { +      fprintf(stderr, "%s: must name one input and one output file\n", +	      progname); +      usage(); +    } +  } +#else +  /* Unix style: expect zero or one file name */ +  if (file_index < argc-1) { +    fprintf(stderr, "%s: only one input file\n", progname); +    usage(); +  } +#endif /* TWO_FILE_COMMANDLINE */ + +  /* Open the input file. */ +  if (file_index < argc) { +    if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) { +      fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]); +      exit(EXIT_FAILURE); +    } +  } else { +    /* default input file is stdin */ +    input_file = read_stdin(); +  } + +  /* Open the output file. */ +  if (outfilename != NULL) { +    if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) { +      fprintf(stderr, "%s: can't open %s\n", progname, outfilename); +      exit(EXIT_FAILURE); +    } +  } else { +    /* default output file is stdout */ +    output_file = write_stdout(); +  } + +#ifdef PROGRESS_REPORT +  start_progress_monitor((j_common_ptr) &dstinfo, &progress); +#endif + +  /* Specify data source for decompression */ +  jpeg_stdio_src(&srcinfo, input_file); + +  /* Read file header */ +  (void) jpeg_read_header(&srcinfo, TRUE); + +  /* Read source file as DCT coefficients */ +  coef_arrays = jpeg_read_coefficients(&srcinfo); + +  /* Initialize destination compression parameters from source values */ +  jpeg_copy_critical_parameters(&srcinfo, &dstinfo); + +  /* Adjust default compression parameters by re-parsing the options */ +  file_index = parse_switches(&dstinfo, argc, argv, 0, TRUE); + +  /* Specify data destination for compression */ +  jpeg_stdio_dest(&dstinfo, output_file); + +  /* Start compressor */ +  jpeg_write_coefficients(&dstinfo, coef_arrays); + +  /* ought to copy source comments here... */ + +  /* Finish compression and release memory */ +  jpeg_finish_compress(&dstinfo); +  jpeg_destroy_compress(&dstinfo); +  (void) jpeg_finish_decompress(&srcinfo); +  jpeg_destroy_decompress(&srcinfo); + +  /* Close files, if we opened them */ +  if (input_file != stdin) +    fclose(input_file); +  if (output_file != stdout) +    fclose(output_file); + +#ifdef PROGRESS_REPORT +  end_progress_monitor((j_common_ptr) &dstinfo); +#endif + +  /* All done. */ +  exit(jsrcerr.num_warnings + jdsterr.num_warnings ?EXIT_WARNING:EXIT_SUCCESS); +  return 0;			/* suppress no-return-value warnings */ +} diff --git a/src/jpeg-6/jquant1.c b/src/jpeg-6/jquant1.c new file mode 100644 index 00000000..035e79a8 --- /dev/null +++ b/src/jpeg-6/jquant1.c @@ -0,0 +1,856 @@ +/* + * jquant1.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains 1-pass color quantization (color mapping) routines. + * These routines provide mapping to a fixed color map using equally spaced + * color values.  Optional Floyd-Steinberg or ordered dithering is available. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + +#ifdef QUANT_1PASS_SUPPORTED + + +/* + * The main purpose of 1-pass quantization is to provide a fast, if not very + * high quality, colormapped output capability.  A 2-pass quantizer usually + * gives better visual quality; however, for quantized grayscale output this + * quantizer is perfectly adequate.  Dithering is highly recommended with this + * quantizer, though you can turn it off if you really want to. + * + * In 1-pass quantization the colormap must be chosen in advance of seeing the + * image.  We use a map consisting of all combinations of Ncolors[i] color + * values for the i'th component.  The Ncolors[] values are chosen so that + * their product, the total number of colors, is no more than that requested. + * (In most cases, the product will be somewhat less.) + * + * Since the colormap is orthogonal, the representative value for each color + * component can be determined without considering the other components; + * then these indexes can be combined into a colormap index by a standard + * N-dimensional-array-subscript calculation.  Most of the arithmetic involved + * can be precalculated and stored in the lookup table colorindex[]. + * colorindex[i][j] maps pixel value j in component i to the nearest + * representative value (grid plane) for that component; this index is + * multiplied by the array stride for component i, so that the + * index of the colormap entry closest to a given pixel value is just + *    sum( colorindex[component-number][pixel-component-value] ) + * Aside from being fast, this scheme allows for variable spacing between + * representative values with no additional lookup cost. + * + * If gamma correction has been applied in color conversion, it might be wise + * to adjust the color grid spacing so that the representative colors are + * equidistant in linear space.  At this writing, gamma correction is not + * implemented by jdcolor, so nothing is done here. + */ + + +/* Declarations for ordered dithering. + * + * We use a standard 16x16 ordered dither array.  The basic concept of ordered + * dithering is described in many references, for instance Dale Schumacher's + * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). + * In place of Schumacher's comparisons against a "threshold" value, we add a + * "dither" value to the input pixel and then round the result to the nearest + * output value.  The dither value is equivalent to (0.5 - threshold) times + * the distance between output values.  For ordered dithering, we assume that + * the output colors are equally spaced; if not, results will probably be + * worse, since the dither may be too much or too little at a given point. + * + * The normal calculation would be to form pixel value + dither, range-limit + * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. + * We can skip the separate range-limiting step by extending the colorindex + * table in both directions. + */ + +#define ODITHER_SIZE  16	/* dimension of dither matrix */ +/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ +#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */ +#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */ + +typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; +typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; + +static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { +  /* Bayer's order-4 dither array.  Generated by the code given in +   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. +   * The values in this array must range from 0 to ODITHER_CELLS-1. +   */ +  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 }, +  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, +  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, +  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, +  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 }, +  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, +  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, +  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, +  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 }, +  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, +  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, +  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, +  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 }, +  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, +  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, +  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } +}; + + +/* Declarations for Floyd-Steinberg dithering. + * + * Errors are accumulated into the array fserrors[], at a resolution of + * 1/16th of a pixel count.  The error at a given pixel is propagated + * to its not-yet-processed neighbors using the standard F-S fractions, + *		...	(here)	7/16 + *		3/16	5/16	1/16 + * We work left-to-right on even rows, right-to-left on odd rows. + * + * We can get away with a single array (holding one row's worth of errors) + * by using it to store the current row's errors at pixel columns not yet + * processed, but the next row's errors at columns already processed.  We + * need only a few extra variables to hold the errors immediately around the + * current column.  (If we are lucky, those variables are in registers, but + * even if not, they're probably cheaper to access than array elements are.) + * + * The fserrors[] array is indexed [component#][position]. + * We provide (#columns + 2) entries per component; the extra entry at each + * end saves us from special-casing the first and last pixels. + * + * Note: on a wide image, we might not have enough room in a PC's near data + * segment to hold the error array; so it is allocated with alloc_large. + */ + +#if BITS_IN_JSAMPLE == 8 +typedef INT16 FSERROR;		/* 16 bits should be enough */ +typedef int LOCFSERROR;		/* use 'int' for calculation temps */ +#else +typedef INT32 FSERROR;		/* may need more than 16 bits */ +typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ +#endif + +typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ + + +/* Private subobject */ + +#define MAX_Q_COMPS 4		/* max components I can handle */ + +typedef struct { +  struct jpeg_color_quantizer pub; /* public fields */ + +  /* Initially allocated colormap is saved here */ +  JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */ +  int sv_actual;		/* number of entries in use */ + +  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */ +  /* colorindex[i][j] = index of color closest to pixel value j in component i, +   * premultiplied as described above.  Since colormap indexes must fit into +   * JSAMPLEs, the entries of this array will too. +   */ +  boolean is_padded;		/* is the colorindex padded for odither? */ + +  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */ + +  /* Variables for ordered dithering */ +  int row_index;		/* cur row's vertical index in dither matrix */ +  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ + +  /* Variables for Floyd-Steinberg dithering */ +  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ +  boolean on_odd_row;		/* flag to remember which row we are on */ +} my_cquantizer; + +typedef my_cquantizer * my_cquantize_ptr; + + +/* + * Policy-making subroutines for create_colormap and create_colorindex. + * These routines determine the colormap to be used.  