diff options
Diffstat (limited to 'src/jpeg-8c')
57 files changed, 0 insertions, 36148 deletions
diff --git a/src/jpeg-8c/README b/src/jpeg-8c/README deleted file mode 100644 index 451265d7..00000000 --- a/src/jpeg-8c/README +++ /dev/null @@ -1,326 +0,0 @@ -The Independent JPEG Group's JPEG software -========================================== - -README for release 8c of 16-Jan-2011 -==================================== - -This distribution contains the eighth public release of the Independent JPEG -Group's free JPEG software. You are welcome to redistribute this software and -to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. - -This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, -Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, -Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers, -and other members of the Independent JPEG Group. - -IJG is not affiliated with the official ISO JPEG standards committee. - - -DOCUMENTATION ROADMAP -===================== - -This file contains the following sections: - -OVERVIEW General description of JPEG and the IJG software. -LEGAL ISSUES Copyright, lack of warranty, terms of distribution. -REFERENCES Where to learn more about JPEG. -ARCHIVE LOCATIONS Where to find newer versions of this software. -ACKNOWLEDGMENTS Special thanks. -FILE FORMAT WARS Software *not* to get. -TO DO Plans for future IJG releases. - -Other documentation files in the distribution are: - -User documentation: - install.txt How to configure and install the IJG software. - usage.txt Usage instructions for cjpeg, djpeg, jpegtran, - rdjpgcom, and wrjpgcom. - *.1 Unix-style man pages for programs (same info as usage.txt). - wizard.txt Advanced usage instructions for JPEG wizards only. - change.log Version-to-version change highlights. -Programmer and internal documentation: - libjpeg.txt How to use the JPEG library in your own programs. - example.c Sample code for calling the JPEG library. - structure.txt Overview of the JPEG library's internal structure. - filelist.txt Road map of IJG files. - coderules.txt Coding style rules --- please read if you contribute code. - -Please read at least the files install.txt and usage.txt. Some information -can also be found in the JPEG FAQ (Frequently Asked Questions) article. See -ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. - -If you want to understand how the JPEG code works, we suggest reading one or -more of the REFERENCES, then looking at the documentation files (in roughly -the order listed) before diving into the code. - - -OVERVIEW -======== - -This package contains C software to implement JPEG image encoding, decoding, -and transcoding. JPEG (pronounced "jay-peg") is a standardized compression -method for full-color and gray-scale images. - -This software implements JPEG baseline, extended-sequential, and progressive -compression processes. Provision is made for supporting all variants of these -processes, although some uncommon parameter settings aren't implemented yet. -We have made no provision for supporting the hierarchical or lossless -processes defined in the standard. - -We provide a set of library routines for reading and writing JPEG image files, -plus two sample applications "cjpeg" and "djpeg", which use the library to -perform conversion between JPEG and some other popular image file formats. -The library is intended to be reused in other applications. - -In order to support file conversion and viewing software, we have included -considerable functionality beyond the bare JPEG coding/decoding capability; -for example, the color quantization modules are not strictly part of JPEG -decoding, but they are essential for output to colormapped file formats or -colormapped displays. These extra functions can be compiled out of the -library if not required for a particular application. - -We have also included "jpegtran", a utility for lossless transcoding between -different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple -applications for inserting and extracting textual comments in JFIF files. - -The emphasis in designing this software has been on achieving portability and -flexibility, while also making it fast enough to be useful. In particular, -the software is not intended to be read as a tutorial on JPEG. (See the -REFERENCES section for introductory material.) Rather, it is intended to -be reliable, portable, industrial-strength code. We do not claim to have -achieved that goal in every aspect of the software, but we strive for it. - -We welcome the use of this software as a component of commercial products. -No royalty is required, but we do ask for an acknowledgement in product -documentation, as described under LEGAL ISSUES. - - -LEGAL ISSUES -============ - -In plain English: - -1. We don't promise that this software works. (But if you find any bugs, - please let us know!) -2. You can use this software for whatever you want. You don't have to pay us. -3. You may not pretend that you wrote this software. If you use it in a - program, you must acknowledge somewhere in your documentation that - you've used the IJG code. - -In legalese: - -The authors make NO WARRANTY or representation, either express or implied, -with respect to this software, its quality, accuracy, merchantability, or -fitness for a particular purpose. This software is provided "AS IS", and you, -its user, assume the entire risk as to its quality and accuracy. - -This software is copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding. -All Rights Reserved except as specified below. - -Permission is hereby granted to use, copy, modify, and distribute this -software (or portions thereof) for any purpose, without fee, subject to these -conditions: -(1) If any part of the source code for this software is distributed, then this -README file must be included, with this copyright and no-warranty notice -unaltered; and any additions, deletions, or changes to the original files -must be clearly indicated in accompanying documentation. -(2) If only executable code is distributed, then the accompanying -documentation must state that "this software is based in part on the work of -the Independent JPEG Group". -(3) Permission for use of this software is granted only if the user accepts -full responsibility for any undesirable consequences; the authors accept -NO LIABILITY for damages of any kind. - -These conditions apply to any software derived from or based on the IJG code, -not just to the unmodified library. If you use our work, you ought to -acknowledge us. - -Permission is NOT granted for the use of any IJG author's name or company name -in advertising or publicity relating to this software or products derived from -it. This software may be referred to only as "the Independent JPEG Group's -software". - -We specifically permit and encourage the use of this software as the basis of -commercial products, provided that all warranty or liability claims are -assumed by the product vendor. - - -ansi2knr.c is included in this distribution by permission of L. Peter Deutsch, -sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA. -ansi2knr.c is NOT covered by the above copyright and conditions, but instead -by the usual distribution terms of the Free Software Foundation; principally, -that you must include source code if you redistribute it. (See the file -ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part -of any program generated from the IJG code, this does not limit you more than -the foregoing paragraphs do. - -The Unix configuration script "configure" was produced with GNU Autoconf. -It is copyright by the Free Software Foundation but is freely distributable. -The same holds for its supporting scripts (config.guess, config.sub, -ltmain.sh). Another support script, install-sh, is copyright by X Consortium -but is also freely distributable. - -The IJG distribution formerly included code to read and write GIF files. -To avoid entanglement with the Unisys LZW patent, GIF reading support has -been removed altogether, and the GIF writer has been simplified to produce -"uncompressed GIFs". This technique does not use the LZW algorithm; the -resulting GIF files are larger than usual, but are readable by all standard -GIF decoders. - -We are required to state that - "The Graphics Interchange Format(c) is the Copyright property of - CompuServe Incorporated. GIF(sm) is a Service Mark property of - CompuServe Incorporated." - - -REFERENCES -========== - -We recommend reading one or more of these references before trying to -understand the innards of the JPEG software. - -The best short technical introduction to the JPEG compression algorithm is - Wallace, Gregory K. "The JPEG Still Picture Compression Standard", - Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. -(Adjacent articles in that issue discuss MPEG motion picture compression, -applications of JPEG, and related topics.) If you don't have the CACM issue -handy, a PostScript file containing a revised version of Wallace's article is -available at http://www.ijg.org/files/wallace.ps.gz. The file (actually -a preprint for an article that appeared in IEEE Trans. Consumer Electronics) -omits the sample images that appeared in CACM, but it includes corrections -and some added material. Note: the Wallace article is copyright ACM and IEEE, -and it may not be used for commercial purposes. - -A somewhat less technical, more leisurely introduction to JPEG can be found in -"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by -M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides -good explanations and example C code for a multitude of compression methods -including JPEG. It is an excellent source if you are comfortable reading C -code but don't know much about data compression in general. The book's JPEG -sample code is far from industrial-strength, but when you are ready to look -at a full implementation, you've got one here... - -The best currently available description of JPEG is the textbook "JPEG Still -Image Data Compression Standard" by William B. Pennebaker and Joan L. -Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. -Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG -standards (DIS 10918-1 and draft DIS 10918-2). -Although this is by far the most detailed and comprehensive exposition of -JPEG publicly available, we point out that it is still missing an explanation -of the most essential properties and algorithms of the underlying DCT -technology. -If you think that you know about DCT-based JPEG after reading this book, -then you are in delusion. The real fundamentals and corresponding potential -of DCT-based JPEG are not publicly known so far, and that is the reason for -all the mistaken developments taking place in the image coding domain. - -The original JPEG standard is divided into two parts, Part 1 being the actual -specification, while Part 2 covers compliance testing methods. Part 1 is -titled "Digital Compression and Coding of Continuous-tone Still Images, -Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS -10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of -Continuous-tone Still Images, Part 2: Compliance testing" and has document -numbers ISO/IEC IS 10918-2, ITU-T T.83. -IJG JPEG 8 introduces an implementation of the JPEG SmartScale extension -which is specified in a contributed document at ITU and ISO with title "ITU-T -JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced Image Coding", April -2006, Geneva, Switzerland. The latest version of the document is Revision 3. - -The JPEG standard does not specify all details of an interchangeable file -format. For the omitted details we follow the "JFIF" conventions, revision -1.02. JFIF 1.02 has been adopted as an Ecma International Technical Report -and thus received a formal publication status. It is available as a free -download in PDF format from -http://www.ecma-international.org/publications/techreports/E-TR-098.htm. -A PostScript version of the JFIF document is available at -http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at -http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures. - -The TIFF 6.0 file format specification can be obtained by FTP from -ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme -found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. -IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). -Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 -(Compression tag 7). Copies of this Note can be obtained from -http://www.ijg.org/files/. It is expected that the next revision -of the TIFF spec will replace the 6.0 JPEG design with the Note's design. -Although IJG's own code does not support TIFF/JPEG, the free libtiff library -uses our library to implement TIFF/JPEG per the Note. - - -ARCHIVE LOCATIONS -================= - -The "official" archive site for this software is www.ijg.org. -The most recent released version can always be found there in -directory "files". This particular version will be archived as -http://www.ijg.org/files/jpegsrc.v8c.tar.gz, and in Windows-compatible -"zip" archive format as http://www.ijg.org/files/jpegsr8c.zip. - -The JPEG FAQ (Frequently Asked Questions) article is a source of some -general information about JPEG. -It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ -and other news.answers archive sites, including the official news.answers -archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. -If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu -with body - send usenet/news.answers/jpeg-faq/part1 - send usenet/news.answers/jpeg-faq/part2 - - -ACKNOWLEDGMENTS -=============== - -Thank to Juergen Bruder for providing me with a copy of the common DCT -algorithm article, only to find out that I had come to the same result -in a more direct and comprehensible way with a more generative approach. - -Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the -ITU JPEG (Study Group 16) meeting in Geneva, Switzerland. - -Thank to Thomas Wiegand and Gary Sullivan for inviting me to the -Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland. - -Thank to John Korejwa and Massimo Ballerini for inviting me to -fruitful consultations in Boston, MA and Milan, Italy. - -Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther -Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel -for corresponding business development. - -Thank to Nico Zschach and Dirk Stelling of the technical support team -at the Digital Images company in Halle for providing me with extra -equipment for configuration tests. - -Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful -communication about JPEG configuration in Sigma Photo Pro software. - -Thank to Andrew Finkenstadt for hosting the ijg.org site. - -Last but not least special thank to Thomas G. Lane for the original -design and development of this singular software package. - - -FILE FORMAT WARS -================ - -The ISO JPEG standards committee actually promotes different formats like -"JPEG 2000" or "JPEG XR" which are incompatible with original DCT-based -JPEG and which are based on faulty technologies. IJG therefore does not -and will not support such momentary mistakes (see REFERENCES). -We have little or no sympathy for the promotion of these formats. Indeed, -one of the original reasons for developing this free software was to help -force convergence on common, interoperable format standards for JPEG files. -Don't use an incompatible file format! -(In any case, our decoder will remain capable of reading existing JPEG -image files indefinitely.) - - -TO DO -===== - -Version 8 is the first release of a new generation JPEG standard -to overcome the limitations of the original JPEG specification. -More features are being prepared for coming releases... - -Please send bug reports, offers of help, etc. to jpeg-info@uc.ag. diff --git a/src/jpeg-8c/ioquake3-changes.diff b/src/jpeg-8c/ioquake3-changes.diff deleted file mode 100644 index f3a89f1f..00000000 --- a/src/jpeg-8c/ioquake3-changes.diff +++ /dev/null @@ -1,683 +0,0 @@ -As required by the libjpeg license, additions, deletions and changes to -the original files are listed here. Files noted as "Only in jpeg-8c" -were deleted; files noted as "Only in ioquake3/code/jpeg-8c" were added. - -To regenerate this file, replace everything after "------" with the output -of this command: diff -ru jpeg-8c ioquake3/code/jpeg-8c - ------- - -Only in jpeg-8c: aclocal.m4 -Only in jpeg-8c: ansi2knr.1 -Only in jpeg-8c: ansi2knr.c -Only in jpeg-8c: cderror.h -Only in jpeg-8c: cdjpeg.c -Only in jpeg-8c: cdjpeg.h -Only in jpeg-8c: change.log -Only in jpeg-8c: cjpeg.1 -Only in jpeg-8c: cjpeg.c -Only in jpeg-8c: ckconfig.c -Only in jpeg-8c: coderules.txt -Only in jpeg-8c: config.guess -Only in jpeg-8c: config.sub -Only in jpeg-8c: configure -Only in jpeg-8c: configure.ac -Only in jpeg-8c: depcomp -Only in jpeg-8c: djpeg.1 -Only in jpeg-8c: djpeg.c -Only in jpeg-8c: example.c -Only in jpeg-8c: filelist.txt -Only in jpeg-8c: install-sh -Only in jpeg-8c: install.txt -diff -ru jpeg-8c/jcmainct.c ioquake3/code/jpeg-8c/jcmainct.c ---- jpeg-8c/jcmainct.c 2003-10-19 18:55:34.000000000 +0100 -+++ ioquake3/code/jpeg-8c/jcmainct.c 2011-11-25 11:24:52.000000000 +0000 -@@ -68,32 +68,32 @@ - METHODDEF(void) - start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - /* Do nothing in raw-data mode. */ - if (cinfo->raw_data_in) - return; - -- main->cur_iMCU_row = 0; /* initialize counters */ -- main->rowgroup_ctr = 0; -- main->suspended = FALSE; -- main->pass_mode = pass_mode; /* save mode for use by process_data */ -+ main_ptr->cur_iMCU_row = 0; /* initialize counters */ -+ main_ptr->rowgroup_ctr = 0; -+ main_ptr->suspended = FALSE; -+ main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */ - - switch (pass_mode) { - case JBUF_PASS_THRU: - #ifdef FULL_MAIN_BUFFER_SUPPORTED -- if (main->whole_image[0] != NULL) -+ if (main_ptr->whole_image[0] != NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - #endif -- main->pub.process_data = process_data_simple_main; -+ main_ptr->pub.process_data = process_data_simple_main; - break; - #ifdef FULL_MAIN_BUFFER_SUPPORTED - case JBUF_SAVE_SOURCE: - case JBUF_CRANK_DEST: - case JBUF_SAVE_AND_PASS: -- if (main->whole_image[0] == NULL) -+ if (main_ptr->whole_image[0] == NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); -- main->pub.process_data = process_data_buffer_main; -+ main_ptr->pub.process_data = process_data_buffer_main; - break; - #endif - default: -@@ -114,46 +114,46 @@ - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail) - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - -- while (main->cur_iMCU_row < cinfo->total_iMCU_rows) { -+ while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { - /* Read input data if we haven't filled the main buffer yet */ -- if (main->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) -+ if (main_ptr->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) - (*cinfo->prep->pre_process_data) (cinfo, - input_buf, in_row_ctr, in_rows_avail, -- main->buffer, &main->rowgroup_ctr, -+ main_ptr->buffer, &main_ptr->rowgroup_ctr, - (JDIMENSION) cinfo->min_DCT_v_scaled_size); - - /* If we don't have a full iMCU row buffered, return to application for - * more data. Note that preprocessor will always pad to fill the iMCU row - * at the bottom of the image. - */ -- if (main->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size) -+ if (main_ptr->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size) - return; - - /* Send the completed row to the compressor */ -- if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) { -+ if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { - /* If compressor did not consume the whole row, then we must need to - * suspend processing and return to the application. In this situation - * we pretend we didn't yet consume the last input row; otherwise, if - * it happened to be the last row of the image, the application would - * think we were done. - */ -- if (! main->suspended) { -+ if (! main_ptr->suspended) { - (*in_row_ctr)--; -- main->suspended = TRUE; -+ main_ptr->suspended = TRUE; - } - return; - } - /* We did finish the row. Undo our little suspension hack if a previous - * call suspended; then mark the main buffer empty. - */ -- if (main->suspended) { -+ if (main_ptr->suspended) { - (*in_row_ctr)++; -- main->suspended = FALSE; -+ main_ptr->suspended = FALSE; - } -- main->rowgroup_ctr = 0; -- main->cur_iMCU_row++; -+ main_ptr->rowgroup_ctr = 0; -+ main_ptr->cur_iMCU_row++; - } - } - -@@ -170,25 +170,25 @@ - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail) - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci; - jpeg_component_info *compptr; -- boolean writing = (main->pass_mode != JBUF_CRANK_DEST); -+ boolean writing = (main_ptr->pass_mode != JBUF_CRANK_DEST); - -- while (main->cur_iMCU_row < cinfo->total_iMCU_rows) { -+ while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { - /* Realign the virtual buffers if at the start of an iMCU row. */ -- if (main->rowgroup_ctr == 0) { -+ if (main_ptr->rowgroup_ctr == 0) { - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { -- main->buffer[ci] = (*cinfo->mem->access_virt_sarray) -- ((j_common_ptr) cinfo, main->whole_image[ci], -- main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE), -+ main_ptr->buffer[ci] = (*cinfo->mem->access_virt_sarray) -+ ((j_common_ptr) cinfo, main_ptr->whole_image[ci], -+ main_ptr->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE), - (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing); - } - /* In a read pass, pretend we just read some source data. */ - if (! writing) { - *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE; -- main->rowgroup_ctr = DCTSIZE; -+ main_ptr->rowgroup_ctr = DCTSIZE; - } - } - -@@ -197,40 +197,40 @@ - if (writing) { - (*cinfo->prep->pre_process_data) (cinfo, - input_buf, in_row_ctr, in_rows_avail, -- main->buffer, &main->rowgroup_ctr, -+ main_ptr->buffer, &main_ptr->rowgroup_ctr, - (JDIMENSION) DCTSIZE); - /* Return to application if we need more data to fill the iMCU row. */ -- if (main->rowgroup_ctr < DCTSIZE) -+ if (main_ptr->rowgroup_ctr < DCTSIZE) - return; - } - - /* Emit data, unless this is a sink-only pass. */ -- if (main->pass_mode != JBUF_SAVE_SOURCE) { -- if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) { -+ if (main_ptr->pass_mode != JBUF_SAVE_SOURCE) { -+ if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { - /* If compressor did not consume the whole row, then we must need to - * suspend processing and return to the application. In this situation - * we pretend we didn't yet consume the last input row; otherwise, if - * it happened to be the last row of the image, the application would - * think we were done. - */ -- if (! main->suspended) { -+ if (! main_ptr->suspended) { - (*in_row_ctr)--; -- main->suspended = TRUE; -+ main_ptr->suspended = TRUE; - } - return; - } - /* We did finish the row. Undo our little suspension hack if a previous - * call suspended; then mark the main buffer empty. - */ -- if (main->suspended) { -+ if (main_ptr->suspended) { - (*in_row_ctr)++; -- main->suspended = FALSE; -+ main_ptr->suspended = FALSE; - } - } - - /* If get here, we are done with this iMCU row. Mark buffer empty. */ -- main->rowgroup_ctr = 0; -- main->cur_iMCU_row++; -+ main_ptr->rowgroup_ctr = 0; -+ main_ptr->cur_iMCU_row++; - } - } - -@@ -244,15 +244,15 @@ - GLOBAL(void) - jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) - { -- my_main_ptr main; -+ my_main_ptr main_ptr; - int ci; - jpeg_component_info *compptr; - -- main = (my_main_ptr) -+ main_ptr = (my_main_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_main_controller)); -- cinfo->main = (struct jpeg_c_main_controller *) main; -- main->pub.start_pass = start_pass_main; -+ cinfo->main = (struct jpeg_c_main_controller *) main_ptr; -+ main_ptr->pub.start_pass = start_pass_main; - - /* We don't need to create a buffer in raw-data mode. */ - if (cinfo->raw_data_in) -@@ -267,7 +267,7 @@ - /* Note we pad the bottom to a multiple of the iMCU height */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { -- main->whole_image[ci] = (*cinfo->mem->request_virt_sarray) -+ main_ptr->whole_image[ci] = (*cinfo->mem->request_virt_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (JDIMENSION) jround_up((long) compptr->height_in_blocks, -@@ -279,12 +279,12 @@ - #endif - } else { - #ifdef FULL_MAIN_BUFFER_SUPPORTED -- main->whole_image[0] = NULL; /* flag for no virtual arrays */ -+ main_ptr->whole_image[0] = NULL; /* flag for no virtual arrays */ - #endif - /* Allocate a strip buffer for each component */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { -- main->buffer[ci] = (*cinfo->mem->alloc_sarray) -+ main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); -Only in jpeg-8c: jconfig.bcc -Only in jpeg-8c: jconfig.cfg -Only in jpeg-8c: jconfig.dj -Only in ioquake3/code/jpeg-8c: jconfig.h -Only in jpeg-8c: jconfig.mac -Only in jpeg-8c: jconfig.manx -Only in jpeg-8c: jconfig.mc6 -Only in jpeg-8c: jconfig.sas -Only in jpeg-8c: jconfig.st -Only in jpeg-8c: jconfig.txt -Only in jpeg-8c: jconfig.vc -Only in jpeg-8c: jconfig.vms -Only in jpeg-8c: jconfig.wat -diff -ru jpeg-8c/jdmainct.c ioquake3/code/jpeg-8c/jdmainct.c ---- jpeg-8c/jdmainct.c 2002-02-24 19:07:28.000000000 +0000 -+++ ioquake3/code/jpeg-8c/jdmainct.c 2011-11-25 11:24:52.000000000 +0000 -@@ -159,7 +159,7 @@ - * This is done only once, not once per pass. - */ - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, rgroup; - int M = cinfo->min_DCT_v_scaled_size; - jpeg_component_info *compptr; -@@ -168,10 +168,10 @@ - /* Get top-level space for component array pointers. - * We alloc both arrays with one call to save a few cycles. - */ -- main->xbuffer[0] = (JSAMPIMAGE) -+ main_ptr->xbuffer[0] = (JSAMPIMAGE) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); -- main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components; -+ main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { -@@ -184,9 +184,9 @@ - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); - xbuf += rgroup; /* want one row group at negative offsets */ -- main->xbuffer[0][ci] = xbuf; -+ main_ptr->xbuffer[0][ci] = xbuf; - xbuf += rgroup * (M + 4); -- main->xbuffer[1][ci] = xbuf; -+ main_ptr->xbuffer[1][ci] = xbuf; - } - } - -@@ -194,13 +194,13 @@ - LOCAL(void) - make_funny_pointers (j_decompress_ptr cinfo) - /* Create the funny pointer lists discussed in the comments above. -- * The actual workspace is already allocated (in main->buffer), -+ * The actual workspace is already allocated (in main_ptr->buffer), - * and the space for the pointer lists is allocated too. - * This routine just fills in the curiously ordered lists. - * This will be repeated at the beginning of each pass. - */ - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, i, rgroup; - int M = cinfo->min_DCT_v_scaled_size; - jpeg_component_info *compptr; -@@ -210,10 +210,10 @@ - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ -- xbuf0 = main->xbuffer[0][ci]; -- xbuf1 = main->xbuffer[1][ci]; -+ xbuf0 = main_ptr->xbuffer[0][ci]; -+ xbuf1 = main_ptr->xbuffer[1][ci]; - /* First copy the workspace pointers as-is */ -- buf = main->buffer[ci]; -+ buf = main_ptr->buffer[ci]; - for (i = 0; i < rgroup * (M + 2); i++) { - xbuf0[i] = xbuf1[i] = buf[i]; - } -@@ -240,7 +240,7 @@ - * This changes the pointer list state from top-of-image to the normal state. - */ - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, i, rgroup; - int M = cinfo->min_DCT_v_scaled_size; - jpeg_component_info *compptr; -@@ -250,8 +250,8 @@ - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ -- xbuf0 = main->xbuffer[0][ci]; -- xbuf1 = main->xbuffer[1][ci]; -+ xbuf0 = main_ptr->xbuffer[0][ci]; -+ xbuf1 = main_ptr->xbuffer[1][ci]; - for (i = 0; i < rgroup; i++) { - xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; - xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; -@@ -269,7 +269,7 @@ - * Also sets rowgroups_avail to indicate number of nondummy row groups in row. - */ - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, i, rgroup, iMCUheight, rows_left; - jpeg_component_info *compptr; - JSAMPARRAY xbuf; -@@ -286,12 +286,12 @@ - * so we need only do it once. - */ - if (ci == 0) { -- main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); -+ main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); - } - /* Duplicate the last real sample row rgroup*2 times; this pads out the - * last partial rowgroup and ensures at least one full rowgroup of context. - */ -- xbuf = main->xbuffer[main->whichptr][ci]; -+ xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci]; - for (i = 0; i < rgroup * 2; i++) { - xbuf[rows_left + i] = xbuf[rows_left-1]; - } -@@ -306,27 +306,27 @@ - METHODDEF(void) - start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - switch (pass_mode) { - case JBUF_PASS_THRU: - if (cinfo->upsample->need_context_rows) { -- main->pub.process_data = process_data_context_main; -+ main_ptr->pub.process_data = process_data_context_main; - make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ -- main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ -- main->context_state = CTX_PREPARE_FOR_IMCU; -- main->iMCU_row_ctr = 0; -+ main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ -+ main_ptr->context_state = CTX_PREPARE_FOR_IMCU; -+ main_ptr->iMCU_row_ctr = 0; - } else { - /* Simple case with no context needed */ -- main->pub.process_data = process_data_simple_main; -+ main_ptr->pub.process_data = process_data_simple_main; - } -- main->buffer_full = FALSE; /* Mark buffer empty */ -- main->rowgroup_ctr = 0; -+ main_ptr->buffer_full = FALSE; /* Mark buffer empty */ -+ main_ptr->rowgroup_ctr = 0; - break; - #ifdef QUANT_2PASS_SUPPORTED - case JBUF_CRANK_DEST: - /* For last pass of 2-pass quantization, just crank the postprocessor */ -- main->pub.process_data = process_data_crank_post; -+ main_ptr->pub.process_data = process_data_crank_post; - break; - #endif - default: -@@ -346,14 +346,14 @@ - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - JDIMENSION rowgroups_avail; - - /* Read input data if we haven't filled the main buffer yet */ -- if (! main->buffer_full) { -- if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer)) -+ if (! main_ptr->buffer_full) { -+ if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer)) - return; /* suspension forced, can do nothing more */ -- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ -+ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ - } - - /* There are always min_DCT_scaled_size row groups in an iMCU row. */ -@@ -364,14 +364,14 @@ - */ - - /* Feed the postprocessor */ -- (*cinfo->post->post_process_data) (cinfo, main->buffer, -- &main->rowgroup_ctr, rowgroups_avail, -+ (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer, -+ &main_ptr->rowgroup_ctr, rowgroups_avail, - output_buf, out_row_ctr, out_rows_avail); - - /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ -- if (main->rowgroup_ctr >= rowgroups_avail) { -- main->buffer_full = FALSE; -- main->rowgroup_ctr = 0; -+ if (main_ptr->rowgroup_ctr >= rowgroups_avail) { -+ main_ptr->buffer_full = FALSE; -+ main_ptr->rowgroup_ctr = 0; - } - } - -@@ -386,15 +386,15 @@ - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) - { -- my_main_ptr main = (my_main_ptr) cinfo->main; -+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - /* Read input data if we haven't filled the main buffer yet */ -- if (! main->buffer_full) { -+ if (! main_ptr->buffer_full) { - if (! (*cinfo->coef->decompress_data) (cinfo, -- main->xbuffer[main->whichptr])) -+ main_ptr->xbuffer[main_ptr->whichptr])) - return; /* suspension forced, can do nothing more */ -- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ -- main->iMCU_row_ctr++; /* count rows received */ -+ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ -+ main_ptr->iMCU_row_ctr++; /* count rows received */ - } - - /* Postprocessor typically will not swallow all the input data it is handed -@@ -402,47 +402,47 @@ - * to exit and restart. This switch lets us keep track of how far we got. - * Note that each case falls through to the next on successful completion. - */ -- switch (main->context_state) { -+ switch (main_ptr->context_state) { - case CTX_POSTPONED_ROW: - /* Call postprocessor using previously set pointers for postponed row */ -- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr], -- &main->rowgroup_ctr, main->rowgroups_avail, -+ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], -+ &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, - output_buf, out_row_ctr, out_rows_avail); -- if (main->rowgroup_ctr < main->rowgroups_avail) -+ if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) - return; /* Need to suspend */ -- main->context_state = CTX_PREPARE_FOR_IMCU; -+ main_ptr->context_state = CTX_PREPARE_FOR_IMCU; - if (*out_row_ctr >= out_rows_avail) - return; /* Postprocessor exactly filled output buf */ - /*FALLTHROUGH*/ - case CTX_PREPARE_FOR_IMCU: - /* Prepare to process first M-1 row groups of this iMCU row */ -- main->rowgroup_ctr = 0; -- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); -+ main_ptr->rowgroup_ctr = 0; -+ main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); - /* Check for bottom of image: if so, tweak pointers to "duplicate" - * the last sample row, and adjust rowgroups_avail to ignore padding rows. - */ -- if (main->iMCU_row_ctr == cinfo->total_iMCU_rows) -+ if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows) - set_bottom_pointers(cinfo); -- main->context_state = CTX_PROCESS_IMCU; -+ main_ptr->context_state = CTX_PROCESS_IMCU; - /*FALLTHROUGH*/ - case CTX_PROCESS_IMCU: - /* Call postprocessor using previously set pointers */ -- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr], -- &main->rowgroup_ctr, main->rowgroups_avail, -+ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], -+ &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, - output_buf, out_row_ctr, out_rows_avail); -- if (main->rowgroup_ctr < main->rowgroups_avail) -+ if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) - return; /* Need to suspend */ - /* After the first iMCU, change wraparound pointers to normal state */ -- if (main->iMCU_row_ctr == 1) -+ if (main_ptr->iMCU_row_ctr == 1) - set_wraparound_pointers(cinfo); - /* Prepare to load new iMCU row using other xbuffer list */ -- main->whichptr ^= 1; /* 0=>1 or 1=>0 */ -- main->buffer_full = FALSE; -+ main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */ -+ main_ptr->buffer_full = FALSE; - /* Still need to process last row group of this iMCU row, */ - /* which is saved at index M+1 of the other xbuffer */ -- main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); -- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); -- main->context_state = CTX_POSTPONED_ROW; -+ main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); -+ main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); -+ main_ptr->context_state = CTX_POSTPONED_ROW; - } - } - -@@ -475,15 +475,15 @@ - GLOBAL(void) - jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) - { -- my_main_ptr main; -+ my_main_ptr main_ptr; - int ci, rgroup, ngroups; - jpeg_component_info *compptr; - -- main = (my_main_ptr) -+ main_ptr = (my_main_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_main_controller)); -- cinfo->main = (struct jpeg_d_main_controller *) main; -- main->pub.start_pass = start_pass_main; -+ cinfo->main = (struct jpeg_d_main_controller *) main_ptr; -+ main_ptr->pub.start_pass = start_pass_main; - - if (need_full_buffer) /* shouldn't happen */ - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); -@@ -504,7 +504,7 @@ - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ -- main->buffer[ci] = (*cinfo->mem->alloc_sarray) -+ main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (JDIMENSION) (rgroup * ngroups)); -diff -ru jpeg-8c/jerror.c ioquake3/code/jpeg-8c/jerror.c ---- jpeg-8c/jerror.c 1998-02-21 19:03:16.000000000 +0000 -+++ ioquake3/code/jpeg-8c/jerror.c 2011-11-25 11:24:52.000000000 +0000 -@@ -24,6 +24,8 @@ - #include "jversion.h" - #include "jerror.h" - -+#include <stdlib.h> -+ - #ifdef USE_WINDOWS_MESSAGEBOX - #include <windows.h> - #endif -Only in jpeg-8c: jmemansi.c -Only in jpeg-8c: jmemdosa.asm -Only in jpeg-8c: jmemdos.c -Only in jpeg-8c: jmemmac.c -Only in jpeg-8c: jmemname.c -Only in jpeg-8c: jpegtran.1 -Only in jpeg-8c: jpegtran.c -Only in jpeg-8c: libjpeg.map -Only in jpeg-8c: libjpeg.txt -Only in jpeg-8c: ltmain.sh -Only in jpeg-8c: makcjpeg.st -Only in jpeg-8c: makdjpeg.st -Only in jpeg-8c: makeadsw.vc6 -Only in jpeg-8c: makeasln.v10 -Only in jpeg-8c: makecdep.vc6 -Only in jpeg-8c: makecdsp.vc6 -Only in jpeg-8c: makecfil.v10 -Only in jpeg-8c: makecmak.vc6 -Only in jpeg-8c: makecvcx.v10 -Only in jpeg-8c: makeddep.vc6 -Only in jpeg-8c: makeddsp.vc6 -Only in jpeg-8c: makedfil.v10 -Only in jpeg-8c: makedmak.vc6 -Only in jpeg-8c: makedvcx.v10 -Only in jpeg-8c: Makefile.am -Only in jpeg-8c: makefile.ansi -Only in jpeg-8c: makefile.bcc -Only in jpeg-8c: makefile.dj -Only in jpeg-8c: Makefile.in -Only in jpeg-8c: makefile.manx -Only in jpeg-8c: makefile.mc6 -Only in jpeg-8c: makefile.mms -Only in jpeg-8c: makefile.sas -Only in jpeg-8c: makefile.unix -Only in jpeg-8c: makefile.vc -Only in jpeg-8c: makefile.vms -Only in jpeg-8c: makefile.wat -Only in jpeg-8c: makejdep.vc6 -Only in jpeg-8c: makejdsp.vc6 -Only in jpeg-8c: makejdsw.vc6 -Only in jpeg-8c: makejfil.v10 -Only in jpeg-8c: makejmak.vc6 -Only in jpeg-8c: makejsln.v10 -Only in jpeg-8c: makejvcx.v10 -Only in jpeg-8c: makeproj.mac -Only in jpeg-8c: makerdep.vc6 -Only in jpeg-8c: makerdsp.vc6 -Only in jpeg-8c: makerfil.v10 -Only in jpeg-8c: makermak.vc6 -Only in jpeg-8c: makervcx.v10 -Only in jpeg-8c: maketdep.vc6 -Only in jpeg-8c: maketdsp.vc6 -Only in jpeg-8c: maketfil.v10 -Only in jpeg-8c: maketmak.vc6 -Only in jpeg-8c: maketvcx.v10 -Only in jpeg-8c: makewdep.vc6 -Only in jpeg-8c: makewdsp.vc6 -Only in jpeg-8c: makewfil.v10 -Only in jpeg-8c: makewmak.vc6 -Only in jpeg-8c: makewvcx.v10 -Only in jpeg-8c: makljpeg.st -Only in jpeg-8c: maktjpeg.st -Only in jpeg-8c: makvms.opt -Only in jpeg-8c: missing -Only in jpeg-8c: rdbmp.c -Only in jpeg-8c: rdcolmap.c -Only in jpeg-8c: rdgif.c -Only in jpeg-8c: rdjpgcom.1 -Only in jpeg-8c: rdjpgcom.c -Only in jpeg-8c: rdppm.c -Only in jpeg-8c: rdrle.c -Only in jpeg-8c: rdswitch.c -Only in jpeg-8c: rdtarga.c -Only in jpeg-8c: structure.txt -Only in jpeg-8c: testimg.bmp -Only in jpeg-8c: testimg.jpg -Only in jpeg-8c: testimgp.jpg -Only in jpeg-8c: testimg.ppm -Only in jpeg-8c: testorig.jpg -Only in jpeg-8c: testprog.jpg -Only in jpeg-8c: transupp.c -Only in jpeg-8c: transupp.h -Only in jpeg-8c: usage.txt -Only in jpeg-8c: wizard.txt -Only in jpeg-8c: wrbmp.c -Only in jpeg-8c: wrgif.c -Only in jpeg-8c: wrjpgcom.1 -Only in jpeg-8c: wrjpgcom.c -Only in jpeg-8c: wrppm.c -Only in jpeg-8c: wrrle.c -Only in jpeg-8c: wrtarga.c diff --git a/src/jpeg-8c/jaricom.c b/src/jpeg-8c/jaricom.c deleted file mode 100644 index f43e2ea7..00000000 --- a/src/jpeg-8c/jaricom.c +++ /dev/null @@ -1,153 +0,0 @@ -/* - * jaricom.c - * - * Developed 1997-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains probability estimation tables for common use in - * arithmetic entropy encoding and decoding routines. - * - * This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1 - * and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec - * (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82). - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -/* The following #define specifies the packing of the four components - * into the compact INT32 representation. - * Note that this formula must match the actual arithmetic encoder - * and decoder implementation. The implementation has to be changed - * if this formula is changed. - * The current organization is leaned on Markus Kuhn's JBIG - * implementation (jbig_tab.c). - */ - -#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b) - -const INT32 jpeg_aritab[113+1] = { -/* - * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS - */ - V( 0, 0x5a1d, 1, 1, 1 ), - V( 1, 0x2586, 14, 2, 0 ), - V( 2, 0x1114, 16, 3, 0 ), - V( 3, 0x080b, 18, 4, 0 ), - V( 4, 0x03d8, 20, 5, 0 ), - V( 5, 0x01da, 23, 6, 0 ), - V( 6, 0x00e5, 25, 7, 0 ), - V( 7, 0x006f, 28, 8, 0 ), - V( 8, 0x0036, 30, 9, 0 ), - V( 9, 0x001a, 33, 10, 0 ), - V( 10, 0x000d, 35, 11, 0 ), - V( 11, 0x0006, 9, 12, 0 ), - V( 12, 0x0003, 10, 13, 0 ), - V( 13, 0x0001, 12, 13, 0 ), - V( 14, 0x5a7f, 15, 15, 1 ), - V( 15, 0x3f25, 36, 16, 0 ), - V( 16, 0x2cf2, 38, 17, 0 ), - V( 17, 0x207c, 39, 18, 0 ), - V( 18, 0x17b9, 40, 19, 0 ), - V( 19, 0x1182, 42, 20, 0 ), - V( 20, 0x0cef, 43, 21, 0 ), - V( 21, 0x09a1, 45, 22, 0 ), - V( 22, 0x072f, 46, 23, 0 ), - V( 23, 0x055c, 48, 24, 0 ), - V( 24, 0x0406, 49, 25, 0 ), - V( 25, 0x0303, 51, 26, 0 ), - V( 26, 0x0240, 52, 27, 0 ), - V( 27, 0x01b1, 54, 28, 0 ), - V( 28, 0x0144, 56, 29, 0 ), - V( 29, 0x00f5, 57, 30, 0 ), - V( 30, 0x00b7, 59, 31, 0 ), - V( 31, 0x008a, 60, 32, 0 ), - V( 32, 0x0068, 62, 33, 0 ), - V( 33, 0x004e, 63, 34, 0 ), - V( 34, 0x003b, 32, 35, 0 ), - V( 35, 0x002c, 33, 9, 0 ), - V( 36, 0x5ae1, 37, 37, 1 ), - V( 37, 0x484c, 64, 38, 0 ), - V( 38, 0x3a0d, 65, 39, 0 ), - V( 39, 0x2ef1, 67, 40, 0 ), - V( 40, 0x261f, 68, 41, 0 ), - V( 41, 0x1f33, 69, 42, 0 ), - V( 42, 0x19a8, 70, 43, 0 ), - V( 43, 0x1518, 72, 44, 0 ), - V( 44, 0x1177, 73, 45, 0 ), - V( 45, 0x0e74, 74, 46, 0 ), - V( 46, 0x0bfb, 75, 47, 0 ), - V( 47, 0x09f8, 77, 48, 0 ), - V( 48, 0x0861, 78, 49, 0 ), - V( 49, 0x0706, 79, 50, 0 ), - V( 50, 0x05cd, 48, 51, 0 ), - V( 51, 0x04de, 50, 52, 0 ), - V( 52, 0x040f, 50, 53, 0 ), - V( 53, 0x0363, 51, 54, 0 ), - V( 54, 0x02d4, 52, 55, 0 ), - V( 55, 0x025c, 53, 56, 0 ), - V( 56, 0x01f8, 54, 57, 0 ), - V( 57, 0x01a4, 55, 58, 0 ), - V( 58, 0x0160, 56, 59, 0 ), - V( 59, 0x0125, 57, 60, 0 ), - V( 60, 0x00f6, 58, 61, 0 ), - V( 61, 0x00cb, 59, 62, 0 ), - V( 62, 0x00ab, 61, 63, 0 ), - V( 63, 0x008f, 61, 32, 0 ), - V( 64, 0x5b12, 65, 65, 1 ), - V( 65, 0x4d04, 80, 66, 0 ), - V( 66, 0x412c, 81, 67, 0 ), - V( 67, 0x37d8, 82, 68, 0 ), - V( 68, 0x2fe8, 83, 69, 0 ), - V( 69, 0x293c, 84, 70, 0 ), - V( 70, 0x2379, 86, 71, 0 ), - V( 71, 0x1edf, 87, 72, 0 ), - V( 72, 0x1aa9, 87, 73, 0 ), - V( 73, 0x174e, 72, 74, 0 ), - V( 74, 0x1424, 72, 75, 0 ), - V( 75, 0x119c, 74, 76, 0 ), - V( 76, 0x0f6b, 74, 77, 0 ), - V( 77, 0x0d51, 75, 78, 0 ), - V( 78, 0x0bb6, 77, 79, 0 ), - V( 79, 0x0a40, 77, 48, 0 ), - V( 80, 0x5832, 80, 81, 1 ), - V( 81, 0x4d1c, 88, 82, 0 ), - V( 82, 0x438e, 89, 83, 0 ), - V( 83, 0x3bdd, 90, 84, 0 ), - V( 84, 0x34ee, 91, 85, 0 ), - V( 85, 0x2eae, 92, 86, 0 ), - V( 86, 0x299a, 93, 87, 0 ), - V( 87, 0x2516, 86, 71, 0 ), - V( 88, 0x5570, 88, 89, 1 ), - V( 89, 0x4ca9, 95, 90, 0 ), - V( 90, 0x44d9, 96, 91, 0 ), - V( 91, 0x3e22, 97, 92, 0 ), - V( 92, 0x3824, 99, 93, 0 ), - V( 93, 0x32b4, 99, 94, 0 ), - V( 94, 0x2e17, 93, 86, 0 ), - V( 95, 0x56a8, 95, 96, 1 ), - V( 96, 0x4f46, 101, 97, 0 ), - V( 97, 0x47e5, 102, 98, 0 ), - V( 98, 0x41cf, 103, 99, 0 ), - V( 99, 0x3c3d, 104, 100, 0 ), - V( 100, 0x375e, 99, 93, 0 ), - V( 101, 0x5231, 105, 102, 0 ), - V( 102, 0x4c0f, 106, 103, 0 ), - V( 103, 0x4639, 107, 104, 0 ), - V( 104, 0x415e, 103, 99, 0 ), - V( 105, 0x5627, 105, 106, 1 ), - V( 106, 0x50e7, 108, 107, 0 ), - V( 107, 0x4b85, 109, 103, 0 ), - V( 108, 0x5597, 110, 109, 0 ), - V( 109, 0x504f, 111, 107, 0 ), - V( 110, 0x5a10, 110, 111, 1 ), - V( 111, 0x5522, 112, 109, 0 ), - V( 112, 0x59eb, 112, 111, 1 ), -/* - * This last entry is used for fixed probability estimate of 0.5 - * as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851. - */ - V( 113, 0x5a1d, 113, 113, 0 ) -}; diff --git a/src/jpeg-8c/jcapimin.c b/src/jpeg-8c/jcapimin.c deleted file mode 100644 index 639ce86f..00000000 --- a/src/jpeg-8c/jcapimin.c +++ /dev/null @@ -1,288 +0,0 @@ -/* - * jcapimin.c - * - * Copyright (C) 1994-1998, Thomas G. Lane. - * Modified 2003-2010 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains application interface code for the compression half - * of the JPEG library. These are the "minimum" API routines that may be - * needed in either the normal full-compression case or the transcoding-only - * case. - * - * Most of the routines intended to be called directly by an application - * are in this file or in jcapistd.c. But also see jcparam.c for - * parameter-setup helper routines, jcomapi.c for routines shared by - * compression and decompression, and jctrans.c for the transcoding case. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * Initialization of a JPEG compression object. - * The error manager must already be set up (in case memory manager fails). - */ - -GLOBAL(void) -jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) -{ - int i; - - /* Guard against version mismatches between library and caller. */ - cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ - if (version != JPEG_LIB_VERSION) - ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); - if (structsize != SIZEOF(struct jpeg_compress_struct)) - ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, - (int) SIZEOF(struct jpeg_compress_struct), (int) structsize); - - /* For debugging purposes, we zero the whole master structure. - * But the application has already set the err pointer, and may have set - * client_data, so we have to save and restore those fields. - * Note: if application hasn't set client_data, tools like Purify may - * complain here. - */ - { - struct jpeg_error_mgr * err = cinfo->err; - void * client_data = cinfo->client_data; /* ignore Purify complaint here */ - MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct)); - cinfo->err = err; - cinfo->client_data = client_data; - } - cinfo->is_decompressor = FALSE; - - /* Initialize a memory manager instance for this object */ - jinit_memory_mgr((j_common_ptr) cinfo); - - /* Zero out pointers to permanent structures. */ - cinfo->progress = NULL; - cinfo->dest = NULL; - - cinfo->comp_info = NULL; - - for (i = 0; i < NUM_QUANT_TBLS; i++) { - cinfo->quant_tbl_ptrs[i] = NULL; - cinfo->q_scale_factor[i] = 100; - } - - for (i = 0; i < NUM_HUFF_TBLS; i++) { - cinfo->dc_huff_tbl_ptrs[i] = NULL; - cinfo->ac_huff_tbl_ptrs[i] = NULL; - } - - /* Must do it here for emit_dqt in case jpeg_write_tables is used */ - cinfo->block_size = DCTSIZE; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - - cinfo->script_space = NULL; - - cinfo->input_gamma = 1.0; /* in case application forgets */ - - /* OK, I'm ready */ - cinfo->global_state = CSTATE_START; -} - - -/* - * Destruction of a JPEG compression object - */ - -GLOBAL(void) -jpeg_destroy_compress (j_compress_ptr cinfo) -{ - jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ -} - - -/* - * Abort processing of a JPEG compression operation, - * but don't destroy the object itself. - */ - -GLOBAL(void) -jpeg_abort_compress (j_compress_ptr cinfo) -{ - jpeg_abort((j_common_ptr) cinfo); /* use common routine */ -} - - -/* - * Forcibly suppress or un-suppress all quantization and Huffman tables. - * Marks all currently defined tables as already written (if suppress) - * or not written (if !suppress). This will control whether they get emitted - * by a subsequent jpeg_start_compress call. - * - * This routine is exported for use by applications that want to produce - * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but - * since it is called by jpeg_start_compress, we put it here --- otherwise - * jcparam.o would be linked whether the application used it or not. - */ - -GLOBAL(void) -jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) -{ - int i; - JQUANT_TBL * qtbl; - JHUFF_TBL * htbl; - - for (i = 0; i < NUM_QUANT_TBLS; i++) { - if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) - qtbl->sent_table = suppress; - } - - for (i = 0; i < NUM_HUFF_TBLS; i++) { - if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) - htbl->sent_table = suppress; - if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) - htbl->sent_table = suppress; - } -} - - -/* - * Finish JPEG compression. - * - * If a multipass operating mode was selected, this may do a great deal of - * work including most of the actual output. - */ - -GLOBAL(void) -jpeg_finish_compress (j_compress_ptr cinfo) -{ - JDIMENSION iMCU_row; - - if (cinfo->global_state == CSTATE_SCANNING || - cinfo->global_state == CSTATE_RAW_OK) { - /* Terminate first pass */ - if (cinfo->next_scanline < cinfo->image_height) - ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); - (*cinfo->master->finish_pass) (cinfo); - } else if (cinfo->global_state != CSTATE_WRCOEFS) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - /* Perform any remaining passes */ - while (! cinfo->master->is_last_pass) { - (*cinfo->master->prepare_for_pass) (cinfo); - for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { - if (cinfo->progress != NULL) { - cinfo->progress->pass_counter = (long) iMCU_row; - cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - } - /* We bypass the main controller and invoke coef controller directly; - * all work is being done from the coefficient buffer. - */ - if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); - } - (*cinfo->master->finish_pass) (cinfo); - } - /* Write EOI, do final cleanup */ - (*cinfo->marker->write_file_trailer) (cinfo); - (*cinfo->dest->term_destination) (cinfo); - /* We can use jpeg_abort to release memory and reset global_state */ - jpeg_abort((j_common_ptr) cinfo); -} - - -/* - * Write a special marker. - * This is only recommended for writing COM or APPn markers. - * Must be called after jpeg_start_compress() and before - * first call to jpeg_write_scanlines() or jpeg_write_raw_data(). - */ - -GLOBAL(void) -jpeg_write_marker (j_compress_ptr cinfo, int marker, - const JOCTET *dataptr, unsigned int datalen) -{ - JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val)); - - if (cinfo->next_scanline != 0 || - (cinfo->global_state != CSTATE_SCANNING && - cinfo->global_state != CSTATE_RAW_OK && - cinfo->global_state != CSTATE_WRCOEFS)) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); - write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ - while (datalen--) { - (*write_marker_byte) (cinfo, *dataptr); - dataptr++; - } -} - -/* Same, but piecemeal. */ - -GLOBAL(void) -jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) -{ - if (cinfo->next_scanline != 0 || - (cinfo->global_state != CSTATE_SCANNING && - cinfo->global_state != CSTATE_RAW_OK && - cinfo->global_state != CSTATE_WRCOEFS)) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); -} - -GLOBAL(void) -jpeg_write_m_byte (j_compress_ptr cinfo, int val) -{ - (*cinfo->marker->write_marker_byte) (cinfo, val); -} - - -/* - * Alternate compression function: just write an abbreviated table file. - * Before calling this, all parameters and a data destination must be set up. - * - * To produce a pair of files containing abbreviated tables and abbreviated - * image data, one would proceed as follows: - * - * initialize JPEG object - * set JPEG parameters - * set destination to table file - * jpeg_write_tables(cinfo); - * set destination to image file - * jpeg_start_compress(cinfo, FALSE); - * write data... - * jpeg_finish_compress(cinfo); - * - * jpeg_write_tables has the side effect of marking all tables written - * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress - * will not re-emit the tables unless it is passed write_all_tables=TRUE. - */ - -GLOBAL(void) -jpeg_write_tables (j_compress_ptr cinfo) -{ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - /* (Re)initialize error mgr and destination modules */ - (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); - (*cinfo->dest->init_destination) (cinfo); - /* Initialize the marker writer ... bit of a crock to do it here. */ - jinit_marker_writer(cinfo); - /* Write them tables! */ - (*cinfo->marker->write_tables_only) (cinfo); - /* And clean up. */ - (*cinfo->dest->term_destination) (cinfo); - /* - * In library releases up through v6a, we called jpeg_abort() here to free - * any working memory allocated by the destination manager and marker - * writer. Some applications had a problem with that: they allocated space - * of their own from the library memory manager, and didn't want it to go - * away during write_tables. So now we do nothing. This will cause a - * memory leak if an app calls write_tables repeatedly without doing a full - * compression cycle or otherwise resetting the JPEG object. However, that - * seems less bad than unexpectedly freeing memory in the normal case. - * An app that prefers the old behavior can call jpeg_abort for itself after - * each call to jpeg_write_tables(). - */ -} diff --git a/src/jpeg-8c/jcapistd.c b/src/jpeg-8c/jcapistd.c deleted file mode 100644 index c0320b1b..00000000 --- a/src/jpeg-8c/jcapistd.c +++ /dev/null @@ -1,161 +0,0 @@ -/* - * jcapistd.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains application interface code for the compression half - * of the JPEG library. These are the "standard" API routines that are - * used in the normal full-compression case. They are not used by a - * transcoding-only application. Note that if an application links in - * jpeg_start_compress, it will end up linking in the entire compressor. - * We thus must separate this file from jcapimin.c to avoid linking the - * whole compression library into a transcoder. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * Compression initialization. - * Before calling this, all parameters and a data destination must be set up. - * - * We require a write_all_tables parameter as a failsafe check when writing - * multiple datastreams from the same compression object. Since prior runs - * will have left all the tables marked sent_table=TRUE, a subsequent run - * would emit an abbreviated stream (no tables) by default. This may be what - * is wanted, but for safety's sake it should not be the default behavior: - * programmers should have to make a deliberate choice to emit abbreviated - * images. Therefore the documentation and examples should encourage people - * to pass write_all_tables=TRUE; then it will take active thought to do the - * wrong thing. - */ - -GLOBAL(void) -jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) -{ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - if (write_all_tables) - jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ - - /* (Re)initialize error mgr and destination modules */ - (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); - (*cinfo->dest->init_destination) (cinfo); - /* Perform master selection of active modules */ - jinit_compress_master(cinfo); - /* Set up for the first pass */ - (*cinfo->master->prepare_for_pass) (cinfo); - /* Ready for application to drive first pass through jpeg_write_scanlines - * or jpeg_write_raw_data. - */ - cinfo->next_scanline = 0; - cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); -} - - -/* - * Write some scanlines of data to the JPEG compressor. - * - * The return value will be the number of lines actually written. - * This should be less than the supplied num_lines only in case that - * the data destination module has requested suspension of the compressor, - * or if more than image_height scanlines are passed in. - * - * Note: we warn about excess calls to jpeg_write_scanlines() since - * this likely signals an application programmer error. However, - * excess scanlines passed in the last valid call are *silently* ignored, - * so that the application need not adjust num_lines for end-of-image - * when using a multiple-scanline buffer. - */ - -GLOBAL(JDIMENSION) -jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, - JDIMENSION num_lines) -{ - JDIMENSION row_ctr, rows_left; - - if (cinfo->global_state != CSTATE_SCANNING) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - if (cinfo->next_scanline >= cinfo->image_height) - WARNMS(cinfo, JWRN_TOO_MUCH_DATA); - - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) { - cinfo->progress->pass_counter = (long) cinfo->next_scanline; - cinfo->progress->pass_limit = (long) cinfo->image_height; - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - } - - /* Give master control module another chance if this is first call to - * jpeg_write_scanlines. This lets output of the frame/scan headers be - * delayed so that application can write COM, etc, markers between - * jpeg_start_compress and jpeg_write_scanlines. - */ - if (cinfo->master->call_pass_startup) - (*cinfo->master->pass_startup) (cinfo); - - /* Ignore any extra scanlines at bottom of image. */ - rows_left = cinfo->image_height - cinfo->next_scanline; - if (num_lines > rows_left) - num_lines = rows_left; - - row_ctr = 0; - (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); - cinfo->next_scanline += row_ctr; - return row_ctr; -} - - -/* - * Alternate entry point to write raw data. - * Processes exactly one iMCU row per call, unless suspended. - */ - -GLOBAL(JDIMENSION) -jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, - JDIMENSION num_lines) -{ - JDIMENSION lines_per_iMCU_row; - - if (cinfo->global_state != CSTATE_RAW_OK) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - if (cinfo->next_scanline >= cinfo->image_height) { - WARNMS(cinfo, JWRN_TOO_MUCH_DATA); - return 0; - } - - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) { - cinfo->progress->pass_counter = (long) cinfo->next_scanline; - cinfo->progress->pass_limit = (long) cinfo->image_height; - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - } - - /* Give master control module another chance if this is first call to - * jpeg_write_raw_data. This lets output of the frame/scan headers be - * delayed so that application can write COM, etc, markers between - * jpeg_start_compress and jpeg_write_raw_data. - */ - if (cinfo->master->call_pass_startup) - (*cinfo->master->pass_startup) (cinfo); - - /* Verify that at least one iMCU row has been passed. */ - lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; - if (num_lines < lines_per_iMCU_row) - ERREXIT(cinfo, JERR_BUFFER_SIZE); - - /* Directly compress the row. */ - if (! (*cinfo->coef->compress_data) (cinfo, data)) { - /* If compressor did not consume the whole row, suspend processing. */ - return 0; - } - - /* OK, we processed one iMCU row. */ - cinfo->next_scanline += lines_per_iMCU_row; - return lines_per_iMCU_row; -} diff --git a/src/jpeg-8c/jcarith.c b/src/jpeg-8c/jcarith.c deleted file mode 100644 index 0b7ea55d..00000000 --- a/src/jpeg-8c/jcarith.c +++ /dev/null @@ -1,934 +0,0 @@ -/* - * jcarith.c - * - * Developed 1997-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains portable arithmetic entropy encoding routines for JPEG - * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). - * - * Both sequential and progressive modes are supported in this single module. - * - * Suspension is not currently supported in this module. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Expanded entropy encoder object for arithmetic encoding. */ - -typedef struct { - struct jpeg_entropy_encoder pub; /* public fields */ - - INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ - INT32 a; /* A register, normalized size of coding interval */ - INT32 sc; /* counter for stacked 0xFF values which might overflow */ - INT32 zc; /* counter for pending 0x00 output values which might * - * be discarded at the end ("Pacman" termination) */ - int ct; /* bit shift counter, determines when next byte will be written */ - int buffer; /* buffer for most recent output byte != 0xFF */ - - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ - int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ - - unsigned int restarts_to_go; /* MCUs left in this restart interval */ - int next_restart_num; /* next restart number to write (0-7) */ - - /* Pointers to statistics areas (these workspaces have image lifespan) */ - unsigned char * dc_stats[NUM_ARITH_TBLS]; - unsigned char * ac_stats[NUM_ARITH_TBLS]; - - /* Statistics bin for coding with fixed probability 0.5 */ - unsigned char fixed_bin[4]; -} arith_entropy_encoder; - -typedef arith_entropy_encoder * arith_entropy_ptr; - -/* The following two definitions specify the allocation chunk size - * for the statistics area. - * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least - * 49 statistics bins for DC, and 245 statistics bins for AC coding. - * - * We use a compact representation with 1 byte per statistics bin, - * thus the numbers directly represent byte sizes. - * This 1 byte per statistics bin contains the meaning of the MPS - * (more probable symbol) in the highest bit (mask 0x80), and the - * index into the probability estimation state machine table - * in the lower bits (mask 0x7F). - */ - -#define DC_STAT_BINS 64 -#define AC_STAT_BINS 256 - -/* NOTE: Uncomment the following #define if you want to use the - * given formula for calculating the AC conditioning parameter Kx - * for spectral selection progressive coding in section G.1.3.2 - * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). - * Although the spec and P&M authors claim that this "has proven - * to give good results for 8 bit precision samples", I'm not - * convinced yet that this is really beneficial. - * Early tests gave only very marginal compression enhancements - * (a few - around 5 or so - bytes even for very large files), - * which would turn out rather negative if we'd suppress the - * DAC (Define Arithmetic Conditioning) marker segments for - * the default parameters in the future. - * Note that currently the marker writing module emits 12-byte - * DAC segments for a full-component scan in a color image. - * This is not worth worrying about IMHO. However, since the - * spec defines the default values to be used if the tables - * are omitted (unlike Huffman tables, which are required - * anyway), one might optimize this behaviour in the future, - * and then it would be disadvantageous to use custom tables if - * they don't provide sufficient gain to exceed the DAC size. - * - * On the other hand, I'd consider it as a reasonable result - * that the conditioning has no significant influence on the - * compression performance. This means that the basic - * statistical model is already rather stable. - * - * Thus, at the moment, we use the default conditioning values - * anyway, and do not use the custom formula. - * -#define CALCULATE_SPECTRAL_CONDITIONING - */ - -/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. - * We assume that int right shift is unsigned if INT32 right shift is, - * which should be safe. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define ISHIFT_TEMPS int ishift_temp; -#define IRIGHT_SHIFT(x,shft) \ - ((ishift_temp = (x)) < 0 ? \ - (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ - (ishift_temp >> (shft))) -#else -#define ISHIFT_TEMPS -#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) -#endif - - -LOCAL(void) -emit_byte (int val, j_compress_ptr cinfo) -/* Write next output byte; we do not support suspension in this module. */ -{ - struct jpeg_destination_mgr * dest = cinfo->dest; - - *dest->next_output_byte++ = (JOCTET) val; - if (--dest->free_in_buffer == 0) - if (! (*dest->empty_output_buffer) (cinfo)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); -} - - -/* - * Finish up at the end of an arithmetic-compressed scan. - */ - -METHODDEF(void) -finish_pass (j_compress_ptr cinfo) -{ - arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; - INT32 temp; - - /* Section D.1.8: Termination of encoding */ - - /* Find the e->c in the coding interval with the largest - * number of trailing zero bits */ - if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) - e->c = temp + 0x8000L; - else - e->c = temp; - /* Send remaining bytes to output */ - e->c <<= e->ct; - if (e->c & 0xF8000000L) { - /* One final overflow has to be handled */ - if (e->buffer >= 0) { - if (e->zc) - do emit_byte(0x00, cinfo); - while (--e->zc); - emit_byte(e->buffer + 1, cinfo); - if (e->buffer + 1 == 0xFF) - emit_byte(0x00, cinfo); - } - e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ - e->sc = 0; - } else { - if (e->buffer == 0) - ++e->zc; - else if (e->buffer >= 0) { - if (e->zc) - do emit_byte(0x00, cinfo); - while (--e->zc); - emit_byte(e->buffer, cinfo); - } - if (e->sc) { - if (e->zc) - do emit_byte(0x00, cinfo); - while (--e->zc); - do { - emit_byte(0xFF, cinfo); - emit_byte(0x00, cinfo); - } while (--e->sc); - } - } - /* Output final bytes only if they are not 0x00 */ - if (e->c & 0x7FFF800L) { - if (e->zc) /* output final pending zero bytes */ - do emit_byte(0x00, cinfo); - while (--e->zc); - emit_byte((e->c >> 19) & 0xFF, cinfo); - if (((e->c >> 19) & 0xFF) == 0xFF) - emit_byte(0x00, cinfo); - if (e->c & 0x7F800L) { - emit_byte((e->c >> 11) & 0xFF, cinfo); - if (((e->c >> 11) & 0xFF) == 0xFF) - emit_byte(0x00, cinfo); - } - } -} - - -/* - * The core arithmetic encoding routine (common in JPEG and JBIG). - * This needs to go as fast as possible. - * Machine-dependent optimization facilities - * are not utilized in this portable implementation. - * However, this code should be fairly efficient and - * may be a good base for further optimizations anyway. - * - * Parameter 'val' to be encoded may be 0 or 1 (binary decision). - * - * Note: I've added full "Pacman" termination support to the - * byte output routines, which is equivalent to the optional - * Discard_final_zeros procedure (Figure D.15) in the spec. - * Thus, we always produce the shortest possible output - * stream compliant to the spec (no trailing zero bytes, - * except for FF stuffing). - * - * I've also introduced a new scheme for accessing - * the probability estimation state machine table, - * derived from Markus Kuhn's JBIG implementation. - */ - -LOCAL(void) -arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) -{ - register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; - register unsigned char nl, nm; - register INT32 qe, temp; - register int sv; - - /* Fetch values from our compact representation of Table D.2: - * Qe values and probability estimation state machine - */ - sv = *st; - qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ - nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ - nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ - - /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ - e->a -= qe; - if (val != (sv >> 7)) { - /* Encode the less probable symbol */ - if (e->a >= qe) { - /* If the interval size (qe) for the less probable symbol (LPS) - * is larger than the interval size for the MPS, then exchange - * the two symbols for coding efficiency, otherwise code the LPS - * as usual: */ - e->c += e->a; - e->a = qe; - } - *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ - } else { - /* Encode the more probable symbol */ - if (e->a >= 0x8000L) - return; /* A >= 0x8000 -> ready, no renormalization required */ - if (e->a < qe) { - /* If the interval size (qe) for the less probable symbol (LPS) - * is larger than the interval size for the MPS, then exchange - * the two symbols for coding efficiency: */ - e->c += e->a; - e->a = qe; - } - *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ - } - - /* Renormalization & data output per section D.1.6 */ - do { - e->a <<= 1; - e->c <<= 1; - if (--e->ct == 0) { - /* Another byte is ready for output */ - temp = e->c >> 19; - if (temp > 0xFF) { - /* Handle overflow over all stacked 0xFF bytes */ - if (e->buffer >= 0) { - if (e->zc) - do emit_byte(0x00, cinfo); - while (--e->zc); - emit_byte(e->buffer + 1, cinfo); - if (e->buffer + 1 == 0xFF) - emit_byte(0x00, cinfo); - } - e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ - e->sc = 0; - /* Note: The 3 spacer bits in the C register guarantee - * that the new buffer byte can't be 0xFF here - * (see page 160 in the P&M JPEG book). */ - e->buffer = temp & 0xFF; /* new output byte, might overflow later */ - } else if (temp == 0xFF) { - ++e->sc; /* stack 0xFF byte (which might overflow later) */ - } else { - /* Output all stacked 0xFF bytes, they will not overflow any more */ - if (e->buffer == 0) - ++e->zc; - else if (e->buffer >= 0) { - if (e->zc) - do emit_byte(0x00, cinfo); - while (--e->zc); - emit_byte(e->buffer, cinfo); - } - if (e->sc) { - if (e->zc) - do emit_byte(0x00, cinfo); - while (--e->zc); - do { - emit_byte(0xFF, cinfo); - emit_byte(0x00, cinfo); - } while (--e->sc); - } - e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ - } - e->c &= 0x7FFFFL; - e->ct += 8; - } - } while (e->a < 0x8000L); -} - - -/* - * Emit a restart marker & resynchronize predictions. - */ - -LOCAL(void) -emit_restart (j_compress_ptr cinfo, int restart_num) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - int ci; - jpeg_component_info * compptr; - - finish_pass(cinfo); - - emit_byte(0xFF, cinfo); - emit_byte(JPEG_RST0 + restart_num, cinfo); - - /* Re-initialize statistics areas */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) { - MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); - /* Reset DC predictions to 0 */ - entropy->last_dc_val[ci] = 0; - entropy->dc_context[ci] = 0; - } - /* AC needs no table when not present */ - if (cinfo->Se) { - MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); - } - } - - /* Reset arithmetic encoding variables */ - entropy->c = 0; - entropy->a = 0x10000L; - entropy->sc = 0; - entropy->zc = 0; - entropy->ct = 11; - entropy->buffer = -1; /* empty */ -} - - -/* - * MCU encoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; - unsigned char *st; - int blkn, ci, tbl; - int v, v2, m; - ISHIFT_TEMPS - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - emit_restart(cinfo, entropy->next_restart_num); - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; - - /* Compute the DC value after the required point transform by Al. - * This is simply an arithmetic right shift. - */ - m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); - - /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ - - /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ - st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; - - /* Figure F.4: Encode_DC_DIFF */ - if ((v = m - entropy->last_dc_val[ci]) == 0) { - arith_encode(cinfo, st, 0); - entropy->dc_context[ci] = 0; /* zero diff category */ - } else { - entropy->last_dc_val[ci] = m; - arith_encode(cinfo, st, 1); - /* Figure F.6: Encoding nonzero value v */ - /* Figure F.7: Encoding the sign of v */ - if (v > 0) { - arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ - st += 2; /* Table F.4: SP = S0 + 2 */ - entropy->dc_context[ci] = 4; /* small positive diff category */ - } else { - v = -v; - arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ - st += 3; /* Table F.4: SN = S0 + 3 */ - entropy->dc_context[ci] = 8; /* small negative diff category */ - } - /* Figure F.8: Encoding the magnitude category of v */ - m = 0; - if (v -= 1) { - arith_encode(cinfo, st, 1); - m = 1; - v2 = v; - st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ - while (v2 >>= 1) { - arith_encode(cinfo, st, 1); - m <<= 1; - st += 1; - } - } - arith_encode(cinfo, st, 0); - /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ - if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) - entropy->dc_context[ci] = 0; /* zero diff category */ - else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) - entropy->dc_context[ci] += 8; /* large diff category */ - /* Figure F.9: Encoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - arith_encode(cinfo, st, (m & v) ? 1 : 0); - } - } - - return TRUE; -} - - -/* - * MCU encoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; - unsigned char *st; - int tbl, k, ke; - int v, v2, m; - const int * natural_order; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - emit_restart(cinfo, entropy->next_restart_num); - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - natural_order = cinfo->natural_order; - - /* Encode the MCU data block */ - block = MCU_data[0]; - tbl = cinfo->cur_comp_info[0]->ac_tbl_no; - - /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ - - /* Establish EOB (end-of-block) index */ - for (ke = cinfo->Se; ke > 0; ke--) - /* We must apply the point transform by Al. For AC coefficients this - * is an integer division with rounding towards 0. To do this portably - * in C, we shift after obtaining the absolute value. - */ - if ((v = (*block)[natural_order[ke]]) >= 0) { - if (v >>= cinfo->Al) break; - } else { - v = -v; - if (v >>= cinfo->Al) break; - } - - /* Figure F.5: Encode_AC_Coefficients */ - for (k = cinfo->Ss; k <= ke; k++) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - arith_encode(cinfo, st, 0); /* EOB decision */ - for (;;) { - if ((v = (*block)[natural_order[k]]) >= 0) { - if (v >>= cinfo->Al) { - arith_encode(cinfo, st + 1, 1); - arith_encode(cinfo, entropy->fixed_bin, 0); - break; - } - } else { - v = -v; - if (v >>= cinfo->Al) { - arith_encode(cinfo, st + 1, 1); - arith_encode(cinfo, entropy->fixed_bin, 1); - break; - } - } - arith_encode(cinfo, st + 1, 0); st += 3; k++; - } - st += 2; - /* Figure F.8: Encoding the magnitude category of v */ - m = 0; - if (v -= 1) { - arith_encode(cinfo, st, 1); - m = 1; - v2 = v; - if (v2 >>= 1) { - arith_encode(cinfo, st, 1); - m <<= 1; - st = entropy->ac_stats[tbl] + - (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); - while (v2 >>= 1) { - arith_encode(cinfo, st, 1); - m <<= 1; - st += 1; - } - } - } - arith_encode(cinfo, st, 0); - /* Figure F.9: Encoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - arith_encode(cinfo, st, (m & v) ? 1 : 0); - } - /* Encode EOB decision only if k <= cinfo->Se */ - if (k <= cinfo->Se) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - arith_encode(cinfo, st, 1); - } - - return TRUE; -} - - -/* - * MCU encoding for DC successive approximation refinement scan. - */ - -METHODDEF(boolean) -encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - unsigned char *st; - int Al, blkn; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - emit_restart(cinfo, entropy->next_restart_num); - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - st = entropy->fixed_bin; /* use fixed probability estimation */ - Al = cinfo->Al; - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - /* We simply emit the Al'th bit of the DC coefficient value. */ - arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); - } - - return TRUE; -} - - -/* - * MCU encoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; - unsigned char *st; - int tbl, k, ke, kex; - int v; - const int * natural_order; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - emit_restart(cinfo, entropy->next_restart_num); - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - natural_order = cinfo->natural_order; - - /* Encode the MCU data block */ - block = MCU_data[0]; - tbl = cinfo->cur_comp_info[0]->ac_tbl_no; - - /* Section G.1.3.3: Encoding of AC coefficients */ - - /* Establish EOB (end-of-block) index */ - for (ke = cinfo->Se; ke > 0; ke--) - /* We must apply the point transform by Al. For AC coefficients this - * is an integer division with rounding towards 0. To do this portably - * in C, we shift after obtaining the absolute value. - */ - if ((v = (*block)[natural_order[ke]]) >= 0) { - if (v >>= cinfo->Al) break; - } else { - v = -v; - if (v >>= cinfo->Al) break; - } - - /* Establish EOBx (previous stage end-of-block) index */ - for (kex = ke; kex > 0; kex--) - if ((v = (*block)[natural_order[kex]]) >= 0) { - if (v >>= cinfo->Ah) break; - } else { - v = -v; - if (v >>= cinfo->Ah) break; - } - - /* Figure G.10: Encode_AC_Coefficients_SA */ - for (k = cinfo->Ss; k <= ke; k++) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - if (k > kex) - arith_encode(cinfo, st, 0); /* EOB decision */ - for (;;) { - if ((v = (*block)[natural_order[k]]) >= 0) { - if (v >>= cinfo->Al) { - if (v >> 1) /* previously nonzero coef */ - arith_encode(cinfo, st + 2, (v & 1)); - else { /* newly nonzero coef */ - arith_encode(cinfo, st + 1, 1); - arith_encode(cinfo, entropy->fixed_bin, 0); - } - break; - } - } else { - v = -v; - if (v >>= cinfo->Al) { - if (v >> 1) /* previously nonzero coef */ - arith_encode(cinfo, st + 2, (v & 1)); - else { /* newly nonzero coef */ - arith_encode(cinfo, st + 1, 1); - arith_encode(cinfo, entropy->fixed_bin, 1); - } - break; - } - } - arith_encode(cinfo, st + 1, 0); st += 3; k++; - } - } - /* Encode EOB decision only if k <= cinfo->Se */ - if (k <= cinfo->Se) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - arith_encode(cinfo, st, 1); - } - - return TRUE; -} - - -/* - * Encode and output one MCU's worth of arithmetic-compressed coefficients. - */ - -METHODDEF(boolean) -encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - jpeg_component_info * compptr; - JBLOCKROW block; - unsigned char *st; - int blkn, ci, tbl, k, ke; - int v, v2, m; - const int * natural_order; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - emit_restart(cinfo, entropy->next_restart_num); - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - natural_order = cinfo->natural_order; - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - - /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ - - tbl = compptr->dc_tbl_no; - - /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ - st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; - - /* Figure F.4: Encode_DC_DIFF */ - if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { - arith_encode(cinfo, st, 0); - entropy->dc_context[ci] = 0; /* zero diff category */ - } else { - entropy->last_dc_val[ci] = (*block)[0]; - arith_encode(cinfo, st, 1); - /* Figure F.6: Encoding nonzero value v */ - /* Figure F.7: Encoding the sign of v */ - if (v > 0) { - arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ - st += 2; /* Table F.4: SP = S0 + 2 */ - entropy->dc_context[ci] = 4; /* small positive diff category */ - } else { - v = -v; - arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ - st += 3; /* Table F.4: SN = S0 + 3 */ - entropy->dc_context[ci] = 8; /* small negative diff category */ - } - /* Figure F.8: Encoding the magnitude category of v */ - m = 0; - if (v -= 1) { - arith_encode(cinfo, st, 1); - m = 1; - v2 = v; - st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ - while (v2 >>= 1) { - arith_encode(cinfo, st, 1); - m <<= 1; - st += 1; - } - } - arith_encode(cinfo, st, 0); - /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ - if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) - entropy->dc_context[ci] = 0; /* zero diff category */ - else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) - entropy->dc_context[ci] += 8; /* large diff category */ - /* Figure F.9: Encoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - arith_encode(cinfo, st, (m & v) ? 1 : 0); - } - - /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ - - tbl = compptr->ac_tbl_no; - - /* Establish EOB (end-of-block) index */ - for (ke = cinfo->lim_Se; ke > 0; ke--) - if ((*block)[natural_order[ke]]) break; - - /* Figure F.5: Encode_AC_Coefficients */ - for (k = 1; k <= ke; k++) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - arith_encode(cinfo, st, 0); /* EOB decision */ - while ((v = (*block)[natural_order[k]]) == 0) { - arith_encode(cinfo, st + 1, 0); st += 3; k++; - } - arith_encode(cinfo, st + 1, 1); - /* Figure F.6: Encoding nonzero value v */ - /* Figure F.7: Encoding the sign of v */ - if (v > 0) { - arith_encode(cinfo, entropy->fixed_bin, 0); - } else { - v = -v; - arith_encode(cinfo, entropy->fixed_bin, 1); - } - st += 2; - /* Figure F.8: Encoding the magnitude category of v */ - m = 0; - if (v -= 1) { - arith_encode(cinfo, st, 1); - m = 1; - v2 = v; - if (v2 >>= 1) { - arith_encode(cinfo, st, 1); - m <<= 1; - st = entropy->ac_stats[tbl] + - (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); - while (v2 >>= 1) { - arith_encode(cinfo, st, 1); - m <<= 1; - st += 1; - } - } - } - arith_encode(cinfo, st, 0); - /* Figure F.9: Encoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - arith_encode(cinfo, st, (m & v) ? 1 : 0); - } - /* Encode EOB decision only if k <= cinfo->lim_Se */ - if (k <= cinfo->lim_Se) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - arith_encode(cinfo, st, 1); - } - } - - return TRUE; -} - - -/* - * Initialize for an arithmetic-compressed scan. - */ - -METHODDEF(void) -start_pass (j_compress_ptr cinfo, boolean gather_statistics) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - int ci, tbl; - jpeg_component_info * compptr; - - if (gather_statistics) - /* Make sure to avoid that in the master control logic! - * We are fully adaptive here and need no extra - * statistics gathering pass! - */ - ERREXIT(cinfo, JERR_NOT_COMPILED); - - /* We assume jcmaster.c already validated the progressive scan parameters. */ - - /* Select execution routines */ - if (cinfo->progressive_mode) { - if (cinfo->Ah == 0) { - if (cinfo->Ss == 0) - entropy->pub.encode_mcu = encode_mcu_DC_first; - else - entropy->pub.encode_mcu = encode_mcu_AC_first; - } else { - if (cinfo->Ss == 0) - entropy->pub.encode_mcu = encode_mcu_DC_refine; - else - entropy->pub.encode_mcu = encode_mcu_AC_refine; - } - } else - entropy->pub.encode_mcu = encode_mcu; - - /* Allocate & initialize requested statistics areas */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) { - tbl = compptr->dc_tbl_no; - if (tbl < 0 || tbl >= NUM_ARITH_TBLS) - ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); - if (entropy->dc_stats[tbl] == NULL) - entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); - MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); - /* Initialize DC predictions to 0 */ - entropy->last_dc_val[ci] = 0; - entropy->dc_context[ci] = 0; - } - /* AC needs no table when not present */ - if (cinfo->Se) { - tbl = compptr->ac_tbl_no; - if (tbl < 0 || tbl >= NUM_ARITH_TBLS) - ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); - if (entropy->ac_stats[tbl] == NULL) - entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); - MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); -#ifdef CALCULATE_SPECTRAL_CONDITIONING - if (cinfo->progressive_mode) - /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ - cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); -#endif - } - } - - /* Initialize arithmetic encoding variables */ - entropy->c = 0; - entropy->a = 0x10000L; - entropy->sc = 0; - entropy->zc = 0; - entropy->ct = 11; - entropy->buffer = -1; /* empty */ - - /* Initialize restart stuff */ - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num = 0; -} - - -/* - * Module initialization routine for arithmetic entropy encoding. - */ - -GLOBAL(void) -jinit_arith_encoder (j_compress_ptr cinfo) -{ - arith_entropy_ptr entropy; - int i; - - entropy = (arith_entropy_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(arith_entropy_encoder)); - cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; - entropy->pub.start_pass = start_pass; - entropy->pub.finish_pass = finish_pass; - - /* Mark tables unallocated */ - for (i = 0; i < NUM_ARITH_TBLS; i++) { - entropy->dc_stats[i] = NULL; - entropy->ac_stats[i] = NULL; - } - - /* Initialize index for fixed probability estimation */ - entropy->fixed_bin[0] = 113; -} diff --git a/src/jpeg-8c/jccoefct.c b/src/jpeg-8c/jccoefct.c deleted file mode 100644 index d775313b..00000000 --- a/src/jpeg-8c/jccoefct.c +++ /dev/null @@ -1,453 +0,0 @@ -/* - * jccoefct.c - * - * Copyright (C) 1994-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the coefficient buffer controller for compression. - * This controller is the top level of the JPEG compressor proper. - * The coefficient buffer lies between forward-DCT and entropy encoding steps. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* We use a full-image coefficient buffer when doing Huffman optimization, - * and also for writing multiple-scan JPEG files. In all cases, the DCT - * step is run during the first pass, and subsequent passes need only read - * the buffered coefficients. - */ -#ifdef ENTROPY_OPT_SUPPORTED -#define FULL_COEF_BUFFER_SUPPORTED -#else -#ifdef C_MULTISCAN_FILES_SUPPORTED -#define FULL_COEF_BUFFER_SUPPORTED -#endif -#endif - - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_c_coef_controller pub; /* public fields */ - - JDIMENSION iMCU_row_num; /* iMCU row # within image */ - JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ - int MCU_vert_offset; /* counts MCU rows within iMCU row */ - int MCU_rows_per_iMCU_row; /* number of such rows needed */ - - /* For single-pass compression, it's sufficient to buffer just one MCU - * (although this may prove a bit slow in practice). We allocate a - * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each - * MCU constructed and sent. (On 80x86, the workspace is FAR even though - * it's not really very big; this is to keep the module interfaces unchanged - * when a large coefficient buffer is necessary.) - * In multi-pass modes, this array points to the current MCU's blocks - * within the virtual arrays. - */ - JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; - - /* In multi-pass modes, we need a virtual block array for each component. */ - jvirt_barray_ptr whole_image[MAX_COMPONENTS]; -} my_coef_controller; - -typedef my_coef_controller * my_coef_ptr; - - -/* Forward declarations */ -METHODDEF(boolean) compress_data - JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); -#ifdef FULL_COEF_BUFFER_SUPPORTED -METHODDEF(boolean) compress_first_pass - JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); -METHODDEF(boolean) compress_output - JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); -#endif - - -LOCAL(void) -start_iMCU_row (j_compress_ptr cinfo) -/* Reset within-iMCU-row counters for a new row */ -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - - /* In an interleaved scan, an MCU row is the same as an iMCU row. - * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. - * But at the bottom of the image, process only what's left. - */ - if (cinfo->comps_in_scan > 1) { - coef->MCU_rows_per_iMCU_row = 1; - } else { - if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) - coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; - else - coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; - } - - coef->mcu_ctr = 0; - coef->MCU_vert_offset = 0; -} - - -/* - * Initialize for a processing pass. - */ - -METHODDEF(void) -start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - - coef->iMCU_row_num = 0; - start_iMCU_row(cinfo); - - switch (pass_mode) { - case JBUF_PASS_THRU: - if (coef->whole_image[0] != NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - coef->pub.compress_data = compress_data; - break; -#ifdef FULL_COEF_BUFFER_SUPPORTED - case JBUF_SAVE_AND_PASS: - if (coef->whole_image[0] == NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - coef->pub.compress_data = compress_first_pass; - break; - case JBUF_CRANK_DEST: - if (coef->whole_image[0] == NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - coef->pub.compress_data = compress_output; - break; -#endif - default: - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - break; - } -} - - -/* - * Process some data in the single-pass case. - * We process the equivalent of one fully interleaved MCU row ("iMCU" row) - * per call, ie, v_samp_factor block rows for each component in the image. - * Returns TRUE if the iMCU row is completed, FALSE if suspended. - * - * NB: input_buf contains a plane for each component in image, - * which we index according to the component's SOF position. - */ - -METHODDEF(boolean) -compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION MCU_col_num; /* index of current MCU within row */ - JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; - JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; - int blkn, bi, ci, yindex, yoffset, blockcnt; - JDIMENSION ypos, xpos; - jpeg_component_info *compptr; - forward_DCT_ptr forward_DCT; - - /* Loop to write as much as one whole iMCU row */ - for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; - yoffset++) { - for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; - MCU_col_num++) { - /* Determine where data comes from in input_buf and do the DCT thing. - * Each call on forward_DCT processes a horizontal row of DCT blocks - * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks - * sequentially. Dummy blocks at the right or bottom edge are filled in - * specially. The data in them does not matter for image reconstruction, - * so we fill them with values that will encode to the smallest amount of - * data, viz: all zeroes in the AC entries, DC entries equal to previous - * block's DC value. (Thanks to Thomas Kinsman for this idea.) - */ - blkn = 0; - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; - blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width - : compptr->last_col_width; - xpos = MCU_col_num * compptr->MCU_sample_width; - ypos = yoffset * compptr->DCT_v_scaled_size; - /* ypos == (yoffset+yindex) * DCTSIZE */ - for (yindex = 0; yindex < compptr->MCU_height; yindex++) { - if (coef->iMCU_row_num < last_iMCU_row || - yoffset+yindex < compptr->last_row_height) { - (*forward_DCT) (cinfo, compptr, - input_buf[compptr->component_index], - coef->MCU_buffer[blkn], - ypos, xpos, (JDIMENSION) blockcnt); - if (blockcnt < compptr->MCU_width) { - /* Create some dummy blocks at the right edge of the image. */ - jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], - (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); - for (bi = blockcnt; bi < compptr->MCU_width; bi++) { - coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; - } - } - } else { - /* Create a row of dummy blocks at the bottom of the image. */ - jzero_far((void FAR *) coef->MCU_buffer[blkn], - compptr->MCU_width * SIZEOF(JBLOCK)); - for (bi = 0; bi < compptr->MCU_width; bi++) { - coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; - } - } - blkn += compptr->MCU_width; - ypos += compptr->DCT_v_scaled_size; - } - } - /* Try to write the MCU. In event of a suspension failure, we will - * re-DCT the MCU on restart (a bit inefficient, could be fixed...) - */ - if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { - /* Suspension forced; update state counters and exit */ - coef->MCU_vert_offset = yoffset; - coef->mcu_ctr = MCU_col_num; - return FALSE; - } - } - /* Completed an MCU row, but perhaps not an iMCU row */ - coef->mcu_ctr = 0; - } - /* Completed the iMCU row, advance counters for next one */ - coef->iMCU_row_num++; - start_iMCU_row(cinfo); - return TRUE; -} - - -#ifdef FULL_COEF_BUFFER_SUPPORTED - -/* - * Process some data in the first pass of a multi-pass case. - * We process the equivalent of one fully interleaved MCU row ("iMCU" row) - * per call, ie, v_samp_factor block rows for each component in the image. - * This amount of data is read from the source buffer, DCT'd and quantized, - * and saved into the virtual arrays. We also generate suitable dummy blocks - * as needed at the right and lower edges. (The dummy blocks are constructed - * in the virtual arrays, which have been padded appropriately.) This makes - * it possible for subsequent passes not to worry about real vs. dummy blocks. - * - * We must also emit the data to the entropy encoder. This is conveniently - * done by calling compress_output() after we've loaded the current strip - * of the virtual arrays. - * - * NB: input_buf contains a plane for each component in image. All - * components are DCT'd and loaded into the virtual arrays in this pass. - * However, it may be that only a subset of the components are emitted to - * the entropy encoder during this first pass; be careful about looking - * at the scan-dependent variables (MCU dimensions, etc). - */ - -METHODDEF(boolean) -compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; - JDIMENSION blocks_across, MCUs_across, MCUindex; - int bi, ci, h_samp_factor, block_row, block_rows, ndummy; - JCOEF lastDC; - jpeg_component_info *compptr; - JBLOCKARRAY buffer; - JBLOCKROW thisblockrow, lastblockrow; - forward_DCT_ptr forward_DCT; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Align the virtual buffer for this component. */ - buffer = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[ci], - coef->iMCU_row_num * compptr->v_samp_factor, - (JDIMENSION) compptr->v_samp_factor, TRUE); - /* Count non-dummy DCT block rows in this iMCU row. */ - if (coef->iMCU_row_num < last_iMCU_row) - block_rows = compptr->v_samp_factor; - else { - /* NB: can't use last_row_height here, since may not be set! */ - block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); - if (block_rows == 0) block_rows = compptr->v_samp_factor; - } - blocks_across = compptr->width_in_blocks; - h_samp_factor = compptr->h_samp_factor; - /* Count number of dummy blocks to be added at the right margin. */ - ndummy = (int) (blocks_across % h_samp_factor); - if (ndummy > 0) - ndummy = h_samp_factor - ndummy; - forward_DCT = cinfo->fdct->forward_DCT[ci]; - /* Perform DCT for all non-dummy blocks in this iMCU row. Each call - * on forward_DCT processes a complete horizontal row of DCT blocks. - */ - for (block_row = 0; block_row < block_rows; block_row++) { - thisblockrow = buffer[block_row]; - (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, - (JDIMENSION) (block_row * compptr->DCT_v_scaled_size), - (JDIMENSION) 0, blocks_across); - if (ndummy > 0) { - /* Create dummy blocks at the right edge of the image. */ - thisblockrow += blocks_across; /* => first dummy block */ - jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); - lastDC = thisblockrow[-1][0]; - for (bi = 0; bi < ndummy; bi++) { - thisblockrow[bi][0] = lastDC; - } - } - } - /* If at end of image, create dummy block rows as needed. - * The tricky part here is that within each MCU, we want the DC values - * of the dummy blocks to match the last real block's DC value. - * This squeezes a few more bytes out of the resulting file... - */ - if (coef->iMCU_row_num == last_iMCU_row) { - blocks_across += ndummy; /* include lower right corner */ - MCUs_across = blocks_across / h_samp_factor; - for (block_row = block_rows; block_row < compptr->v_samp_factor; - block_row++) { - thisblockrow = buffer[block_row]; - lastblockrow = buffer[block_row-1]; - jzero_far((void FAR *) thisblockrow, - (size_t) (blocks_across * SIZEOF(JBLOCK))); - for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { - lastDC = lastblockrow[h_samp_factor-1][0]; - for (bi = 0; bi < h_samp_factor; bi++) { - thisblockrow[bi][0] = lastDC; - } - thisblockrow += h_samp_factor; /* advance to next MCU in row */ - lastblockrow += h_samp_factor; - } - } - } - } - /* NB: compress_output will increment iMCU_row_num if successful. - * A suspension return will result in redoing all the work above next time. - */ - - /* Emit data to the entropy encoder, sharing code with subsequent passes */ - return compress_output(cinfo, input_buf); -} - - -/* - * Process some data in subsequent passes of a multi-pass case. - * We process the equivalent of one fully interleaved MCU row ("iMCU" row) - * per call, ie, v_samp_factor block rows for each component in the scan. - * The data is obtained from the virtual arrays and fed to the entropy coder. - * Returns TRUE if the iMCU row is completed, FALSE if suspended. - * - * NB: input_buf is ignored; it is likely to be a NULL pointer. - */ - -METHODDEF(boolean) -compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION MCU_col_num; /* index of current MCU within row */ - int blkn, ci, xindex, yindex, yoffset; - JDIMENSION start_col; - JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; - JBLOCKROW buffer_ptr; - jpeg_component_info *compptr; - - /* Align the virtual buffers for the components used in this scan. - * NB: during first pass, this is safe only because the buffers will - * already be aligned properly, so jmemmgr.c won't need to do any I/O. - */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - buffer[ci] = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], - coef->iMCU_row_num * compptr->v_samp_factor, - (JDIMENSION) compptr->v_samp_factor, FALSE); - } - - /* Loop to process one whole iMCU row */ - for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; - yoffset++) { - for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; - MCU_col_num++) { - /* Construct list of pointers to DCT blocks belonging to this MCU */ - blkn = 0; /* index of current DCT block within MCU */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - start_col = MCU_col_num * compptr->MCU_width; - for (yindex = 0; yindex < compptr->MCU_height; yindex++) { - buffer_ptr = buffer[ci][yindex+yoffset] + start_col; - for (xindex = 0; xindex < compptr->MCU_width; xindex++) { - coef->MCU_buffer[blkn++] = buffer_ptr++; - } - } - } - /* Try to write the MCU. */ - if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { - /* Suspension forced; update state counters and exit */ - coef->MCU_vert_offset = yoffset; - coef->mcu_ctr = MCU_col_num; - return FALSE; - } - } - /* Completed an MCU row, but perhaps not an iMCU row */ - coef->mcu_ctr = 0; - } - /* Completed the iMCU row, advance counters for next one */ - coef->iMCU_row_num++; - start_iMCU_row(cinfo); - return TRUE; -} - -#endif /* FULL_COEF_BUFFER_SUPPORTED */ - - -/* - * Initialize coefficient buffer controller. - */ - -GLOBAL(void) -jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) -{ - my_coef_ptr coef; - - coef = (my_coef_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_coef_controller)); - cinfo->coef = (struct jpeg_c_coef_controller *) coef; - coef->pub.start_pass = start_pass_coef; - - /* Create the coefficient buffer. */ - if (need_full_buffer) { -#ifdef FULL_COEF_BUFFER_SUPPORTED - /* Allocate a full-image virtual array for each component, */ - /* padded to a multiple of samp_factor DCT blocks in each direction. */ - int ci; - jpeg_component_info *compptr; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, - (JDIMENSION) jround_up((long) compptr->width_in_blocks, - (long) compptr->h_samp_factor), - (JDIMENSION) jround_up((long) compptr->height_in_blocks, - (long) compptr->v_samp_factor), - (JDIMENSION) compptr->v_samp_factor); - } -#else - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); -#endif - } else { - /* We only need a single-MCU buffer. */ - JBLOCKROW buffer; - int i; - - buffer = (JBLOCKROW) - (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); - for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { - coef->MCU_buffer[i] = buffer + i; - } - coef->whole_image[0] = NULL; /* flag for no virtual arrays */ - } -} diff --git a/src/jpeg-8c/jccolor.c b/src/jpeg-8c/jccolor.c deleted file mode 100644 index 0a8a4b5d..00000000 --- a/src/jpeg-8c/jccolor.c +++ /dev/null @@ -1,459 +0,0 @@ -/* - * jccolor.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains input colorspace conversion routines. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Private subobject */ - -typedef struct { - struct jpeg_color_converter pub; /* public fields */ - - /* Private state for RGB->YCC conversion */ - INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ -} my_color_converter; - -typedef my_color_converter * my_cconvert_ptr; - - -/**************** RGB -> YCbCr conversion: most common case **************/ - -/* - * YCbCr is defined per CCIR 601-1, except that Cb and Cr are - * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. - * The conversion equations to be implemented are therefore - * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B - * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE - * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE - * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) - * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, - * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and - * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) - * were not represented exactly. Now we sacrifice exact representation of - * maximum red and maximum blue in order to get exact grayscales. - * - * To avoid floating-point arithmetic, we represent the fractional constants - * as integers scaled up by 2^16 (about 4 digits precision); we have to divide - * the products by 2^16, with appropriate rounding, to get the correct answer. - * - * For even more speed, we avoid doing any multiplications in the inner loop - * by precalculating the constants times R,G,B for all possible values. - * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); - * for 12-bit samples it is still acceptable. It's not very reasonable for - * 16-bit samples, but if you want lossless storage you shouldn't be changing - * colorspace anyway. - * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included - * in the tables to save adding them separately in the inner loop. - */ - -#define SCALEBITS 16 /* speediest right-shift on some machines */ -#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS) -#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) -#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) - -/* We allocate one big table and divide it up into eight parts, instead of - * doing eight alloc_small requests. This lets us use a single table base - * address, which can be held in a register in the inner loops on many - * machines (more than can hold all eight addresses, anyway). - */ - -#define R_Y_OFF 0 /* offset to R => Y section */ -#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ -#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ -#define R_CB_OFF (3*(MAXJSAMPLE+1)) -#define G_CB_OFF (4*(MAXJSAMPLE+1)) -#define B_CB_OFF (5*(MAXJSAMPLE+1)) -#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ -#define G_CR_OFF (6*(MAXJSAMPLE+1)) -#define B_CR_OFF (7*(MAXJSAMPLE+1)) -#define TABLE_SIZE (8*(MAXJSAMPLE+1)) - - -/* - * Initialize for RGB->YCC colorspace conversion. - */ - -METHODDEF(void) -rgb_ycc_start (j_compress_ptr cinfo) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - INT32 * rgb_ycc_tab; - INT32 i; - - /* Allocate and fill in the conversion tables. */ - cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (TABLE_SIZE * SIZEOF(INT32))); - - for (i = 0; i <= MAXJSAMPLE; i++) { - rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; - rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; - rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; - rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; - rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; - /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. - * This ensures that the maximum output will round to MAXJSAMPLE - * not MAXJSAMPLE+1, and thus that we don't have to range-limit. - */ - rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; -/* B=>Cb and R=>Cr tables are the same - rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; -*/ - rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; - rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; - } -} - - -/* - * Convert some rows of samples to the JPEG colorspace. - * - * Note that we change from the application's interleaved-pixel format - * to our internal noninterleaved, one-plane-per-component format. - * The input buffer is therefore three times as wide as the output buffer. - * - * A starting row offset is provided only for the output buffer. The caller - * can easily adjust the passed input_buf value to accommodate any row - * offset required on that side. - */ - -METHODDEF(void) -rgb_ycc_convert (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPIMAGE output_buf, - JDIMENSION output_row, int num_rows) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - register int r, g, b; - register INT32 * ctab = cconvert->rgb_ycc_tab; - register JSAMPROW inptr; - register JSAMPROW outptr0, outptr1, outptr2; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->image_width; - - while (--num_rows >= 0) { - inptr = *input_buf++; - outptr0 = output_buf[0][output_row]; - outptr1 = output_buf[1][output_row]; - outptr2 = output_buf[2][output_row]; - output_row++; - for (col = 0; col < num_cols; col++) { - r = GETJSAMPLE(inptr[RGB_RED]); - g = GETJSAMPLE(inptr[RGB_GREEN]); - b = GETJSAMPLE(inptr[RGB_BLUE]); - inptr += RGB_PIXELSIZE; - /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations - * must be too; we do not need an explicit range-limiting operation. - * Hence the value being shifted is never negative, and we don't - * need the general RIGHT_SHIFT macro. - */ - /* Y */ - outptr0[col] = (JSAMPLE) - ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) - >> SCALEBITS); - /* Cb */ - outptr1[col] = (JSAMPLE) - ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) - >> SCALEBITS); - /* Cr */ - outptr2[col] = (JSAMPLE) - ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) - >> SCALEBITS); - } - } -} - - -/**************** Cases other than RGB -> YCbCr **************/ - - -/* - * Convert some rows of samples to the JPEG colorspace. - * This version handles RGB->grayscale conversion, which is the same - * as the RGB->Y portion of RGB->YCbCr. - * We assume rgb_ycc_start has been called (we only use the Y tables). - */ - -METHODDEF(void) -rgb_gray_convert (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPIMAGE output_buf, - JDIMENSION output_row, int num_rows) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - register int r, g, b; - register INT32 * ctab = cconvert->rgb_ycc_tab; - register JSAMPROW inptr; - register JSAMPROW outptr; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->image_width; - - while (--num_rows >= 0) { - inptr = *input_buf++; - outptr = output_buf[0][output_row]; - output_row++; - for (col = 0; col < num_cols; col++) { - r = GETJSAMPLE(inptr[RGB_RED]); - g = GETJSAMPLE(inptr[RGB_GREEN]); - b = GETJSAMPLE(inptr[RGB_BLUE]); - inptr += RGB_PIXELSIZE; - /* Y */ - outptr[col] = (JSAMPLE) - ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) - >> SCALEBITS); - } - } -} - - -/* - * Convert some rows of samples to the JPEG colorspace. - * This version handles Adobe-style CMYK->YCCK conversion, - * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same - * conversion as above, while passing K (black) unchanged. - * We assume rgb_ycc_start has been called. - */ - -METHODDEF(void) -cmyk_ycck_convert (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPIMAGE output_buf, - JDIMENSION output_row, int num_rows) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - register int r, g, b; - register INT32 * ctab = cconvert->rgb_ycc_tab; - register JSAMPROW inptr; - register JSAMPROW outptr0, outptr1, outptr2, outptr3; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->image_width; - - while (--num_rows >= 0) { - inptr = *input_buf++; - outptr0 = output_buf[0][output_row]; - outptr1 = output_buf[1][output_row]; - outptr2 = output_buf[2][output_row]; - outptr3 = output_buf[3][output_row]; - output_row++; - for (col = 0; col < num_cols; col++) { - r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); - g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); - b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); - /* K passes through as-is */ - outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ - inptr += 4; - /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations - * must be too; we do not need an explicit range-limiting operation. - * Hence the value being shifted is never negative, and we don't - * need the general RIGHT_SHIFT macro. - */ - /* Y */ - outptr0[col] = (JSAMPLE) - ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) - >> SCALEBITS); - /* Cb */ - outptr1[col] = (JSAMPLE) - ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) - >> SCALEBITS); - /* Cr */ - outptr2[col] = (JSAMPLE) - ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) - >> SCALEBITS); - } - } -} - - -/* - * Convert some rows of samples to the JPEG colorspace. - * This version handles grayscale output with no conversion. - * The source can be either plain grayscale or YCbCr (since Y == gray). - */ - -METHODDEF(void) -grayscale_convert (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPIMAGE output_buf, - JDIMENSION output_row, int num_rows) -{ - register JSAMPROW inptr; - register JSAMPROW outptr; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->image_width; - int instride = cinfo->input_components; - - while (--num_rows >= 0) { - inptr = *input_buf++; - outptr = output_buf[0][output_row]; - output_row++; - for (col = 0; col < num_cols; col++) { - outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */ - inptr += instride; - } - } -} - - -/* - * Convert some rows of samples to the JPEG colorspace. - * This version handles multi-component colorspaces without conversion. - * We assume input_components == num_components. - */ - -METHODDEF(void) -null_convert (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPIMAGE output_buf, - JDIMENSION output_row, int num_rows) -{ - register JSAMPROW inptr; - register JSAMPROW outptr; - register JDIMENSION col; - register int ci; - int nc = cinfo->num_components; - JDIMENSION num_cols = cinfo->image_width; - - while (--num_rows >= 0) { - /* It seems fastest to make a separate pass for each component. */ - for (ci = 0; ci < nc; ci++) { - inptr = *input_buf; - outptr = output_buf[ci][output_row]; - for (col = 0; col < num_cols; col++) { - outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ - inptr += nc; - } - } - input_buf++; - output_row++; - } -} - - -/* - * Empty method for start_pass. - */ - -METHODDEF(void) -null_method (j_compress_ptr cinfo) -{ - /* no work needed */ -} - - -/* - * Module initialization routine for input colorspace conversion. - */ - -GLOBAL(void) -jinit_color_converter (j_compress_ptr cinfo) -{ - my_cconvert_ptr cconvert; - - cconvert = (my_cconvert_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_color_converter)); - cinfo->cconvert = (struct jpeg_color_converter *) cconvert; - /* set start_pass to null method until we find out differently */ - cconvert->pub.start_pass = null_method; - - /* Make sure input_components agrees with in_color_space */ - switch (cinfo->in_color_space) { - case JCS_GRAYSCALE: - if (cinfo->input_components != 1) - ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); - break; - - case JCS_RGB: -#if RGB_PIXELSIZE != 3 - if (cinfo->input_components != RGB_PIXELSIZE) - ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); - break; -#endif /* else share code with YCbCr */ - - case JCS_YCbCr: - if (cinfo->input_components != 3) - ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); - break; - - case JCS_CMYK: - case JCS_YCCK: - if (cinfo->input_components != 4) - ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); - break; - - default: /* JCS_UNKNOWN can be anything */ - if (cinfo->input_components < 1) - ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); - break; - } - - /* Check num_components, set conversion method based on requested space */ - switch (cinfo->jpeg_color_space) { - case JCS_GRAYSCALE: - if (cinfo->num_components != 1) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_GRAYSCALE) - cconvert->pub.color_convert = grayscale_convert; - else if (cinfo->in_color_space == JCS_RGB) { - cconvert->pub.start_pass = rgb_ycc_start; - cconvert->pub.color_convert = rgb_gray_convert; - } else if (cinfo->in_color_space == JCS_YCbCr) - cconvert->pub.color_convert = grayscale_convert; - else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - case JCS_RGB: - if (cinfo->num_components != 3) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3) - cconvert->pub.color_convert = null_convert; - else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - case JCS_YCbCr: - if (cinfo->num_components != 3) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_RGB) { - cconvert->pub.start_pass = rgb_ycc_start; - cconvert->pub.color_convert = rgb_ycc_convert; - } else if (cinfo->in_color_space == JCS_YCbCr) - cconvert->pub.color_convert = null_convert; - else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - case JCS_CMYK: - if (cinfo->num_components != 4) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_CMYK) - cconvert->pub.color_convert = null_convert; - else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - case JCS_YCCK: - if (cinfo->num_components != 4) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_CMYK) { - cconvert->pub.start_pass = rgb_ycc_start; - cconvert->pub.color_convert = cmyk_ycck_convert; - } else if (cinfo->in_color_space == JCS_YCCK) - cconvert->pub.color_convert = null_convert; - else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - default: /* allow null conversion of JCS_UNKNOWN */ - if (cinfo->jpeg_color_space != cinfo->in_color_space || - cinfo->num_components != cinfo->input_components) - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - cconvert->pub.color_convert = null_convert; - break; - } -} diff --git a/src/jpeg-8c/jcdctmgr.c b/src/jpeg-8c/jcdctmgr.c deleted file mode 100644 index 0bbdbb68..00000000 --- a/src/jpeg-8c/jcdctmgr.c +++ /dev/null @@ -1,482 +0,0 @@ -/* - * jcdctmgr.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the forward-DCT management logic. - * This code selects a particular DCT implementation to be used, - * and it performs related housekeeping chores including coefficient - * quantization. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - - -/* Private subobject for this module */ - -typedef struct { - struct jpeg_forward_dct pub; /* public fields */ - - /* Pointer to the DCT routine actually in use */ - forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; - - /* The actual post-DCT divisors --- not identical to the quant table - * entries, because of scaling (especially for an unnormalized DCT). - * Each table is given in normal array order. - */ - DCTELEM * divisors[NUM_QUANT_TBLS]; - -#ifdef DCT_FLOAT_SUPPORTED - /* Same as above for the floating-point case. */ - float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; - FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; -#endif -} my_fdct_controller; - -typedef my_fdct_controller * my_fdct_ptr; - - -/* The current scaled-DCT routines require ISLOW-style divisor tables, - * so be sure to compile that code if either ISLOW or SCALING is requested. - */ -#ifdef DCT_ISLOW_SUPPORTED -#define PROVIDE_ISLOW_TABLES -#else -#ifdef DCT_SCALING_SUPPORTED -#define PROVIDE_ISLOW_TABLES -#endif -#endif - - -/* - * Perform forward DCT on one or more blocks of a component. - * - * The input samples are taken from the sample_data[] array starting at - * position start_row/start_col, and moving to the right for any additional - * blocks. The quantized coefficients are returned in coef_blocks[]. - */ - -METHODDEF(void) -forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY sample_data, JBLOCKROW coef_blocks, - JDIMENSION start_row, JDIMENSION start_col, - JDIMENSION num_blocks) -/* This version is used for integer DCT implementations. */ -{ - /* This routine is heavily used, so it's worth coding it tightly. */ - my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; - forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; - DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; - DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ - JDIMENSION bi; - - sample_data += start_row; /* fold in the vertical offset once */ - - for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { - /* Perform the DCT */ - (*do_dct) (workspace, sample_data, start_col); - - /* Quantize/descale the coefficients, and store into coef_blocks[] */ - { register DCTELEM temp, qval; - register int i; - register JCOEFPTR output_ptr = coef_blocks[bi]; - - for (i = 0; i < DCTSIZE2; i++) { - qval = divisors[i]; - temp = workspace[i]; - /* Divide the coefficient value by qval, ensuring proper rounding. - * Since C does not specify the direction of rounding for negative - * quotients, we have to force the dividend positive for portability. - * - * In most files, at least half of the output values will be zero - * (at default quantization settings, more like three-quarters...) - * so we should ensure that this case is fast. On many machines, - * a comparison is enough cheaper than a divide to make a special test - * a win. Since both inputs will be nonnegative, we need only test - * for a < b to discover whether a/b is 0. - * If your machine's division is fast enough, define FAST_DIVIDE. - */ -#ifdef FAST_DIVIDE -#define DIVIDE_BY(a,b) a /= b -#else -#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 -#endif - if (temp < 0) { - temp = -temp; - temp += qval>>1; /* for rounding */ - DIVIDE_BY(temp, qval); - temp = -temp; - } else { - temp += qval>>1; /* for rounding */ - DIVIDE_BY(temp, qval); - } - output_ptr[i] = (JCOEF) temp; - } - } - } -} - - -#ifdef DCT_FLOAT_SUPPORTED - -METHODDEF(void) -forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY sample_data, JBLOCKROW coef_blocks, - JDIMENSION start_row, JDIMENSION start_col, - JDIMENSION num_blocks) -/* This version is used for floating-point DCT implementations. */ -{ - /* This routine is heavily used, so it's worth coding it tightly. */ - my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; - float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; - FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; - FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ - JDIMENSION bi; - - sample_data += start_row; /* fold in the vertical offset once */ - - for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { - /* Perform the DCT */ - (*do_dct) (workspace, sample_data, start_col); - - /* Quantize/descale the coefficients, and store into coef_blocks[] */ - { register FAST_FLOAT temp; - register int i; - register JCOEFPTR output_ptr = coef_blocks[bi]; - - for (i = 0; i < DCTSIZE2; i++) { - /* Apply the quantization and scaling factor */ - temp = workspace[i] * divisors[i]; - /* Round to nearest integer. - * Since C does not specify the direction of rounding for negative - * quotients, we have to force the dividend positive for portability. - * The maximum coefficient size is +-16K (for 12-bit data), so this - * code should work for either 16-bit or 32-bit ints. - */ - output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); - } - } - } -} - -#endif /* DCT_FLOAT_SUPPORTED */ - - -/* - * Initialize for a processing pass. - * Verify that all referenced Q-tables are present, and set up - * the divisor table for each one. - * In the current implementation, DCT of all components is done during - * the first pass, even if only some components will be output in the - * first scan. Hence all components should be examined here. - */ - -METHODDEF(void) -start_pass_fdctmgr (j_compress_ptr cinfo) -{ - my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; - int ci, qtblno, i; - jpeg_component_info *compptr; - int method = 0; - JQUANT_TBL * qtbl; - DCTELEM * dtbl; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Select the proper DCT routine for this component's scaling */ - switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { -#ifdef DCT_SCALING_SUPPORTED - case ((1 << 8) + 1): - fdct->do_dct[ci] = jpeg_fdct_1x1; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((2 << 8) + 2): - fdct->do_dct[ci] = jpeg_fdct_2x2; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((3 << 8) + 3): - fdct->do_dct[ci] = jpeg_fdct_3x3; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((4 << 8) + 4): - fdct->do_dct[ci] = jpeg_fdct_4x4; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((5 << 8) + 5): - fdct->do_dct[ci] = jpeg_fdct_5x5; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((6 << 8) + 6): - fdct->do_dct[ci] = jpeg_fdct_6x6; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((7 << 8) + 7): - fdct->do_dct[ci] = jpeg_fdct_7x7; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((9 << 8) + 9): - fdct->do_dct[ci] = jpeg_fdct_9x9; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((10 << 8) + 10): - fdct->do_dct[ci] = jpeg_fdct_10x10; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((11 << 8) + 11): - fdct->do_dct[ci] = jpeg_fdct_11x11; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((12 << 8) + 12): - fdct->do_dct[ci] = jpeg_fdct_12x12; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((13 << 8) + 13): - fdct->do_dct[ci] = jpeg_fdct_13x13; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((14 << 8) + 14): - fdct->do_dct[ci] = jpeg_fdct_14x14; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((15 << 8) + 15): - fdct->do_dct[ci] = jpeg_fdct_15x15; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((16 << 8) + 16): - fdct->do_dct[ci] = jpeg_fdct_16x16; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((16 << 8) + 8): - fdct->do_dct[ci] = jpeg_fdct_16x8; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((14 << 8) + 7): - fdct->do_dct[ci] = jpeg_fdct_14x7; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((12 << 8) + 6): - fdct->do_dct[ci] = jpeg_fdct_12x6; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((10 << 8) + 5): - fdct->do_dct[ci] = jpeg_fdct_10x5; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((8 << 8) + 4): - fdct->do_dct[ci] = jpeg_fdct_8x4; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((6 << 8) + 3): - fdct->do_dct[ci] = jpeg_fdct_6x3; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((4 << 8) + 2): - fdct->do_dct[ci] = jpeg_fdct_4x2; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((2 << 8) + 1): - fdct->do_dct[ci] = jpeg_fdct_2x1; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((8 << 8) + 16): - fdct->do_dct[ci] = jpeg_fdct_8x16; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((7 << 8) + 14): - fdct->do_dct[ci] = jpeg_fdct_7x14; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((6 << 8) + 12): - fdct->do_dct[ci] = jpeg_fdct_6x12; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((5 << 8) + 10): - fdct->do_dct[ci] = jpeg_fdct_5x10; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((4 << 8) + 8): - fdct->do_dct[ci] = jpeg_fdct_4x8; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((3 << 8) + 6): - fdct->do_dct[ci] = jpeg_fdct_3x6; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((2 << 8) + 4): - fdct->do_dct[ci] = jpeg_fdct_2x4; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; - case ((1 << 8) + 2): - fdct->do_dct[ci] = jpeg_fdct_1x2; - method = JDCT_ISLOW; /* jfdctint uses islow-style table */ - break; -#endif - case ((DCTSIZE << 8) + DCTSIZE): - switch (cinfo->dct_method) { -#ifdef DCT_ISLOW_SUPPORTED - case JDCT_ISLOW: - fdct->do_dct[ci] = jpeg_fdct_islow; - method = JDCT_ISLOW; - break; -#endif -#ifdef DCT_IFAST_SUPPORTED - case JDCT_IFAST: - fdct->do_dct[ci] = jpeg_fdct_ifast; - method = JDCT_IFAST; - break; -#endif -#ifdef DCT_FLOAT_SUPPORTED - case JDCT_FLOAT: - fdct->do_float_dct[ci] = jpeg_fdct_float; - method = JDCT_FLOAT; - break; -#endif - default: - ERREXIT(cinfo, JERR_NOT_COMPILED); - break; - } - break; - default: - ERREXIT2(cinfo, JERR_BAD_DCTSIZE, - compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); - break; - } - qtblno = compptr->quant_tbl_no; - /* Make sure specified quantization table is present */ - if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || - cinfo->quant_tbl_ptrs[qtblno] == NULL) - ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); - qtbl = cinfo->quant_tbl_ptrs[qtblno]; - /* Compute divisors for this quant table */ - /* We may do this more than once for same table, but it's not a big deal */ - switch (method) { -#ifdef PROVIDE_ISLOW_TABLES - case JDCT_ISLOW: - /* For LL&M IDCT method, divisors are equal to raw quantization - * coefficients multiplied by 8 (to counteract scaling). - */ - if (fdct->divisors[qtblno] == NULL) { - fdct->divisors[qtblno] = (DCTELEM *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(DCTELEM)); - } - dtbl = fdct->divisors[qtblno]; - for (i = 0; i < DCTSIZE2; i++) { - dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; - } - fdct->pub.forward_DCT[ci] = forward_DCT; - break; -#endif -#ifdef DCT_IFAST_SUPPORTED - case JDCT_IFAST: - { - /* For AA&N IDCT method, divisors are equal to quantization - * coefficients scaled by scalefactor[row]*scalefactor[col], where - * scalefactor[0] = 1 - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 - * We apply a further scale factor of 8. - */ -#define CONST_BITS 14 - static const INT16 aanscales[DCTSIZE2] = { - /* precomputed values scaled up by 14 bits */ - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, - 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, - 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, - 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, - 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, - 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, - 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 - }; - SHIFT_TEMPS - - if (fdct->divisors[qtblno] == NULL) { - fdct->divisors[qtblno] = (DCTELEM *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(DCTELEM)); - } - dtbl = fdct->divisors[qtblno]; - for (i = 0; i < DCTSIZE2; i++) { - dtbl[i] = (DCTELEM) - DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], - (INT32) aanscales[i]), - CONST_BITS-3); - } - } - fdct->pub.forward_DCT[ci] = forward_DCT; - break; -#endif -#ifdef DCT_FLOAT_SUPPORTED - case JDCT_FLOAT: - { - /* For float AA&N IDCT method, divisors are equal to quantization - * coefficients scaled by scalefactor[row]*scalefactor[col], where - * scalefactor[0] = 1 - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 - * We apply a further scale factor of 8. - * What's actually stored is 1/divisor so that the inner loop can - * use a multiplication rather than a division. - */ - FAST_FLOAT * fdtbl; - int row, col; - static const double aanscalefactor[DCTSIZE] = { - 1.0, 1.387039845, 1.306562965, 1.175875602, - 1.0, 0.785694958, 0.541196100, 0.275899379 - }; - - if (fdct->float_divisors[qtblno] == NULL) { - fdct->float_divisors[qtblno] = (FAST_FLOAT *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(FAST_FLOAT)); - } - fdtbl = fdct->float_divisors[qtblno]; - i = 0; - for (row = 0; row < DCTSIZE; row++) { - for (col = 0; col < DCTSIZE; col++) { - fdtbl[i] = (FAST_FLOAT) - (1.0 / (((double) qtbl->quantval[i] * - aanscalefactor[row] * aanscalefactor[col] * 8.0))); - i++; - } - } - } - fdct->pub.forward_DCT[ci] = forward_DCT_float; - break; -#endif - default: - ERREXIT(cinfo, JERR_NOT_COMPILED); - break; - } - } -} - - -/* - * Initialize FDCT manager. - */ - -GLOBAL(void) -jinit_forward_dct (j_compress_ptr cinfo) -{ - my_fdct_ptr fdct; - int i; - - fdct = (my_fdct_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_fdct_controller)); - cinfo->fdct = (struct jpeg_forward_dct *) fdct; - fdct->pub.start_pass = start_pass_fdctmgr; - - /* Mark divisor tables unallocated */ - for (i = 0; i < NUM_QUANT_TBLS; i++) { - fdct->divisors[i] = NULL; -#ifdef DCT_FLOAT_SUPPORTED - fdct->float_divisors[i] = NULL; -#endif - } -} diff --git a/src/jpeg-8c/jchuff.c b/src/jpeg-8c/jchuff.c deleted file mode 100644 index 257d7aa1..00000000 --- a/src/jpeg-8c/jchuff.c +++ /dev/null @@ -1,1576 +0,0 @@ -/* - * jchuff.