The rest of the module + * only assumes that the colormap is orthogonal. + * + *  * select_ncolors decides how to divvy up the available colors + *    among the components. + *  * output_value defines the set of representative values for a component. + *  * largest_input_value defines the mapping from input values to + *    representative values for a component. + * Note that the latter two routines may impose different policies for + * different components, though this is not currently done. + */ + + +LOCAL int +select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) +/* Determine allocation of desired colors to components, */ +/* and fill in Ncolors[] array to indicate choice. */ +/* Return value is total number of colors (product of Ncolors[] values). */ +{ +  int nc = cinfo->out_color_components; /* number of color components */ +  int max_colors = cinfo->desired_number_of_colors; +  int total_colors, iroot, i, j; +  boolean changed; +  long temp; +  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; + +  /* We can allocate at least the nc'th root of max_colors per component. */ +  /* Compute floor(nc'th root of max_colors). */ +  iroot = 1; +  do { +    iroot++; +    temp = iroot;		/* set temp = iroot ** nc */ +    for (i = 1; i < nc; i++) +      temp *= iroot; +  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ +  iroot--;			/* now iroot = floor(root) */ + +  /* Must have at least 2 color values per component */ +  if (iroot < 2) +    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); + +  /* Initialize to iroot color values for each component */ +  total_colors = 1; +  for (i = 0; i < nc; i++) { +    Ncolors[i] = iroot; +    total_colors *= iroot; +  } +  /* We may be able to increment the count for one or more components without +   * exceeding max_colors, though we know not all can be incremented. +   * Sometimes, the first component can be incremented more than once! +   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) +   * In RGB colorspace, try to increment G first, then R, then B. +   */ +  do { +    changed = FALSE; +    for (i = 0; i < nc; i++) { +      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); +      /* calculate new total_colors if Ncolors[j] is incremented */ +      temp = total_colors / Ncolors[j]; +      temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */ +      if (temp > (long) max_colors) +	break;			/* won't fit, done with this pass */ +      Ncolors[j]++;		/* OK, apply the increment */ +      total_colors = (int) temp; +      changed = TRUE; +    } +  } while (changed); + +  return total_colors; +} + + +LOCAL int +output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) +/* Return j'th output value, where j will range from 0 to maxj */ +/* The output values must fall in 0..MAXJSAMPLE in increasing order */ +{ +  /* We always provide values 0 and MAXJSAMPLE for each component; +   * any additional values are equally spaced between these limits. +   * (Forcing the upper and lower values to the limits ensures that +   * dithering can't produce a color outside the selected gamut.) +   */ +  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); +} + + +LOCAL int +largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) +/* Return largest input value that should map to j'th output value */ +/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ +{ +  /* Breakpoints are halfway between values returned by output_value */ +  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); +} + + +/* + * Create the colormap. + */ + +LOCAL void +create_colormap (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  JSAMPARRAY colormap;		/* Created colormap */ +  int total_colors;		/* Number of distinct output colors */ +  int i,j,k, nci, blksize, blkdist, ptr, val; + +  /* Select number of colors for each component */ +  total_colors = select_ncolors(cinfo, cquantize->Ncolors); + +  /* Report selected color counts */ +  if (cinfo->out_color_components == 3) +    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, +	     total_colors, cquantize->Ncolors[0], +	     cquantize->Ncolors[1], cquantize->Ncolors[2]); +  else +    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); + +  /* Allocate and fill in the colormap. */ +  /* The colors are ordered in the map in standard row-major order, */ +  /* i.e. rightmost (highest-indexed) color changes most rapidly. */ + +  colormap = (*cinfo->mem->alloc_sarray) +    ((j_common_ptr) cinfo, JPOOL_IMAGE, +     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); + +  /* blksize is number of adjacent repeated entries for a component */ +  /* blkdist is distance between groups of identical entries for a component */ +  blkdist = total_colors; + +  for (i = 0; i < cinfo->out_color_components; i++) { +    /* fill in colormap entries for i'th color component */ +    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ +    blksize = blkdist / nci; +    for (j = 0; j < nci; j++) { +      /* Compute j'th output value (out of nci) for component */ +      val = output_value(cinfo, i, j, nci-1); +      /* Fill in all colormap entries that have this value of this component */ +      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { +	/* fill in blksize entries beginning at ptr */ +	for (k = 0; k < blksize; k++) +	  colormap[i][ptr+k] = (JSAMPLE) val; +      } +    } +    blkdist = blksize;		/* blksize of this color is blkdist of next */ +  } + +  /* Save the colormap in private storage, +   * where it will survive color quantization mode changes. +   */ +  cquantize->sv_colormap = colormap; +  cquantize->sv_actual = total_colors; +} + + +/* + * Create the color index table. + */ + +LOCAL void +create_colorindex (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  JSAMPROW indexptr; +  int i,j,k, nci, blksize, val, pad; + +  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in +   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). +   * This is not necessary in the other dithering modes.  However, we +   * flag whether it was done in case user changes dithering mode. +   */ +  if (cinfo->dither_mode == JDITHER_ORDERED) { +    pad = MAXJSAMPLE*2; +    cquantize->is_padded = TRUE; +  } else { +    pad = 0; +    cquantize->is_padded = FALSE; +  } + +  cquantize->colorindex = (*cinfo->mem->alloc_sarray) +    ((j_common_ptr) cinfo, JPOOL_IMAGE, +     (JDIMENSION) (MAXJSAMPLE+1 + pad), +     (JDIMENSION) cinfo->out_color_components); + +  /* blksize is number of adjacent repeated entries for a component */ +  blksize = cquantize->sv_actual; + +  for (i = 0; i < cinfo->out_color_components; i++) { +    /* fill in colorindex entries for i'th color component */ +    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ +    blksize = blksize / nci; + +    /* adjust colorindex pointers to provide padding at negative indexes. */ +    if (pad) +      cquantize->colorindex[i] += MAXJSAMPLE; + +    /* in loop, val = index of current output value, */ +    /* and k = largest j that maps to current val */ +    indexptr = cquantize->colorindex[i]; +    val = 0; +    k = largest_input_value(cinfo, i, 0, nci-1); +    for (j = 0; j <= MAXJSAMPLE; j++) { +      while (j > k)		/* advance val if past boundary */ +	k = largest_input_value(cinfo, i, ++val, nci-1); +      /* premultiply so that no multiplication needed in main processing */ +      indexptr[j] = (JSAMPLE) (val * blksize); +    } +    /* Pad at both ends if necessary */ +    if (pad) +      for (j = 1; j <= MAXJSAMPLE; j++) { +	indexptr[-j] = indexptr[0]; +	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; +      } +  } +} + + +/* + * Create an ordered-dither array for a component having ncolors + * distinct output values. + */ + +LOCAL ODITHER_MATRIX_PTR +make_odither_array (j_decompress_ptr cinfo, int ncolors) +{ +  ODITHER_MATRIX_PTR odither; +  int j,k; +  INT32 num,den; + +  odither = (ODITHER_MATRIX_PTR) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(ODITHER_MATRIX)); +  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). +   * Hence the dither value for the matrix cell with fill order f +   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). +   * On 16-bit-int machine, be careful to avoid overflow. +   */ +  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); +  for (j = 0; j < ODITHER_SIZE; j++) { +    for (k = 0; k < ODITHER_SIZE; k++) { +      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) +	    * MAXJSAMPLE; +      /* Ensure round towards zero despite C's lack of consistency +       * about rounding negative values in integer division... +       */ +      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); +    } +  } +  return odither; +} + + +/* + * Create the ordered-dither tables. + * Components having the same number of representative colors may  + * share a dither table. + */ + +LOCAL void +create_odither_tables (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  ODITHER_MATRIX_PTR odither; +  int i, j, nci; + +  for (i = 0; i < cinfo->out_color_components; i++) { +    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ +    odither = NULL;		/* search for matching prior component */ +    for (j = 0; j < i; j++) { +      if (nci == cquantize->Ncolors[j]) { +	odither = cquantize->odither[j]; +	break; +      } +    } +    if (odither == NULL)	/* need a new table? */ +      odither = make_odither_array(cinfo, nci); +    cquantize->odither[i] = odither; +  } +} + + +/* + * Map some rows of pixels to the output colormapped representation. + */ + +METHODDEF void +color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, +		JSAMPARRAY output_buf, int num_rows) +/* General case, no dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  JSAMPARRAY colorindex = cquantize->colorindex; +  register int pixcode, ci; +  register JSAMPROW ptrin, ptrout; +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; +  register int nc = cinfo->out_color_components; + +  for (row = 0; row < num_rows; row++) { +    ptrin = input_buf[row]; +    ptrout = output_buf[row]; +    for (col = width; col > 0; col--) { +      pixcode = 0; +      for (ci = 0; ci < nc; ci++) { +	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); +      } +      *ptrout++ = (JSAMPLE) pixcode; +    } +  } +} + + +METHODDEF void +color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, +		 JSAMPARRAY output_buf, int num_rows) +/* Fast path for out_color_components==3, no dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  register int pixcode; +  register JSAMPROW ptrin, ptrout; +  JSAMPROW colorindex0 = cquantize->colorindex[0]; +  JSAMPROW colorindex1 = cquantize->colorindex[1]; +  JSAMPROW colorindex2 = cquantize->colorindex[2]; +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; + +  for (row = 0; row < num_rows; row++) { +    ptrin = input_buf[row]; +    ptrout = output_buf[row]; +    for (col = width; col > 0; col--) { +      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); +      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); +      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); +      *ptrout++ = (JSAMPLE) pixcode; +    } +  } +} + + +METHODDEF void +quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, +		     JSAMPARRAY output_buf, int num_rows) +/* General case, with ordered dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  register JSAMPROW input_ptr; +  register JSAMPROW output_ptr; +  JSAMPROW colorindex_ci; +  int * dither;			/* points to active row of dither matrix */ +  int row_index, col_index;	/* current indexes into dither matrix */ +  int nc = cinfo->out_color_components; +  int ci; +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; + +  for (row = 0; row < num_rows; row++) { +    /* Initialize output values to 0 so can process components separately */ +    jzero_far((void FAR *) output_buf[row], +	      (size_t) (width * SIZEOF(JSAMPLE))); +    row_index = cquantize->row_index; +    for (ci = 0; ci < nc; ci++) { +      input_ptr = input_buf[row] + ci; +      output_ptr = output_buf[row]; +      colorindex_ci = cquantize->colorindex[ci]; +      dither = cquantize->odither[ci][row_index]; +      col_index = 0; + +      for (col = width; col > 0; col--) { +	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, +	 * select output value, accumulate into output code for this pixel. +	 * Range-limiting need not be done explicitly, as we have extended +	 * the colorindex table to produce the right answers for out-of-range +	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the +	 * required amount of padding. +	 */ +	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; +	input_ptr += nc; +	output_ptr++; +	col_index = (col_index + 1) & ODITHER_MASK; +      } +    } +    /* Advance row index for next row */ +    row_index = (row_index + 1) & ODITHER_MASK; +    cquantize->row_index = row_index; +  } +} + + +METHODDEF void +quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, +		      JSAMPARRAY output_buf, int num_rows) +/* Fast path for out_color_components==3, with ordered dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  register int pixcode; +  register JSAMPROW input_ptr; +  register JSAMPROW output_ptr; +  JSAMPROW colorindex0 = cquantize->colorindex[0]; +  JSAMPROW colorindex1 = cquantize->colorindex[1]; +  JSAMPROW colorindex2 = cquantize->colorindex[2]; +  int * dither0;		/* points to active row of dither matrix */ +  int * dither1; +  int * dither2; +  int row_index, col_index;	/* current indexes into dither matrix */ +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; + +  for (row = 0; row < num_rows; row++) { +    row_index = cquantize->row_index; +    input_ptr = input_buf[row]; +    output_ptr = output_buf[row]; +    dither0 = cquantize->odither[0][row_index]; +    dither1 = cquantize->odither[1][row_index]; +    dither2 = cquantize->odither[2][row_index]; +    col_index = 0; + +    for (col = width; col > 0; col--) { +      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + +					dither0[col_index]]); +      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + +					dither1[col_index]]); +      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + +					dither2[col_index]]); +      *output_ptr++ = (JSAMPLE) pixcode; +      col_index = (col_index + 1) & ODITHER_MASK; +    } +    row_index = (row_index + 1) & ODITHER_MASK; +    cquantize->row_index = row_index; +  } +} + + +METHODDEF void +quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, +		    JSAMPARRAY output_buf, int num_rows) +/* General case, with Floyd-Steinberg dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  register LOCFSERROR cur;	/* current error or pixel value */ +  LOCFSERROR belowerr;		/* error for pixel below cur */ +  LOCFSERROR bpreverr;		/* error for below/prev col */ +  LOCFSERROR bnexterr;		/* error for below/next col */ +  LOCFSERROR delta; +  register FSERRPTR errorptr;	/* => fserrors[] at column before current */ +  register JSAMPROW input_ptr; +  register JSAMPROW output_ptr; +  JSAMPROW colorindex_ci; +  JSAMPROW colormap_ci; +  int pixcode; +  int nc = cinfo->out_color_components; +  int dir;			/* 1 for left-to-right, -1 for right-to-left */ +  int dirnc;			/* dir * nc */ +  int ci; +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; +  JSAMPLE *range_limit = cinfo->sample_range_limit; +  SHIFT_TEMPS + +  for (row = 0; row < num_rows; row++) { +    /* Initialize output values to 0 so can process components separately */ +    jzero_far((void FAR *) output_buf[row], +	      (size_t) (width * SIZEOF(JSAMPLE))); +    for (ci = 0; ci < nc; ci++) { +      input_ptr = input_buf[row] + ci; +      output_ptr = output_buf[row]; +      if (cquantize->on_odd_row) { +	/* work right to left in this row */ +	input_ptr += (width-1) * nc; /* so point to rightmost pixel */ +	output_ptr += width-1; +	dir = -1; +	dirnc = -nc; +	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ +      } else { +	/* work left to right in this row */ +	dir = 1; +	dirnc = nc; +	errorptr = cquantize->fserrors[ci]; /* => entry before first column */ +      } +      colorindex_ci = cquantize->colorindex[ci]; +      colormap_ci = cquantize->sv_colormap[ci]; +      /* Preset error values: no error propagated to first pixel from left */ +      cur = 0; +      /* and no error propagated to row below yet */ +      belowerr = bpreverr = 0; + +      for (col = width; col > 0; col--) { +	/* cur holds the error propagated from the previous pixel on the +	 * current line.  Add the error propagated from the previous line +	 * to form the complete error correction term for this pixel, and +	 * round the error term (which is expressed * 16) to an integer. +	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct +	 * for either sign of the error value. +	 * Note: errorptr points to *previous* column's array entry. +	 */ +	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); +	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. +	 * The maximum error is +- MAXJSAMPLE; this sets the required size +	 * of the range_limit array. +	 */ +	cur += GETJSAMPLE(*input_ptr); +	cur = GETJSAMPLE(range_limit[cur]); +	/* Select output value, accumulate into output code for this pixel */ +	pixcode = GETJSAMPLE(colorindex_ci[cur]); +	*output_ptr += (JSAMPLE) pixcode; +	/* Compute actual representation error at this pixel */ +	/* Note: we can do this even though we don't have the final */ +	/* pixel code, because the colormap is orthogonal. */ +	cur -= GETJSAMPLE(colormap_ci[pixcode]); +	/* Compute error fractions to be propagated to adjacent pixels. +	 * Add these into the running sums, and simultaneously shift the +	 * next-line error sums left by 1 column. +	 */ +	bnexterr = cur; +	delta = cur * 2; +	cur += delta;		/* form error * 3 */ +	errorptr[0] = (FSERROR) (bpreverr + cur); +	cur += delta;		/* form error * 5 */ +	bpreverr = belowerr + cur; +	belowerr = bnexterr; +	cur += delta;		/* form error * 7 */ +	/* At this point cur contains the 7/16 error value to be propagated +	 * to the next pixel on the current line, and all the errors for the +	 * next line have been shifted over. We are therefore ready to move on. +	 */ +	input_ptr += dirnc;	/* advance input ptr to next column */ +	output_ptr += dir;	/* advance output ptr to next column */ +	errorptr += dir;	/* advance errorptr to current column */ +      } +      /* Post-loop cleanup: we must unload the final error value into the +       * final fserrors[] entry.  Note we need not unload belowerr because +       * it is for the dummy column before or after the actual array. +       */ +      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ +    } +    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); +  } +} + + +/* + * Allocate workspace for Floyd-Steinberg errors. + */ + +LOCAL void +alloc_fs_workspace (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  size_t arraysize; +  int i; + +  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); +  for (i = 0; i < cinfo->out_color_components; i++) { +    cquantize->fserrors[i] = (FSERRPTR) +      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); +  } +} + + +/* + * Initialize for one-pass color quantization. + */ + +METHODDEF void +start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  size_t arraysize; +  int i; + +  /* Install my colormap. */ +  cinfo->colormap = cquantize->sv_colormap; +  cinfo->actual_number_of_colors = cquantize->sv_actual; + +  /* Initialize for desired dithering mode. */ +  switch (cinfo->dither_mode) { +  case JDITHER_NONE: +    if (cinfo->out_color_components == 3) +      cquantize->pub.color_quantize = color_quantize3; +    else +      cquantize->pub.color_quantize = color_quantize; +    break; +  case JDITHER_ORDERED: +    if (cinfo->out_color_components == 3) +      cquantize->pub.color_quantize = quantize3_ord_dither; +    else +      cquantize->pub.color_quantize = quantize_ord_dither; +    cquantize->row_index = 0;	/* initialize state for ordered dither */ +    /* If user changed to ordered dither from another mode, +     * we must recreate the color index table with padding. +     * This will cost extra space, but probably isn't very likely. +     */ +    if (! cquantize->is_padded) +      create_colorindex(cinfo); +    /* Create ordered-dither tables if we didn't already. */ +    if (cquantize->odither[0] == NULL) +      create_odither_tables(cinfo); +    break; +  case JDITHER_FS: +    cquantize->pub.color_quantize = quantize_fs_dither; +    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ +    /* Allocate Floyd-Steinberg workspace if didn't already. */ +    if (cquantize->fserrors[0] == NULL) +      alloc_fs_workspace(cinfo); +    /* Initialize the propagated errors to zero. */ +    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); +    for (i = 0; i < cinfo->out_color_components; i++) +      jzero_far((void FAR *) cquantize->fserrors[i], arraysize); +    break; +  default: +    ERREXIT(cinfo, JERR_NOT_COMPILED); +    break; +  } +} + + +/* + * Finish up at the end of the pass. + */ + +METHODDEF void +finish_pass_1_quant (j_decompress_ptr cinfo) +{ +  /* no work in 1-pass case */ +} + + +/* + * Switch to a new external colormap between output passes. + * Shouldn't get to this module! + */ + +METHODDEF void +new_color_map_1_quant (j_decompress_ptr cinfo) +{ +  ERREXIT(cinfo, JERR_MODE_CHANGE); +} + + +/* + * Module initialization routine for 1-pass color quantization. + */ + +GLOBAL void +jinit_1pass_quantizer (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize; + +  cquantize = (my_cquantize_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_cquantizer)); +  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; +  cquantize->pub.start_pass = start_pass_1_quant; +  cquantize->pub.finish_pass = finish_pass_1_quant; +  cquantize->pub.new_color_map = new_color_map_1_quant; +  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ +  cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */ + +  /* Make sure my internal arrays won't overflow */ +  if (cinfo->out_color_components > MAX_Q_COMPS) +    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); +  /* Make sure colormap indexes can be represented by JSAMPLEs */ +  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) +    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); + +  /* Create the colormap and color index table. */ +  create_colormap(cinfo); +  create_colorindex(cinfo); + +  /* Allocate Floyd-Steinberg workspace now if requested. +   * We do this now since it is FAR storage and may affect the memory +   * manager's space calculations.  