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2006-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains Huffman entropy encoding routines. - * Both sequential and progressive modes are supported in this single module. - * - * Much of the complexity here has to do with supporting output suspension. - * If the data destination module demands suspension, we want to be able to - * back up to the start of the current MCU. To do this, we copy state - * variables into local working storage, and update them back to the - * permanent JPEG objects only upon successful completion of an MCU. - * - * We do not support output suspension for the progressive JPEG mode, since - * the library currently does not allow multiple-scan files to be written - * with output suspension. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* The legal range of a DCT coefficient is - * -1024 .. +1023 for 8-bit data; - * -16384 .. +16383 for 12-bit data. - * Hence the magnitude should always fit in 10 or 14 bits respectively. - */ - -#if BITS_IN_JSAMPLE == 8 -#define MAX_COEF_BITS 10 -#else -#define MAX_COEF_BITS 14 -#endif - -/* Derived data constructed for each Huffman table */ - -typedef struct { - unsigned int ehufco[256]; /* code for each symbol */ - char ehufsi[256]; /* length of code for each symbol */ - /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ -} c_derived_tbl; - - -/* Expanded entropy encoder object for Huffman encoding. - * - * The savable_state subrecord contains fields that change within an MCU, - * but must not be updated permanently until we complete the MCU. - */ - -typedef struct { - INT32 put_buffer; /* current bit-accumulation buffer */ - int put_bits; /* # of bits now in it */ - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ -} savable_state; - -/* This macro is to work around compilers with missing or broken - * structure assignment. You'll need to fix this code if you have - * such a compiler and you change MAX_COMPS_IN_SCAN. - */ - -#ifndef NO_STRUCT_ASSIGN -#define ASSIGN_STATE(dest,src) ((dest) = (src)) -#else -#if MAX_COMPS_IN_SCAN == 4 -#define ASSIGN_STATE(dest,src) \ - ((dest).put_buffer = (src).put_buffer, \ - (dest).put_bits = (src).put_bits, \ - (dest).last_dc_val[0] = (src).last_dc_val[0], \ - (dest).last_dc_val[1] = (src).last_dc_val[1], \ - (dest).last_dc_val[2] = (src).last_dc_val[2], \ - (dest).last_dc_val[3] = (src).last_dc_val[3]) -#endif -#endif - - -typedef struct { - struct jpeg_entropy_encoder pub; /* public fields */ - - savable_state saved; /* Bit buffer & DC state at start of MCU */ - - /* These fields are NOT loaded into local working state. */ - unsigned int restarts_to_go; /* MCUs left in this restart interval */ - int next_restart_num; /* next restart number to write (0-7) */ - - /* Pointers to derived tables (these workspaces have image lifespan) */ - c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; - c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; - - /* Statistics tables for optimization */ - long * dc_count_ptrs[NUM_HUFF_TBLS]; - long * ac_count_ptrs[NUM_HUFF_TBLS]; - - /* Following fields used only in progressive mode */ - - /* Mode flag: TRUE for optimization, FALSE for actual data output */ - boolean gather_statistics; - - /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. - */ - JOCTET * next_output_byte; /* => next byte to write in buffer */ - size_t free_in_buffer; /* # of byte spaces remaining in buffer */ - j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ - - /* Coding status for AC components */ - int ac_tbl_no; /* the table number of the single component */ - unsigned int EOBRUN; /* run length of EOBs */ - unsigned int BE; /* # of buffered correction bits before MCU */ - char * bit_buffer; /* buffer for correction bits (1 per char) */ - /* packing correction bits tightly would save some space but cost time... */ -} huff_entropy_encoder; - -typedef huff_entropy_encoder * huff_entropy_ptr; - -/* Working state while writing an MCU (sequential mode). - * This struct contains all the fields that are needed by subroutines. - */ - -typedef struct { - JOCTET * next_output_byte; /* => next byte to write in buffer */ - size_t free_in_buffer; /* # of byte spaces remaining in buffer */ - savable_state cur; /* Current bit buffer & DC state */ - j_compress_ptr cinfo; /* dump_buffer needs access to this */ -} working_state; - -/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit - * buffer can hold. Larger sizes may slightly improve compression, but - * 1000 is already well into the realm of overkill. - * The minimum safe size is 64 bits. - */ - -#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ - -/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. - * We assume that int right shift is unsigned if INT32 right shift is, - * which should be safe. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define ISHIFT_TEMPS int ishift_temp; -#define IRIGHT_SHIFT(x,shft) \ - ((ishift_temp = (x)) < 0 ? \ - (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ - (ishift_temp >> (shft))) -#else -#define ISHIFT_TEMPS -#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) -#endif - - -/* - * Compute the derived values for a Huffman table. - * This routine also performs some validation checks on the table. - */ - -LOCAL(void) -jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, - c_derived_tbl ** pdtbl) -{ - JHUFF_TBL *htbl; - c_derived_tbl *dtbl; - int p, i, l, lastp, si, maxsymbol; - char huffsize[257]; - unsigned int huffcode[257]; - unsigned int code; - - /* Note that huffsize[] and huffcode[] are filled in code-length order, - * paralleling the order of the symbols themselves in htbl->huffval[]. - */ - - /* Find the input Huffman table */ - if (tblno < 0 || tblno >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - htbl = - isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; - if (htbl == NULL) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - - /* Allocate a workspace if we haven't already done so. */ - if (*pdtbl == NULL) - *pdtbl = (c_derived_tbl *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(c_derived_tbl)); - dtbl = *pdtbl; - - /* Figure C.1: make table of Huffman code length for each symbol */ - - p = 0; - for (l = 1; l <= 16; l++) { - i = (int) htbl->bits[l]; - if (i < 0 || p + i > 256) /* protect against table overrun */ - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - while (i--) - huffsize[p++] = (char) l; - } - huffsize[p] = 0; - lastp = p; - - /* Figure C.2: generate the codes themselves */ - /* We also validate that the counts represent a legal Huffman code tree. */ - - code = 0; - si = huffsize[0]; - p = 0; - while (huffsize[p]) { - while (((int) huffsize[p]) == si) { - huffcode[p++] = code; - code++; - } - /* code is now 1 more than the last code used for codelength si; but - * it must still fit in si bits, since no code is allowed to be all ones. - */ - if (((INT32) code) >= (((INT32) 1) << si)) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - code <<= 1; - si++; - } - - /* Figure C.3: generate encoding tables */ - /* These are code and size indexed by symbol value */ - - /* Set all codeless symbols to have code length 0; - * this lets us detect duplicate VAL entries here, and later - * allows emit_bits to detect any attempt to emit such symbols. - */ - MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); - - /* This is also a convenient place to check for out-of-range - * and duplicated VAL entries. We allow 0..255 for AC symbols - * but only 0..15 for DC. (We could constrain them further - * based on data depth and mode, but this seems enough.) - */ - maxsymbol = isDC ? 15 : 255; - - for (p = 0; p < lastp; p++) { - i = htbl->huffval[p]; - if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - dtbl->ehufco[i] = huffcode[p]; - dtbl->ehufsi[i] = huffsize[p]; - } -} - - -/* Outputting bytes to the file. - * NB: these must be called only when actually outputting, - * that is, entropy->gather_statistics == FALSE. - */ - -/* Emit a byte, taking 'action' if must suspend. */ -#define emit_byte_s(state,val,action) \ - { *(state)->next_output_byte++ = (JOCTET) (val); \ - if (--(state)->free_in_buffer == 0) \ - if (! dump_buffer_s(state)) \ - { action; } } - -/* Emit a byte */ -#define emit_byte_e(entropy,val) \ - { *(entropy)->next_output_byte++ = (JOCTET) (val); \ - if (--(entropy)->free_in_buffer == 0) \ - dump_buffer_e(entropy); } - - -LOCAL(boolean) -dump_buffer_s (working_state * state) -/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ -{ - struct jpeg_destination_mgr * dest = state->cinfo->dest; - - if (! (*dest->empty_output_buffer) (state->cinfo)) - return FALSE; - /* After a successful buffer dump, must reset buffer pointers */ - state->next_output_byte = dest->next_output_byte; - state->free_in_buffer = dest->free_in_buffer; - return TRUE; -} - - -LOCAL(void) -dump_buffer_e (huff_entropy_ptr entropy) -/* Empty the output buffer; we do not support suspension in this case. */ -{ - struct jpeg_destination_mgr * dest = entropy->cinfo->dest; - - if (! (*dest->empty_output_buffer) (entropy->cinfo)) - ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); - /* After a successful buffer dump, must reset buffer pointers */ - entropy->next_output_byte = dest->next_output_byte; - entropy->free_in_buffer = dest->free_in_buffer; -} - - -/* Outputting bits to the file */ - -/* Only the right 24 bits of put_buffer are used; the valid bits are - * left-justified in this part. At most 16 bits can be passed to emit_bits - * in one call, and we never retain more than 7 bits in put_buffer - * between calls, so 24 bits are sufficient. - */ - -INLINE -LOCAL(boolean) -emit_bits_s (working_state * state, unsigned int code, int size) -/* Emit some bits; return TRUE if successful, FALSE if must suspend */ -{ - /* This routine is heavily used, so it's worth coding tightly. */ - register INT32 put_buffer = (INT32) code; - register int put_bits = state->cur.put_bits; - - /* if size is 0, caller used an invalid Huffman table entry */ - if (size == 0) - ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); - - put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ - - put_bits += size; /* new number of bits in buffer */ - - put_buffer <<= 24 - put_bits; /* align incoming bits */ - - put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ - - while (put_bits >= 8) { - int c = (int) ((put_buffer >> 16) & 0xFF); - - emit_byte_s(state, c, return FALSE); - if (c == 0xFF) { /* need to stuff a zero byte? */ - emit_byte_s(state, 0, return FALSE); - } - put_buffer <<= 8; - put_bits -= 8; - } - - state->cur.put_buffer = put_buffer; /* update state variables */ - state->cur.put_bits = put_bits; - - return TRUE; -} - - -INLINE -LOCAL(void) -emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) -/* Emit some bits, unless we are in gather mode */ -{ - /* This routine is heavily used, so it's worth coding tightly. */ - register INT32 put_buffer = (INT32) code; - register int put_bits = entropy->saved.put_bits; - - /* if size is 0, caller used an invalid Huffman table entry */ - if (size == 0) - ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); - - if (entropy->gather_statistics) - return; /* do nothing if we're only getting stats */ - - put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ - - put_bits += size; /* new number of bits in buffer */ - - put_buffer <<= 24 - put_bits; /* align incoming bits */ - - /* and merge with old buffer contents */ - put_buffer |= entropy->saved.put_buffer; - - while (put_bits >= 8) { - int c = (int) ((put_buffer >> 16) & 0xFF); - - emit_byte_e(entropy, c); - if (c == 0xFF) { /* need to stuff a zero byte? */ - emit_byte_e(entropy, 0); - } - put_buffer <<= 8; - put_bits -= 8; - } - - entropy->saved.put_buffer = put_buffer; /* update variables */ - entropy->saved.put_bits = put_bits; -} - - -LOCAL(boolean) -flush_bits_s (working_state * state) -{ - if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ - return FALSE; - state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ - state->cur.put_bits = 0; - return TRUE; -} - - -LOCAL(void) -flush_bits_e (huff_entropy_ptr entropy) -{ - emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ - entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ - entropy->saved.put_bits = 0; -} - - -/* - * Emit (or just count) a Huffman symbol. - */ - -INLINE -LOCAL(void) -emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) -{ - if (entropy->gather_statistics) - entropy->dc_count_ptrs[tbl_no][symbol]++; - else { - c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; - emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); - } -} - - -INLINE -LOCAL(void) -emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) -{ - if (entropy->gather_statistics) - entropy->ac_count_ptrs[tbl_no][symbol]++; - else { - c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; - emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); - } -} - - -/* - * Emit bits from a correction bit buffer. - */ - -LOCAL(void) -emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, - unsigned int nbits) -{ - if (entropy->gather_statistics) - return; /* no real work */ - - while (nbits > 0) { - emit_bits_e(entropy, (unsigned int) (*bufstart), 1); - bufstart++; - nbits--; - } -} - - -/* - * Emit any pending EOBRUN symbol. - */ - -LOCAL(void) -emit_eobrun (huff_entropy_ptr entropy) -{ - register int temp, nbits; - - if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ - temp = entropy->EOBRUN; - nbits = 0; - while ((temp >>= 1)) - nbits++; - /* safety check: shouldn't happen given limited correction-bit buffer */ - if (nbits > 14) - ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); - - emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); - if (nbits) - emit_bits_e(entropy, entropy->EOBRUN, nbits); - - entropy->EOBRUN = 0; - - /* Emit any buffered correction bits */ - emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); - entropy->BE = 0; - } -} - - -/* - * Emit a restart marker & resynchronize predictions. - */ - -LOCAL(boolean) -emit_restart_s (working_state * state, int restart_num) -{ - int ci; - - if (! flush_bits_s(state)) - return FALSE; - - emit_byte_s(state, 0xFF, return FALSE); - emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); - - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) - state->cur.last_dc_val[ci] = 0; - - /* The restart counter is not updated until we successfully write the MCU. */ - - return TRUE; -} - - -LOCAL(void) -emit_restart_e (huff_entropy_ptr entropy, int restart_num) -{ - int ci; - - emit_eobrun(entropy); - - if (! entropy->gather_statistics) { - flush_bits_e(entropy); - emit_byte_e(entropy, 0xFF); - emit_byte_e(entropy, JPEG_RST0 + restart_num); - } - - if (entropy->cinfo->Ss == 0) { - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) - entropy->saved.last_dc_val[ci] = 0; - } else { - /* Re-initialize all AC-related fields to 0 */ - entropy->EOBRUN = 0; - entropy->BE = 0; - } -} - - -/* - * MCU encoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp, temp2; - register int nbits; - int blkn, ci; - int Al = cinfo->Al; - JBLOCKROW block; - jpeg_component_info * compptr; - ISHIFT_TEMPS - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - - /* Compute the DC value after the required point transform by Al. - * This is simply an arithmetic right shift. - */ - temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); - - /* DC differences are figured on the point-transformed values. */ - temp = temp2 - entropy->saved.last_dc_val[ci]; - entropy->saved.last_dc_val[ci] = temp2; - - /* Encode the DC coefficient difference per section G.1.2.1 */ - temp2 = temp; - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - /* For a negative input, want temp2 = bitwise complement of abs(input) */ - /* This code assumes we are on a two's complement machine */ - temp2--; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 0; - while (temp) { - nbits++; - temp >>= 1; - } - /* Check for out-of-range coefficient values. - * Since we're encoding a difference, the range limit is twice as much. - */ - if (nbits > MAX_COEF_BITS+1) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count/emit the Huffman-coded symbol for the number of bits */ - emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - if (nbits) /* emit_bits rejects calls with size 0 */ - emit_bits_e(entropy, (unsigned int) temp2, nbits); - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; -} - - -/* - * MCU encoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp, temp2; - register int nbits; - register int r, k; - int Se, Al; - const int * natural_order; - JBLOCKROW block; - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - Se = cinfo->Se; - Al = cinfo->Al; - natural_order = cinfo->natural_order; - - /* Encode the MCU data block */ - block = MCU_data[0]; - - /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ - - r = 0; /* r = run length of zeros */ - - for (k = cinfo->Ss; k <= Se; k++) { - if ((temp = (*block)[natural_order[k]]) == 0) { - r++; - continue; - } - /* We must apply the point transform by Al. For AC coefficients this - * is an integer division with rounding towards 0. To do this portably - * in C, we shift after obtaining the absolute value; so the code is - * interwoven with finding the abs value (temp) and output bits (temp2). - */ - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - temp >>= Al; /* apply the point transform */ - /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ - temp2 = ~temp; - } else { - temp >>= Al; /* apply the point transform */ - temp2 = temp; - } - /* Watch out for case that nonzero coef is zero after point transform */ - if (temp == 0) { - r++; - continue; - } - - /* Emit any pending EOBRUN */ - if (entropy->EOBRUN > 0) - emit_eobrun(entropy); - /* if run length > 15, must emit special run-length-16 codes (0xF0) */ - while (r > 15) { - emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); - r -= 16; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 1; /* there must be at least one 1 bit */ - while ((temp >>= 1)) - nbits++; - /* Check for out-of-range coefficient values */ - if (nbits > MAX_COEF_BITS) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count/emit Huffman symbol for run length / number of bits */ - emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - emit_bits_e(entropy, (unsigned int) temp2, nbits); - - r = 0; /* reset zero run length */ - } - - if (r > 0) { /* If there are trailing zeroes, */ - entropy->EOBRUN++; /* count an EOB */ - if (entropy->EOBRUN == 0x7FFF) - emit_eobrun(entropy); /* force it out to avoid overflow */ - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; -} - - -/* - * MCU encoding for DC successive approximation refinement scan. - * Note: we assume such scans can be multi-component, although the spec - * is not very clear on the point. - */ - -METHODDEF(boolean) -encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp; - int blkn; - int Al = cinfo->Al; - JBLOCKROW block; - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - - /* We simply emit the Al'th bit of the DC coefficient value. */ - temp = (*block)[0]; - emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; -} - - -/* - * MCU encoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp; - register int r, k; - int EOB; - char *BR_buffer; - unsigned int BR; - int Se, Al; - const int * natural_order; - JBLOCKROW block; - int absvalues[DCTSIZE2]; - - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) - if (entropy->restarts_to_go == 0) - emit_restart_e(entropy, entropy->next_restart_num); - - Se = cinfo->Se; - Al = cinfo->Al; - natural_order = cinfo->natural_order; - - /* Encode the MCU data block */ - block = MCU_data[0]; - - /* It is convenient to make a pre-pass to determine the transformed - * coefficients' absolute values and the EOB position. - */ - EOB = 0; - for (k = cinfo->Ss; k <= Se; k++) { - temp = (*block)[natural_order[k]]; - /* We must apply the point transform by Al. For AC coefficients this - * is an integer division with rounding towards 0. To do this portably - * in C, we shift after obtaining the absolute value. - */ - if (temp < 0) - temp = -temp; /* temp is abs value of input */ - temp >>= Al; /* apply the point transform */ - absvalues[k] = temp; /* save abs value for main pass */ - if (temp == 1) - EOB = k; /* EOB = index of last newly-nonzero coef */ - } - - /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ - - r = 0; /* r = run length of zeros */ - BR = 0; /* BR = count of buffered bits added now */ - BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ - - for (k = cinfo->Ss; k <= Se; k++) { - if ((temp = absvalues[k]) == 0) { - r++; - continue; - } - - /* Emit any required ZRLs, but not if they can be folded into EOB */ - while (r > 15 && k <= EOB) { - /* emit any pending EOBRUN and the BE correction bits */ - emit_eobrun(entropy); - /* Emit ZRL */ - emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); - r -= 16; - /* Emit buffered correction bits that must be associated with ZRL */ - emit_buffered_bits(entropy, BR_buffer, BR); - BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ - BR = 0; - } - - /* If the coef was previously nonzero, it only needs a correction bit. - * NOTE: a straight translation of the spec's figure G.7 would suggest - * that we also need to test r > 15. But if r > 15, we can only get here - * if k > EOB, which implies that this coefficient is not 1. - */ - if (temp > 1) { - /* The correction bit is the next bit of the absolute value. */ - BR_buffer[BR++] = (char) (temp & 1); - continue; - } - - /* Emit any pending EOBRUN and the BE correction bits */ - emit_eobrun(entropy); - - /* Count/emit Huffman symbol for run length / number of bits */ - emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); - - /* Emit output bit for newly-nonzero coef */ - temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; - emit_bits_e(entropy, (unsigned int) temp, 1); - - /* Emit buffered correction bits that must be associated with this code */ - emit_buffered_bits(entropy, BR_buffer, BR); - BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ - BR = 0; - r = 0; /* reset zero run length */ - } - - if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ - entropy->EOBRUN++; /* count an EOB */ - entropy->BE += BR; /* concat my correction bits to older ones */ - /* We force out the EOB if we risk either: - * 1. overflow of the EOB counter; - * 2. overflow of the correction bit buffer during the next MCU. - */ - if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) - emit_eobrun(entropy); - } - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; -} - - -/* Encode a single block's worth of coefficients */ - -LOCAL(boolean) -encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, - c_derived_tbl *dctbl, c_derived_tbl *actbl) -{ - register int temp, temp2; - register int nbits; - register int k, r, i; - int Se = state->cinfo->lim_Se; - const int * natural_order = state->cinfo->natural_order; - - /* Encode the DC coefficient difference per section F.1.2.1 */ - - temp = temp2 = block[0] - last_dc_val; - - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - /* For a negative input, want temp2 = bitwise complement of abs(input) */ - /* This code assumes we are on a two's complement machine */ - temp2--; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 0; - while (temp) { - nbits++; - temp >>= 1; - } - /* Check for out-of-range coefficient values. - * Since we're encoding a difference, the range limit is twice as much. - */ - if (nbits > MAX_COEF_BITS+1) - ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); - - /* Emit the Huffman-coded symbol for the number of bits */ - if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) - return FALSE; - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - if (nbits) /* emit_bits rejects calls with size 0 */ - if (! emit_bits_s(state, (unsigned int) temp2, nbits)) - return FALSE; - - /* Encode the AC coefficients per section F.1.2.2 */ - - r = 0; /* r = run length of zeros */ - - for (k = 1; k <= Se; k++) { - if ((temp = block[natural_order[k]]) == 0) { - r++; - } else { - /* if run length > 15, must emit special run-length-16 codes (0xF0) */ - while (r > 15) { - if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) - return FALSE; - r -= 16; - } - - temp2 = temp; - if (temp < 0) { - temp = -temp; /* temp is abs value of input */ - /* This code assumes we are on a two's complement machine */ - temp2--; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 1; /* there must be at least one 1 bit */ - while ((temp >>= 1)) - nbits++; - /* Check for out-of-range coefficient values */ - if (nbits > MAX_COEF_BITS) - ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); - - /* Emit Huffman symbol for run length / number of bits */ - i = (r << 4) + nbits; - if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) - return FALSE; - - /* Emit that number of bits of the value, if positive, */ - /* or the complement of its magnitude, if negative. */ - if (! emit_bits_s(state, (unsigned int) temp2, nbits)) - return FALSE; - - r = 0; - } - } - - /* If the last coef(s) were zero, emit an end-of-block code */ - if (r > 0) - if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) - return FALSE; - - return TRUE; -} - - -/* - * Encode and output one MCU's worth of Huffman-compressed coefficients. - */ - -METHODDEF(boolean) -encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - working_state state; - int blkn, ci; - jpeg_component_info * compptr; - - /* Load up working state */ - state.next_output_byte = cinfo->dest->next_output_byte; - state.free_in_buffer = cinfo->dest->free_in_buffer; - ASSIGN_STATE(state.cur, entropy->saved); - state.cinfo = cinfo; - - /* Emit restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! emit_restart_s(&state, entropy->next_restart_num)) - return FALSE; - } - - /* Encode the MCU data blocks */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - if (! encode_one_block(&state, - MCU_data[blkn][0], state.cur.last_dc_val[ci], - entropy->dc_derived_tbls[compptr->dc_tbl_no], - entropy->ac_derived_tbls[compptr->ac_tbl_no])) - return FALSE; - /* Update last_dc_val */ - state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; - } - - /* Completed MCU, so update state */ - cinfo->dest->next_output_byte = state.next_output_byte; - cinfo->dest->free_in_buffer = state.free_in_buffer; - ASSIGN_STATE(entropy->saved, state.cur); - - /* Update restart-interval state too */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num++; - entropy->next_restart_num &= 7; - } - entropy->restarts_to_go--; - } - - return TRUE; -} - - -/* - * Finish up at the end of a Huffman-compressed scan. - */ - -METHODDEF(void) -finish_pass_huff (j_compress_ptr cinfo) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - working_state state; - - if (cinfo->progressive_mode) { - entropy->next_output_byte = cinfo->dest->next_output_byte; - entropy->free_in_buffer = cinfo->dest->free_in_buffer; - - /* Flush out any buffered data */ - emit_eobrun(entropy); - flush_bits_e(entropy); - - cinfo->dest->next_output_byte = entropy->next_output_byte; - cinfo->dest->free_in_buffer = entropy->free_in_buffer; - } else { - /* Load up working state ... flush_bits needs it */ - state.next_output_byte = cinfo->dest->next_output_byte; - state.free_in_buffer = cinfo->dest->free_in_buffer; - ASSIGN_STATE(state.cur, entropy->saved); - state.cinfo = cinfo; - - /* Flush out the last data */ - if (! flush_bits_s(&state)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); - - /* Update state */ - cinfo->dest->next_output_byte = state.next_output_byte; - cinfo->dest->free_in_buffer = state.free_in_buffer; - ASSIGN_STATE(entropy->saved, state.cur); - } -} - - -/* - * Huffman coding optimization. - * - * We first scan the supplied data and count the number of uses of each symbol - * that is to be Huffman-coded. (This process MUST agree with the code above.) - * Then we build a Huffman coding tree for the observed counts. - * Symbols which are not needed at all for the particular image are not - * assigned any code, which saves space in the DHT marker as well as in - * the compressed data. - */ - - -/* Process a single block's worth of coefficients */ - -LOCAL(void) -htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, - long dc_counts[], long ac_counts[]) -{ - register int temp; - register int nbits; - register int k, r; - int Se = cinfo->lim_Se; - const int * natural_order = cinfo->natural_order; - - /* Encode the DC coefficient difference per section F.1.2.1 */ - - temp = block[0] - last_dc_val; - if (temp < 0) - temp = -temp; - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 0; - while (temp) { - nbits++; - temp >>= 1; - } - /* Check for out-of-range coefficient values. - * Since we're encoding a difference, the range limit is twice as much. - */ - if (nbits > MAX_COEF_BITS+1) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count the Huffman symbol for the number of bits */ - dc_counts[nbits]++; - - /* Encode the AC coefficients per section F.1.2.2 */ - - r = 0; /* r = run length of zeros */ - - for (k = 1; k <= Se; k++) { - if ((temp = block[natural_order[k]]) == 0) { - r++; - } else { - /* if run length > 15, must emit special run-length-16 codes (0xF0) */ - while (r > 15) { - ac_counts[0xF0]++; - r -= 16; - } - - /* Find the number of bits needed for the magnitude of the coefficient */ - if (temp < 0) - temp = -temp; - - /* Find the number of bits needed for the magnitude of the coefficient */ - nbits = 1; /* there must be at least one 1 bit */ - while ((temp >>= 1)) - nbits++; - /* Check for out-of-range coefficient values */ - if (nbits > MAX_COEF_BITS) - ERREXIT(cinfo, JERR_BAD_DCT_COEF); - - /* Count Huffman symbol for run length / number of bits */ - ac_counts[(r << 4) + nbits]++; - - r = 0; - } - } - - /* If the last coef(s) were zero, emit an end-of-block code */ - if (r > 0) - ac_counts[0]++; -} - - -/* - * Trial-encode one MCU's worth of Huffman-compressed coefficients. - * No data is actually output, so no suspension return is possible. - */ - -METHODDEF(boolean) -encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int blkn, ci; - jpeg_component_info * compptr; - - /* Take care of restart intervals if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) { - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) - entropy->saved.last_dc_val[ci] = 0; - /* Update restart state */ - entropy->restarts_to_go = cinfo->restart_interval; - } - entropy->restarts_to_go--; - } - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], - entropy->dc_count_ptrs[compptr->dc_tbl_no], - entropy->ac_count_ptrs[compptr->ac_tbl_no]); - entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; - } - - return TRUE; -} - - -/* - * Generate the best Huffman code table for the given counts, fill htbl. - * - * The JPEG standard requires that no symbol be assigned a codeword of all - * one bits (so that padding bits added at the end of a compressed segment - * can't look like a valid code). Because of the canonical ordering of - * codewords, this just means that there must be an unused slot in the - * longest codeword length category. Section K.2 of the JPEG spec suggests - * reserving such a slot by pretending that symbol 256 is a valid symbol - * with count 1. In theory that's not optimal; giving it count zero but - * including it in the symbol set anyway should give a better Huffman code. - * But the theoretically better code actually seems to come out worse in - * practice, because it produces more all-ones bytes (which incur stuffed - * zero bytes in the final file). In any case the difference is tiny. - * - * The JPEG standard requires Huffman codes to be no more than 16 bits long. - * If some symbols have a very small but nonzero probability, the Huffman tree - * must be adjusted to meet the code length restriction. We currently use - * the adjustment method suggested in JPEG section K.2. This method is *not* - * optimal; it may not choose the best possible limited-length code. But - * typically only very-low-frequency symbols will be given less-than-optimal - * lengths, so the code is almost optimal. Experimental comparisons against - * an optimal limited-length-code algorithm indicate that the difference is - * microscopic --- usually less than a hundredth of a percent of total size. - * So the extra complexity of an optimal algorithm doesn't seem worthwhile. - */ - -LOCAL(void) -jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) -{ -#define MAX_CLEN 32 /* assumed maximum initial code length */ - UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ - int codesize[257]; /* codesize[k] = code length of symbol k */ - int others[257]; /* next symbol in current branch of tree */ - int c1, c2; - int p, i, j; - long v; - - /* This algorithm is explained in section K.2 of the JPEG standard */ - - MEMZERO(bits, SIZEOF(bits)); - MEMZERO(codesize, SIZEOF(codesize)); - for (i = 0; i < 257; i++) - others[i] = -1; /* init links to empty */ - - freq[256] = 1; /* make sure 256 has a nonzero count */ - /* Including the pseudo-symbol 256 in the Huffman procedure guarantees - * that no real symbol is given code-value of all ones, because 256 - * will be placed last in the largest codeword category. - */ - - /* Huffman's basic algorithm to assign optimal code lengths to symbols */ - - for (;;) { - /* Find the smallest nonzero frequency, set c1 = its symbol */ - /* In case of ties, take the larger symbol number */ - c1 = -1; - v = 1000000000L; - for (i = 0; i <= 256; i++) { - if (freq[i] && freq[i] <= v) { - v = freq[i]; - c1 = i; - } - } - - /* Find the next smallest nonzero frequency, set c2 = its symbol */ - /* In case of ties, take the larger symbol number */ - c2 = -1; - v = 1000000000L; - for (i = 0; i <= 256; i++) { - if (freq[i] && freq[i] <= v && i != c1) { - v = freq[i]; - c2 = i; - } - } - - /* Done if we've merged everything into one frequency */ - if (c2 < 0) - break; - - /* Else merge the two counts/trees */ - freq[c1] += freq[c2]; - freq[c2] = 0; - - /* Increment the codesize of everything in c1's tree branch */ - codesize[c1]++; - while (others[c1] >= 0) { - c1 = others[c1]; - codesize[c1]++; - } - - others[c1] = c2; /* chain c2 onto c1's tree branch */ - - /* Increment the codesize of everything in c2's tree branch */ - codesize[c2]++; - while (others[c2] >= 0) { - c2 = others[c2]; - codesize[c2]++; - } - } - - /* Now count the number of symbols of each code length */ - for (i = 0; i <= 256; i++) { - if (codesize[i]) { - /* The JPEG standard seems to think that this can't happen, */ - /* but I'm paranoid... */ - if (codesize[i] > MAX_CLEN) - ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); - - bits[codesize[i]]++; - } - } - - /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure - * Huffman procedure assigned any such lengths, we must adjust the coding. - * Here is what the JPEG spec says about how this next bit works: - * Since symbols are paired for the longest Huffman code, the symbols are - * removed from this length category two at a time. The prefix for the pair - * (which is one bit shorter) is allocated to one of the pair; then, - * skipping the BITS entry for that prefix length, a code word from the next - * shortest nonzero BITS entry is converted into a prefix for two code words - * one bit longer. - */ - - for (i = MAX_CLEN; i > 16; i--) { - while (bits[i] > 0) { - j = i - 2; /* find length of new prefix to be used */ - while (bits[j] == 0) - j--; - - bits[i] -= 2; /* remove two symbols */ - bits[i-1]++; /* one goes in this length */ - bits[j+1] += 2; /* two new symbols in this length */ - bits[j]--; /* symbol of this length is now a prefix */ - } - } - - /* Remove the count for the pseudo-symbol 256 from the largest codelength */ - while (bits[i] == 0) /* find largest codelength still in use */ - i--; - bits[i]--; - - /* Return final symbol counts (only for lengths 0..16) */ - MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); - - /* Return a list of the symbols sorted by code length */ - /* It's not real clear to me why we don't need to consider the codelength - * changes made above, but the JPEG spec seems to think this works. - */ - p = 0; - for (i = 1; i <= MAX_CLEN; i++) { - for (j = 0; j <= 255; j++) { - if (codesize[j] == i) { - htbl->huffval[p] = (UINT8) j; - p++; - } - } - } - - /* Set sent_table FALSE so updated table will be written to JPEG file. */ - htbl->sent_table = FALSE; -} - - -/* - * Finish up a statistics-gathering pass and create the new Huffman tables. - */ - -METHODDEF(void) -finish_pass_gather (j_compress_ptr cinfo) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci, tbl; - jpeg_component_info * compptr; - JHUFF_TBL **htblptr; - boolean did_dc[NUM_HUFF_TBLS]; - boolean did_ac[NUM_HUFF_TBLS]; - - /* It's important not to apply jpeg_gen_optimal_table more than once - * per table, because it clobbers the input frequency counts! - */ - if (cinfo->progressive_mode) - /* Flush out buffered data (all we care about is counting the EOB symbol) */ - emit_eobrun(entropy); - - MEMZERO(did_dc, SIZEOF(did_dc)); - MEMZERO(did_ac, SIZEOF(did_ac)); - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) { - tbl = compptr->dc_tbl_no; - if (! did_dc[tbl]) { - htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; - if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); - jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); - did_dc[tbl] = TRUE; - } - } - /* AC needs no table when not present */ - if (cinfo->Se) { - tbl = compptr->ac_tbl_no; - if (! did_ac[tbl]) { - htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; - if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); - jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); - did_ac[tbl] = TRUE; - } - } - } -} - - -/* - * Initialize for a Huffman-compressed scan. - * If gather_statistics is TRUE, we do not output anything during the scan, - * just count the Huffman symbols used and generate Huffman code tables. - */ - -METHODDEF(void) -start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci, tbl; - jpeg_component_info * compptr; - - if (gather_statistics) - entropy->pub.finish_pass = finish_pass_gather; - else - entropy->pub.finish_pass = finish_pass_huff; - - if (cinfo->progressive_mode) { - entropy->cinfo = cinfo; - entropy->gather_statistics = gather_statistics; - - /* We assume jcmaster.c already validated the scan parameters. */ - - /* Select execution routine */ - if (cinfo->Ah == 0) { - if (cinfo->Ss == 0) - entropy->pub.encode_mcu = encode_mcu_DC_first; - else - entropy->pub.encode_mcu = encode_mcu_AC_first; - } else { - if (cinfo->Ss == 0) - entropy->pub.encode_mcu = encode_mcu_DC_refine; - else { - entropy->pub.encode_mcu = encode_mcu_AC_refine; - /* AC refinement needs a correction bit buffer */ - if (entropy->bit_buffer == NULL) - entropy->bit_buffer = (char *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - MAX_CORR_BITS * SIZEOF(char)); - } - } - - /* Initialize AC stuff */ - entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; - entropy->EOBRUN = 0; - entropy->BE = 0; - } else { - if (gather_statistics) - entropy->pub.encode_mcu = encode_mcu_gather; - else - entropy->pub.encode_mcu = encode_mcu_huff; - } - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) { - tbl = compptr->dc_tbl_no; - if (gather_statistics) { - /* Check for invalid table index */ - /* (make_c_derived_tbl does this in the other path) */ - if (tbl < 0 || tbl >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); - /* Allocate and zero the statistics tables */ - /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ - if (entropy->dc_count_ptrs[tbl] == NULL) - entropy->dc_count_ptrs[tbl] = (long *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - 257 * SIZEOF(long)); - MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); - } else { - /* Compute derived values for Huffman tables */ - /* We may do this more than once for a table, but it's not expensive */ - jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, - & entropy->dc_derived_tbls[tbl]); - } - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - } - /* AC needs no table when not present */ - if (cinfo->Se) { - tbl = compptr->ac_tbl_no; - if (gather_statistics) { - if (tbl < 0 || tbl >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); - if (entropy->ac_count_ptrs[tbl] == NULL) - entropy->ac_count_ptrs[tbl] = (long *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - 257 * SIZEOF(long)); - MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); - } else { - jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, - & entropy->ac_derived_tbls[tbl]); - } - } - } - - /* Initialize bit buffer to empty */ - entropy->saved.put_buffer = 0; - entropy->saved.put_bits = 0; - - /* Initialize restart stuff */ - entropy->restarts_to_go = cinfo->restart_interval; - entropy->next_restart_num = 0; -} - - -/* - * Module initialization routine for Huffman entropy encoding. - */ - -GLOBAL(void) -jinit_huff_encoder (j_compress_ptr cinfo) -{ - huff_entropy_ptr entropy; - int i; - - entropy = (huff_entropy_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(huff_entropy_encoder)); - cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; - entropy->pub.start_pass = start_pass_huff; - - /* Mark tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; - entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; - } - - if (cinfo->progressive_mode) - entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ -} diff --git a/src/jpeg-8c/jcinit.c b/src/jpeg-8c/jcinit.c deleted file mode 100644 index 0ba310f2..00000000 --- a/src/jpeg-8c/jcinit.c +++ /dev/null @@ -1,65 +0,0 @@ -/* - * jcinit.