If the user changes to FS dither +   * mode in a later pass, we will allocate the space then, and will +   * possibly overrun the max_memory_to_use setting. +   */ +  if (cinfo->dither_mode == JDITHER_FS) +    alloc_fs_workspace(cinfo); +} + +#endif /* QUANT_1PASS_SUPPORTED */ diff --git a/src/jpeg-6/jquant2.c b/src/jpeg-6/jquant2.c new file mode 100644 index 00000000..25043982 --- /dev/null +++ b/src/jpeg-6/jquant2.c @@ -0,0 +1,1310 @@ +/* + * jquant2.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains 2-pass color quantization (color mapping) routines. + * These routines provide selection of a custom color map for an image, + * followed by mapping of the image to that color map, with optional + * Floyd-Steinberg dithering. + * It is also possible to use just the second pass to map to an arbitrary + * externally-given color map. + * + * Note: ordered dithering is not supported, since there isn't any fast + * way to compute intercolor distances; it's unclear that ordered dither's + * fundamental assumptions even hold with an irregularly spaced color map. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + +#ifdef QUANT_2PASS_SUPPORTED + + +/* + * This module implements the well-known Heckbert paradigm for color + * quantization.  Most of the ideas used here can be traced back to + * Heckbert's seminal paper + *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display", + *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. + * + * In the first pass over the image, we accumulate a histogram showing the + * usage count of each possible color.  To keep the histogram to a reasonable + * size, we reduce the precision of the input; typical practice is to retain + * 5 or 6 bits per color, so that 8 or 4 different input values are counted + * in the same histogram cell. + * + * Next, the color-selection step begins with a box representing the whole + * color space, and repeatedly splits the "largest" remaining box until we + * have as many boxes as desired colors.  Then the mean color in each + * remaining box becomes one of the possible output colors. + *  + * The second pass over the image maps each input pixel to the closest output + * color (optionally after applying a Floyd-Steinberg dithering correction). + * This mapping is logically trivial, but making it go fast enough requires + * considerable care. + * + * Heckbert-style quantizers vary a good deal in their policies for choosing + * the "largest" box and deciding where to cut it.  The particular policies + * used here have proved out well in experimental comparisons, but better ones + * may yet be found. + * + * In earlier versions of the IJG code, this module quantized in YCbCr color + * space, processing the raw upsampled data without a color conversion step. + * This allowed the color conversion math to be done only once per colormap + * entry, not once per pixel.  However, that optimization precluded other + * useful optimizations (such as merging color conversion with upsampling) + * and it also interfered with desired capabilities such as quantizing to an + * externally-supplied colormap.  We have therefore abandoned that approach. + * The present code works in the post-conversion color space, typically RGB. + * + * To improve the visual quality of the results, we actually work in scaled + * RGB space, giving G distances more weight than R, and R in turn more than + * B.  To do everything in integer math, we must use integer scale factors. + * The 2/3/1 scale factors used here correspond loosely to the relative + * weights of the colors in the NTSC grayscale equation. + * If you want to use this code to quantize a non-RGB color space, you'll + * probably need to change these scale factors. + */ + +#define R_SCALE 2		/* scale R distances by this much */ +#define G_SCALE 3		/* scale G distances by this much */ +#define B_SCALE 1		/* and B by this much */ + +/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined + * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B + * and B,G,R orders.  If you define some other weird order in jmorecfg.h, + * you'll get compile errors until you extend this logic.  In that case + * you'll probably want to tweak the histogram sizes too. + */ + +#if RGB_RED == 0 +#define C0_SCALE R_SCALE +#endif +#if RGB_BLUE == 0 +#define C0_SCALE B_SCALE +#endif +#if RGB_GREEN == 1 +#define C1_SCALE G_SCALE +#endif +#if RGB_RED == 2 +#define C2_SCALE R_SCALE +#endif +#if RGB_BLUE == 2 +#define C2_SCALE B_SCALE +#endif + + +/* + * First we have the histogram data structure and routines for creating it. + * + * The number of bits of precision can be adjusted by changing these symbols. + * We recommend keeping 6 bits for G and 5 each for R and B. + * If you have plenty of memory and cycles, 6 bits all around gives marginally + * better results; if you are short of memory, 5 bits all around will save + * some space but degrade the results. + * To maintain a fully accurate histogram, we'd need to allocate a "long" + * (preferably unsigned long) for each cell.  In practice this is overkill; + * we can get by with 16 bits per cell.  Few of the cell counts will overflow, + * and clamping those that do overflow to the maximum value will give close- + * enough results.  This reduces the recommended histogram size from 256Kb + * to 128Kb, which is a useful savings on PC-class machines. + * (In the second pass the histogram space is re-used for pixel mapping data; + * in that capacity, each cell must be able to store zero to the number of + * desired colors.  16 bits/cell is plenty for that too.) + * Since the JPEG code is intended to run in small memory model on 80x86 + * machines, we can't just allocate the histogram in one chunk.  Instead + * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each + * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and + * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that + * on 80x86 machines, the pointer row is in near memory but the actual + * arrays are in far memory (same arrangement as we use for image arrays). + */ + +#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */ + +/* These will do the right thing for either R,G,B or B,G,R color order, + * but you may not like the results for other color orders. + */ +#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */ +#define HIST_C1_BITS  6		/* bits of precision in G histogram */ +#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */ + +/* Number of elements along histogram axes. */ +#define HIST_C0_ELEMS  (1<<HIST_C0_BITS) +#define HIST_C1_ELEMS  (1<<HIST_C1_BITS) +#define HIST_C2_ELEMS  (1<<HIST_C2_BITS) + +/* These are the amounts to shift an input value to get a histogram index. */ +#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS) +#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS) +#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS) + + +typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */ + +typedef histcell FAR * histptr;	/* for pointers to histogram cells */ + +typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ +typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */ +typedef hist2d * hist3d;	/* type for top-level pointer */ + + +/* Declarations for Floyd-Steinberg dithering. + * + * Errors are accumulated into the array fserrors[], at a resolution of + * 1/16th of a pixel count.  The error at a given pixel is propagated + * to its not-yet-processed neighbors using the standard F-S fractions, + *		...	(here)	7/16 + *		3/16	5/16	1/16 + * We work left-to-right on even rows, right-to-left on odd rows. + * + * We can get away with a single array (holding one row's worth of errors) + * by using it to store the current row's errors at pixel columns not yet + * processed, but the next row's errors at columns already processed.  We + * need only a few extra variables to hold the errors immediately around the + * current column.  (If we are lucky, those variables are in registers, but + * even if not, they're probably cheaper to access than array elements are.) + * + * The fserrors[] array has (#columns + 2) entries; the extra entry at + * each end saves us from special-casing the first and last pixels. + * Each entry is three values long, one value for each color component. + * + * Note: on a wide image, we might not have enough room in a PC's near data + * segment to hold the error array; so it is allocated with alloc_large. + */ + +#if BITS_IN_JSAMPLE == 8 +typedef INT16 FSERROR;		/* 16 bits should be enough */ +typedef int LOCFSERROR;		/* use 'int' for calculation temps */ +#else +typedef INT32 FSERROR;		/* may need more than 16 bits */ +typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ +#endif + +typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ + + +/* Private subobject */ + +typedef struct { +  struct jpeg_color_quantizer pub; /* public fields */ + +  /* Space for the eventually created colormap is stashed here */ +  JSAMPARRAY sv_colormap;	/* colormap allocated at init time */ +  int desired;			/* desired # of colors = size of colormap */ + +  /* Variables for accumulating image statistics */ +  hist3d histogram;		/* pointer to the histogram */ + +  boolean needs_zeroed;		/* TRUE if next pass must zero histogram */ + +  /* Variables for Floyd-Steinberg dithering */ +  FSERRPTR fserrors;		/* accumulated errors */ +  boolean on_odd_row;		/* flag to remember which row we are on */ +  int * error_limiter;		/* table for clamping the applied error */ +} my_cquantizer; + +typedef my_cquantizer * my_cquantize_ptr; + + +/* + * Prescan some rows of pixels. + * In this module the prescan simply updates the histogram, which has been + * initialized to zeroes by start_pass. + * An output_buf parameter is required by the method signature, but no data + * is actually output (in fact the buffer controller is probably passing a + * NULL pointer). + */ + +METHODDEF void +prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, +		  JSAMPARRAY output_buf, int num_rows) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  register JSAMPROW ptr; +  register histptr histp; +  register hist3d histogram = cquantize->histogram; +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; + +  for (row = 0; row < num_rows; row++) { +    ptr = input_buf[row]; +    for (col = width; col > 0; col--) { +      /* get pixel value and index into the histogram */ +      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] +			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] +			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; +      /* increment, check for overflow and undo increment if so. */ +      if (++(*histp) <= 0) +	(*histp)--; +      ptr += 3; +    } +  } +} + + +/* + * Next we have the really interesting routines: selection of a colormap + * given the completed histogram. + * These routines work with a list of "boxes", each representing a rectangular + * subset of the input color space (to histogram precision). + */ + +typedef struct { +  /* The bounds of the box (inclusive); expressed as histogram indexes */ +  int c0min, c0max; +  int c1min, c1max; +  int c2min, c2max; +  /* The volume (actually 2-norm) of the box */ +  INT32 volume; +  /* The number of nonzero histogram cells within this box */ +  long colorcount; +} box; + +typedef box * boxptr; + + +LOCAL boxptr +find_biggest_color_pop (boxptr boxlist, int numboxes) +/* Find the splittable box with the largest color population */ +/* Returns NULL if no splittable boxes remain */ +{ +  register boxptr boxp; +  register int i; +  register long maxc = 0; +  boxptr which = NULL; +   +  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { +    if (boxp->colorcount > maxc && boxp->volume > 0) { +      which = boxp; +      maxc = boxp->colorcount; +    } +  } +  return which; +} + + +LOCAL boxptr +find_biggest_volume (boxptr boxlist, int numboxes) +/* Find the splittable box with the largest (scaled) volume */ +/* Returns NULL if no splittable boxes remain */ +{ +  register boxptr boxp; +  register int i; +  register INT32 maxv = 0; +  boxptr which = NULL; +   +  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { +    if (boxp->volume > maxv) { +      which = boxp; +      maxv = boxp->volume; +    } +  } +  return which; +} + + +LOCAL void +update_box (j_decompress_ptr cinfo, boxptr boxp) +/* Shrink the min/max bounds of a box to enclose only nonzero elements, */ +/* and recompute its volume and population */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  hist3d histogram = cquantize->histogram; +  histptr histp; +  int c0,c1,c2; +  int c0min,c0max,c1min,c1max,c2min,c2max; +  INT32 dist0,dist1,dist2; +  long ccount; +   +  c0min = boxp->c0min;  c0max = boxp->c0max; +  c1min = boxp->c1min;  c1max = boxp->c1max; +  c2min = boxp->c2min;  c2max = boxp->c2max; +   +  if (c0max > c0min) +    for (c0 = c0min; c0 <= c0max; c0++) +      for (c1 = c1min; c1 <= c1max; c1++) { +	histp = & histogram[c0][c1][c2min]; +	for (c2 = c2min; c2 <= c2max; c2++) +	  if (*histp++ != 0) { +	    boxp->c0min = c0min = c0; +	    goto have_c0min; +	  } +      } + have_c0min: +  if (c0max > c0min) +    for (c0 = c0max; c0 >= c0min; c0--) +      for (c1 = c1min; c1 <= c1max; c1++) { +	histp = & histogram[c0][c1][c2min]; +	for (c2 = c2min; c2 <= c2max; c2++) +	  if (*histp++ != 0) { +	    boxp->c0max = c0max = c0; +	    goto have_c0max; +	  } +      } + have_c0max: +  if (c1max > c1min) +    for (c1 = c1min; c1 <= c1max; c1++) +      for (c0 = c0min; c0 <= c0max; c0++) { +	histp = & histogram[c0][c1][c2min]; +	for (c2 = c2min; c2 <= c2max; c2++) +	  if (*histp++ != 0) { +	    boxp->c1min = c1min = c1; +	    goto have_c1min; +	  } +      } + have_c1min: +  if (c1max > c1min) +    for (c1 = c1max; c1 >= c1min; c1--) +      for (c0 = c0min; c0 <= c0max; c0++) { +	histp = & histogram[c0][c1][c2min]; +	for (c2 = c2min; c2 <= c2max; c2++) +	  if (*histp++ != 0) { +	    boxp->c1max = c1max = c1; +	    goto have_c1max; +	  } +      } + have_c1max: +  if (c2max > c2min) +    for (c2 = c2min; c2 <= c2max; c2++) +      for (c0 = c0min; c0 <= c0max; c0++) { +	histp = & histogram[c0][c1min][c2]; +	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) +	  if (*histp != 0) { +	    boxp->c2min = c2min = c2; +	    goto have_c2min; +	  } +      } + have_c2min: +  if (c2max > c2min) +    for (c2 = c2max; c2 >= c2min; c2--) +      for (c0 = c0min; c0 <= c0max; c0++) { +	histp = & histogram[c0][c1min][c2]; +	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) +	  if (*histp != 0) { +	    boxp->c2max = c2max = c2; +	    goto have_c2max; +	  } +      } + have_c2max: + +  /* Update box volume. +   * We use 2-norm rather than real volume here; this biases the method +   * against making long narrow boxes, and it has the side benefit that +   * a box is splittable iff norm > 0. +   * Since the differences are expressed in histogram-cell units, +   * we have to shift back to JSAMPLE units to get consistent distances; +   * after which, we scale according to the selected distance scale factors. +   */ +  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; +  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; +  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; +  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; +   +  /* Now scan remaining volume of box and compute population */ +  ccount = 0; +  for (c0 = c0min; c0 <= c0max; c0++) +    for (c1 = c1min; c1 <= c1max; c1++) { +      histp = & histogram[c0][c1][c2min]; +      for (c2 = c2min; c2 <= c2max; c2++, histp++) +	if (*histp != 0) { +	  ccount++; +	} +    } +  boxp->colorcount = ccount; +} + + +LOCAL int +median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, +	    int desired_colors) +/* Repeatedly select and split the largest box until we have enough boxes */ +{ +  int n,lb; +  int c0,c1,c2,cmax; +  register boxptr b1,b2; + +  while (numboxes < desired_colors) { +    /* Select box to split. +     * Current algorithm: by population for first half, then by volume. +     */ +    if (numboxes*2 <= desired_colors) { +      b1 = find_biggest_color_pop(boxlist, numboxes); +    } else { +      b1 = find_biggest_volume(boxlist, numboxes); +    } +    if (b1 == NULL)		/* no splittable boxes left! */ +      break; +    b2 = &boxlist[numboxes];	/* where new box will go */ +    /* Copy the color bounds to the new box. */ +    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; +    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; +    /* Choose which axis to split the box on. +     * Current algorithm: longest scaled axis. +     * See notes in update_box about scaling distances. +     */ +    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; +    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; +    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; +    /* We want to break any ties in favor of green, then red, blue last. +     * This code does the right thing for R,G,B or B,G,R color orders only. +     */ +#if RGB_RED == 0 +    cmax = c1; n = 1; +    if (c0 > cmax) { cmax = c0; n = 0; } +    if (c2 > cmax) { n = 2; } +#else +    cmax = c1; n = 1; +    if (c2 > cmax) { cmax = c2; n = 2; } +    if (c0 > cmax) { n = 0; } +#endif +    /* Choose split point along selected axis, and update box bounds. +     * Current algorithm: split at halfway point. +     * (Since the box has been shrunk to minimum volume, +     * any split will produce two nonempty subboxes.) +     * Note that lb value is max for lower box, so must be < old max. +     */ +    switch (n) { +    case 0: +      lb = (b1->c0max + b1->c0min) / 2; +      b1->c0max = lb; +      b2->c0min = lb+1; +      break; +    case 1: +      lb = (b1->c1max + b1->c1min) / 2; +      b1->c1max = lb; +      b2->c1min = lb+1; +      break; +    case 2: +      lb = (b1->c2max + b1->c2min) / 2; +      b1->c2max = lb; +      b2->c2min = lb+1; +      break; +    } +    /* Update stats for boxes */ +    update_box(cinfo, b1); +    update_box(cinfo, b2); +    numboxes++; +  } +  return numboxes; +} + + +LOCAL void +compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) +/* Compute representative color for a box, put it in colormap[icolor] */ +{ +  /* Current algorithm: mean weighted by pixels (not colors) */ +  /* Note it is important to get the rounding correct! */ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  hist3d histogram = cquantize->histogram; +  histptr histp; +  int c0,c1,c2; +  int c0min,c0max,c1min,c1max,c2min,c2max; +  long count; +  long total = 0; +  long c0total = 0; +  long c1total = 0; +  long c2total = 0; +   +  c0min = boxp->c0min;  c0max = boxp->c0max; +  c1min = boxp->c1min;  c1max = boxp->c1max; +  c2min = boxp->c2min;  c2max = boxp->c2max; +   +  for (c0 = c0min; c0 <= c0max; c0++) +    for (c1 = c1min; c1 <= c1max; c1++) { +      histp = & histogram[c0][c1][c2min]; +      for (c2 = c2min; c2 <= c2max; c2++) { +	if ((count = *histp++) != 0) { +	  total += count; +	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; +	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; +	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; +	} +      } +    } +   +  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); +  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); +  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); +} + + +LOCAL void +select_colors (j_decompress_ptr cinfo, int desired_colors) +/* Master routine for color selection */ +{ +  boxptr boxlist; +  int numboxes; +  int i; + +  /* Allocate workspace for box list */ +  boxlist = (boxptr) (*cinfo->mem->alloc_small) +    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); +  /* Initialize one box containing whole space */ +  numboxes = 1; +  boxlist[0].c0min = 0; +  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; +  boxlist[0].c1min = 0; +  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; +  boxlist[0].c2min = 0; +  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; +  /* Shrink it to actually-used volume and set its statistics */ +  update_box(cinfo, & boxlist[0]); +  /* Perform median-cut to produce final box list */ +  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); +  /* Compute the representative color for each box, fill colormap */ +  for (i = 0; i < numboxes; i++) +    compute_color(cinfo, & boxlist[i], i); +  cinfo->actual_number_of_colors = numboxes; +  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); +} + + +/* + * These routines are concerned with the time-critical task of mapping input + * colors to the nearest color in the selected colormap. + * + * We re-use the histogram space as an "inverse color map", essentially a + * cache for the results of nearest-color searches.  All colors within a + * histogram cell will be mapped to the same colormap entry, namely the one + * closest to the cell's center.  This may not be quite the closest entry to + * the actual input color, but it's almost as good.  A zero in the cache + * indicates we haven't found the nearest color for that cell yet; the array + * is cleared to zeroes before starting the mapping pass.  When we find the + * nearest color for a cell, its colormap index plus one is recorded in the + * cache for future use.  The pass2 scanning routines call fill_inverse_cmap + * when they need to use an unfilled entry in the cache. + * + * Our method of efficiently finding nearest colors is based on the "locally + * sorted search" idea described by Heckbert and on the incremental distance + * calculation described by Spencer W. Thomas in chapter III.1 of Graphics + * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that + * the distances from a given colormap entry to each cell of the histogram can + * be computed quickly using an incremental method: the differences between + * distances to adjacent cells themselves differ by a constant.  This allows a + * fairly fast implementation of the "brute force" approach of computing the + * distance from every colormap entry to every histogram cell.  Unfortunately, + * it needs a work array to hold the best-distance-so-far for each histogram + * cell (because the inner loop has to be over cells, not colormap entries). + * The work array elements have to be INT32s, so the work array would need + * 256Kb at our recommended precision.  This is not feasible in DOS machines. + * + * To get around these problems, we apply Thomas' method to compute the + * nearest colors for only the cells within a small subbox of the histogram. + * The work array need be only as big as the subbox, so the memory usage + * problem is solved.  Furthermore, we need not fill subboxes that are never + * referenced in pass2; many images use only part of the color gamut, so a + * fair amount of work is saved.  An additional advantage of this + * approach is that we can apply Heckbert's locality criterion to quickly + * eliminate colormap entries that are far away from the subbox; typically + * three-fourths of the colormap entries are rejected by Heckbert's criterion, + * and we need not compute their distances to individual cells in the subbox. + * The speed of this approach is heavily influenced by the subbox size: too + * small means too much overhead, too big loses because Heckbert's criterion + * can't eliminate as many colormap entries.  Empirically the best subbox + * size seems to be about 1/512th of the histogram (1/8th in each direction). + * + * Thomas' article also describes a refined method which is asymptotically + * faster than the brute-force method, but it is also far more complex and + * cannot efficiently be applied to small subboxes.  It is therefore not + * useful for programs intended to be portable to DOS machines.  On machines + * with plenty of memory, filling the whole histogram in one shot with Thomas' + * refined method might be faster than the present code --- but then again, + * it might not be any faster, and it's certainly more complicated. + */ + + +/* log2(histogram cells in update box) for each axis; this can be adjusted */ +#define BOX_C0_LOG  (HIST_C0_BITS-3) +#define BOX_C1_LOG  (HIST_C1_BITS-3) +#define BOX_C2_LOG  (HIST_C2_BITS-3) + +#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */ +#define BOX_C1_ELEMS  (1<<BOX_C1_LOG) +#define BOX_C2_ELEMS  (1<<BOX_C2_LOG) + +#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG) +#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG) +#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG) + + +/* + * The next three routines implement inverse colormap filling.  They could + * all be folded into one big routine, but splitting them up this way saves + * some stack space (the mindist[] and bestdist[] arrays need not coexist) + * and may allow some compilers to produce better code by registerizing more + * inner-loop variables. + */ + +LOCAL int +find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, +		    JSAMPLE colorlist[]) +/* Locate the colormap entries close enough to an update box to be candidates + * for the nearest entry to some cell(s) in the update box.  The update box + * is specified by the center coordinates of its first cell.  The number of + * candidate colormap entries is returned, and their colormap indexes are + * placed in colorlist[]. + * This routine uses Heckbert's "locally sorted search" criterion to select + * the colors that need further consideration. + */ +{ +  int numcolors = cinfo->actual_number_of_colors; +  int maxc0, maxc1, maxc2; +  int centerc0, centerc1, centerc2; +  int i, x, ncolors; +  INT32 minmaxdist, min_dist, max_dist, tdist; +  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */ + +  /* Compute true coordinates of update box's upper corner and center. +   * Actually we compute the coordinates of the center of the upper-corner +   * histogram cell, which are the upper bounds of the volume we care about. +   * Note that since ">>" rounds down, the "center" values may be closer to +   * min than to max; hence comparisons to them must be "<=", not "<". +   */ +  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); +  centerc0 = (minc0 + maxc0) >> 1; +  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); +  centerc1 = (minc1 + maxc1) >> 1; +  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); +  centerc2 = (minc2 + maxc2) >> 1; + +  /* For each color in colormap, find: +   *  1. its minimum squared-distance to any point in the update box +   *     (zero if color is within update box); +   *  2. its maximum squared-distance to any point in the update box. +   * Both of these can be found by considering only the corners of the box. +   * We save the minimum distance for each color in mindist[]; +   * only the smallest maximum distance is of interest. +   */ +  minmaxdist = 0x7FFFFFFFL; + +  for (i = 0; i < numcolors; i++) { +    /* We compute the squared-c0-distance term, then add in the other two. */ +    x = GETJSAMPLE(cinfo->colormap[0][i]); +    if (x < minc0) { +      tdist = (x - minc0) * C0_SCALE; +      min_dist = tdist*tdist; +      tdist = (x - maxc0) * C0_SCALE; +      max_dist = tdist*tdist; +    } else if (x > maxc0) { +      tdist = (x - maxc0) * C0_SCALE; +      min_dist = tdist*tdist; +      tdist = (x - minc0) * C0_SCALE; +      max_dist = tdist*tdist; +    } else { +      /* within cell range so no contribution to min_dist */ +      min_dist = 0; +      if (x <= centerc0) { +	tdist = (x - maxc0) * C0_SCALE; +	max_dist = tdist*tdist; +      } else { +	tdist = (x - minc0) * C0_SCALE; +	max_dist = tdist*tdist; +      } +    } + +    x = GETJSAMPLE(cinfo->colormap[1][i]); +    if (x < minc1) { +      tdist = (x - minc1) * C1_SCALE; +      min_dist += tdist*tdist; +      tdist = (x - maxc1) * C1_SCALE; +      max_dist += tdist*tdist; +    } else if (x > maxc1) { +      tdist = (x - maxc1) * C1_SCALE; +      min_dist += tdist*tdist; +      tdist = (x - minc1) * C1_SCALE; +      max_dist += tdist*tdist; +    } else { +      /* within cell range so no contribution to min_dist */ +      if (x <= centerc1) { +	tdist = (x - maxc1) * C1_SCALE; +	max_dist += tdist*tdist; +      } else { +	tdist = (x - minc1) * C1_SCALE; +	max_dist += tdist*tdist; +      } +    } + +    x = GETJSAMPLE(cinfo->colormap[2][i]); +    if (x < minc2) { +      tdist = (x - minc2) * C2_SCALE; +      min_dist += tdist*tdist; +      tdist = (x - maxc2) * C2_SCALE; +      max_dist += tdist*tdist; +    } else if (x > maxc2) { +      tdist = (x - maxc2) * C2_SCALE; +      min_dist += tdist*tdist; +      tdist = (x - minc2) * C2_SCALE; +      max_dist += tdist*tdist; +    } else { +      /* within cell range so no contribution to min_dist */ +      if (x <= centerc2) { +	tdist = (x - maxc2) * C2_SCALE; +	max_dist += tdist*tdist; +      } else { +	tdist = (x - minc2) * C2_SCALE; +	max_dist += tdist*tdist; +      } +    } + +    mindist[i] = min_dist;	/* save away the results */ +    if (max_dist < minmaxdist) +      minmaxdist = max_dist; +  } + +  /* Now we know that no cell in the update box is more than minmaxdist +   * away from some colormap entry.  Therefore, only colors that are +   * within minmaxdist of some part of the box need be considered. +   */ +  ncolors = 0; +  for (i = 0; i < numcolors; i++) { +    if (mindist[i] <= minmaxdist) +      colorlist[ncolors++] = (JSAMPLE) i; +  } +  return ncolors; +} + + +LOCAL void +find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, +		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) +/* Find the closest colormap entry for each cell in the update box, + * given the list of candidate colors prepared by find_nearby_colors. + * Return the indexes of the closest entries in the bestcolor[] array. + * This routine uses Thomas' incremental distance calculation method to + * find the distance from a colormap entry to successive cells in the box. + */ +{ +  int ic0, ic1, ic2; +  int i, icolor; +  register INT32 * bptr;	/* pointer into bestdist[] array */ +  JSAMPLE * cptr;		/* pointer into bestcolor[] array */ +  INT32 dist0, dist1;		/* initial distance values */ +  register INT32 dist2;		/* current distance in inner loop */ +  INT32 xx0, xx1;		/* distance increments */ +  register INT32 xx2; +  INT32 inc0, inc1, inc2;	/* initial values for increments */ +  /* This array holds the distance to the nearest-so-far color for each cell */ +  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; + +  /* Initialize best-distance for each cell of the update box */ +  bptr = bestdist; +  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) +    *bptr++ = 0x7FFFFFFFL; +   +  /* For each color selected by find_nearby_colors, +   * compute its distance to the center of each cell in the box. +   * If that's less than best-so-far, update best distance and color number. +   */ +   +  /* Nominal steps between cell centers ("x" in Thomas article) */ +#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE) +#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE) +#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE) +   +  for (i = 0; i < numcolors; i++) { +    icolor = GETJSAMPLE(colorlist[i]); +    /* Compute (square of) distance from minc0/c1/c2 to this color */ +    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; +    dist0 = inc0*inc0; +    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; +    dist0 += inc1*inc1; +    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; +    dist0 += inc2*inc2; +    /* Form the initial difference increments */ +    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; +    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; +    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; +    /* Now loop over all cells in box, updating distance per Thomas method */ +    bptr = bestdist; +    cptr = bestcolor; +    xx0 = inc0; +    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { +      dist1 = dist0; +      xx1 = inc1; +      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { +	dist2 = dist1; +	xx2 = inc2; +	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { +	  if (dist2 < *bptr) { +	    *bptr = dist2; +	    *cptr = (JSAMPLE) icolor; +	  } +	  dist2 += xx2; +	  xx2 += 2 * STEP_C2 * STEP_C2; +	  bptr++; +	  cptr++; +	} +	dist1 += xx1; +	xx1 += 2 * STEP_C1 * STEP_C1; +      } +      dist0 += xx0; +      xx0 += 2 * STEP_C0 * STEP_C0; +    } +  } +} + + +LOCAL void +fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) +/* Fill the inverse-colormap entries in the update box that contains */ +/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */ +/* we can fill as many others as we wish.) */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  hist3d histogram = cquantize->histogram; +  int minc0, minc1, minc2;	/* lower left corner of update box */ +  int ic0, ic1, ic2; +  register JSAMPLE * cptr;	/* pointer into bestcolor[] array */ +  register histptr cachep;	/* pointer into main cache array */ +  /* This array lists the candidate colormap indexes. */ +  JSAMPLE colorlist[MAXNUMCOLORS]; +  int numcolors;		/* number of candidate colors */ +  /* This array holds the actually closest colormap index for each cell. */ +  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; + +  /* Convert cell coordinates to update box ID */ +  c0 >>= BOX_C0_LOG; +  c1 >>= BOX_C1_LOG; +  c2 >>= BOX_C2_LOG; + +  /* Compute true coordinates of update box's origin corner. +   * Actually we compute the coordinates of the center of the corner +   * histogram cell, which are the lower bounds of the volume we care about. +   */ +  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); +  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); +  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); +   +  /* Determine which colormap entries are close enough to be candidates +   * for the nearest entry to some cell in the update box. +   */ +  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); + +  /* Determine the actually nearest colors. */ +  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, +		   bestcolor); + +  /* Save the best color numbers (plus 1) in the main cache array */ +  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */ +  c1 <<= BOX_C1_LOG; +  c2 <<= BOX_C2_LOG; +  cptr = bestcolor; +  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { +    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { +      cachep = & histogram[c0+ic0][c1+ic1][c2]; +      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { +	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); +      } +    } +  } +} + + +/* + * Map some rows of pixels to the output colormapped representation. + */ + +METHODDEF void +pass2_no_dither (j_decompress_ptr cinfo, +		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) +/* This version performs no dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  hist3d histogram = cquantize->histogram; +  register JSAMPROW inptr, outptr; +  register histptr cachep; +  register int c0, c1, c2; +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; + +  for (row = 0; row < num_rows; row++) { +    inptr = input_buf[row]; +    outptr = output_buf[row]; +    for (col = width; col > 0; col--) { +      /* get pixel value and index into the cache */ +      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; +      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; +      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; +      cachep = & histogram[c0][c1][c2]; +      /* If we have not seen this color before, find nearest colormap entry */ +      /* and update the cache */ +      if (*cachep == 0) +	fill_inverse_cmap(cinfo, c0,c1,c2); +      /* Now emit the colormap index for this cell */ +      *outptr++ = (JSAMPLE) (*cachep - 1); +    } +  } +} + + +METHODDEF void +pass2_fs_dither (j_decompress_ptr cinfo, +		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) +/* This version performs Floyd-Steinberg dithering */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  hist3d histogram = cquantize->histogram; +  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */ +  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ +  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ +  register FSERRPTR errorptr;	/* => fserrors[] at column before current */ +  JSAMPROW inptr;		/* => current input pixel */ +  JSAMPROW outptr;		/* => current output pixel */ +  histptr cachep; +  int dir;			/* +1 or -1 depending on direction */ +  int dir3;			/* 3*dir, for advancing inptr & errorptr */ +  int row; +  JDIMENSION col; +  JDIMENSION width = cinfo->output_width; +  JSAMPLE *range_limit = cinfo->sample_range_limit; +  int *error_limit = cquantize->error_limiter; +  JSAMPROW colormap0 = cinfo->colormap[0]; +  JSAMPROW colormap1 = cinfo->colormap[1]; +  JSAMPROW colormap2 = cinfo->colormap[2]; +  SHIFT_TEMPS + +  for (row = 0; row < num_rows; row++) { +    inptr = input_buf[row]; +    outptr = output_buf[row]; +    if (cquantize->on_odd_row) { +      /* work right to left in this row */ +      inptr += (width-1) * 3;	/* so point to rightmost pixel */ +      outptr += width-1; +      dir = -1; +      dir3 = -3; +      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ +      cquantize->on_odd_row = FALSE; /* flip for next time */ +    } else { +      /* work left to right in this row */ +      dir = 1; +      dir3 = 3; +      errorptr = cquantize->fserrors; /* => entry before first real column */ +      cquantize->on_odd_row = TRUE; /* flip for next time */ +    } +    /* Preset error values: no error propagated to first pixel from left */ +    cur0 = cur1 = cur2 = 0; +    /* and no error propagated to row below yet */ +    belowerr0 = belowerr1 = belowerr2 = 0; +    bpreverr0 = bpreverr1 = bpreverr2 = 0; + +    for (col = width; col > 0; col--) { +      /* curN holds the error propagated from the previous pixel on the +       * current line.  Add the error propagated from the previous line +       * to form the complete error correction term for this pixel, and +       * round the error term (which is expressed * 16) to an integer. +       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct +       * for either sign of the error value. +       * Note: errorptr points to *previous* column's array entry. +       */ +      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); +      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); +      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); +      /* Limit the error using transfer function set by init_error_limit. +       * See comments with init_error_limit for rationale. +       */ +      cur0 = error_limit[cur0]; +      cur1 = error_limit[cur1]; +      cur2 = error_limit[cur2]; +      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. +       * The maximum error is +- MAXJSAMPLE (or less with error limiting); +       * this sets the required size of the range_limit array. +       */ +      cur0 += GETJSAMPLE(inptr[0]); +      cur1 += GETJSAMPLE(inptr[1]); +      cur2 += GETJSAMPLE(inptr[2]); +      cur0 = GETJSAMPLE(range_limit[cur0]); +      cur1 = GETJSAMPLE(range_limit[cur1]); +      cur2 = GETJSAMPLE(range_limit[cur2]); +      /* Index into the cache with adjusted pixel value */ +      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; +      /* If we have not seen this color before, find nearest colormap */ +      /* entry and update the cache */ +      if (*cachep == 0) +	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); +      /* Now emit the colormap index for this cell */ +      { register int pixcode = *cachep - 1; +	*outptr = (JSAMPLE) pixcode; +	/* Compute representation error for this pixel */ +	cur0 -= GETJSAMPLE(colormap0[pixcode]); +	cur1 -= GETJSAMPLE(colormap1[pixcode]); +	cur2 -= GETJSAMPLE(colormap2[pixcode]); +      } +      /* Compute error fractions to be propagated to adjacent pixels. +       * Add these into the running sums, and simultaneously shift the +       * next-line error sums left by 1 column. +       */ +      { register LOCFSERROR bnexterr, delta; + +	bnexterr = cur0;	/* Process component 0 */ +	delta = cur0 * 2; +	cur0 += delta;		/* form error * 3 */ +	errorptr[0] = (FSERROR) (bpreverr0 + cur0); +	cur0 += delta;		/* form error * 5 */ +	bpreverr0 = belowerr0 + cur0; +	belowerr0 = bnexterr; +	cur0 += delta;		/* form error * 7 */ +	bnexterr = cur1;	/* Process component 1 */ +	delta = cur1 * 2; +	cur1 += delta;		/* form error * 3 */ +	errorptr[1] = (FSERROR) (bpreverr1 + cur1); +	cur1 += delta;		/* form error * 5 */ +	bpreverr1 = belowerr1 + cur1; +	belowerr1 = bnexterr; +	cur1 += delta;		/* form error * 7 */ +	bnexterr = cur2;	/* Process component 2 */ +	delta = cur2 * 2; +	cur2 += delta;		/* form error * 3 */ +	errorptr[2] = (FSERROR) (bpreverr2 + cur2); +	cur2 += delta;		/* form error * 5 */ +	bpreverr2 = belowerr2 + cur2; +	belowerr2 = bnexterr; +	cur2 += delta;		/* form error * 7 */ +      } +      /* At this point curN contains the 7/16 error value to be propagated +       * to the next pixel on the current line, and all the errors for the +       * next line have been shifted over.  We are therefore ready to move on. +       */ +      inptr += dir3;		/* Advance pixel pointers to next column */ +      outptr += dir; +      errorptr += dir3;		/* advance errorptr to current column */ +    } +    /* Post-loop cleanup: we must unload the final error values into the +     * final fserrors[] entry.  Note we need not unload belowerrN because +     * it is for the dummy column before or after the actual array. +     */ +    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ +    errorptr[1] = (FSERROR) bpreverr1; +    errorptr[2] = (FSERROR) bpreverr2; +  } +} + + +/* + * Initialize the error-limiting transfer function (lookup table). + * The raw F-S error computation can potentially compute error values of up to + * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be + * much less, otherwise obviously wrong pixels will be created.  (Typical + * effects include weird fringes at color-area boundaries, isolated bright + * pixels in a dark area, etc.)  The standard advice for avoiding this problem + * is to ensure that the "corners" of the color cube are allocated as output + * colors; then repeated errors in the same direction cannot cause cascading + * error buildup.  However, that only prevents the error from getting + * completely out of hand; Aaron Giles reports that error limiting improves + * the results even with corner colors allocated. + * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty + * well, but the smoother transfer function used below is even better.  Thanks + * to Aaron Giles for this idea. + */ + +LOCAL void +init_error_limit (j_decompress_ptr cinfo) +/* Allocate and fill in the error_limiter table */ +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  int * table; +  int in, out; + +  table = (int *) (*cinfo->mem->alloc_small) +    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); +  table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ +  cquantize->error_limiter = table; + +#define STEPSIZE ((MAXJSAMPLE+1)/16) +  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ +  out = 0; +  for (in = 0; in < STEPSIZE; in++, out++) { +    table[in] = out; table[-in] = -out; +  } +  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ +  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { +    table[in] = out; table[-in] = -out; +  } +  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ +  for (; in <= MAXJSAMPLE; in++) { +    table[in] = out; table[-in] = -out; +  } +#undef STEPSIZE +} + + +/* + * Finish up at the end of each pass. + */ + +METHODDEF void +finish_pass1 (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + +  /* Select the representative colors and fill in cinfo->colormap */ +  cinfo->colormap = cquantize->sv_colormap; +  select_colors(cinfo, cquantize->desired); +  /* Force next pass to zero the color index table */ +  cquantize->needs_zeroed = TRUE; +} + + +METHODDEF void +finish_pass2 (j_decompress_ptr cinfo) +{ +  /* no work */ +} + + +/* + * Initialize for each processing pass. + */ + +METHODDEF void +start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; +  hist3d histogram = cquantize->histogram; +  int i; + +  /* Only F-S dithering or no dithering is supported. */ +  /* If user asks for ordered dither, give him F-S. */ +  if (cinfo->dither_mode != JDITHER_NONE) +    cinfo->dither_mode = JDITHER_FS; + +  if (is_pre_scan) { +    /* Set up method pointers */ +    cquantize->pub.color_quantize = prescan_quantize; +    cquantize->pub.finish_pass = finish_pass1; +    cquantize->needs_zeroed = TRUE; /* Always zero histogram */ +  } else { +    /* Set up method pointers */ +    if (cinfo->dither_mode == JDITHER_FS) +      cquantize->pub.color_quantize = pass2_fs_dither; +    else +      cquantize->pub.color_quantize = pass2_no_dither; +    cquantize->pub.finish_pass = finish_pass2; + +    /* Make sure color count is acceptable */ +    i = cinfo->actual_number_of_colors; +    if (i < 1) +      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); +    if (i > MAXNUMCOLORS) +      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); + +    if (cinfo->dither_mode == JDITHER_FS) { +      size_t arraysize = (size_t) ((cinfo->output_width + 2) * +				   (3 * SIZEOF(FSERROR))); +      /* Allocate Floyd-Steinberg workspace if we didn't already. */ +      if (cquantize->fserrors == NULL) +	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) +	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); +      /* Initialize the propagated errors to zero. */ +      jzero_far((void FAR *) cquantize->fserrors, arraysize); +      /* Make the error-limit table if we didn't already. */ +      if (cquantize->error_limiter == NULL) +	init_error_limit(cinfo); +      cquantize->on_odd_row = FALSE; +    } + +  } +  /* Zero the histogram or inverse color map, if necessary */ +  if (cquantize->needs_zeroed) { +    for (i = 0; i < HIST_C0_ELEMS; i++) { +      jzero_far((void FAR *) histogram[i], +		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); +    } +    cquantize->needs_zeroed = FALSE; +  } +} + + +/* + * Switch to a new external colormap between output passes. + */ + +METHODDEF void +new_color_map_2_quant (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + +  /* Reset the inverse color map */ +  cquantize->needs_zeroed = TRUE; +} + + +/* + * Module initialization routine for 2-pass color quantization. + */ + +GLOBAL void +jinit_2pass_quantizer (j_decompress_ptr cinfo) +{ +  my_cquantize_ptr cquantize; +  int i; + +  cquantize = (my_cquantize_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_cquantizer)); +  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; +  cquantize->pub.start_pass = start_pass_2_quant; +  cquantize->pub.new_color_map = new_color_map_2_quant; +  cquantize->fserrors = NULL;	/* flag optional arrays not allocated */ +  cquantize->error_limiter = NULL; + +  /* Make sure jdmaster didn't give me a case I can't handle */ +  if (cinfo->out_color_components != 3) +    ERREXIT(cinfo, JERR_NOTIMPL); + +  /* Allocate the histogram/inverse colormap storage */ +  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) +    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); +  for (i = 0; i < HIST_C0_ELEMS; i++) { +    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) +      ((j_common_ptr) cinfo, JPOOL_IMAGE, +       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); +  } +  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ + +  /* Allocate storage for the completed colormap, if required. +   * We do this now since it is FAR storage and may affect +   * the memory manager's space calculations. +   */ +  if (cinfo->enable_2pass_quant) { +    /* Make sure color count is acceptable */ +    int desired = cinfo->desired_number_of_colors; +    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ +    if (desired < 8) +      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); +    /* Make sure colormap indexes can be represented by JSAMPLEs */ +    if (desired > MAXNUMCOLORS) +      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); +    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) +      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); +    cquantize->desired = desired; +  } else +    cquantize->sv_colormap = NULL; + +  /* Only F-S dithering or no dithering is supported. */ +  /* If user asks for ordered dither, give him F-S. */ +  if (cinfo->dither_mode != JDITHER_NONE) +    cinfo->dither_mode = JDITHER_FS; + +  /* Allocate Floyd-Steinberg workspace if necessary. +   * This isn't really needed until pass 2, but again it is FAR storage. +   * Although we will cope with a later change in dither_mode, +   * we do not promise to honor max_memory_to_use if dither_mode changes. +   */ +  if (cinfo->dither_mode == JDITHER_FS) { +    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) +      ((j_common_ptr) cinfo, JPOOL_IMAGE, +       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); +    /* Might as well create the error-limiting table too. */ +    init_error_limit(cinfo); +  } +} + +#endif /* QUANT_2PASS_SUPPORTED */ diff --git a/src/jpeg-6/jutils.c b/src/jpeg-6/jutils.c new file mode 100644 index 00000000..4ba2a543 --- /dev/null +++ b/src/jpeg-6/jutils.c @@ -0,0 +1,175 @@ +/* + * jutils.c + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains tables and miscellaneous utility routines needed + * for both compression and decompression. + * Note we prefix all global names with "j" to minimize conflicts with + * a surrounding application. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* + * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element + * of a DCT block read in natural order (left to right, top to bottom). + */ + +const int jpeg_zigzag_order[DCTSIZE2] = { +   0,  1,  5,  6, 14, 15, 27, 28, +   2,  4,  7, 13, 16, 26, 29, 42, +   3,  8, 12, 17, 25, 30, 41, 43, +   9, 11, 18, 24, 31, 40, 44, 53, +  10, 19, 23, 32, 39, 45, 52, 54, +  20, 22, 33, 38, 46, 51, 55, 60, +  21, 34, 37, 47, 50, 56, 59, 61, +  35, 36, 48, 49, 57, 58, 62, 63 +}; + +/* + * jpeg_natural_order[i] is the natural-order position of the i'th element + * of zigzag order. + * + * When reading corrupted data, the Huffman decoders could attempt + * to reference an entry beyond the end of this array (if the decoded + * zero run length reaches past the end of the block).  To prevent + * wild stores without adding an inner-loop test, we put some extra + * "63"s after the real entries.  This will cause the extra coefficient + * to be stored in location 63 of the block, not somewhere random. + * The worst case would be a run-length of 15, which means we need 16 + * fake entries. + */ + +const int jpeg_natural_order[DCTSIZE2+16] = { +  0,  1,  8, 16,  9,  2,  3, 10, + 17, 24, 32, 25, 18, 11,  4,  5, + 12, 19, 26, 33, 40, 48, 41, 34, + 27, 20, 13,  6,  7, 14, 21, 28, + 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, + 58, 59, 52, 45, 38, 31, 39, 46, + 53, 60, 61, 54, 47, 55, 62, 63, + 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ + 63, 63, 63, 63, 63, 63, 63, 63 +}; + + +/* + * Arithmetic utilities + */ + +GLOBAL long +jdiv_round_up (long a, long b) +/* Compute a/b rounded up to next integer, ie, ceil(a/b) */ +/* Assumes a >= 0, b > 0 */ +{ +  return (a + b - 1L) / b; +} + + +GLOBAL long +jround_up (long a, long b) +/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ +/* Assumes a >= 0, b > 0 */ +{ +  a += b - 1L; +  return a - (a % b); +} + + +/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays + * and coefficient-block arrays.  This won't work on 80x86 because the arrays + * are FAR and we're assuming a small-pointer memory model.  However, some + * DOS compilers provide far-pointer versions of memcpy() and memset() even + * in the small-model libraries.  These will be used if USE_FMEM is defined. + * Otherwise, the routines below do it the hard way.  (The performance cost + * is not all that great, because these routines aren't very heavily used.) + */ + +#ifndef NEED_FAR_POINTERS	/* normal case, same as regular macros */ +#define FMEMCOPY(dest,src,size)	MEMCOPY(dest,src,size) +#define FMEMZERO(target,size)	MEMZERO(target,size) +#else				/* 80x86 case, define if we can */ +#ifdef USE_FMEM +#define FMEMCOPY(dest,src,size)	_fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) +#define FMEMZERO(target,size)	_fmemset((void FAR *)(target), 0, (size_t)(size)) +#endif +#endif + + +GLOBAL void +jcopy_sample_rows (JSAMPARRAY input_array, int source_row, +		   JSAMPARRAY output_array, int dest_row, +		   int num_rows, JDIMENSION num_cols) +/* Copy some rows of samples from one place to another. + * num_rows rows are copied from input_array[source_row++] + * to output_array[dest_row++]; these areas may overlap for duplication. + * The source and destination arrays must be at least as wide as num_cols. + */ +{ +  register JSAMPROW inptr, outptr; +#ifdef FMEMCOPY +  register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE)); +#else +  register JDIMENSION count; +#endif +  register int row; + +  input_array += source_row; +  output_array += dest_row; + +  for (row = num_rows; row > 0; row--) { +    inptr = *input_array++; +    outptr = *output_array++; +#ifdef FMEMCOPY +    FMEMCOPY(outptr, inptr, count); +#else +    for (count = num_cols; count > 0; count--) +      *outptr++ = *inptr++;	/* needn't bother with GETJSAMPLE() here */ +#endif +  } +} + + +GLOBAL void +jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, +		 JDIMENSION num_blocks) +/* Copy a row of coefficient blocks from one place to another. */ +{ +#ifdef FMEMCOPY +  FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); +#else +  register JCOEFPTR inptr, outptr; +  register long count; + +  inptr = (JCOEFPTR) input_row; +  outptr = (JCOEFPTR) output_row; +  for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { +    *outptr++ = *inptr++; +  } +#endif +} + + +GLOBAL void +jzero_far (void FAR * target, size_t bytestozero) +/* Zero out a chunk of FAR memory. */ +/* This might be sample-array data, block-array data, or alloc_large data. */ +{ +#ifdef FMEMZERO +  FMEMZERO(target, bytestozero); +#else +  register char FAR * ptr = (char FAR *) target; +  register size_t count; + +  for (count = bytestozero; count > 0; count--) { +    *ptr++ = 0; +  } +#endif +} diff --git a/src/jpeg-6/jversion.h b/src/jpeg-6/jversion.h new file mode 100644 index 00000000..f2f1b8da --- /dev/null +++ b/src/jpeg-6/jversion.h @@ -0,0 +1,14 @@ +/* + * jversion.h + * + * Copyright (C) 1991-1995, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains software version identification. + */ + + +#define JVERSION	"6  2-Aug-95" + +#define JCOPYRIGHT	"Copyright (C) 1995, Thomas G. Lane"  | 