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains initialization logic for the JPEG compressor. - * This routine is in charge of selecting the modules to be executed and - * making an initialization call to each one. - * - * Logically, this code belongs in jcmaster.c. It's split out because - * linking this routine implies linking the entire compression library. - * For a transcoding-only application, we want to be able to use jcmaster.c - * without linking in the whole library. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * Master selection of compression modules. - * This is done once at the start of processing an image. We determine - * which modules will be used and give them appropriate initialization calls. - */ - -GLOBAL(void) -jinit_compress_master (j_compress_ptr cinfo) -{ - /* Initialize master control (includes parameter checking/processing) */ - jinit_c_master_control(cinfo, FALSE /* full compression */); - - /* Preprocessing */ - if (! cinfo->raw_data_in) { - jinit_color_converter(cinfo); - jinit_downsampler(cinfo); - jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); - } - /* Forward DCT */ - jinit_forward_dct(cinfo); - /* Entropy encoding: either Huffman or arithmetic coding. */ - if (cinfo->arith_code) - jinit_arith_encoder(cinfo); - else { - jinit_huff_encoder(cinfo); - } - - /* Need a full-image coefficient buffer in any multi-pass mode. */ - jinit_c_coef_controller(cinfo, - (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); - jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); - - jinit_marker_writer(cinfo); - - /* We can now tell the memory manager to allocate virtual arrays. */ - (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); - - /* Write the datastream header (SOI) immediately. - * Frame and scan headers are postponed till later. - * This lets application insert special markers after the SOI. - */ - (*cinfo->marker->write_file_header) (cinfo); -} diff --git a/src/jpeg-8c/jcmainct.c b/src/jpeg-8c/jcmainct.c deleted file mode 100644 index b9f525b2..00000000 --- a/src/jpeg-8c/jcmainct.c +++ /dev/null @@ -1,293 +0,0 @@ -/* - * jcmainct.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the main buffer controller for compression. - * The main buffer lies between the pre-processor and the JPEG - * compressor proper; it holds downsampled data in the JPEG colorspace. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Note: currently, there is no operating mode in which a full-image buffer - * is needed at this step. If there were, that mode could not be used with - * "raw data" input, since this module is bypassed in that case. However, - * we've left the code here for possible use in special applications. - */ -#undef FULL_MAIN_BUFFER_SUPPORTED - - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_c_main_controller pub; /* public fields */ - - JDIMENSION cur_iMCU_row; /* number of current iMCU row */ - JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ - boolean suspended; /* remember if we suspended output */ - J_BUF_MODE pass_mode; /* current operating mode */ - - /* If using just a strip buffer, this points to the entire set of buffers - * (we allocate one for each component). In the full-image case, this - * points to the currently accessible strips of the virtual arrays. - */ - JSAMPARRAY buffer[MAX_COMPONENTS]; - -#ifdef FULL_MAIN_BUFFER_SUPPORTED - /* If using full-image storage, this array holds pointers to virtual-array - * control blocks for each component. Unused if not full-image storage. - */ - jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; -#endif -} my_main_controller; - -typedef my_main_controller * my_main_ptr; - - -/* Forward declarations */ -METHODDEF(void) process_data_simple_main - JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, - JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); -#ifdef FULL_MAIN_BUFFER_SUPPORTED -METHODDEF(void) process_data_buffer_main - JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, - JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); -#endif - - -/* - * Initialize for a processing pass. - */ - -METHODDEF(void) -start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - /* Do nothing in raw-data mode. */ - if (cinfo->raw_data_in) - return; - - main_ptr->cur_iMCU_row = 0; /* initialize counters */ - main_ptr->rowgroup_ctr = 0; - main_ptr->suspended = FALSE; - main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */ - - switch (pass_mode) { - case JBUF_PASS_THRU: -#ifdef FULL_MAIN_BUFFER_SUPPORTED - if (main_ptr->whole_image[0] != NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); -#endif - main_ptr->pub.process_data = process_data_simple_main; - break; -#ifdef FULL_MAIN_BUFFER_SUPPORTED - case JBUF_SAVE_SOURCE: - case JBUF_CRANK_DEST: - case JBUF_SAVE_AND_PASS: - if (main_ptr->whole_image[0] == NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - main_ptr->pub.process_data = process_data_buffer_main; - break; -#endif - default: - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - break; - } -} - - -/* - * Process some data. - * This routine handles the simple pass-through mode, - * where we have only a strip buffer. - */ - -METHODDEF(void) -process_data_simple_main (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail) -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { - /* Read input data if we haven't filled the main buffer yet */ - if (main_ptr->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) - (*cinfo->prep->pre_process_data) (cinfo, - input_buf, in_row_ctr, in_rows_avail, - main_ptr->buffer, &main_ptr->rowgroup_ctr, - (JDIMENSION) cinfo->min_DCT_v_scaled_size); - - /* If we don't have a full iMCU row buffered, return to application for - * more data. Note that preprocessor will always pad to fill the iMCU row - * at the bottom of the image. - */ - if (main_ptr->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size) - return; - - /* Send the completed row to the compressor */ - if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { - /* If compressor did not consume the whole row, then we must need to - * suspend processing and return to the application. In this situation - * we pretend we didn't yet consume the last input row; otherwise, if - * it happened to be the last row of the image, the application would - * think we were done. - */ - if (! main_ptr->suspended) { - (*in_row_ctr)--; - main_ptr->suspended = TRUE; - } - return; - } - /* We did finish the row. Undo our little suspension hack if a previous - * call suspended; then mark the main buffer empty. - */ - if (main_ptr->suspended) { - (*in_row_ctr)++; - main_ptr->suspended = FALSE; - } - main_ptr->rowgroup_ctr = 0; - main_ptr->cur_iMCU_row++; - } -} - - -#ifdef FULL_MAIN_BUFFER_SUPPORTED - -/* - * Process some data. - * This routine handles all of the modes that use a full-size buffer. - */ - -METHODDEF(void) -process_data_buffer_main (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail) -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci; - jpeg_component_info *compptr; - boolean writing = (main_ptr->pass_mode != JBUF_CRANK_DEST); - - while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { - /* Realign the virtual buffers if at the start of an iMCU row. */ - if (main_ptr->rowgroup_ctr == 0) { - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - main_ptr->buffer[ci] = (*cinfo->mem->access_virt_sarray) - ((j_common_ptr) cinfo, main_ptr->whole_image[ci], - main_ptr->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE), - (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing); - } - /* In a read pass, pretend we just read some source data. */ - if (! writing) { - *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE; - main_ptr->rowgroup_ctr = DCTSIZE; - } - } - - /* If a write pass, read input data until the current iMCU row is full. */ - /* Note: preprocessor will pad if necessary to fill the last iMCU row. */ - if (writing) { - (*cinfo->prep->pre_process_data) (cinfo, - input_buf, in_row_ctr, in_rows_avail, - main_ptr->buffer, &main_ptr->rowgroup_ctr, - (JDIMENSION) DCTSIZE); - /* Return to application if we need more data to fill the iMCU row. */ - if (main_ptr->rowgroup_ctr < DCTSIZE) - return; - } - - /* Emit data, unless this is a sink-only pass. */ - if (main_ptr->pass_mode != JBUF_SAVE_SOURCE) { - if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { - /* If compressor did not consume the whole row, then we must need to - * suspend processing and return to the application. In this situation - * we pretend we didn't yet consume the last input row; otherwise, if - * it happened to be the last row of the image, the application would - * think we were done. - */ - if (! main_ptr->suspended) { - (*in_row_ctr)--; - main_ptr->suspended = TRUE; - } - return; - } - /* We did finish the row. Undo our little suspension hack if a previous - * call suspended; then mark the main buffer empty. - */ - if (main_ptr->suspended) { - (*in_row_ctr)++; - main_ptr->suspended = FALSE; - } - } - - /* If get here, we are done with this iMCU row. Mark buffer empty. */ - main_ptr->rowgroup_ctr = 0; - main_ptr->cur_iMCU_row++; - } -} - -#endif /* FULL_MAIN_BUFFER_SUPPORTED */ - - -/* - * Initialize main buffer controller. - */ - -GLOBAL(void) -jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) -{ - my_main_ptr main_ptr; - int ci; - jpeg_component_info *compptr; - - main_ptr = (my_main_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_main_controller)); - cinfo->main = (struct jpeg_c_main_controller *) main_ptr; - main_ptr->pub.start_pass = start_pass_main; - - /* We don't need to create a buffer in raw-data mode. */ - if (cinfo->raw_data_in) - return; - - /* Create the buffer. It holds downsampled data, so each component - * may be of a different size. - */ - if (need_full_buffer) { -#ifdef FULL_MAIN_BUFFER_SUPPORTED - /* Allocate a full-image virtual array for each component */ - /* Note we pad the bottom to a multiple of the iMCU height */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - main_ptr->whole_image[ci] = (*cinfo->mem->request_virt_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (JDIMENSION) jround_up((long) compptr->height_in_blocks, - (long) compptr->v_samp_factor) * DCTSIZE, - (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); - } -#else - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); -#endif - } else { -#ifdef FULL_MAIN_BUFFER_SUPPORTED - main_ptr->whole_image[0] = NULL; /* flag for no virtual arrays */ -#endif - /* Allocate a strip buffer for each component */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); - } - } -} diff --git a/src/jpeg-8c/jcmarker.c b/src/jpeg-8c/jcmarker.c deleted file mode 100644 index 606c19af..00000000 --- a/src/jpeg-8c/jcmarker.c +++ /dev/null @@ -1,682 +0,0 @@ -/* - * jcmarker.c - * - * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2003-2010 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains routines to write JPEG datastream markers. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -typedef enum { /* JPEG marker codes */ - M_SOF0 = 0xc0, - M_SOF1 = 0xc1, - M_SOF2 = 0xc2, - M_SOF3 = 0xc3, - - M_SOF5 = 0xc5, - M_SOF6 = 0xc6, - M_SOF7 = 0xc7, - - M_JPG = 0xc8, - M_SOF9 = 0xc9, - M_SOF10 = 0xca, - M_SOF11 = 0xcb, - - M_SOF13 = 0xcd, - M_SOF14 = 0xce, - M_SOF15 = 0xcf, - - M_DHT = 0xc4, - - M_DAC = 0xcc, - - M_RST0 = 0xd0, - M_RST1 = 0xd1, - M_RST2 = 0xd2, - M_RST3 = 0xd3, - M_RST4 = 0xd4, - M_RST5 = 0xd5, - M_RST6 = 0xd6, - M_RST7 = 0xd7, - - M_SOI = 0xd8, - M_EOI = 0xd9, - M_SOS = 0xda, - M_DQT = 0xdb, - M_DNL = 0xdc, - M_DRI = 0xdd, - M_DHP = 0xde, - M_EXP = 0xdf, - - M_APP0 = 0xe0, - M_APP1 = 0xe1, - M_APP2 = 0xe2, - M_APP3 = 0xe3, - M_APP4 = 0xe4, - M_APP5 = 0xe5, - M_APP6 = 0xe6, - M_APP7 = 0xe7, - M_APP8 = 0xe8, - M_APP9 = 0xe9, - M_APP10 = 0xea, - M_APP11 = 0xeb, - M_APP12 = 0xec, - M_APP13 = 0xed, - M_APP14 = 0xee, - M_APP15 = 0xef, - - M_JPG0 = 0xf0, - M_JPG13 = 0xfd, - M_COM = 0xfe, - - M_TEM = 0x01, - - M_ERROR = 0x100 -} JPEG_MARKER; - - -/* Private state */ - -typedef struct { - struct jpeg_marker_writer pub; /* public fields */ - - unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ -} my_marker_writer; - -typedef my_marker_writer * my_marker_ptr; - - -/* - * Basic output routines. - * - * Note that we do not support suspension while writing a marker. - * Therefore, an application using suspension must ensure that there is - * enough buffer space for the initial markers (typ. 600-700 bytes) before - * calling jpeg_start_compress, and enough space to write the trailing EOI - * (a few bytes) before calling jpeg_finish_compress. Multipass compression - * modes are not supported at all with suspension, so those two are the only - * points where markers will be written. - */ - -LOCAL(void) -emit_byte (j_compress_ptr cinfo, int val) -/* Emit a byte */ -{ - struct jpeg_destination_mgr * dest = cinfo->dest; - - *(dest->next_output_byte)++ = (JOCTET) val; - if (--dest->free_in_buffer == 0) { - if (! (*dest->empty_output_buffer) (cinfo)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); - } -} - - -LOCAL(void) -emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) -/* Emit a marker code */ -{ - emit_byte(cinfo, 0xFF); - emit_byte(cinfo, (int) mark); -} - - -LOCAL(void) -emit_2bytes (j_compress_ptr cinfo, int value) -/* Emit a 2-byte integer; these are always MSB first in JPEG files */ -{ - emit_byte(cinfo, (value >> 8) & 0xFF); - emit_byte(cinfo, value & 0xFF); -} - - -/* - * Routines to write specific marker types. - */ - -LOCAL(int) -emit_dqt (j_compress_ptr cinfo, int index) -/* Emit a DQT marker */ -/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ -{ - JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; - int prec; - int i; - - if (qtbl == NULL) - ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); - - prec = 0; - for (i = 0; i <= cinfo->lim_Se; i++) { - if (qtbl->quantval[cinfo->natural_order[i]] > 255) - prec = 1; - } - - if (! qtbl->sent_table) { - emit_marker(cinfo, M_DQT); - - emit_2bytes(cinfo, - prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2); - - emit_byte(cinfo, index + (prec<<4)); - - for (i = 0; i <= cinfo->lim_Se; i++) { - /* The table entries must be emitted in zigzag order. */ - unsigned int qval = qtbl->quantval[cinfo->natural_order[i]]; - if (prec) - emit_byte(cinfo, (int) (qval >> 8)); - emit_byte(cinfo, (int) (qval & 0xFF)); - } - - qtbl->sent_table = TRUE; - } - - return prec; -} - - -LOCAL(void) -emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) -/* Emit a DHT marker */ -{ - JHUFF_TBL * htbl; - int length, i; - - if (is_ac) { - htbl = cinfo->ac_huff_tbl_ptrs[index]; - index += 0x10; /* output index has AC bit set */ - } else { - htbl = cinfo->dc_huff_tbl_ptrs[index]; - } - - if (htbl == NULL) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); - - if (! htbl->sent_table) { - emit_marker(cinfo, M_DHT); - - length = 0; - for (i = 1; i <= 16; i++) - length += htbl->bits[i]; - - emit_2bytes(cinfo, length + 2 + 1 + 16); - emit_byte(cinfo, index); - - for (i = 1; i <= 16; i++) - emit_byte(cinfo, htbl->bits[i]); - - for (i = 0; i < length; i++) - emit_byte(cinfo, htbl->huffval[i]); - - htbl->sent_table = TRUE; - } -} - - -LOCAL(void) -emit_dac (j_compress_ptr cinfo) -/* Emit a DAC marker */ -/* Since the useful info is so small, we want to emit all the tables in */ -/* one DAC marker. Therefore this routine does its own scan of the table. */ -{ -#ifdef C_ARITH_CODING_SUPPORTED - char dc_in_use[NUM_ARITH_TBLS]; - char ac_in_use[NUM_ARITH_TBLS]; - int length, i; - jpeg_component_info *compptr; - - for (i = 0; i < NUM_ARITH_TBLS; i++) - dc_in_use[i] = ac_in_use[i] = 0; - - for (i = 0; i < cinfo->comps_in_scan; i++) { - compptr = cinfo->cur_comp_info[i]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) - dc_in_use[compptr->dc_tbl_no] = 1; - /* AC needs no table when not present */ - if (cinfo->Se) - ac_in_use[compptr->ac_tbl_no] = 1; - } - - length = 0; - for (i = 0; i < NUM_ARITH_TBLS; i++) - length += dc_in_use[i] + ac_in_use[i]; - - if (length) { - emit_marker(cinfo, M_DAC); - - emit_2bytes(cinfo, length*2 + 2); - - for (i = 0; i < NUM_ARITH_TBLS; i++) { - if (dc_in_use[i]) { - emit_byte(cinfo, i); - emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); - } - if (ac_in_use[i]) { - emit_byte(cinfo, i + 0x10); - emit_byte(cinfo, cinfo->arith_ac_K[i]); - } - } - } -#endif /* C_ARITH_CODING_SUPPORTED */ -} - - -LOCAL(void) -emit_dri (j_compress_ptr cinfo) -/* Emit a DRI marker */ -{ - emit_marker(cinfo, M_DRI); - - emit_2bytes(cinfo, 4); /* fixed length */ - - emit_2bytes(cinfo, (int) cinfo->restart_interval); -} - - -LOCAL(void) -emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) -/* Emit a SOF marker */ -{ - int ci; - jpeg_component_info *compptr; - - emit_marker(cinfo, code); - - emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ - - /* Make sure image isn't bigger than SOF field can handle */ - if ((long) cinfo->jpeg_height > 65535L || - (long) cinfo->jpeg_width > 65535L) - ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); - - emit_byte(cinfo, cinfo->data_precision); - emit_2bytes(cinfo, (int) cinfo->jpeg_height); - emit_2bytes(cinfo, (int) cinfo->jpeg_width); - - emit_byte(cinfo, cinfo->num_components); - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - emit_byte(cinfo, compptr->component_id); - emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); - emit_byte(cinfo, compptr->quant_tbl_no); - } -} - - -LOCAL(void) -emit_sos (j_compress_ptr cinfo) -/* Emit a SOS marker */ -{ - int i, td, ta; - jpeg_component_info *compptr; - - emit_marker(cinfo, M_SOS); - - emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ - - emit_byte(cinfo, cinfo->comps_in_scan); - - for (i = 0; i < cinfo->comps_in_scan; i++) { - compptr = cinfo->cur_comp_info[i]; - emit_byte(cinfo, compptr->component_id); - - /* We emit 0 for unused field(s); this is recommended by the P&M text - * but does not seem to be specified in the standard. - */ - - /* DC needs no table for refinement scan */ - td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; - /* AC needs no table when not present */ - ta = cinfo->Se ? compptr->ac_tbl_no : 0; - - emit_byte(cinfo, (td << 4) + ta); - } - - emit_byte(cinfo, cinfo->Ss); - emit_byte(cinfo, cinfo->Se); - emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); -} - - -LOCAL(void) -emit_pseudo_sos (j_compress_ptr cinfo) -/* Emit a pseudo SOS marker */ -{ - emit_marker(cinfo, M_SOS); - - emit_2bytes(cinfo, 2 + 1 + 3); /* length */ - - emit_byte(cinfo, 0); /* Ns */ - - emit_byte(cinfo, 0); /* Ss */ - emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */ - emit_byte(cinfo, 0); /* Ah/Al */ -} - - -LOCAL(void) -emit_jfif_app0 (j_compress_ptr cinfo) -/* Emit a JFIF-compliant APP0 marker */ -{ - /* - * Length of APP0 block (2 bytes) - * Block ID (4 bytes - ASCII "JFIF") - * Zero byte (1 byte to terminate the ID string) - * Version Major, Minor (2 bytes - major first) - * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) - * Xdpu (2 bytes - dots per unit horizontal) - * Ydpu (2 bytes - dots per unit vertical) - * Thumbnail X size (1 byte) - * Thumbnail Y size (1 byte) - */ - - emit_marker(cinfo, M_APP0); - - emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ - - emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ - emit_byte(cinfo, 0x46); - emit_byte(cinfo, 0x49); - emit_byte(cinfo, 0x46); - emit_byte(cinfo, 0); - emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ - emit_byte(cinfo, cinfo->JFIF_minor_version); - emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ - emit_2bytes(cinfo, (int) cinfo->X_density); - emit_2bytes(cinfo, (int) cinfo->Y_density); - emit_byte(cinfo, 0); /* No thumbnail image */ - emit_byte(cinfo, 0); -} - - -LOCAL(void) -emit_adobe_app14 (j_compress_ptr cinfo) -/* Emit an Adobe APP14 marker */ -{ - /* - * Length of APP14 block (2 bytes) - * Block ID (5 bytes - ASCII "Adobe") - * Version Number (2 bytes - currently 100) - * Flags0 (2 bytes - currently 0) - * Flags1 (2 bytes - currently 0) - * Color transform (1 byte) - * - * Although Adobe TN 5116 mentions Version = 101, all the Adobe files - * now in circulation seem to use Version = 100, so that's what we write. - * - * We write the color transform byte as 1 if the JPEG color space is - * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with - * whether the encoder performed a transformation, which is pretty useless. - */ - - emit_marker(cinfo, M_APP14); - - emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ - - emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ - emit_byte(cinfo, 0x64); - emit_byte(cinfo, 0x6F); - emit_byte(cinfo, 0x62); - emit_byte(cinfo, 0x65); - emit_2bytes(cinfo, 100); /* Version */ - emit_2bytes(cinfo, 0); /* Flags0 */ - emit_2bytes(cinfo, 0); /* Flags1 */ - switch (cinfo->jpeg_color_space) { - case JCS_YCbCr: - emit_byte(cinfo, 1); /* Color transform = 1 */ - break; - case JCS_YCCK: - emit_byte(cinfo, 2); /* Color transform = 2 */ - break; - default: - emit_byte(cinfo, 0); /* Color transform = 0 */ - break; - } -} - - -/* - * These routines allow writing an arbitrary marker with parameters. - * The only intended use is to emit COM or APPn markers after calling - * write_file_header and before calling write_frame_header. - * Other uses are not guaranteed to produce desirable results. - * Counting the parameter bytes properly is the caller's responsibility. - */ - -METHODDEF(void) -write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) -/* Emit an arbitrary marker header */ -{ - if (datalen > (unsigned int) 65533) /* safety check */ - ERREXIT(cinfo, JERR_BAD_LENGTH); - - emit_marker(cinfo, (JPEG_MARKER) marker); - - emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ -} - -METHODDEF(void) -write_marker_byte (j_compress_ptr cinfo, int val) -/* Emit one byte of marker parameters following write_marker_header */ -{ - emit_byte(cinfo, val); -} - - -/* - * Write datastream header. - * This consists of an SOI and optional APPn markers. - * We recommend use of the JFIF marker, but not the Adobe marker, - * when using YCbCr or grayscale data. The JFIF marker should NOT - * be used for any other JPEG colorspace. The Adobe marker is helpful - * to distinguish RGB, CMYK, and YCCK colorspaces. - * Note that an application can write additional header markers after - * jpeg_start_compress returns. - */ - -METHODDEF(void) -write_file_header (j_compress_ptr cinfo) -{ - my_marker_ptr marker = (my_marker_ptr) cinfo->marker; - - emit_marker(cinfo, M_SOI); /* first the SOI */ - - /* SOI is defined to reset restart interval to 0 */ - marker->last_restart_interval = 0; - - if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ - emit_jfif_app0(cinfo); - if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ - emit_adobe_app14(cinfo); -} - - -/* - * Write frame header. - * This consists of DQT and SOFn markers, and a conditional pseudo SOS marker. - * Note that we do not emit the SOF until we have emitted the DQT(s). - * This avoids compatibility problems with incorrect implementations that - * try to error-check the quant table numbers as soon as they see the SOF. - */ - -METHODDEF(void) -write_frame_header (j_compress_ptr cinfo) -{ - int ci, prec; - boolean is_baseline; - jpeg_component_info *compptr; - - /* Emit DQT for each quantization table. - * Note that emit_dqt() suppresses any duplicate tables. - */ - prec = 0; - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - prec += emit_dqt(cinfo, compptr->quant_tbl_no); - } - /* now prec is nonzero iff there are any 16-bit quant tables. */ - - /* Check for a non-baseline specification. - * Note we assume that Huffman table numbers won't be changed later. - */ - if (cinfo->arith_code || cinfo->progressive_mode || - cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) { - is_baseline = FALSE; - } else { - is_baseline = TRUE; - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) - is_baseline = FALSE; - } - if (prec && is_baseline) { - is_baseline = FALSE; - /* If it's baseline except for quantizer size, warn the user */ - TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); - } - } - - /* Emit the proper SOF marker */ - if (cinfo->arith_code) { - if (cinfo->progressive_mode) - emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ - else - emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */ - } else { - if (cinfo->progressive_mode) - emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ - else if (is_baseline) - emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ - else - emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ - } - - /* Check to emit pseudo SOS marker */ - if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE) - emit_pseudo_sos(cinfo); -} - - -/* - * Write scan header. - * This consists of DHT or DAC markers, optional DRI, and SOS. - * Compressed data will be written following the SOS. - */ - -METHODDEF(void) -write_scan_header (j_compress_ptr cinfo) -{ - my_marker_ptr marker = (my_marker_ptr) cinfo->marker; - int i; - jpeg_component_info *compptr; - - if (cinfo->arith_code) { - /* Emit arith conditioning info. We may have some duplication - * if the file has multiple scans, but it's so small it's hardly - * worth worrying about. - */ - emit_dac(cinfo); - } else { - /* Emit Huffman tables. - * Note that emit_dht() suppresses any duplicate tables. - */ - for (i = 0; i < cinfo->comps_in_scan; i++) { - compptr = cinfo->cur_comp_info[i]; - /* DC needs no table for refinement scan */ - if (cinfo->Ss == 0 && cinfo->Ah == 0) - emit_dht(cinfo, compptr->dc_tbl_no, FALSE); - /* AC needs no table when not present */ - if (cinfo->Se) - emit_dht(cinfo, compptr->ac_tbl_no, TRUE); - } - } - - /* Emit DRI if required --- note that DRI value could change for each scan. - * We avoid wasting space with unnecessary DRIs, however. - */ - if (cinfo->restart_interval != marker->last_restart_interval) { - emit_dri(cinfo); - marker->last_restart_interval = cinfo->restart_interval; - } - - emit_sos(cinfo); -} - - -/* - * Write datastream trailer. - */ - -METHODDEF(void) -write_file_trailer (j_compress_ptr cinfo) -{ - emit_marker(cinfo, M_EOI); -} - - -/* - * Write an abbreviated table-specification datastream. - * This consists of SOI, DQT and DHT tables, and EOI. - * Any table that is defined and not marked sent_table = TRUE will be - * emitted. Note that all tables will be marked sent_table = TRUE at exit. - */ - -METHODDEF(void) -write_tables_only (j_compress_ptr cinfo) -{ - int i; - - emit_marker(cinfo, M_SOI); - - for (i = 0; i < NUM_QUANT_TBLS; i++) { - if (cinfo->quant_tbl_ptrs[i] != NULL) - (void) emit_dqt(cinfo, i); - } - - if (! cinfo->arith_code) { - for (i = 0; i < NUM_HUFF_TBLS; i++) { - if (cinfo->dc_huff_tbl_ptrs[i] != NULL) - emit_dht(cinfo, i, FALSE); - if (cinfo->ac_huff_tbl_ptrs[i] != NULL) - emit_dht(cinfo, i, TRUE); - } - } - - emit_marker(cinfo, M_EOI); -} - - -/* - * Initialize the marker writer module. - */ - -GLOBAL(void) -jinit_marker_writer (j_compress_ptr cinfo) -{ - my_marker_ptr marker; - - /* Create the subobject */ - marker = (my_marker_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_marker_writer)); - cinfo->marker = (struct jpeg_marker_writer *) marker; - /* Initialize method pointers */ - marker->pub.write_file_header = write_file_header; - marker->pub.write_frame_header = write_frame_header; - marker->pub.write_scan_header = write_scan_header; - marker->pub.write_file_trailer = write_file_trailer; - marker->pub.write_tables_only = write_tables_only; - marker->pub.write_marker_header = write_marker_header; - marker->pub.write_marker_byte = write_marker_byte; - /* Initialize private state */ - marker->last_restart_interval = 0; -} diff --git a/src/jpeg-8c/jcmaster.c b/src/jpeg-8c/jcmaster.c deleted file mode 100644 index caf80a53..00000000 --- a/src/jpeg-8c/jcmaster.c +++ /dev/null @@ -1,858 +0,0 @@ -/* - * jcmaster.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2003-2011 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains master control logic for the JPEG compressor. - * These routines are concerned with parameter validation, initial setup, - * and inter-pass control (determining the number of passes and the work - * to be done in each pass). - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Private state */ - -typedef enum { - main_pass, /* input data, also do first output step */ - huff_opt_pass, /* Huffman code optimization pass */ - output_pass /* data output pass */ -} c_pass_type; - -typedef struct { - struct jpeg_comp_master pub; /* public fields */ - - c_pass_type pass_type; /* the type of the current pass */ - - int pass_number; /* # of passes completed */ - int total_passes; /* total # of passes needed */ - - int scan_number; /* current index in scan_info[] */ -} my_comp_master; - -typedef my_comp_master * my_master_ptr; - - -/* - * Support routines that do various essential calculations. - */ - -/* - * Compute JPEG image dimensions and related values. - * NOTE: this is exported for possible use by application. - * Hence it mustn't do anything that can't be done twice. - */ - -GLOBAL(void) -jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) -/* Do computations that are needed before master selection phase */ -{ -#ifdef DCT_SCALING_SUPPORTED - - /* Sanity check on input image dimensions to prevent overflow in - * following calculation. - * We do check jpeg_width and jpeg_height in initial_setup below, - * but image_width and image_height can come from arbitrary data, - * and we need some space for multiplication by block_size. - */ - if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24)) - ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); - - /* Compute actual JPEG image dimensions and DCT scaling choices. */ - if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/1 scaling */ - cinfo->jpeg_width = cinfo->image_width * cinfo->block_size; - cinfo->jpeg_height = cinfo->image_height * cinfo->block_size; - cinfo->min_DCT_h_scaled_size = 1; - cinfo->min_DCT_v_scaled_size = 1; - } else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/2 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L); - cinfo->min_DCT_h_scaled_size = 2; - cinfo->min_DCT_v_scaled_size = 2; - } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/3 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L); - cinfo->min_DCT_h_scaled_size = 3; - cinfo->min_DCT_v_scaled_size = 3; - } else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/4 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L); - cinfo->min_DCT_h_scaled_size = 4; - cinfo->min_DCT_v_scaled_size = 4; - } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/5 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L); - cinfo->min_DCT_h_scaled_size = 5; - cinfo->min_DCT_v_scaled_size = 5; - } else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/6 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L); - cinfo->min_DCT_h_scaled_size = 6; - cinfo->min_DCT_v_scaled_size = 6; - } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/7 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L); - cinfo->min_DCT_h_scaled_size = 7; - cinfo->min_DCT_v_scaled_size = 7; - } else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/8 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L); - cinfo->min_DCT_h_scaled_size = 8; - cinfo->min_DCT_v_scaled_size = 8; - } else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/9 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L); - cinfo->min_DCT_h_scaled_size = 9; - cinfo->min_DCT_v_scaled_size = 9; - } else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/10 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L); - cinfo->min_DCT_h_scaled_size = 10; - cinfo->min_DCT_v_scaled_size = 10; - } else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/11 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L); - cinfo->min_DCT_h_scaled_size = 11; - cinfo->min_DCT_v_scaled_size = 11; - } else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/12 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L); - cinfo->min_DCT_h_scaled_size = 12; - cinfo->min_DCT_v_scaled_size = 12; - } else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/13 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L); - cinfo->min_DCT_h_scaled_size = 13; - cinfo->min_DCT_v_scaled_size = 13; - } else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/14 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L); - cinfo->min_DCT_h_scaled_size = 14; - cinfo->min_DCT_v_scaled_size = 14; - } else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) { - /* Provide block_size/15 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L); - cinfo->min_DCT_h_scaled_size = 15; - cinfo->min_DCT_v_scaled_size = 15; - } else { - /* Provide block_size/16 scaling */ - cinfo->jpeg_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L); - cinfo->jpeg_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L); - cinfo->min_DCT_h_scaled_size = 16; - cinfo->min_DCT_v_scaled_size = 16; - } - -#else /* !DCT_SCALING_SUPPORTED */ - - /* Hardwire it to "no scaling" */ - cinfo->jpeg_width = cinfo->image_width; - cinfo->jpeg_height = cinfo->image_height; - cinfo->min_DCT_h_scaled_size = DCTSIZE; - cinfo->min_DCT_v_scaled_size = DCTSIZE; - -#endif /* DCT_SCALING_SUPPORTED */ -} - - -LOCAL(void) -jpeg_calc_trans_dimensions (j_compress_ptr cinfo) -{ - if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size) - ERREXIT2(cinfo, JERR_BAD_DCTSIZE, - cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size); - - cinfo->block_size = cinfo->min_DCT_h_scaled_size; -} - - -LOCAL(void) -initial_setup (j_compress_ptr cinfo, boolean transcode_only) -/* Do computations that are needed before master selection phase */ -{ - int ci, ssize; - jpeg_component_info *compptr; - long samplesperrow; - JDIMENSION jd_samplesperrow; - - if (transcode_only) - jpeg_calc_trans_dimensions(cinfo); - else - jpeg_calc_jpeg_dimensions(cinfo); - - /* Sanity check on block_size */ - if (cinfo->block_size < 1 || cinfo->block_size > 16) - ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size); - - /* Derive natural_order from block_size */ - switch (cinfo->block_size) { - case 2: cinfo->natural_order = jpeg_natural_order2; break; - case 3: cinfo->natural_order = jpeg_natural_order3; break; - case 4: cinfo->natural_order = jpeg_natural_order4; break; - case 5: cinfo->natural_order = jpeg_natural_order5; break; - case 6: cinfo->natural_order = jpeg_natural_order6; break; - case 7: cinfo->natural_order = jpeg_natural_order7; break; - default: cinfo->natural_order = jpeg_natural_order; break; - } - - /* Derive lim_Se from block_size */ - cinfo->lim_Se = cinfo->block_size < DCTSIZE ? - cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1; - - /* Sanity check on image dimensions */ - if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || - cinfo->num_components <= 0 || cinfo->input_components <= 0) - ERREXIT(cinfo, JERR_EMPTY_IMAGE); - - /* Make sure image isn't bigger than I can handle */ - if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || - (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) - ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); - - /* Width of an input scanline must be representable as JDIMENSION. */ - samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; - jd_samplesperrow = (JDIMENSION) samplesperrow; - if ((long) jd_samplesperrow != samplesperrow) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - - /* For now, precision must match compiled-in value... */ - if (cinfo->data_precision != BITS_IN_JSAMPLE) - ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); - - /* Check that number of components won't exceed internal array sizes */ - if (cinfo->num_components > MAX_COMPONENTS) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, - MAX_COMPONENTS); - - /* Compute maximum sampling factors; check factor validity */ - cinfo->max_h_samp_factor = 1; - cinfo->max_v_samp_factor = 1; - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || - compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) - ERREXIT(cinfo, JERR_BAD_SAMPLING); - cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, - compptr->h_samp_factor); - cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, - compptr->v_samp_factor); - } - - /* Compute dimensions of components */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Fill in the correct component_index value; don't rely on application */ - compptr->component_index = ci; - /* In selecting the actual DCT scaling for each component, we try to - * scale down the chroma components via DCT scaling rather than downsampling. - * This saves time if the downsampler gets to use 1:1 scaling. - * Note this code adapts subsampling ratios which are powers of 2. - */ - ssize = 1; -#ifdef DCT_SCALING_SUPPORTED - while (cinfo->min_DCT_h_scaled_size * ssize <= - (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && - (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) { - ssize = ssize * 2; - } -#endif - compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; - ssize = 1; -#ifdef DCT_SCALING_SUPPORTED - while (cinfo->min_DCT_v_scaled_size * ssize <= - (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && - (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) { - ssize = ssize * 2; - } -#endif - compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; - - /* We don't support DCT ratios larger than 2. */ - if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) - compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; - else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) - compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; - - /* Size in DCT blocks */ - compptr->width_in_blocks = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, - (long) (cinfo->max_h_samp_factor * cinfo->block_size)); - compptr->height_in_blocks = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - /* Size in samples */ - compptr->downsampled_width = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_width * - (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), - (long) (cinfo->max_h_samp_factor * cinfo->block_size)); - compptr->downsampled_height = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_height * - (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - /* Mark component needed (this flag isn't actually used for compression) */ - compptr->component_needed = TRUE; - } - - /* Compute number of fully interleaved MCU rows (number of times that - * main controller will call coefficient controller). - */ - cinfo->total_iMCU_rows = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_height, - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); -} - - -#ifdef C_MULTISCAN_FILES_SUPPORTED - -LOCAL(void) -validate_script (j_compress_ptr cinfo) -/* Verify that the scan script in cinfo->scan_info[] is valid; also - * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. - */ -{ - const jpeg_scan_info * scanptr; - int scanno, ncomps, ci, coefi, thisi; - int Ss, Se, Ah, Al; - boolean component_sent[MAX_COMPONENTS]; -#ifdef C_PROGRESSIVE_SUPPORTED - int * last_bitpos_ptr; - int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; - /* -1 until that coefficient has been seen; then last Al for it */ -#endif - - if (cinfo->num_scans <= 0) - ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); - - /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; - * for progressive JPEG, no scan can have this. - */ - scanptr = cinfo->scan_info; - if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { -#ifdef C_PROGRESSIVE_SUPPORTED - cinfo->progressive_mode = TRUE; - last_bitpos_ptr = & last_bitpos[0][0]; - for (ci = 0; ci < cinfo->num_components; ci++) - for (coefi = 0; coefi < DCTSIZE2; coefi++) - *last_bitpos_ptr++ = -1; -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } else { - cinfo->progressive_mode = FALSE; - for (ci = 0; ci < cinfo->num_components; ci++) - component_sent[ci] = FALSE; - } - - for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { - /* Validate component indexes */ - ncomps = scanptr->comps_in_scan; - if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); - for (ci = 0; ci < ncomps; ci++) { - thisi = scanptr->component_index[ci]; - if (thisi < 0 || thisi >= cinfo->num_components) - ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); - /* Components must appear in SOF order within each scan */ - if (ci > 0 && thisi <= scanptr->component_index[ci-1]) - ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); - } - /* Validate progression parameters */ - Ss = scanptr->Ss; - Se = scanptr->Se; - Ah = scanptr->Ah; - Al = scanptr->Al; - if (cinfo->progressive_mode) { -#ifdef C_PROGRESSIVE_SUPPORTED - /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that - * seems wrong: the upper bound ought to depend on data precision. - * Perhaps they really meant 0..N+1 for N-bit precision. - * Here we allow 0..10 for 8-bit data; Al larger than 10 results in - * out-of-range reconstructed DC values during the first DC scan, - * which might cause problems for some decoders. - */ -#if BITS_IN_JSAMPLE == 8 -#define MAX_AH_AL 10 -#else -#define MAX_AH_AL 13 -#endif - if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || - Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - if (Ss == 0) { - if (Se != 0) /* DC and AC together not OK */ - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - } else { - if (ncomps != 1) /* AC scans must be for only one component */ - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - } - for (ci = 0; ci < ncomps; ci++) { - last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; - if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - for (coefi = Ss; coefi <= Se; coefi++) { - if (last_bitpos_ptr[coefi] < 0) { - /* first scan of this coefficient */ - if (Ah != 0) - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - } else { - /* not first scan */ - if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - } - last_bitpos_ptr[coefi] = Al; - } - } -#endif - } else { - /* For sequential JPEG, all progression parameters must be these: */ - if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) - ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); - /* Make sure components are not sent twice */ - for (ci = 0; ci < ncomps; ci++) { - thisi = scanptr->component_index[ci]; - if (component_sent[thisi]) - ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); - component_sent[thisi] = TRUE; - } - } - } - - /* Now verify that everything got sent. */ - if (cinfo->progressive_mode) { -#ifdef C_PROGRESSIVE_SUPPORTED - /* For progressive mode, we only check that at least some DC data - * got sent for each component; the spec does not require that all bits - * of all coefficients be transmitted. Would it be wiser to enforce - * transmission of all coefficient bits?? - */ - for (ci = 0; ci < cinfo->num_components; ci++) { - if (last_bitpos[ci][0] < 0) - ERREXIT(cinfo, JERR_MISSING_DATA); - } -#endif - } else { - for (ci = 0; ci < cinfo->num_components; ci++) { - if (! component_sent[ci]) - ERREXIT(cinfo, JERR_MISSING_DATA); - } - } -} - - -LOCAL(void) -reduce_script (j_compress_ptr cinfo) -/* Adapt scan script for use with reduced block size; - * assume that script has been validated before. - */ -{ - jpeg_scan_info * scanptr; - int idxout, idxin; - - /* Circumvent const declaration for this function */ - scanptr = (jpeg_scan_info *) cinfo->scan_info; - idxout = 0; - - for (idxin = 0; idxin < cinfo->num_scans; idxin++) { - /* After skipping, idxout becomes smaller than idxin */ - if (idxin != idxout) - /* Copy rest of data; - * note we stay in given chunk of allocated memory. - */ - scanptr[idxout] = scanptr[idxin]; - if (scanptr[idxout].Ss > cinfo->lim_Se) - /* Entire scan out of range - skip this entry */ - continue; - if (scanptr[idxout].Se > cinfo->lim_Se) - /* Limit scan to end of block */ - scanptr[idxout].Se = cinfo->lim_Se; - idxout++; - } - - cinfo->num_scans = idxout; -} - -#endif /* C_MULTISCAN_FILES_SUPPORTED */ - - -LOCAL(void) -select_scan_parameters (j_compress_ptr cinfo) -/* Set up the scan parameters for the current scan */ -{ - int ci; - -#ifdef C_MULTISCAN_FILES_SUPPORTED - if (cinfo->scan_info != NULL) { - /* Prepare for current scan --- the script is already validated */ - my_master_ptr master = (my_master_ptr) cinfo->master; - const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; - - cinfo->comps_in_scan = scanptr->comps_in_scan; - for (ci = 0; ci < scanptr->comps_in_scan; ci++) { - cinfo->cur_comp_info[ci] = - &cinfo->comp_info[scanptr->component_index[ci]]; - } - if (cinfo->progressive_mode) { - cinfo->Ss = scanptr->Ss; - cinfo->Se = scanptr->Se; - cinfo->Ah = scanptr->Ah; - cinfo->Al = scanptr->Al; - return; - } - } - else -#endif - { - /* Prepare for single sequential-JPEG scan containing all components */ - if (cinfo->num_components > MAX_COMPS_IN_SCAN) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, - MAX_COMPS_IN_SCAN); - cinfo->comps_in_scan = cinfo->num_components; - for (ci = 0; ci < cinfo->num_components; ci++) { - cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; - } - } - cinfo->Ss = 0; - cinfo->Se = cinfo->block_size * cinfo->block_size - 1; - cinfo->Ah = 0; - cinfo->Al = 0; -} - - -LOCAL(void) -per_scan_setup (j_compress_ptr cinfo) -/* Do computations that are needed before processing a JPEG scan */ -/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ -{ - int ci, mcublks, tmp; - jpeg_component_info *compptr; - - if (cinfo->comps_in_scan == 1) { - - /* Noninterleaved (single-component) scan */ - compptr = cinfo->cur_comp_info[0]; - - /* Overall image size in MCUs */ - cinfo->MCUs_per_row = compptr->width_in_blocks; - cinfo->MCU_rows_in_scan = compptr->height_in_blocks; - - /* For noninterleaved scan, always one block per MCU */ - compptr->MCU_width = 1; - compptr->MCU_height = 1; - compptr->MCU_blocks = 1; - compptr->MCU_sample_width = compptr->DCT_h_scaled_size; - compptr->last_col_width = 1; - /* For noninterleaved scans, it is convenient to define last_row_height - * as the number of block rows present in the last iMCU row. - */ - tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); - if (tmp == 0) tmp = compptr->v_samp_factor; - compptr->last_row_height = tmp; - - /* Prepare array describing MCU composition */ - cinfo->blocks_in_MCU = 1; - cinfo->MCU_membership[0] = 0; - - } else { - - /* Interleaved (multi-component) scan */ - if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, - MAX_COMPS_IN_SCAN); - - /* Overall image size in MCUs */ - cinfo->MCUs_per_row = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_width, - (long) (cinfo->max_h_samp_factor * cinfo->block_size)); - cinfo->MCU_rows_in_scan = (JDIMENSION) - jdiv_round_up((long) cinfo->jpeg_height, - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - - cinfo->blocks_in_MCU = 0; - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Sampling factors give # of blocks of component in each MCU */ - compptr->MCU_width = compptr->h_samp_factor; - compptr->MCU_height = compptr->v_samp_factor; - compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; - compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; - /* Figure number of non-dummy blocks in last MCU column & row */ - tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); - if (tmp == 0) tmp = compptr->MCU_width; - compptr->last_col_width = tmp; - tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); - if (tmp == 0) tmp = compptr->MCU_height; - compptr->last_row_height = tmp; - /* Prepare array describing MCU composition */ - mcublks = compptr->MCU_blocks; - if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) - ERREXIT(cinfo, JERR_BAD_MCU_SIZE); - while (mcublks-- > 0) { - cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; - } - } - - } - - /* Convert restart specified in rows to actual MCU count. */ - /* Note that count must fit in 16 bits, so we provide limiting. */ - if (cinfo->restart_in_rows > 0) { - long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; - cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); - } -} - - -/* - * Per-pass setup. - * This is called at the beginning of each pass. We determine which modules - * will be active during this pass and give them appropriate start_pass calls. - * We also set is_last_pass to indicate whether any more passes will be - * required. - */ - -METHODDEF(void) -prepare_for_pass (j_compress_ptr cinfo) -{ - my_master_ptr master = (my_master_ptr) cinfo->master; - - switch (master->pass_type) { - case main_pass: - /* Initial pass: will collect input data, and do either Huffman - * optimization or data output for the first scan. - */ - select_scan_parameters(cinfo); - per_scan_setup(cinfo); - if (! cinfo->raw_data_in) { - (*cinfo->cconvert->start_pass) (cinfo); - (*cinfo->downsample->start_pass) (cinfo); - (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); - } - (*cinfo->fdct->start_pass) (cinfo); - (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); - (*cinfo->coef->start_pass) (cinfo, - (master->total_passes > 1 ? - JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); - (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); - if (cinfo->optimize_coding) { - /* No immediate data output; postpone writing frame/scan headers */ - master->pub.call_pass_startup = FALSE; - } else { - /* Will write frame/scan headers at first jpeg_write_scanlines call */ - master->pub.call_pass_startup = TRUE; - } - break; -#ifdef ENTROPY_OPT_SUPPORTED - case huff_opt_pass: - /* Do Huffman optimization for a scan after the first one. */ - select_scan_parameters(cinfo); - per_scan_setup(cinfo); - if (cinfo->Ss != 0 || cinfo->Ah == 0) { - (*cinfo->entropy->start_pass) (cinfo, TRUE); - (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); - master->pub.call_pass_startup = FALSE; - break; - } - /* Special case: Huffman DC refinement scans need no Huffman table - * and therefore we can skip the optimization pass for them. - */ - master->pass_type = output_pass; - master->pass_number++; - /*FALLTHROUGH*/ -#endif - case output_pass: - /* Do a data-output pass. */ - /* We need not repeat per-scan setup if prior optimization pass did it. */ - if (! cinfo->optimize_coding) { - select_scan_parameters(cinfo); - per_scan_setup(cinfo); - } - (*cinfo->entropy->start_pass) (cinfo, FALSE); - (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); - /* We emit frame/scan headers now */ - if (master->scan_number == 0) - (*cinfo->marker->write_frame_header) (cinfo); - (*cinfo->marker->write_scan_header) (cinfo); - master->pub.call_pass_startup = FALSE; - break; - default: - ERREXIT(cinfo, JERR_NOT_COMPILED); - } - - master->pub.is_last_pass = (master->pass_number == master->total_passes-1); - - /* Set up progress monitor's pass info if present */ - if (cinfo->progress != NULL) { - cinfo->progress->completed_passes = master->pass_number; - cinfo->progress->total_passes = master->total_passes; - } -} - - -/* - * Special start-of-pass hook. - * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. - * In single-pass processing, we need this hook because we don't want to - * write frame/scan headers during jpeg_start_compress; we want to let the - * application write COM markers etc. between jpeg_start_compress and the - * jpeg_write_scanlines loop. - * In multi-pass processing, this routine is not used. - */ - -METHODDEF(void) -pass_startup (j_compress_ptr cinfo) -{ - cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ - - (*cinfo->marker->write_frame_header) (cinfo); - (*cinfo->marker->write_scan_header) (cinfo); -} - - -/* - * Finish up at end of pass. - */ - -METHODDEF(void) -finish_pass_master (j_compress_ptr cinfo) -{ - my_master_ptr master = (my_master_ptr) cinfo->master; - - /* The entropy coder always needs an end-of-pass call, - * either to analyze statistics or to flush its output buffer. - */ - (*cinfo->entropy->finish_pass) (cinfo); - - /* Update state for next pass */ - switch (master->pass_type) { - case main_pass: - /* next pass is either output of scan 0 (after optimization) - * or output of scan 1 (if no optimization). - */ - master->pass_type = output_pass; - if (! cinfo->optimize_coding) - master->scan_number++; - break; - case huff_opt_pass: - /* next pass is always output of current scan */ - master->pass_type = output_pass; - break; - case output_pass: - /* next pass is either optimization or output of next scan */ - if (cinfo->optimize_coding) - master->pass_type = huff_opt_pass; - master->scan_number++; - break; - } - - master->pass_number++; -} - - -/* - * Initialize master compression control. - */ - -GLOBAL(void) -jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) -{ - my_master_ptr master; - - master = (my_master_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_comp_master)); - cinfo->master = (struct jpeg_comp_master *) master; - master->pub.prepare_for_pass = prepare_for_pass; - master->pub.pass_startup = pass_startup; - master->pub.finish_pass = finish_pass_master; - master->pub.is_last_pass = FALSE; - - /* Validate parameters, determine derived values */ - initial_setup(cinfo, transcode_only); - - if (cinfo->scan_info != NULL) { -#ifdef C_MULTISCAN_FILES_SUPPORTED - validate_script(cinfo); - if (cinfo->block_size < DCTSIZE) - reduce_script(cinfo); -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } else { - cinfo->progressive_mode = FALSE; - cinfo->num_scans = 1; - } - - if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) && - !cinfo->arith_code) /* TEMPORARY HACK ??? */ - /* assume default tables no good for progressive or downscale mode */ - cinfo->optimize_coding = TRUE; - - /* Initialize my private state */ - if (transcode_only) { - /* no main pass in transcoding */ - if (cinfo->optimize_coding) - master->pass_type = huff_opt_pass; - else - master->pass_type = output_pass; - } else { - /* for normal compression, first pass is always this type: */ - master->pass_type = main_pass; - } - master->scan_number = 0; - master->pass_number = 0; - if (cinfo->optimize_coding) - master->total_passes = cinfo->num_scans * 2; - else - master->total_passes = cinfo->num_scans; -} diff --git a/src/jpeg-8c/jcomapi.c b/src/jpeg-8c/jcomapi.c deleted file mode 100644 index 9b1fa756..00000000 --- a/src/jpeg-8c/jcomapi.c +++ /dev/null @@ -1,106 +0,0 @@ -/* - * jcomapi.c - * - * Copyright (C) 1994-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains application interface routines that are used for both - * compression and decompression. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * Abort processing of a JPEG compression or decompression operation, - * but don't destroy the object itself. - * - * For this, we merely clean up all the nonpermanent memory pools. - * Note that temp files (virtual arrays) are not allowed to belong to - * the permanent pool, so we will be able to close all temp files here. - * Closing a data source or destination, if necessary, is the application's - * responsibility. - */ - -GLOBAL(void) -jpeg_abort (j_common_ptr cinfo) -{ - int pool; - - /* Do nothing if called on a not-initialized or destroyed JPEG object. */ - if (cinfo->mem == NULL) - return; - - /* Releasing pools in reverse order might help avoid fragmentation - * with some (brain-damaged) malloc libraries. - */ - for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { - (*cinfo->mem->free_pool) (cinfo, pool); - } - - /* Reset overall state for possible reuse of object */ - if (cinfo->is_decompressor) { - cinfo->global_state = DSTATE_START; - /* Try to keep application from accessing now-deleted marker list. - * A bit kludgy to do it here, but this is the most central place. - */ - ((j_decompress_ptr) cinfo)->marker_list = NULL; - } else { - cinfo->global_state = CSTATE_START; - } -} - - -/* - * Destruction of a JPEG object. - * - * Everything gets deallocated except the master jpeg_compress_struct itself - * and the error manager struct. Both of these are supplied by the application - * and must be freed, if necessary, by the application. (Often they are on - * the stack and so don't need to be freed anyway.) - * Closing a data source or destination, if necessary, is the application's - * responsibility. - */ - -GLOBAL(void) -jpeg_destroy (j_common_ptr cinfo) -{ - /* We need only tell the memory manager to release everything. */ - /* NB: mem pointer is NULL if memory mgr failed to initialize. */ - if (cinfo->mem != NULL) - (*cinfo->mem->self_destruct) (cinfo); - cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ - cinfo->global_state = 0; /* mark it destroyed */ -} - - -/* - * Convenience routines for allocating quantization and Huffman tables. - * (Would jutils.c be a more reasonable place to put these?) - */ - -GLOBAL(JQUANT_TBL *) -jpeg_alloc_quant_table (j_common_ptr cinfo) -{ - JQUANT_TBL *tbl; - - tbl = (JQUANT_TBL *) - (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL)); - tbl->sent_table = FALSE; /* make sure this is false in any new table */ - return tbl; -} - - -GLOBAL(JHUFF_TBL *) -jpeg_alloc_huff_table (j_common_ptr cinfo) -{ - JHUFF_TBL *tbl; - - tbl = (JHUFF_TBL *) - (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL)); - tbl->sent_table = FALSE; /* make sure this is false in any new table */ - return tbl; -} diff --git a/src/jpeg-8c/jconfig.h b/src/jpeg-8c/jconfig.h deleted file mode 100644 index 248d6d0f..00000000 --- a/src/jpeg-8c/jconfig.h +++ /dev/null @@ -1,60 +0,0 @@ -/* jconfig.h. Generated from jconfig.cfg by configure. */ -/* jconfig.cfg --- source file edited by configure script */ -/* see jconfig.txt for explanations */ - -/* Define this if you get warnings about undefined structures. */ -/* #undef INCOMPLETE_TYPES_BROKEN */ - -#define HAVE_PROTOTYPES 1 -#define HAVE_UNSIGNED_CHAR 1 -#define HAVE_UNSIGNED_SHORT 1 -/* #undef void */ -/* #undef const */ -/* #undef CHAR_IS_UNSIGNED */ - -#ifdef JPEG_INTERNALS - -#define HAVE_STDDEF_H 1 -#define HAVE_STDLIB_H 1 -#define HAVE_LOCALE_H 1 -/* #undef NEED_BSD_STRINGS */ -/* #undef NEED_SYS_TYPES_H */ -/* #undef NEED_FAR_POINTERS */ -/* #undef NEED_SHORT_EXTERNAL_NAMES */ - -/* Define "boolean" as unsigned char, not int, on Windows systems. */ -#ifdef _WIN32 -#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ -typedef unsigned char boolean; -#endif -#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ -#endif - -/* #undef RIGHT_SHIFT_IS_UNSIGNED */ -#ifdef _MSC_VER -#define INLINE __inline -#else -#define INLINE __inline__ -#endif -/* These are for configuring the JPEG memory manager. */ -/* #undef DEFAULT_MAX_MEM */ -/* #undef NO_MKTEMP */ - -#endif /* JPEG_INTERNALS */ - -#ifdef JPEG_CJPEG_DJPEG - -#define BMP_SUPPORTED /* BMP image file format */ -#define GIF_SUPPORTED /* GIF image file format */ -#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ -/* #undef RLE_SUPPORTED */ -#define TARGA_SUPPORTED /* Targa image file format */ - -/* #undef TWO_FILE_COMMANDLINE */ -/* #undef NEED_SIGNAL_CATCHER */ -/* #undef DONT_USE_B_MODE */ - -/* Define this if you want percent-done progress reports from cjpeg/djpeg. */ -/* #undef PROGRESS_REPORT */ - -#endif /* JPEG_CJPEG_DJPEG */ diff --git a/src/jpeg-8c/jcparam.c b/src/jpeg-8c/jcparam.c deleted file mode 100644 index c5e85dda..00000000 --- a/src/jpeg-8c/jcparam.c +++ /dev/null @@ -1,632 +0,0 @@ -/* - * jcparam.c - * - * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2003-2008 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains optional default-setting code for the JPEG compressor. - * Applications do not have to use this file, but those that don't use it - * must know a lot more about the innards of the JPEG code. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * Quantization table setup routines - */ - -GLOBAL(void) -jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, - const unsigned int *basic_table, - int scale_factor, boolean force_baseline) -/* Define a quantization table equal to the basic_table times - * a scale factor (given as a percentage). - * If force_baseline is TRUE, the computed quantization table entries - * are limited to 1..255 for JPEG baseline compatibility. - */ -{ - JQUANT_TBL ** qtblptr; - int i; - long temp; - - /* Safety check to ensure start_compress not called yet. */ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) - ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); - - qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; - - if (*qtblptr == NULL) - *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); - - for (i = 0; i < DCTSIZE2; i++) { - temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; - /* limit the values to the valid range */ - if (temp <= 0L) temp = 1L; - if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ - if (force_baseline && temp > 255L) - temp = 255L; /* limit to baseline range if requested */ - (*qtblptr)->quantval[i] = (UINT16) temp; - } - - /* Initialize sent_table FALSE so table will be written to JPEG file. */ - (*qtblptr)->sent_table = FALSE; -} - - -/* These are the sample quantization tables given in JPEG spec section K.1. - * The spec says that the values given produce "good" quality, and - * when divided by 2, "very good" quality. - */ -static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { - 16, 11, 10, 16, 24, 40, 51, 61, - 12, 12, 14, 19, 26, 58, 60, 55, - 14, 13, 16, 24, 40, 57, 69, 56, - 14, 17, 22, 29, 51, 87, 80, 62, - 18, 22, 37, 56, 68, 109, 103, 77, - 24, 35, 55, 64, 81, 104, 113, 92, - 49, 64, 78, 87, 103, 121, 120, 101, - 72, 92, 95, 98, 112, 100, 103, 99 -}; -static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { - 17, 18, 24, 47, 99, 99, 99, 99, - 18, 21, 26, 66, 99, 99, 99, 99, - 24, 26, 56, 99, 99, 99, 99, 99, - 47, 66, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99, - 99, 99, 99, 99, 99, 99, 99, 99 -}; - - -GLOBAL(void) -jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) -/* Set or change the 'quality' (quantization) setting, using default tables - * and straight percentage-scaling quality scales. - * This entry point allows different scalings for luminance and chrominance. - */ -{ - /* Set up two quantization tables using the specified scaling */ - jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, - cinfo->q_scale_factor[0], force_baseline); - jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, - cinfo->q_scale_factor[1], force_baseline); -} - - -GLOBAL(void) -jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, - boolean force_baseline) -/* Set or change the 'quality' (quantization) setting, using default tables - * and a straight percentage-scaling quality scale. In most cases it's better - * to use jpeg_set_quality (below); this entry point is provided for - * applications that insist on a linear percentage scaling. - */ -{ - /* Set up two quantization tables using the specified scaling */ - jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, - scale_factor, force_baseline); - jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, - scale_factor, force_baseline); -} - - -GLOBAL(int) -jpeg_quality_scaling (int quality) -/* Convert a user-specified quality rating to a percentage scaling factor - * for an underlying quantization table, using our recommended scaling curve. - * The input 'quality' factor should be 0 (terrible) to 100 (very good). - */ -{ - /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ - if (quality <= 0) quality = 1; - if (quality > 100) quality = 100; - - /* The basic table is used as-is (scaling 100) for a quality of 50. - * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; - * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table - * to make all the table entries 1 (hence, minimum quantization loss). - * Qualities 1..50 are converted to scaling percentage 5000/Q. - */ - if (quality < 50) - quality = 5000 / quality; - else - quality = 200 - quality*2; - - return quality; -} - - -GLOBAL(void) -jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) -/* Set or change the 'quality' (quantization) setting, using default tables. - * This is the standard quality-adjusting entry point for typical user - * interfaces; only those who want detailed control over quantization tables - * would use the preceding three routines directly. - */ -{ - /* Convert user 0-100 rating to percentage scaling */ - quality = jpeg_quality_scaling(quality); - - /* Set up standard quality tables */ - jpeg_set_linear_quality(cinfo, quality, force_baseline); -} - - -/* - * Huffman table setup routines - */ - -LOCAL(void) -add_huff_table (j_compress_ptr cinfo, - JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) -/* Define a Huffman table */ -{ - int nsymbols, len; - - if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); - - /* Copy the number-of-symbols-of-each-code-length counts */ - MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); - - /* Validate the counts. We do this here mainly so we can copy the right - * number of symbols from the val[] array, without risking marching off - * the end of memory. jchuff.c will do a more thorough test later. - */ - nsymbols = 0; - for (len = 1; len <= 16; len++) - nsymbols += bits[len]; - if (nsymbols < 1 || nsymbols > 256) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - - MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8)); - - /* Initialize sent_table FALSE so table will be written to JPEG file. */ - (*htblptr)->sent_table = FALSE; -} - - -LOCAL(void) -std_huff_tables (j_compress_ptr cinfo) -/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ -/* IMPORTANT: these are only valid for 8-bit data precision! */ -{ - static const UINT8 bits_dc_luminance[17] = - { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; - static const UINT8 val_dc_luminance[] = - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; - - static const UINT8 bits_dc_chrominance[17] = - { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; - static const UINT8 val_dc_chrominance[] = - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; - - static const UINT8 bits_ac_luminance[17] = - { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; - static const UINT8 val_ac_luminance[] = - { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, - 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, - 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, - 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, - 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, - 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, - 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, - 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, - 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, - 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, - 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, - 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, - 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, - 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, - 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, - 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, - 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, - 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, - 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, - 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, - 0xf9, 0xfa }; - - static const UINT8 bits_ac_chrominance[17] = - { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; - static const UINT8 val_ac_chrominance[] = - { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, - 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, - 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, - 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, - 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, - 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, - 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, - 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, - 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, - 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, - 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, - 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, - 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, - 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, - 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, - 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, - 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, - 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, - 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, - 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, - 0xf9, 0xfa }; - - add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0], - bits_dc_luminance, val_dc_luminance); - add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0], - bits_ac_luminance, val_ac_luminance); - add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1], - bits_dc_chrominance, val_dc_chrominance); - add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1], - bits_ac_chrominance, val_ac_chrominance); -} - - -/* - * Default parameter setup for compression. - * - * Applications that don't choose to use this routine must do their - * own setup of all these parameters. Alternately, you can call this - * to establish defaults and then alter parameters selectively. This - * is the recommended approach since, if we add any new parameters, - * your code will still work (they'll be set to reasonable defaults). - */ - -GLOBAL(void) -jpeg_set_defaults (j_compress_ptr cinfo) -{ - int i; - - /* Safety check to ensure start_compress not called yet. */ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - /* Allocate comp_info array large enough for maximum component count. - * Array is made permanent in case application wants to compress - * multiple images at same param settings. - */ - if (cinfo->comp_info == NULL) - cinfo->comp_info = (jpeg_component_info *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - MAX_COMPONENTS * SIZEOF(jpeg_component_info)); - - /* Initialize everything not dependent on the color space */ - - cinfo->scale_num = 1; /* 1:1 scaling */ - cinfo->scale_denom = 1; - cinfo->data_precision = BITS_IN_JSAMPLE; - /* Set up two quantization tables using default quality of 75 */ - jpeg_set_quality(cinfo, 75, TRUE); - /* Set up two Huffman tables */ - std_huff_tables(cinfo); - - /* Initialize default arithmetic coding conditioning */ - for (i = 0; i < NUM_ARITH_TBLS; i++) { - cinfo->arith_dc_L[i] = 0; - cinfo->arith_dc_U[i] = 1; - cinfo->arith_ac_K[i] = 5; - } - - /* Default is no multiple-scan output */ - cinfo->scan_info = NULL; - cinfo->num_scans = 0; - - /* Expect normal source image, not raw downsampled data */ - cinfo->raw_data_in = FALSE; - - /* Use Huffman coding, not arithmetic coding, by default */ - cinfo->arith_code = FALSE; - - /* By default, don't do extra passes to optimize entropy coding */ - cinfo->optimize_coding = FALSE; - /* The standard Huffman tables are only valid for 8-bit data precision. - * If the precision is higher, force optimization on so that usable - * tables will be computed. This test can be removed if default tables - * are supplied that are valid for the desired precision. - */ - if (cinfo->data_precision > 8) - cinfo->optimize_coding = TRUE; - - /* By default, use the simpler non-cosited sampling alignment */ - cinfo->CCIR601_sampling = FALSE; - - /* By default, apply fancy downsampling */ - cinfo->do_fancy_downsampling = TRUE; - - /* No input smoothing */ - cinfo->smoothing_factor = 0; - - /* DCT algorithm preference */ - cinfo->dct_method = JDCT_DEFAULT; - - /* No restart markers */ - cinfo->restart_interval = 0; - cinfo->restart_in_rows = 0; - - /* Fill in default JFIF marker parameters. Note that whether the marker - * will actually be written is determined by jpeg_set_colorspace. - * - * By default, the library emits JFIF version code 1.01. - * An application that wants to emit JFIF 1.02 extension markers should set - * JFIF_minor_version to 2. We could probably get away with just defaulting - * to 1.02, but there may still be some decoders in use that will complain - * about that; saying 1.01 should minimize compatibility problems. - */ - cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ - cinfo->JFIF_minor_version = 1; - cinfo->density_unit = 0; /* Pixel size is unknown by default */ - cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ - cinfo->Y_density = 1; - - /* Choose JPEG colorspace based on input space, set defaults accordingly */ - - jpeg_default_colorspace(cinfo); -} - - -/* - * Select an appropriate JPEG colorspace for in_color_space. - */ - -GLOBAL(void) -jpeg_default_colorspace (j_compress_ptr cinfo) -{ - switch (cinfo->in_color_space) { - case JCS_GRAYSCALE: - jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); - break; - case JCS_RGB: - jpeg_set_colorspace(cinfo, JCS_YCbCr); - break; - case JCS_YCbCr: - jpeg_set_colorspace(cinfo, JCS_YCbCr); - break; - case JCS_CMYK: - jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ - break; - case JCS_YCCK: - jpeg_set_colorspace(cinfo, JCS_YCCK); - break; - case JCS_UNKNOWN: - jpeg_set_colorspace(cinfo, JCS_UNKNOWN); - break; - default: - ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); - } -} - - -/* - * Set the JPEG colorspace, and choose colorspace-dependent default values. - */ - -GLOBAL(void) -jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) -{ - jpeg_component_info * compptr; - int ci; - -#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ - (compptr = &cinfo->comp_info[index], \ - compptr->component_id = (id), \ - compptr->h_samp_factor = (hsamp), \ - compptr->v_samp_factor = (vsamp), \ - compptr->quant_tbl_no = (quant), \ - compptr->dc_tbl_no = (dctbl), \ - compptr->ac_tbl_no = (actbl) ) - - /* Safety check to ensure start_compress not called yet. */ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - /* For all colorspaces, we use Q and Huff tables 0 for luminance components, - * tables 1 for chrominance components. - */ - - cinfo->jpeg_color_space = colorspace; - - cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ - cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ - - switch (colorspace) { - case JCS_GRAYSCALE: - cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ - cinfo->num_components = 1; - /* JFIF specifies component ID 1 */ - SET_COMP(0, 1, 1,1, 0, 0,0); - break; - case JCS_RGB: - cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ - cinfo->num_components = 3; - SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); - SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); - SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); - break; - case JCS_YCbCr: - cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ - cinfo->num_components = 3; - /* JFIF specifies component IDs 1,2,3 */ - /* We default to 2x2 subsamples of chrominance */ - SET_COMP(0, 1, 2,2, 0, 0,0); - SET_COMP(1, 2, 1,1, 1, 1,1); - SET_COMP(2, 3, 1,1, 1, 1,1); - break; - case JCS_CMYK: - cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ - cinfo->num_components = 4; - SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); - SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); - SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); - SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); - break; - case JCS_YCCK: - cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ - cinfo->num_components = 4; - SET_COMP(0, 1, 2,2, 0, 0,0); - SET_COMP(1, 2, 1,1, 1, 1,1); - SET_COMP(2, 3, 1,1, 1, 1,1); - SET_COMP(3, 4, 2,2, 0, 0,0); - break; - case JCS_UNKNOWN: - cinfo->num_components = cinfo->input_components; - if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, - MAX_COMPONENTS); - for (ci = 0; ci < cinfo->num_components; ci++) { - SET_COMP(ci, ci, 1,1, 0, 0,0); - } - break; - default: - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - } -} - - -#ifdef C_PROGRESSIVE_SUPPORTED - -LOCAL(jpeg_scan_info *) -fill_a_scan (jpeg_scan_info * scanptr, int ci, - int Ss, int Se, int Ah, int Al) -/* Support routine: generate one scan for specified component */ -{ - scanptr->comps_in_scan = 1; - scanptr->component_index[0] = ci; - scanptr->Ss = Ss; - scanptr->Se = Se; - scanptr->Ah = Ah; - scanptr->Al = Al; - scanptr++; - return scanptr; -} - -LOCAL(jpeg_scan_info *) -fill_scans (jpeg_scan_info * scanptr, int ncomps, - int Ss, int Se, int Ah, int Al) -/* Support routine: generate one scan for each component */ -{ - int ci; - - for (ci = 0; ci < ncomps; ci++) { - scanptr->comps_in_scan = 1; - scanptr->component_index[0] = ci; - scanptr->Ss = Ss; - scanptr->Se = Se; - scanptr->Ah = Ah; - scanptr->Al = Al; - scanptr++; - } - return scanptr; -} - -LOCAL(jpeg_scan_info *) -fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) -/* Support routine: generate interleaved DC scan if possible, else N scans */ -{ - int ci; - - if (ncomps <= MAX_COMPS_IN_SCAN) { - /* Single interleaved DC scan */ - scanptr->comps_in_scan = ncomps; - for (ci = 0; ci < ncomps; ci++) - scanptr->component_index[ci] = ci; - scanptr->Ss = scanptr->Se = 0; - scanptr->Ah = Ah; - scanptr->Al = Al; - scanptr++; - } else { - /* Noninterleaved DC scan for each component */ - scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); - } - return scanptr; -} - - -/* - * Create a recommended progressive-JPEG script. - * cinfo->num_components and cinfo->jpeg_color_space must be correct. - */ - -GLOBAL(void) -jpeg_simple_progression (j_compress_ptr cinfo) -{ - int ncomps = cinfo->num_components; - int nscans; - jpeg_scan_info * scanptr; - - /* Safety check to ensure start_compress not called yet. */ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - /* Figure space needed for script. Calculation must match code below! */ - if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { - /* Custom script for YCbCr color images. */ - nscans = 10; - } else { - /* All-purpose script for other color spaces. */ - if (ncomps > MAX_COMPS_IN_SCAN) - nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ - else - nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ - } - - /* Allocate space for script. - * We need to put it in the permanent pool in case the application performs - * multiple compressions without changing the settings. To avoid a memory - * leak if jpeg_simple_progression is called repeatedly for the same JPEG - * object, we try to re-use previously allocated space, and we allocate - * enough space to handle YCbCr even if initially asked for grayscale. - */ - if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { - cinfo->script_space_size = MAX(nscans, 10); - cinfo->script_space = (jpeg_scan_info *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - cinfo->script_space_size * SIZEOF(jpeg_scan_info)); - } - scanptr = cinfo->script_space; - cinfo->scan_info = scanptr; - cinfo->num_scans = nscans; - - if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { - /* Custom script for YCbCr color images. */ - /* Initial DC scan */ - scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); - /* Initial AC scan: get some luma data out in a hurry */ - scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); - /* Chroma data is too small to be worth expending many scans on */ - scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); - scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); - /* Complete spectral selection for luma AC */ - scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); - /* Refine next bit of luma AC */ - scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); - /* Finish DC successive approximation */ - scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); - /* Finish AC successive approximation */ - scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); - scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); - /* Luma bottom bit comes last since it's usually largest scan */ - scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); - } else { - /* All-purpose script for other color spaces. */ - /* Successive approximation first pass */ - scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); - scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); - scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); - /* Successive approximation second pass */ - scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); - /* Successive approximation final pass */ - scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); - scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); - } -} - -#endif /* C_PROGRESSIVE_SUPPORTED */ diff --git a/src/jpeg-8c/jcprepct.c b/src/jpeg-8c/jcprepct.c deleted file mode 100644 index be44cc4b..00000000 --- a/src/jpeg-8c/jcprepct.c +++ /dev/null @@ -1,358 +0,0 @@ -/* - * jcprepct.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the compression preprocessing controller. - * This controller manages the color conversion, downsampling, - * and edge expansion steps. - * - * Most of the complexity here is associated with buffering input rows - * as required by the downsampler. See the comments at the head of - * jcsample.c for the downsampler's needs. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* At present, jcsample.c can request context rows only for smoothing. - * In the future, we might also need context rows for CCIR601 sampling - * or other more-complex downsampling procedures. The code to support - * context rows should be compiled only if needed. - */ -#ifdef INPUT_SMOOTHING_SUPPORTED -#define CONTEXT_ROWS_SUPPORTED -#endif - - -/* - * For the simple (no-context-row) case, we just need to buffer one - * row group's worth of pixels for the downsampling step. At the bottom of - * the image, we pad to a full row group by replicating the last pixel row. - * The downsampler's last output row is then replicated if needed to pad - * out to a full iMCU row. - * - * When providing context rows, we must buffer three row groups' worth of - * pixels. Three row groups are physically allocated, but the row pointer - * arrays are made five row groups high, with the extra pointers above and - * below "wrapping around" to point to the last and first real row groups. - * This allows the downsampler to access the proper context rows. - * At the top and bottom of the image, we create dummy context rows by - * copying the first or last real pixel row. This copying could be avoided - * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the - * trouble on the compression side. - */ - - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_c_prep_controller pub; /* public fields */ - - /* Downsampling input buffer. This buffer holds color-converted data - * until we have enough to do a downsample step. - */ - JSAMPARRAY color_buf[MAX_COMPONENTS]; - - JDIMENSION rows_to_go; /* counts rows remaining in source image */ - int next_buf_row; /* index of next row to store in color_buf */ - -#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ - int this_row_group; /* starting row index of group to process */ - int next_buf_stop; /* downsample when we reach this index */ -#endif -} my_prep_controller; - -typedef my_prep_controller * my_prep_ptr; - - -/* - * Initialize for a processing pass. - */ - -METHODDEF(void) -start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) -{ - my_prep_ptr prep = (my_prep_ptr) cinfo->prep; - - if (pass_mode != JBUF_PASS_THRU) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - - /* Initialize total-height counter for detecting bottom of image */ - prep->rows_to_go = cinfo->image_height; - /* Mark the conversion buffer empty */ - prep->next_buf_row = 0; -#ifdef CONTEXT_ROWS_SUPPORTED - /* Preset additional state variables for context mode. - * These aren't used in non-context mode, so we needn't test which mode. - */ - prep->this_row_group = 0; - /* Set next_buf_stop to stop after two row groups have been read in. */ - prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; -#endif -} - - -/* - * Expand an image vertically from height input_rows to height output_rows, - * by duplicating the bottom row. - */ - -LOCAL(void) -expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, - int input_rows, int output_rows) -{ - register int row; - - for (row = input_rows; row < output_rows; row++) { - jcopy_sample_rows(image_data, input_rows-1, image_data, row, - 1, num_cols); - } -} - - -/* - * Process some data in the simple no-context case. - * - * Preprocessor output data is counted in "row groups". A row group - * is defined to be v_samp_factor sample rows of each component. - * Downsampling will produce this much data from each max_v_samp_factor - * input rows. - */ - -METHODDEF(void) -pre_process_data (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail, - JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, - JDIMENSION out_row_groups_avail) -{ - my_prep_ptr prep = (my_prep_ptr) cinfo->prep; - int numrows, ci; - JDIMENSION inrows; - jpeg_component_info * compptr; - - while (*in_row_ctr < in_rows_avail && - *out_row_group_ctr < out_row_groups_avail) { - /* Do color conversion to fill the conversion buffer. */ - inrows = in_rows_avail - *in_row_ctr; - numrows = cinfo->max_v_samp_factor - prep->next_buf_row; - numrows = (int) MIN((JDIMENSION) numrows, inrows); - (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, - prep->color_buf, - (JDIMENSION) prep->next_buf_row, - numrows); - *in_row_ctr += numrows; - prep->next_buf_row += numrows; - prep->rows_to_go -= numrows; - /* If at bottom of image, pad to fill the conversion buffer. */ - if (prep->rows_to_go == 0 && - prep->next_buf_row < cinfo->max_v_samp_factor) { - for (ci = 0; ci < cinfo->num_components; ci++) { - expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, - prep->next_buf_row, cinfo->max_v_samp_factor); - } - prep->next_buf_row = cinfo->max_v_samp_factor; - } - /* If we've filled the conversion buffer, empty it. */ - if (prep->next_buf_row == cinfo->max_v_samp_factor) { - (*cinfo->downsample->downsample) (cinfo, - prep->color_buf, (JDIMENSION) 0, - output_buf, *out_row_group_ctr); - prep->next_buf_row = 0; - (*out_row_group_ctr)++; - } - /* If at bottom of image, pad the output to a full iMCU height. - * Note we assume the caller is providing a one-iMCU-height output buffer! - */ - if (prep->rows_to_go == 0 && - *out_row_group_ctr < out_row_groups_avail) { - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; - expand_bottom_edge(output_buf[ci], - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (int) (*out_row_group_ctr * numrows), - (int) (out_row_groups_avail * numrows)); - } - *out_row_group_ctr = out_row_groups_avail; - break; /* can exit outer loop without test */ - } - } -} - - -#ifdef CONTEXT_ROWS_SUPPORTED - -/* - * Process some data in the context case. - */ - -METHODDEF(void) -pre_process_context (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail, - JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, - JDIMENSION out_row_groups_avail) -{ - my_prep_ptr prep = (my_prep_ptr) cinfo->prep; - int numrows, ci; - int buf_height = cinfo->max_v_samp_factor * 3; - JDIMENSION inrows; - - while (*out_row_group_ctr < out_row_groups_avail) { - if (*in_row_ctr < in_rows_avail) { - /* Do color conversion to fill the conversion buffer. */ - inrows = in_rows_avail - *in_row_ctr; - numrows = prep->next_buf_stop - prep->next_buf_row; - numrows = (int) MIN((JDIMENSION) numrows, inrows); - (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, - prep->color_buf, - (JDIMENSION) prep->next_buf_row, - numrows); - /* Pad at top of image, if first time through */ - if (prep->rows_to_go == cinfo->image_height) { - for (ci = 0; ci < cinfo->num_components; ci++) { - int row; - for (row = 1; row <= cinfo->max_v_samp_factor; row++) { - jcopy_sample_rows(prep->color_buf[ci], 0, - prep->color_buf[ci], -row, - 1, cinfo->image_width); - } - } - } - *in_row_ctr += numrows; - prep->next_buf_row += numrows; - prep->rows_to_go -= numrows; - } else { - /* Return for more data, unless we are at the bottom of the image. */ - if (prep->rows_to_go != 0) - break; - /* When at bottom of image, pad to fill the conversion buffer. */ - if (prep->next_buf_row < prep->next_buf_stop) { - for (ci = 0; ci < cinfo->num_components; ci++) { - expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, - prep->next_buf_row, prep->next_buf_stop); - } - prep->next_buf_row = prep->next_buf_stop; - } - } - /* If we've gotten enough data, downsample a row group. */ - if (prep->next_buf_row == prep->next_buf_stop) { - (*cinfo->downsample->downsample) (cinfo, - prep->color_buf, - (JDIMENSION) prep->this_row_group, - output_buf, *out_row_group_ctr); - (*out_row_group_ctr)++; - /* Advance pointers with wraparound as necessary. */ - prep->this_row_group += cinfo->max_v_samp_factor; - if (prep->this_row_group >= buf_height) - prep->this_row_group = 0; - if (prep->next_buf_row >= buf_height) - prep->next_buf_row = 0; - prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; - } - } -} - - -/* - * Create the wrapped-around downsampling input buffer needed for context mode. - */ - -LOCAL(void) -create_context_buffer (j_compress_ptr cinfo) -{ - my_prep_ptr prep = (my_prep_ptr) cinfo->prep; - int rgroup_height = cinfo->max_v_samp_factor; - int ci, i; - jpeg_component_info * compptr; - JSAMPARRAY true_buffer, fake_buffer; - - /* Grab enough space for fake row pointers for all the components; - * we need five row groups' worth of pointers for each component. - */ - fake_buffer = (JSAMPARRAY) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (cinfo->num_components * 5 * rgroup_height) * - SIZEOF(JSAMPROW)); - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Allocate the actual buffer space (3 row groups) for this component. - * We make the buffer wide enough to allow the downsampler to edge-expand - * horizontally within the buffer, if it so chooses. - */ - true_buffer = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - (JDIMENSION) (((long) compptr->width_in_blocks * - cinfo->min_DCT_h_scaled_size * - cinfo->max_h_samp_factor) / compptr->h_samp_factor), - (JDIMENSION) (3 * rgroup_height)); - /* Copy true buffer row pointers into the middle of the fake row array */ - MEMCOPY(fake_buffer + rgroup_height, true_buffer, - 3 * rgroup_height * SIZEOF(JSAMPROW)); - /* Fill in the above and below wraparound pointers */ - for (i = 0; i < rgroup_height; i++) { - fake_buffer[i] = true_buffer[2 * rgroup_height + i]; - fake_buffer[4 * rgroup_height + i] = true_buffer[i]; - } - prep->color_buf[ci] = fake_buffer + rgroup_height; - fake_buffer += 5 * rgroup_height; /* point to space for next component */ - } -} - -#endif /* CONTEXT_ROWS_SUPPORTED */ - - -/* - * Initialize preprocessing controller. - */ - -GLOBAL(void) -jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) -{ - my_prep_ptr prep; - int ci; - jpeg_component_info * compptr; - - if (need_full_buffer) /* safety check */ - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - - prep = (my_prep_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_prep_controller)); - cinfo->prep = (struct jpeg_c_prep_controller *) prep; - prep->pub.start_pass = start_pass_prep; - - /* Allocate the color conversion buffer. - * We make the buffer wide enough to allow the downsampler to edge-expand - * horizontally within the buffer, if it so chooses. - */ - if (cinfo->downsample->need_context_rows) { - /* Set up to provide context rows */ -#ifdef CONTEXT_ROWS_SUPPORTED - prep->pub.pre_process_data = pre_process_context; - create_context_buffer(cinfo); -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } else { - /* No context, just make it tall enough for one row group */ - prep->pub.pre_process_data = pre_process_data; - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - (JDIMENSION) (((long) compptr->width_in_blocks * - cinfo->min_DCT_h_scaled_size * - cinfo->max_h_samp_factor) / compptr->h_samp_factor), - (JDIMENSION) cinfo->max_v_samp_factor); - } - } -} diff --git a/src/jpeg-8c/jcsample.c b/src/jpeg-8c/jcsample.c deleted file mode 100644 index 4d36f85f..00000000 --- a/src/jpeg-8c/jcsample.c +++ /dev/null @@ -1,545 +0,0 @@ -/* - * jcsample.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains downsampling routines. - * - * Downsampling input data is counted in "row groups". A row group - * is defined to be max_v_samp_factor pixel rows of each component, - * from which the downsampler produces v_samp_factor sample rows. - * A single row group is processed in each call to the downsampler module. - * - * The downsampler is responsible for edge-expansion of its output data - * to fill an integral number of DCT blocks horizontally. The source buffer - * may be modified if it is helpful for this purpose (the source buffer is - * allocated wide enough to correspond to the desired output width). - * The caller (the prep controller) is responsible for vertical padding. - * - * The downsampler may request "context rows" by setting need_context_rows - * during startup. In this case, the input arrays will contain at least - * one row group's worth of pixels above and below the passed-in data; - * the caller will create dummy rows at image top and bottom by replicating - * the first or last real pixel row. - * - * An excellent reference for image resampling is - * Digital Image Warping, George Wolberg, 1990. - * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. - * - * The downsampling algorithm used here is a simple average of the source - * pixels covered by the output pixel. The hi-falutin sampling literature - * refers to this as a "box filter". In general the characteristics of a box - * filter are not very good, but for the specific cases we normally use (1:1 - * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not - * nearly so bad. If you intend to use other sampling ratios, you'd be well - * advised to improve this code. - * - * A simple input-smoothing capability is provided. This is mainly intended - * for cleaning up color-dithered GIF input files (if you find it inadequate, - * we suggest using an external filtering program such as pnmconvol). When - * enabled, each input pixel P is replaced by a weighted sum of itself and its - * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, - * where SF = (smoothing_factor / 1024). - * Currently, smoothing is only supported for 2h2v sampling factors. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Pointer to routine to downsample a single component */ -typedef JMETHOD(void, downsample1_ptr, - (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data)); - -/* Private subobject */ - -typedef struct { - struct jpeg_downsampler pub; /* public fields */ - - /* Downsampling method pointers, one per component */ - downsample1_ptr methods[MAX_COMPONENTS]; - - /* Height of an output row group for each component. */ - int rowgroup_height[MAX_COMPONENTS]; - - /* These arrays save pixel expansion factors so that int_downsample need not - * recompute them each time. They are unused for other downsampling methods. - */ - UINT8 h_expand[MAX_COMPONENTS]; - UINT8 v_expand[MAX_COMPONENTS]; -} my_downsampler; - -typedef my_downsampler * my_downsample_ptr; - - -/* - * Initialize for a downsampling pass. - */ - -METHODDEF(void) -start_pass_downsample (j_compress_ptr cinfo) -{ - /* no work for now */ -} - - -/* - * Expand a component horizontally from width input_cols to width output_cols, - * by duplicating the rightmost samples. - */ - -LOCAL(void) -expand_right_edge (JSAMPARRAY image_data, int num_rows, - JDIMENSION input_cols, JDIMENSION output_cols) -{ - register JSAMPROW ptr; - register JSAMPLE pixval; - register int count; - int row; - int numcols = (int) (output_cols - input_cols); - - if (numcols > 0) { - for (row = 0; row < num_rows; row++) { - ptr = image_data[row] + input_cols; - pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ - for (count = numcols; count > 0; count--) - *ptr++ = pixval; - } - } -} - - -/* - * Do downsampling for a whole row group (all components). - * - * In this version we simply downsample each component independently. - */ - -METHODDEF(void) -sep_downsample (j_compress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION in_row_index, - JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) -{ - my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; - int ci; - jpeg_component_info * compptr; - JSAMPARRAY in_ptr, out_ptr; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - in_ptr = input_buf[ci] + in_row_index; - out_ptr = output_buf[ci] + - (out_row_group_index * downsample->rowgroup_height[ci]); - (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); - } -} - - -/* - * Downsample pixel values of a single component. - * One row group is processed per call. - * This version handles arbitrary integral sampling ratios, without smoothing. - * Note that this version is not actually used for customary sampling ratios. - */ - -METHODDEF(void) -int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data) -{ - my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; - int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; - JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ - JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; - JSAMPROW inptr, outptr; - INT32 outvalue; - - h_expand = downsample->h_expand[compptr->component_index]; - v_expand = downsample->v_expand[compptr->component_index]; - numpix = h_expand * v_expand; - numpix2 = numpix/2; - - /* Expand input data enough to let all the output samples be generated - * by the standard loop. Special-casing padded output would be more - * efficient. - */ - expand_right_edge(input_data, cinfo->max_v_samp_factor, - cinfo->image_width, output_cols * h_expand); - - inrow = outrow = 0; - while (inrow < cinfo->max_v_samp_factor) { - outptr = output_data[outrow]; - for (outcol = 0, outcol_h = 0; outcol < output_cols; - outcol++, outcol_h += h_expand) { - outvalue = 0; - for (v = 0; v < v_expand; v++) { - inptr = input_data[inrow+v] + outcol_h; - for (h = 0; h < h_expand; h++) { - outvalue += (INT32) GETJSAMPLE(*inptr++); - } - } - *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); - } - inrow += v_expand; - outrow++; - } -} - - -/* - * Downsample pixel values of a single component. - * This version handles the special case of a full-size component, - * without smoothing. - */ - -METHODDEF(void) -fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data) -{ - /* Copy the data */ - jcopy_sample_rows(input_data, 0, output_data, 0, - cinfo->max_v_samp_factor, cinfo->image_width); - /* Edge-expand */ - expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, - compptr->width_in_blocks * compptr->DCT_h_scaled_size); -} - - -/* - * Downsample pixel values of a single component. - * This version handles the common case of 2:1 horizontal and 1:1 vertical, - * without smoothing. - * - * A note about the "bias" calculations: when rounding fractional values to - * integer, we do not want to always round 0.5 up to the next integer. - * If we did that, we'd introduce a noticeable bias towards larger values. - * Instead, this code is arranged so that 0.5 will be rounded up or down at - * alternate pixel locations (a simple ordered dither pattern). - */ - -METHODDEF(void) -h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data) -{ - int inrow; - JDIMENSION outcol; - JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; - register JSAMPROW inptr, outptr; - register int bias; - - /* Expand input data enough to let all the output samples be generated - * by the standard loop. Special-casing padded output would be more - * efficient. - */ - expand_right_edge(input_data, cinfo->max_v_samp_factor, - cinfo->image_width, output_cols * 2); - - for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { - outptr = output_data[inrow]; - inptr = input_data[inrow]; - bias = 0; /* bias = 0,1,0,1,... for successive samples */ - for (outcol = 0; outcol < output_cols; outcol++) { - *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) - + bias) >> 1); - bias ^= 1; /* 0=>1, 1=>0 */ - inptr += 2; - } - } -} - - -/* - * Downsample pixel values of a single component. - * This version handles the standard case of 2:1 horizontal and 2:1 vertical, - * without smoothing. - */ - -METHODDEF(void) -h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data) -{ - int inrow, outrow; - JDIMENSION outcol; - JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; - register JSAMPROW inptr0, inptr1, outptr; - register int bias; - - /* Expand input data enough to let all the output samples be generated - * by the standard loop. Special-casing padded output would be more - * efficient. - */ - expand_right_edge(input_data, cinfo->max_v_samp_factor, - cinfo->image_width, output_cols * 2); - - inrow = outrow = 0; - while (inrow < cinfo->max_v_samp_factor) { - outptr = output_data[outrow]; - inptr0 = input_data[inrow]; - inptr1 = input_data[inrow+1]; - bias = 1; /* bias = 1,2,1,2,... for successive samples */ - for (outcol = 0; outcol < output_cols; outcol++) { - *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + - GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) - + bias) >> 2); - bias ^= 3; /* 1=>2, 2=>1 */ - inptr0 += 2; inptr1 += 2; - } - inrow += 2; - outrow++; - } -} - - -#ifdef INPUT_SMOOTHING_SUPPORTED - -/* - * Downsample pixel values of a single component. - * This version handles the standard case of 2:1 horizontal and 2:1 vertical, - * with smoothing. One row of context is required. - */ - -METHODDEF(void) -h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data) -{ - int inrow, outrow; - JDIMENSION colctr; - JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; - register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; - INT32 membersum, neighsum, memberscale, neighscale; - - /* Expand input data enough to let all the output samples be generated - * by the standard loop. Special-casing padded output would be more - * efficient. - */ - expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, - cinfo->image_width, output_cols * 2); - - /* We don't bother to form the individual "smoothed" input pixel values; - * we can directly compute the output which is the average of the four - * smoothed values. Each of the four member pixels contributes a fraction - * (1-8*SF) to its own smoothed image and a fraction SF to each of the three - * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final - * output. The four corner-adjacent neighbor pixels contribute a fraction - * SF to just one smoothed pixel, or SF/4 to the final output; while the - * eight edge-adjacent neighbors contribute SF to each of two smoothed - * pixels, or SF/2 overall. In order to use integer arithmetic, these - * factors are scaled by 2^16 = 65536. - * Also recall that SF = smoothing_factor / 1024. - */ - - memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ - neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ - - inrow = outrow = 0; - while (inrow < cinfo->max_v_samp_factor) { - outptr = output_data[outrow]; - inptr0 = input_data[inrow]; - inptr1 = input_data[inrow+1]; - above_ptr = input_data[inrow-1]; - below_ptr = input_data[inrow+2]; - - /* Special case for first column: pretend column -1 is same as column 0 */ - membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + - GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); - neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + - GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + - GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + - GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); - neighsum += neighsum; - neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + - GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); - membersum = membersum * memberscale + neighsum * neighscale; - *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); - inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; - - for (colctr = output_cols - 2; colctr > 0; colctr--) { - /* sum of pixels directly mapped to this output element */ - membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + - GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); - /* sum of edge-neighbor pixels */ - neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + - GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + - GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + - GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); - /* The edge-neighbors count twice as much as corner-neighbors */ - neighsum += neighsum; - /* Add in the corner-neighbors */ - neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + - GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); - /* form final output scaled up by 2^16 */ - membersum = membersum * memberscale + neighsum * neighscale; - /* round, descale and output it */ - *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); - inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; - } - - /* Special case for last column */ - membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + - GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); - neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + - GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + - GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + - GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); - neighsum += neighsum; - neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + - GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); - membersum = membersum * memberscale + neighsum * neighscale; - *outptr = (JSAMPLE) ((membersum + 32768) >> 16); - - inrow += 2; - outrow++; - } -} - - -/* - * Downsample pixel values of a single component. - * This version handles the special case of a full-size component, - * with smoothing. One row of context is required. - */ - -METHODDEF(void) -fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, - JSAMPARRAY input_data, JSAMPARRAY output_data) -{ - int inrow; - JDIMENSION colctr; - JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; - register JSAMPROW inptr, above_ptr, below_ptr, outptr; - INT32 membersum, neighsum, memberscale, neighscale; - int colsum, lastcolsum, nextcolsum; - - /* Expand input data enough to let all the output samples be generated - * by the standard loop. Special-casing padded output would be more - * efficient. - */ - expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, - cinfo->image_width, output_cols); - - /* Each of the eight neighbor pixels contributes a fraction SF to the - * smoothed pixel, while the main pixel contributes (1-8*SF). In order - * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. - * Also recall that SF = smoothing_factor / 1024. - */ - - memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ - neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ - - for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { - outptr = output_data[inrow]; - inptr = input_data[inrow]; - above_ptr = input_data[inrow-1]; - below_ptr = input_data[inrow+1]; - - /* Special case for first column */ - colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + - GETJSAMPLE(*inptr); - membersum = GETJSAMPLE(*inptr++); - nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + - GETJSAMPLE(*inptr); - neighsum = colsum + (colsum - membersum) + nextcolsum; - membersum = membersum * memberscale + neighsum * neighscale; - *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); - lastcolsum = colsum; colsum = nextcolsum; - - for (colctr = output_cols - 2; colctr > 0; colctr--) { - membersum = GETJSAMPLE(*inptr++); - above_ptr++; below_ptr++; - nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + - GETJSAMPLE(*inptr); - neighsum = lastcolsum + (colsum - membersum) + nextcolsum; - membersum = membersum * memberscale + neighsum * neighscale; - *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); - lastcolsum = colsum; colsum = nextcolsum; - } - - /* Special case for last column */ - membersum = GETJSAMPLE(*inptr); - neighsum = lastcolsum + (colsum - membersum) + colsum; - membersum = membersum * memberscale + neighsum * neighscale; - *outptr = (JSAMPLE) ((membersum + 32768) >> 16); - - } -} - -#endif /* INPUT_SMOOTHING_SUPPORTED */ - - -/* - * Module initialization routine for downsampling. - * Note that we must select a routine for each component. - */ - -GLOBAL(void) -jinit_downsampler (j_compress_ptr cinfo) -{ - my_downsample_ptr downsample; - int ci; - jpeg_component_info * compptr; - boolean smoothok = TRUE; - int h_in_group, v_in_group, h_out_group, v_out_group; - - downsample = (my_downsample_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_downsampler)); - cinfo->downsample = (struct jpeg_downsampler *) downsample; - downsample->pub.start_pass = start_pass_downsample; - downsample->pub.downsample = sep_downsample; - downsample->pub.need_context_rows = FALSE; - - if (cinfo->CCIR601_sampling) - ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); - - /* Verify we can handle the sampling factors, and set up method pointers */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Compute size of an "output group" for DCT scaling. This many samples - * are to be converted from max_h_samp_factor * max_v_samp_factor pixels. - */ - h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / - cinfo->min_DCT_h_scaled_size; - v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; - h_in_group = cinfo->max_h_samp_factor; - v_in_group = cinfo->max_v_samp_factor; - downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ - if (h_in_group == h_out_group && v_in_group == v_out_group) { -#ifdef INPUT_SMOOTHING_SUPPORTED - if (cinfo->smoothing_factor) { - downsample->methods[ci] = fullsize_smooth_downsample; - downsample->pub.need_context_rows = TRUE; - } else -#endif - downsample->methods[ci] = fullsize_downsample; - } else if (h_in_group == h_out_group * 2 && - v_in_group == v_out_group) { - smoothok = FALSE; - downsample->methods[ci] = h2v1_downsample; - } else if (h_in_group == h_out_group * 2 && - v_in_group == v_out_group * 2) { -#ifdef INPUT_SMOOTHING_SUPPORTED - if (cinfo->smoothing_factor) { - downsample->methods[ci] = h2v2_smooth_downsample; - downsample->pub.need_context_rows = TRUE; - } else -#endif - downsample->methods[ci] = h2v2_downsample; - } else if ((h_in_group % h_out_group) == 0 && - (v_in_group % v_out_group) == 0) { - smoothok = FALSE; - downsample->methods[ci] = int_downsample; - downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); - downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); - } else - ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); - } - -#ifdef INPUT_SMOOTHING_SUPPORTED - if (cinfo->smoothing_factor && !smoothok) - TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); -#endif -} diff --git a/src/jpeg-8c/jctrans.c b/src/jpeg-8c/jctrans.c deleted file mode 100644 index 33648113..00000000 --- a/src/jpeg-8c/jctrans.c +++ /dev/null @@ -1,382 +0,0 @@ -/* - * jctrans.c - * - * Copyright (C) 1995-1998, Thomas G. Lane. - * Modified 2000-2013 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains library routines for transcoding compression, - * that is, writing raw DCT coefficient arrays to an output JPEG file. - * The routines in jcapimin.c will also be needed by a transcoder. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Forward declarations */ -LOCAL(void) transencode_master_selection - JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); -LOCAL(void) transencode_coef_controller - JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); - - -/* - * Compression initialization for writing raw-coefficient data. - * Before calling this, all parameters and a data destination must be set up. - * Call jpeg_finish_compress() to actually write the data. - * - * The number of passed virtual arrays must match cinfo->num_components. - * Note that the virtual arrays need not be filled or even realized at - * the time write_coefficients is called; indeed, if the virtual arrays - * were requested from this compression object's memory manager, they - * typically will be realized during this routine and filled afterwards. - */ - -GLOBAL(void) -jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) -{ - if (cinfo->global_state != CSTATE_START) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - /* Mark all tables to be written */ - jpeg_suppress_tables(cinfo, FALSE); - /* (Re)initialize error mgr and destination modules */ - (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); - (*cinfo->dest->init_destination) (cinfo); - /* Perform master selection of active modules */ - transencode_master_selection(cinfo, coef_arrays); - /* Wait for jpeg_finish_compress() call */ - cinfo->next_scanline = 0; /* so jpeg_write_marker works */ - cinfo->global_state = CSTATE_WRCOEFS; -} - - -/* - * Initialize the compression object with default parameters, - * then copy from the source object all parameters needed for lossless - * transcoding. Parameters that can be varied without loss (such as - * scan script and Huffman optimization) are left in their default states. - */ - -GLOBAL(void) -jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, - j_compress_ptr dstinfo) -{ - JQUANT_TBL ** qtblptr; - jpeg_component_info *incomp, *outcomp; - JQUANT_TBL *c_quant, *slot_quant; - int tblno, ci, coefi; - - /* Safety check to ensure start_compress not called yet. */ - if (dstinfo->global_state != CSTATE_START) - ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); - /* Copy fundamental image dimensions */ - dstinfo->image_width = srcinfo->image_width; - dstinfo->image_height = srcinfo->image_height; - dstinfo->input_components = srcinfo->num_components; - dstinfo->in_color_space = srcinfo->jpeg_color_space; - dstinfo->jpeg_width = srcinfo->output_width; - dstinfo->jpeg_height = srcinfo->output_height; - dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; - dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; - /* Initialize all parameters to default values */ - jpeg_set_defaults(dstinfo); - /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. - * Fix it to get the right header markers for the image colorspace. - */ - jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); - dstinfo->data_precision = srcinfo->data_precision; - dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; - /* Copy the source's quantization tables. */ - for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { - if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { - qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; - if (*qtblptr == NULL) - *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); - MEMCOPY((*qtblptr)->quantval, - srcinfo->quant_tbl_ptrs[tblno]->quantval, - SIZEOF((*qtblptr)->quantval)); - (*qtblptr)->sent_table = FALSE; - } - } - /* Copy the source's per-component info. - * Note we assume jpeg_set_defaults has allocated the dest comp_info array. - */ - dstinfo->num_components = srcinfo->num_components; - if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) - ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, - MAX_COMPONENTS); - for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; - ci < dstinfo->num_components; ci++, incomp++, outcomp++) { - outcomp->component_id = incomp->component_id; - outcomp->h_samp_factor = incomp->h_samp_factor; - outcomp->v_samp_factor = incomp->v_samp_factor; - outcomp->quant_tbl_no = incomp->quant_tbl_no; - /* Make sure saved quantization table for component matches the qtable - * slot. If not, the input file re-used this qtable slot. - * IJG encoder currently cannot duplicate this. - */ - tblno = outcomp->quant_tbl_no; - if (tblno < 0 || tblno >= NUM_QUANT_TBLS || - srcinfo->quant_tbl_ptrs[tblno] == NULL) - ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); - slot_quant = srcinfo->quant_tbl_ptrs[tblno]; - c_quant = incomp->quant_table; - if (c_quant != NULL) { - for (coefi = 0; coefi < DCTSIZE2; coefi++) { - if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) - ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); - } - } - /* Note: we do not copy the source's Huffman table assignments; - * instead we rely on jpeg_set_colorspace to have made a suitable choice. - */ - } - /* Also copy JFIF version and resolution information, if available. - * Strictly speaking this isn't "critical" info, but it's nearly - * always appropriate to copy it if available. In particular, - * if the application chooses to copy JFIF 1.02 extension markers from - * the source file, we need to copy the version to make sure we don't - * emit a file that has 1.02 extensions but a claimed version of 1.01. - * We will *not*, however, copy version info from mislabeled "2.01" files. - */ - if (srcinfo->saw_JFIF_marker) { - if (srcinfo->JFIF_major_version == 1) { - dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; - dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; - } - dstinfo->density_unit = srcinfo->density_unit; - dstinfo->X_density = srcinfo->X_density; - dstinfo->Y_density = srcinfo->Y_density; - } -} - - -/* - * Master selection of compression modules for transcoding. - * This substitutes for jcinit.c's initialization of the full compressor. - */ - -LOCAL(void) -transencode_master_selection (j_compress_ptr cinfo, - jvirt_barray_ptr * coef_arrays) -{ - /* Initialize master control (includes parameter checking/processing) */ - jinit_c_master_control(cinfo, TRUE /* transcode only */); - - /* Entropy encoding: either Huffman or arithmetic coding. */ - if (cinfo->arith_code) - jinit_arith_encoder(cinfo); - else { - jinit_huff_encoder(cinfo); - } - - /* We need a special coefficient buffer controller. */ - transencode_coef_controller(cinfo, coef_arrays); - - jinit_marker_writer(cinfo); - - /* We can now tell the memory manager to allocate virtual arrays. */ - (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); - - /* Write the datastream header (SOI, JFIF) immediately. - * Frame and scan headers are postponed till later. - * This lets application insert special markers after the SOI. - */ - (*cinfo->marker->write_file_header) (cinfo); -} - - -/* - * The rest of this file is a special implementation of the coefficient - * buffer controller. This is similar to jccoefct.c, but it handles only - * output from presupplied virtual arrays. Furthermore, we generate any - * dummy padding blocks on-the-fly rather than expecting them to be present - * in the arrays. - */ - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_c_coef_controller pub; /* public fields */ - - JDIMENSION iMCU_row_num; /* iMCU row # within image */ - JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ - int MCU_vert_offset; /* counts MCU rows within iMCU row */ - int MCU_rows_per_iMCU_row; /* number of such rows needed */ - - /* Virtual block array for each component. */ - jvirt_barray_ptr * whole_image; - - /* Workspace for constructing dummy blocks at right/bottom edges. */ - JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; -} my_coef_controller; - -typedef my_coef_controller * my_coef_ptr; - - -LOCAL(void) -start_iMCU_row (j_compress_ptr cinfo) -/* Reset within-iMCU-row counters for a new row */ -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - - /* In an interleaved scan, an MCU row is the same as an iMCU row. - * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. - * But at the bottom of the image, process only what's left. - */ - if (cinfo->comps_in_scan > 1) { - coef->MCU_rows_per_iMCU_row = 1; - } else { - if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) - coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; - else - coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; - } - - coef->mcu_ctr = 0; - coef->MCU_vert_offset = 0; -} - - -/* - * Initialize for a processing pass. - */ - -METHODDEF(void) -start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - - if (pass_mode != JBUF_CRANK_DEST) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - - coef->iMCU_row_num = 0; - start_iMCU_row(cinfo); -} - - -/* - * Process some data. - * We process the equivalent of one fully interleaved MCU row ("iMCU" row) - * per call, ie, v_samp_factor block rows for each component in the scan. - * The data is obtained from the virtual arrays and fed to the entropy coder. - * Returns TRUE if the iMCU row is completed, FALSE if suspended. - * - * NB: input_buf is ignored; it is likely to be a NULL pointer. - */ - -METHODDEF(boolean) -compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION MCU_col_num; /* index of current MCU within row */ - JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; - JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; - int blkn, ci, xindex, yindex, yoffset, blockcnt; - JDIMENSION start_col; - JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; - JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; - JBLOCKROW buffer_ptr; - jpeg_component_info *compptr; - - /* Align the virtual buffers for the components used in this scan. */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - buffer[ci] = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], - coef->iMCU_row_num * compptr->v_samp_factor, - (JDIMENSION) compptr->v_samp_factor, FALSE); - } - - /* Loop to process one whole iMCU row */ - for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; - yoffset++) { - for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; - MCU_col_num++) { - /* Construct list of pointers to DCT blocks belonging to this MCU */ - blkn = 0; /* index of current DCT block within MCU */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - start_col = MCU_col_num * compptr->MCU_width; - blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width - : compptr->last_col_width; - for (yindex = 0; yindex < compptr->MCU_height; yindex++) { - if (coef->iMCU_row_num < last_iMCU_row || - yindex+yoffset < compptr->last_row_height) { - /* Fill in pointers to real blocks in this row */ - buffer_ptr = buffer[ci][yindex+yoffset] + start_col; - for (xindex = 0; xindex < blockcnt; xindex++) - MCU_buffer[blkn++] = buffer_ptr++; - } else { - /* At bottom of image, need a whole row of dummy blocks */ - xindex = 0; - } - /* Fill in any dummy blocks needed in this row. - * Dummy blocks are filled in the same way as in jccoefct.c: - * all zeroes in the AC entries, DC entries equal to previous - * block's DC value. The init routine has already zeroed the - * AC entries, so we need only set the DC entries correctly. - */ - for (; xindex < compptr->MCU_width; xindex++) { - MCU_buffer[blkn] = coef->dummy_buffer[blkn]; - MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0]; - blkn++; - } - } - } - /* Try to write the MCU. */ - if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { - /* Suspension forced; update state counters and exit */ - coef->MCU_vert_offset = yoffset; - coef->mcu_ctr = MCU_col_num; - return FALSE; - } - } - /* Completed an MCU row, but perhaps not an iMCU row */ - coef->mcu_ctr = 0; - } - /* Completed the iMCU row, advance counters for next one */ - coef->iMCU_row_num++; - start_iMCU_row(cinfo); - return TRUE; -} - - -/* - * Initialize coefficient buffer controller. - * - * Each passed coefficient array must be the right size for that - * coefficient: width_in_blocks wide and height_in_blocks high, - * with unitheight at least v_samp_factor. - */ - -LOCAL(void) -transencode_coef_controller (j_compress_ptr cinfo, - jvirt_barray_ptr * coef_arrays) -{ - my_coef_ptr coef; - JBLOCKROW buffer; - int i; - - coef = (my_coef_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_coef_controller)); - cinfo->coef = (struct jpeg_c_coef_controller *) coef; - coef->pub.start_pass = start_pass_coef; - coef->pub.compress_data = compress_output; - - /* Save pointer to virtual arrays */ - coef->whole_image = coef_arrays; - - /* Allocate and pre-zero space for dummy DCT blocks. */ - buffer = (JBLOCKROW) - (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); - jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); - for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { - coef->dummy_buffer[i] = buffer + i; - } -} diff --git a/src/jpeg-8c/jdapimin.c b/src/jpeg-8c/jdapimin.c deleted file mode 100644 index 7f1ce4c0..00000000 --- a/src/jpeg-8c/jdapimin.c +++ /dev/null @@ -1,396 +0,0 @@ -/* - * jdapimin.c - * - * Copyright (C) 1994-1998, Thomas G. Lane. - * Modified 2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains application interface code for the decompression half - * of the JPEG library. These are the "minimum" API routines that may be - * needed in either the normal full-decompression case or the - * transcoding-only case. - * - * Most of the routines intended to be called directly by an application - * are in this file or in jdapistd.c. But also see jcomapi.c for routines - * shared by compression and decompression, and jdtrans.c for the transcoding - * case. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * Initialization of a JPEG decompression object. - * The error manager must already be set up (in case memory manager fails). - */ - -GLOBAL(void) -jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) -{ - int i; - - /* Guard against version mismatches between library and caller. */ - cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ - if (version != JPEG_LIB_VERSION) - ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); - if (structsize != SIZEOF(struct jpeg_decompress_struct)) - ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, - (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize); - - /* For debugging purposes, we zero the whole master structure. - * But the application has already set the err pointer, and may have set - * client_data, so we have to save and restore those fields. - * Note: if application hasn't set client_data, tools like Purify may - * complain here. - */ - { - struct jpeg_error_mgr * err = cinfo->err; - void * client_data = cinfo->client_data; /* ignore Purify complaint here */ - MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct)); - cinfo->err = err; - cinfo->client_data = client_data; - } - cinfo->is_decompressor = TRUE; - - /* Initialize a memory manager instance for this object */ - jinit_memory_mgr((j_common_ptr) cinfo); - - /* Zero out pointers to permanent structures. */ - cinfo->progress = NULL; - cinfo->src = NULL; - - for (i = 0; i < NUM_QUANT_TBLS; i++) - cinfo->quant_tbl_ptrs[i] = NULL; - - for (i = 0; i < NUM_HUFF_TBLS; i++) { - cinfo->dc_huff_tbl_ptrs[i] = NULL; - cinfo->ac_huff_tbl_ptrs[i] = NULL; - } - - /* Initialize marker processor so application can override methods - * for COM, APPn markers before calling jpeg_read_header. - */ - cinfo->marker_list = NULL; - jinit_marker_reader(cinfo); - - /* And initialize the overall input controller. */ - jinit_input_controller(cinfo); - - /* OK, I'm ready */ - cinfo->global_state = DSTATE_START; -} - - -/* - * Destruction of a JPEG decompression object - */ - -GLOBAL(void) -jpeg_destroy_decompress (j_decompress_ptr cinfo) -{ - jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ -} - - -/* - * Abort processing of a JPEG decompression operation, - * but don't destroy the object itself. - */ - -GLOBAL(void) -jpeg_abort_decompress (j_decompress_ptr cinfo) -{ - jpeg_abort((j_common_ptr) cinfo); /* use common routine */ -} - - -/* - * Set default decompression parameters. - */ - -LOCAL(void) -default_decompress_parms (j_decompress_ptr cinfo) -{ - /* Guess the input colorspace, and set output colorspace accordingly. */ - /* (Wish JPEG committee had provided a real way to specify this...) */ - /* Note application may override our guesses. */ - switch (cinfo->num_components) { - case 1: - cinfo->jpeg_color_space = JCS_GRAYSCALE; - cinfo->out_color_space = JCS_GRAYSCALE; - break; - - case 3: - if (cinfo->saw_JFIF_marker) { - cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ - } else if (cinfo->saw_Adobe_marker) { - switch (cinfo->Adobe_transform) { - case 0: - cinfo->jpeg_color_space = JCS_RGB; - break; - case 1: - cinfo->jpeg_color_space = JCS_YCbCr; - break; - default: - WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); - cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ - break; - } - } else { - /* Saw no special markers, try to guess from the component IDs */ - int cid0 = cinfo->comp_info[0].component_id; - int cid1 = cinfo->comp_info[1].component_id; - int cid2 = cinfo->comp_info[2].component_id; - - if (cid0 == 1 && cid1 == 2 && cid2 == 3) - cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ - else if (cid0 == 82 && cid1 == 71 && cid2 == 66) - cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ - else { - TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); - cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ - } - } - /* Always guess RGB is proper output colorspace. */ - cinfo->out_color_space = JCS_RGB; - break; - - case 4: - if (cinfo->saw_Adobe_marker) { - switch (cinfo->Adobe_transform) { - case 0: - cinfo->jpeg_color_space = JCS_CMYK; - break; - case 2: - cinfo->jpeg_color_space = JCS_YCCK; - break; - default: - WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); - cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ - break; - } - } else { - /* No special markers, assume straight CMYK. */ - cinfo->jpeg_color_space = JCS_CMYK; - } - cinfo->out_color_space = JCS_CMYK; - break; - - default: - cinfo->jpeg_color_space = JCS_UNKNOWN; - cinfo->out_color_space = JCS_UNKNOWN; - break; - } - - /* Set defaults for other decompression parameters. */ - cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */ - cinfo->scale_denom = cinfo->block_size; - cinfo->output_gamma = 1.0; - cinfo->buffered_image = FALSE; - cinfo->raw_data_out = FALSE; - cinfo->dct_method = JDCT_DEFAULT; - cinfo->do_fancy_upsampling = TRUE; - cinfo->do_block_smoothing = TRUE; - cinfo->quantize_colors = FALSE; - /* We set these in case application only sets quantize_colors. */ - cinfo->dither_mode = JDITHER_FS; -#ifdef QUANT_2PASS_SUPPORTED - cinfo->two_pass_quantize = TRUE; -#else - cinfo->two_pass_quantize = FALSE; -#endif - cinfo->desired_number_of_colors = 256; - cinfo->colormap = NULL; - /* Initialize for no mode change in buffered-image mode. */ - cinfo->enable_1pass_quant = FALSE; - cinfo->enable_external_quant = FALSE; - cinfo->enable_2pass_quant = FALSE; -} - - -/* - * Decompression startup: read start of JPEG datastream to see what's there. - * Need only initialize JPEG object and supply a data source before calling. - * - * This routine will read as far as the first SOS marker (ie, actual start of - * compressed data), and will save all tables and parameters in the JPEG - * object. It will also initialize the decompression parameters to default - * values, and finally return JPEG_HEADER_OK. On return, the application may - * adjust the decompression parameters and then call jpeg_start_decompress. - * (Or, if the application only wanted to determine the image parameters, - * the data need not be decompressed. In that case, call jpeg_abort or - * jpeg_destroy to release any temporary space.) - * If an abbreviated (tables only) datastream is presented, the routine will - * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then - * re-use the JPEG object to read the abbreviated image datastream(s). - * It is unnecessary (but OK) to call jpeg_abort in this case. - * The JPEG_SUSPENDED return code only occurs if the data source module - * requests suspension of the decompressor. In this case the application - * should load more source data and then re-call jpeg_read_header to resume - * processing. - * If a non-suspending data source is used and require_image is TRUE, then the - * return code need not be inspected since only JPEG_HEADER_OK is possible. - * - * This routine is now just a front end to jpeg_consume_input, with some - * extra error checking. - */ - -GLOBAL(int) -jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) -{ - int retcode; - - if (cinfo->global_state != DSTATE_START && - cinfo->global_state != DSTATE_INHEADER) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - retcode = jpeg_consume_input(cinfo); - - switch (retcode) { - case JPEG_REACHED_SOS: - retcode = JPEG_HEADER_OK; - break; - case JPEG_REACHED_EOI: - if (require_image) /* Complain if application wanted an image */ - ERREXIT(cinfo, JERR_NO_IMAGE); - /* Reset to start state; it would be safer to require the application to - * call jpeg_abort, but we can't change it now for compatibility reasons. - * A side effect is to free any temporary memory (there shouldn't be any). - */ - jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ - retcode = JPEG_HEADER_TABLES_ONLY; - break; - case JPEG_SUSPENDED: - /* no work */ - break; - } - - return retcode; -} - - -/* - * Consume data in advance of what the decompressor requires. - * This can be called at any time once the decompressor object has - * been created and a data source has been set up. - * - * This routine is essentially a state machine that handles a couple - * of critical state-transition actions, namely initial setup and - * transition from header scanning to ready-for-start_decompress. - * All the actual input is done via the input controller's consume_input - * method. - */ - -GLOBAL(int) -jpeg_consume_input (j_decompress_ptr cinfo) -{ - int retcode = JPEG_SUSPENDED; - - /* NB: every possible DSTATE value should be listed in this switch */ - switch (cinfo->global_state) { - case DSTATE_START: - /* Start-of-datastream actions: reset appropriate modules */ - (*cinfo->inputctl->reset_input_controller) (cinfo); - /* Initialize application's data source module */ - (*cinfo->src->init_source) (cinfo); - cinfo->global_state = DSTATE_INHEADER; - /*FALLTHROUGH*/ - case DSTATE_INHEADER: - retcode = (*cinfo->inputctl->consume_input) (cinfo); - if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ - /* Set up default parameters based on header data */ - default_decompress_parms(cinfo); - /* Set global state: ready for start_decompress */ - cinfo->global_state = DSTATE_READY; - } - break; - case DSTATE_READY: - /* Can't advance past first SOS until start_decompress is called */ - retcode = JPEG_REACHED_SOS; - break; - case DSTATE_PRELOAD: - case DSTATE_PRESCAN: - case DSTATE_SCANNING: - case DSTATE_RAW_OK: - case DSTATE_BUFIMAGE: - case DSTATE_BUFPOST: - case DSTATE_STOPPING: - retcode = (*cinfo->inputctl->consume_input) (cinfo); - break; - default: - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - } - return retcode; -} - - -/* - * Have we finished reading the input file? - */ - -GLOBAL(boolean) -jpeg_input_complete (j_decompress_ptr cinfo) -{ - /* Check for valid jpeg object */ - if (cinfo->global_state < DSTATE_START || - cinfo->global_state > DSTATE_STOPPING) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - return cinfo->inputctl->eoi_reached; -} - - -/* - * Is there more than one scan? - */ - -GLOBAL(boolean) -jpeg_has_multiple_scans (j_decompress_ptr cinfo) -{ - /* Only valid after jpeg_read_header completes */ - if (cinfo->global_state < DSTATE_READY || - cinfo->global_state > DSTATE_STOPPING) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - return cinfo->inputctl->has_multiple_scans; -} - - -/* - * Finish JPEG decompression. - * - * This will normally just verify the file trailer and release temp storage. - * - * Returns FALSE if suspended. The return value need be inspected only if - * a suspending data source is used. - */ - -GLOBAL(boolean) -jpeg_finish_decompress (j_decompress_ptr cinfo) -{ - if ((cinfo->global_state == DSTATE_SCANNING || - cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { - /* Terminate final pass of non-buffered mode */ - if (cinfo->output_scanline < cinfo->output_height) - ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); - (*cinfo->master->finish_output_pass) (cinfo); - cinfo->global_state = DSTATE_STOPPING; - } else if (cinfo->global_state == DSTATE_BUFIMAGE) { - /* Finishing after a buffered-image operation */ - cinfo->global_state = DSTATE_STOPPING; - } else if (cinfo->global_state != DSTATE_STOPPING) { - /* STOPPING = repeat call after a suspension, anything else is error */ - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - } - /* Read until EOI */ - while (! cinfo->inputctl->eoi_reached) { - if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) - return FALSE; /* Suspend, come back later */ - } - /* Do final cleanup */ - (*cinfo->src->term_source) (cinfo); - /* We can use jpeg_abort to release memory and reset global_state */ - jpeg_abort((j_common_ptr) cinfo); - return TRUE; -} diff --git a/src/jpeg-8c/jdapistd.c b/src/jpeg-8c/jdapistd.c deleted file mode 100644 index 9d745377..00000000 --- a/src/jpeg-8c/jdapistd.c +++ /dev/null @@ -1,275 +0,0 @@ -/* - * jdapistd.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains application interface code for the decompression half - * of the JPEG library. These are the "standard" API routines that are - * used in the normal full-decompression case. They are not used by a - * transcoding-only application. Note that if an application links in - * jpeg_start_decompress, it will end up linking in the entire decompressor. - * We thus must separate this file from jdapimin.c to avoid linking the - * whole decompression library into a transcoder. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Forward declarations */ -LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo)); - - -/* - * Decompression initialization. - * jpeg_read_header must be completed before calling this. - * - * If a multipass operating mode was selected, this will do all but the - * last pass, and thus may take a great deal of time. - * - * Returns FALSE if suspended. The return value need be inspected only if - * a suspending data source is used. - */ - -GLOBAL(boolean) -jpeg_start_decompress (j_decompress_ptr cinfo) -{ - if (cinfo->global_state == DSTATE_READY) { - /* First call: initialize master control, select active modules */ - jinit_master_decompress(cinfo); - if (cinfo->buffered_image) { - /* No more work here; expecting jpeg_start_output next */ - cinfo->global_state = DSTATE_BUFIMAGE; - return TRUE; - } - cinfo->global_state = DSTATE_PRELOAD; - } - if (cinfo->global_state == DSTATE_PRELOAD) { - /* If file has multiple scans, absorb them all into the coef buffer */ - if (cinfo->inputctl->has_multiple_scans) { -#ifdef D_MULTISCAN_FILES_SUPPORTED - for (;;) { - int retcode; - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - /* Absorb some more input */ - retcode = (*cinfo->inputctl->consume_input) (cinfo); - if (retcode == JPEG_SUSPENDED) - return FALSE; - if (retcode == JPEG_REACHED_EOI) - break; - /* Advance progress counter if appropriate */ - if (cinfo->progress != NULL && - (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { - if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { - /* jdmaster underestimated number of scans; ratchet up one scan */ - cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; - } - } - } -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif /* D_MULTISCAN_FILES_SUPPORTED */ - } - cinfo->output_scan_number = cinfo->input_scan_number; - } else if (cinfo->global_state != DSTATE_PRESCAN) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - /* Perform any dummy output passes, and set up for the final pass */ - return output_pass_setup(cinfo); -} - - -/* - * Set up for an output pass, and perform any dummy pass(es) needed. - * Common subroutine for jpeg_start_decompress and jpeg_start_output. - * Entry: global_state = DSTATE_PRESCAN only if previously suspended. - * Exit: If done, returns TRUE and sets global_state for proper output mode. - * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. - */ - -LOCAL(boolean) -output_pass_setup (j_decompress_ptr cinfo) -{ - if (cinfo->global_state != DSTATE_PRESCAN) { - /* First call: do pass setup */ - (*cinfo->master->prepare_for_output_pass) (cinfo); - cinfo->output_scanline = 0; - cinfo->global_state = DSTATE_PRESCAN; - } - /* Loop over any required dummy passes */ - while (cinfo->master->is_dummy_pass) { -#ifdef QUANT_2PASS_SUPPORTED - /* Crank through the dummy pass */ - while (cinfo->output_scanline < cinfo->output_height) { - JDIMENSION last_scanline; - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) { - cinfo->progress->pass_counter = (long) cinfo->output_scanline; - cinfo->progress->pass_limit = (long) cinfo->output_height; - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - } - /* Process some data */ - last_scanline = cinfo->output_scanline; - (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, - &cinfo->output_scanline, (JDIMENSION) 0); - if (cinfo->output_scanline == last_scanline) - return FALSE; /* No progress made, must suspend */ - } - /* Finish up dummy pass, and set up for another one */ - (*cinfo->master->finish_output_pass) (cinfo); - (*cinfo->master->prepare_for_output_pass) (cinfo); - cinfo->output_scanline = 0; -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif /* QUANT_2PASS_SUPPORTED */ - } - /* Ready for application to drive output pass through - * jpeg_read_scanlines or jpeg_read_raw_data. - */ - cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; - return TRUE; -} - - -/* - * Read some scanlines of data from the JPEG decompressor. - * - * The return value will be the number of lines actually read. - * This may be less than the number requested in several cases, - * including bottom of image, data source suspension, and operating - * modes that emit multiple scanlines at a time. - * - * Note: we warn about excess calls to jpeg_read_scanlines() since - * this likely signals an application programmer error. However, - * an oversize buffer (max_lines > scanlines remaining) is not an error. - */ - -GLOBAL(JDIMENSION) -jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, - JDIMENSION max_lines) -{ - JDIMENSION row_ctr; - - if (cinfo->global_state != DSTATE_SCANNING) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - if (cinfo->output_scanline >= cinfo->output_height) { - WARNMS(cinfo, JWRN_TOO_MUCH_DATA); - return 0; - } - - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) { - cinfo->progress->pass_counter = (long) cinfo->output_scanline; - cinfo->progress->pass_limit = (long) cinfo->output_height; - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - } - - /* Process some data */ - row_ctr = 0; - (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); - cinfo->output_scanline += row_ctr; - return row_ctr; -} - - -/* - * Alternate entry point to read raw data. - * Processes exactly one iMCU row per call, unless suspended. - */ - -GLOBAL(JDIMENSION) -jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, - JDIMENSION max_lines) -{ - JDIMENSION lines_per_iMCU_row; - - if (cinfo->global_state != DSTATE_RAW_OK) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - if (cinfo->output_scanline >= cinfo->output_height) { - WARNMS(cinfo, JWRN_TOO_MUCH_DATA); - return 0; - } - - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) { - cinfo->progress->pass_counter = (long) cinfo->output_scanline; - cinfo->progress->pass_limit = (long) cinfo->output_height; - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - } - - /* Verify that at least one iMCU row can be returned. */ - lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; - if (max_lines < lines_per_iMCU_row) - ERREXIT(cinfo, JERR_BUFFER_SIZE); - - /* Decompress directly into user's buffer. */ - if (! (*cinfo->coef->decompress_data) (cinfo, data)) - return 0; /* suspension forced, can do nothing more */ - - /* OK, we processed one iMCU row. */ - cinfo->output_scanline += lines_per_iMCU_row; - return lines_per_iMCU_row; -} - - -/* Additional entry points for buffered-image mode. */ - -#ifdef D_MULTISCAN_FILES_SUPPORTED - -/* - * Initialize for an output pass in buffered-image mode. - */ - -GLOBAL(boolean) -jpeg_start_output (j_decompress_ptr cinfo, int scan_number) -{ - if (cinfo->global_state != DSTATE_BUFIMAGE && - cinfo->global_state != DSTATE_PRESCAN) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - /* Limit scan number to valid range */ - if (scan_number <= 0) - scan_number = 1; - if (cinfo->inputctl->eoi_reached && - scan_number > cinfo->input_scan_number) - scan_number = cinfo->input_scan_number; - cinfo->output_scan_number = scan_number; - /* Perform any dummy output passes, and set up for the real pass */ - return output_pass_setup(cinfo); -} - - -/* - * Finish up after an output pass in buffered-image mode. - * - * Returns FALSE if suspended. The return value need be inspected only if - * a suspending data source is used. - */ - -GLOBAL(boolean) -jpeg_finish_output (j_decompress_ptr cinfo) -{ - if ((cinfo->global_state == DSTATE_SCANNING || - cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { - /* Terminate this pass. */ - /* We do not require the whole pass to have been completed. */ - (*cinfo->master->finish_output_pass) (cinfo); - cinfo->global_state = DSTATE_BUFPOST; - } else if (cinfo->global_state != DSTATE_BUFPOST) { - /* BUFPOST = repeat call after a suspension, anything else is error */ - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - } - /* Read markers looking for SOS or EOI */ - while (cinfo->input_scan_number <= cinfo->output_scan_number && - ! cinfo->inputctl->eoi_reached) { - if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) - return FALSE; /* Suspend, come back later */ - } - cinfo->global_state = DSTATE_BUFIMAGE; - return TRUE; -} - -#endif /* D_MULTISCAN_FILES_SUPPORTED */ diff --git a/src/jpeg-8c/jdarith.c b/src/jpeg-8c/jdarith.c deleted file mode 100644 index c858b248..00000000 --- a/src/jpeg-8c/jdarith.c +++ /dev/null @@ -1,772 +0,0 @@ -/* - * jdarith.c - * - * Developed 1997-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains portable arithmetic entropy decoding routines for JPEG - * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). - * - * Both sequential and progressive modes are supported in this single module. - * - * Suspension is not currently supported in this module. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Expanded entropy decoder object for arithmetic decoding. */ - -typedef struct { - struct jpeg_entropy_decoder pub; /* public fields */ - - INT32 c; /* C register, base of coding interval + input bit buffer */ - INT32 a; /* A register, normalized size of coding interval */ - int ct; /* bit shift counter, # of bits left in bit buffer part of C */ - /* init: ct = -16 */ - /* run: ct = 0..7 */ - /* error: ct = -1 */ - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ - int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ - - unsigned int restarts_to_go; /* MCUs left in this restart interval */ - - /* Pointers to statistics areas (these workspaces have image lifespan) */ - unsigned char * dc_stats[NUM_ARITH_TBLS]; - unsigned char * ac_stats[NUM_ARITH_TBLS]; - - /* Statistics bin for coding with fixed probability 0.5 */ - unsigned char fixed_bin[4]; -} arith_entropy_decoder; - -typedef arith_entropy_decoder * arith_entropy_ptr; - -/* The following two definitions specify the allocation chunk size - * for the statistics area. - * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least - * 49 statistics bins for DC, and 245 statistics bins for AC coding. - * - * We use a compact representation with 1 byte per statistics bin, - * thus the numbers directly represent byte sizes. - * This 1 byte per statistics bin contains the meaning of the MPS - * (more probable symbol) in the highest bit (mask 0x80), and the - * index into the probability estimation state machine table - * in the lower bits (mask 0x7F). - */ - -#define DC_STAT_BINS 64 -#define AC_STAT_BINS 256 - - -LOCAL(int) -get_byte (j_decompress_ptr cinfo) -/* Read next input byte; we do not support suspension in this module. */ -{ - struct jpeg_source_mgr * src = cinfo->src; - - if (src->bytes_in_buffer == 0) - if (! (*src->fill_input_buffer) (cinfo)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); - src->bytes_in_buffer--; - return GETJOCTET(*src->next_input_byte++); -} - - -/* - * The core arithmetic decoding routine (common in JPEG and JBIG). - * This needs to go as fast as possible. - * Machine-dependent optimization facilities - * are not utilized in this portable implementation. - * However, this code should be fairly efficient and - * may be a good base for further optimizations anyway. - * - * Return value is 0 or 1 (binary decision). - * - * Note: I've changed the handling of the code base & bit - * buffer register C compared to other implementations - * based on the standards layout & procedures. - * While it also contains both the actual base of the - * coding interval (16 bits) and the next-bits buffer, - * the cut-point between these two parts is floating - * (instead of fixed) with the bit shift counter CT. - * Thus, we also need only one (variable instead of - * fixed size) shift for the LPS/MPS decision, and - * we can get away with any renormalization update - * of C (except for new data insertion, of course). - * - * I've also introduced a new scheme for accessing - * the probability estimation state machine table, - * derived from Markus Kuhn's JBIG implementation. - */ - -LOCAL(int) -arith_decode (j_decompress_ptr cinfo, unsigned char *st) -{ - register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; - register unsigned char nl, nm; - register INT32 qe, temp; - register int sv, data; - - /* Renormalization & data input per section D.2.6 */ - while (e->a < 0x8000L) { - if (--e->ct < 0) { - /* Need to fetch next data byte */ - if (cinfo->unread_marker) - data = 0; /* stuff zero data */ - else { - data = get_byte(cinfo); /* read next input byte */ - if (data == 0xFF) { /* zero stuff or marker code */ - do data = get_byte(cinfo); - while (data == 0xFF); /* swallow extra 0xFF bytes */ - if (data == 0) - data = 0xFF; /* discard stuffed zero byte */ - else { - /* Note: Different from the Huffman decoder, hitting - * a marker while processing the compressed data - * segment is legal in arithmetic coding. - * The convention is to supply zero data - * then until decoding is complete. - */ - cinfo->unread_marker = data; - data = 0; - } - } - } - e->c = (e->c << 8) | data; /* insert data into C register */ - if ((e->ct += 8) < 0) /* update bit shift counter */ - /* Need more initial bytes */ - if (++e->ct == 0) - /* Got 2 initial bytes -> re-init A and exit loop */ - e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ - } - e->a <<= 1; - } - - /* Fetch values from our compact representation of Table D.2: - * Qe values and probability estimation state machine - */ - sv = *st; - qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ - nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ - nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ - - /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ - temp = e->a - qe; - e->a = temp; - temp <<= e->ct; - if (e->c >= temp) { - e->c -= temp; - /* Conditional LPS (less probable symbol) exchange */ - if (e->a < qe) { - e->a = qe; - *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ - } else { - e->a = qe; - *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ - sv ^= 0x80; /* Exchange LPS/MPS */ - } - } else if (e->a < 0x8000L) { - /* Conditional MPS (more probable symbol) exchange */ - if (e->a < qe) { - *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ - sv ^= 0x80; /* Exchange LPS/MPS */ - } else { - *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ - } - } - - return sv >> 7; -} - - -/* - * Check for a restart marker & resynchronize decoder. - */ - -LOCAL(void) -process_restart (j_decompress_ptr cinfo) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - int ci; - jpeg_component_info * compptr; - - /* Advance past the RSTn marker */ - if (! (*cinfo->marker->read_restart_marker) (cinfo)) - ERREXIT(cinfo, JERR_CANT_SUSPEND); - - /* Re-initialize statistics areas */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { - MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); - /* Reset DC predictions to 0 */ - entropy->last_dc_val[ci] = 0; - entropy->dc_context[ci] = 0; - } - if ((! cinfo->progressive_mode && cinfo->lim_Se) || - (cinfo->progressive_mode && cinfo->Ss)) { - MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); - } - } - - /* Reset arithmetic decoding variables */ - entropy->c = 0; - entropy->a = 0; - entropy->ct = -16; /* force reading 2 initial bytes to fill C */ - - /* Reset restart counter */ - entropy->restarts_to_go = cinfo->restart_interval; -} - - -/* - * Arithmetic MCU decoding. - * Each of these routines decodes and returns one MCU's worth of - * arithmetic-compressed coefficients. - * The coefficients are reordered from zigzag order into natural array order, - * but are not dequantized. - * - * The i'th block of the MCU is stored into the block pointed to by - * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. - */ - -/* - * MCU decoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; - unsigned char *st; - int blkn, ci, tbl, sign; - int v, m; - - /* Process restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - process_restart(cinfo); - entropy->restarts_to_go--; - } - - if (entropy->ct == -1) return TRUE; /* if error do nothing */ - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; - - /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ - - /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ - st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; - - /* Figure F.19: Decode_DC_DIFF */ - if (arith_decode(cinfo, st) == 0) - entropy->dc_context[ci] = 0; - else { - /* Figure F.21: Decoding nonzero value v */ - /* Figure F.22: Decoding the sign of v */ - sign = arith_decode(cinfo, st + 1); - st += 2; st += sign; - /* Figure F.23: Decoding the magnitude category of v */ - if ((m = arith_decode(cinfo, st)) != 0) { - st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ - while (arith_decode(cinfo, st)) { - if ((m <<= 1) == 0x8000) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* magnitude overflow */ - return TRUE; - } - st += 1; - } - } - /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ - if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) - entropy->dc_context[ci] = 0; /* zero diff category */ - else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) - entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ - else - entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ - v = m; - /* Figure F.24: Decoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - if (arith_decode(cinfo, st)) v |= m; - v += 1; if (sign) v = -v; - entropy->last_dc_val[ci] += v; - } - - /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ - (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); - } - - return TRUE; -} - - -/* - * MCU decoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; - unsigned char *st; - int tbl, sign, k; - int v, m; - const int * natural_order; - - /* Process restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - process_restart(cinfo); - entropy->restarts_to_go--; - } - - if (entropy->ct == -1) return TRUE; /* if error do nothing */ - - natural_order = cinfo->natural_order; - - /* There is always only one block per MCU */ - block = MCU_data[0]; - tbl = cinfo->cur_comp_info[0]->ac_tbl_no; - - /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ - - /* Figure F.20: Decode_AC_coefficients */ - for (k = cinfo->Ss; k <= cinfo->Se; k++) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - if (arith_decode(cinfo, st)) break; /* EOB flag */ - while (arith_decode(cinfo, st + 1) == 0) { - st += 3; k++; - if (k > cinfo->Se) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* spectral overflow */ - return TRUE; - } - } - /* Figure F.21: Decoding nonzero value v */ - /* Figure F.22: Decoding the sign of v */ - sign = arith_decode(cinfo, entropy->fixed_bin); - st += 2; - /* Figure F.23: Decoding the magnitude category of v */ - if ((m = arith_decode(cinfo, st)) != 0) { - if (arith_decode(cinfo, st)) { - m <<= 1; - st = entropy->ac_stats[tbl] + - (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); - while (arith_decode(cinfo, st)) { - if ((m <<= 1) == 0x8000) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* magnitude overflow */ - return TRUE; - } - st += 1; - } - } - } - v = m; - /* Figure F.24: Decoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - if (arith_decode(cinfo, st)) v |= m; - v += 1; if (sign) v = -v; - /* Scale and output coefficient in natural (dezigzagged) order */ - (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); - } - - return TRUE; -} - - -/* - * MCU decoding for DC successive approximation refinement scan. - */ - -METHODDEF(boolean) -decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - unsigned char *st; - int p1, blkn; - - /* Process restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - process_restart(cinfo); - entropy->restarts_to_go--; - } - - st = entropy->fixed_bin; /* use fixed probability estimation */ - p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - /* Encoded data is simply the next bit of the two's-complement DC value */ - if (arith_decode(cinfo, st)) - MCU_data[blkn][0][0] |= p1; - } - - return TRUE; -} - - -/* - * MCU decoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; - JCOEFPTR thiscoef; - unsigned char *st; - int tbl, k, kex; - int p1, m1; - const int * natural_order; - - /* Process restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - process_restart(cinfo); - entropy->restarts_to_go--; - } - - if (entropy->ct == -1) return TRUE; /* if error do nothing */ - - natural_order = cinfo->natural_order; - - /* There is always only one block per MCU */ - block = MCU_data[0]; - tbl = cinfo->cur_comp_info[0]->ac_tbl_no; - - p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ - - /* Establish EOBx (previous stage end-of-block) index */ - for (kex = cinfo->Se; kex > 0; kex--) - if ((*block)[natural_order[kex]]) break; - - for (k = cinfo->Ss; k <= cinfo->Se; k++) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - if (k > kex) - if (arith_decode(cinfo, st)) break; /* EOB flag */ - for (;;) { - thiscoef = *block + natural_order[k]; - if (*thiscoef) { /* previously nonzero coef */ - if (arith_decode(cinfo, st + 2)) { - if (*thiscoef < 0) - *thiscoef += m1; - else - *thiscoef += p1; - } - break; - } - if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ - if (arith_decode(cinfo, entropy->fixed_bin)) - *thiscoef = m1; - else - *thiscoef = p1; - break; - } - st += 3; k++; - if (k > cinfo->Se) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* spectral overflow */ - return TRUE; - } - } - } - - return TRUE; -} - - -/* - * Decode one MCU's worth of arithmetic-compressed coefficients. - */ - -METHODDEF(boolean) -decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - jpeg_component_info * compptr; - JBLOCKROW block; - unsigned char *st; - int blkn, ci, tbl, sign, k; - int v, m; - const int * natural_order; - - /* Process restart marker if needed */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - process_restart(cinfo); - entropy->restarts_to_go--; - } - - if (entropy->ct == -1) return TRUE; /* if error do nothing */ - - natural_order = cinfo->natural_order; - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - - /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ - - tbl = compptr->dc_tbl_no; - - /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ - st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; - - /* Figure F.19: Decode_DC_DIFF */ - if (arith_decode(cinfo, st) == 0) - entropy->dc_context[ci] = 0; - else { - /* Figure F.21: Decoding nonzero value v */ - /* Figure F.22: Decoding the sign of v */ - sign = arith_decode(cinfo, st + 1); - st += 2; st += sign; - /* Figure F.23: Decoding the magnitude category of v */ - if ((m = arith_decode(cinfo, st)) != 0) { - st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ - while (arith_decode(cinfo, st)) { - if ((m <<= 1) == 0x8000) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* magnitude overflow */ - return TRUE; - } - st += 1; - } - } - /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ - if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) - entropy->dc_context[ci] = 0; /* zero diff category */ - else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) - entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ - else - entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ - v = m; - /* Figure F.24: Decoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - if (arith_decode(cinfo, st)) v |= m; - v += 1; if (sign) v = -v; - entropy->last_dc_val[ci] += v; - } - - (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; - - /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ - - tbl = compptr->ac_tbl_no; - - /* Figure F.20: Decode_AC_coefficients */ - for (k = 1; k <= cinfo->lim_Se; k++) { - st = entropy->ac_stats[tbl] + 3 * (k - 1); - if (arith_decode(cinfo, st)) break; /* EOB flag */ - while (arith_decode(cinfo, st + 1) == 0) { - st += 3; k++; - if (k > cinfo->lim_Se) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* spectral overflow */ - return TRUE; - } - } - /* Figure F.21: Decoding nonzero value v */ - /* Figure F.22: Decoding the sign of v */ - sign = arith_decode(cinfo, entropy->fixed_bin); - st += 2; - /* Figure F.23: Decoding the magnitude category of v */ - if ((m = arith_decode(cinfo, st)) != 0) { - if (arith_decode(cinfo, st)) { - m <<= 1; - st = entropy->ac_stats[tbl] + - (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); - while (arith_decode(cinfo, st)) { - if ((m <<= 1) == 0x8000) { - WARNMS(cinfo, JWRN_ARITH_BAD_CODE); - entropy->ct = -1; /* magnitude overflow */ - return TRUE; - } - st += 1; - } - } - } - v = m; - /* Figure F.24: Decoding the magnitude bit pattern of v */ - st += 14; - while (m >>= 1) - if (arith_decode(cinfo, st)) v |= m; - v += 1; if (sign) v = -v; - (*block)[natural_order[k]] = (JCOEF) v; - } - } - - return TRUE; -} - - -/* - * Initialize for an arithmetic-compressed scan. - */ - -METHODDEF(void) -start_pass (j_decompress_ptr cinfo) -{ - arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - int ci, tbl; - jpeg_component_info * compptr; - - if (cinfo->progressive_mode) { - /* Validate progressive scan parameters */ - if (cinfo->Ss == 0) { - if (cinfo->Se != 0) - goto bad; - } else { - /* need not check Ss/Se < 0 since they came from unsigned bytes */ - if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) - goto bad; - /* AC scans may have only one component */ - if (cinfo->comps_in_scan != 1) - goto bad; - } - if (cinfo->Ah != 0) { - /* Successive approximation refinement scan: must have Al = Ah-1. */ - if (cinfo->Ah-1 != cinfo->Al) - goto bad; - } - if (cinfo->Al > 13) { /* need not check for < 0 */ - bad: - ERREXIT4(cinfo, JERR_BAD_PROGRESSION, - cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); - } - /* Update progression status, and verify that scan order is legal. - * Note that inter-scan inconsistencies are treated as warnings - * not fatal errors ... not clear if this is right way to behave. - */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; - int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; - if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ - WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); - for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { - int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; - if (cinfo->Ah != expected) - WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); - coef_bit_ptr[coefi] = cinfo->Al; - } - } - /* Select MCU decoding routine */ - if (cinfo->Ah == 0) { - if (cinfo->Ss == 0) - entropy->pub.decode_mcu = decode_mcu_DC_first; - else - entropy->pub.decode_mcu = decode_mcu_AC_first; - } else { - if (cinfo->Ss == 0) - entropy->pub.decode_mcu = decode_mcu_DC_refine; - else - entropy->pub.decode_mcu = decode_mcu_AC_refine; - } - } else { - /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. - * This ought to be an error condition, but we make it a warning. - */ - if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || - (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) - WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); - /* Select MCU decoding routine */ - entropy->pub.decode_mcu = decode_mcu; - } - - /* Allocate & initialize requested statistics areas */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { - tbl = compptr->dc_tbl_no; - if (tbl < 0 || tbl >= NUM_ARITH_TBLS) - ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); - if (entropy->dc_stats[tbl] == NULL) - entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); - MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); - /* Initialize DC predictions to 0 */ - entropy->last_dc_val[ci] = 0; - entropy->dc_context[ci] = 0; - } - if ((! cinfo->progressive_mode && cinfo->lim_Se) || - (cinfo->progressive_mode && cinfo->Ss)) { - tbl = compptr->ac_tbl_no; - if (tbl < 0 || tbl >= NUM_ARITH_TBLS) - ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); - if (entropy->ac_stats[tbl] == NULL) - entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); - MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); - } - } - - /* Initialize arithmetic decoding variables */ - entropy->c = 0; - entropy->a = 0; - entropy->ct = -16; /* force reading 2 initial bytes to fill C */ - - /* Initialize restart counter */ - entropy->restarts_to_go = cinfo->restart_interval; -} - - -/* - * Module initialization routine for arithmetic entropy decoding. - */ - -GLOBAL(void) -jinit_arith_decoder (j_decompress_ptr cinfo) -{ - arith_entropy_ptr entropy; - int i; - - entropy = (arith_entropy_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(arith_entropy_decoder)); - cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; - entropy->pub.start_pass = start_pass; - - /* Mark tables unallocated */ - for (i = 0; i < NUM_ARITH_TBLS; i++) { - entropy->dc_stats[i] = NULL; - entropy->ac_stats[i] = NULL; - } - - /* Initialize index for fixed probability estimation */ - entropy->fixed_bin[0] = 113; - - if (cinfo->progressive_mode) { - /* Create progression status table */ - int *coef_bit_ptr, ci; - cinfo->coef_bits = (int (*)[DCTSIZE2]) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components*DCTSIZE2*SIZEOF(int)); - coef_bit_ptr = & cinfo->coef_bits[0][0]; - for (ci = 0; ci < cinfo->num_components; ci++) - for (i = 0; i < DCTSIZE2; i++) - *coef_bit_ptr++ = -1; - } -} diff --git a/src/jpeg-8c/jdatadst.c b/src/jpeg-8c/jdatadst.c deleted file mode 100644 index 472d5f32..00000000 --- a/src/jpeg-8c/jdatadst.c +++ /dev/null @@ -1,267 +0,0 @@ -/* - * jdatadst.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains compression data destination routines for the case of - * emitting JPEG data to memory or to a file (or any stdio stream). - * While these routines are sufficient for most applications, - * some will want to use a different destination manager. - * IMPORTANT: we assume that fwrite() will correctly transcribe an array of - * JOCTETs into 8-bit-wide elements on external storage. If char is wider - * than 8 bits on your machine, you may need to do some tweaking. - */ - -/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ -#include "jinclude.h" -#include "jpeglib.h" -#include "jerror.h" - -#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ -extern void * malloc JPP((size_t size)); -extern void free JPP((void *ptr)); -#endif - - -/* Expanded data destination object for stdio output */ - -typedef struct { - struct jpeg_destination_mgr pub; /* public fields */ - - FILE * outfile; /* target stream */ - JOCTET * buffer; /* start of buffer */ -} my_destination_mgr; - -typedef my_destination_mgr * my_dest_ptr; - -#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ - - -/* Expanded data destination object for memory output */ - -typedef struct { - struct jpeg_destination_mgr pub; /* public fields */ - - unsigned char ** outbuffer; /* target buffer */ - unsigned long * outsize; - unsigned char * newbuffer; /* newly allocated buffer */ - JOCTET * buffer; /* start of buffer */ - size_t bufsize; -} my_mem_destination_mgr; - -typedef my_mem_destination_mgr * my_mem_dest_ptr; - - -/* - * Initialize destination --- called by jpeg_start_compress - * before any data is actually written. - */ - -METHODDEF(void) -init_destination (j_compress_ptr cinfo) -{ - my_dest_ptr dest = (my_dest_ptr) cinfo->dest; - - /* Allocate the output buffer --- it will be released when done with image */ - dest->buffer = (JOCTET *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - OUTPUT_BUF_SIZE * SIZEOF(JOCTET)); - - dest->pub.next_output_byte = dest->buffer; - dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; -} - -METHODDEF(void) -init_mem_destination (j_compress_ptr cinfo) -{ - /* no work necessary here */ -} - - -/* - * Empty the output buffer --- called whenever buffer fills up. - * - * In typical applications, this should write the entire output buffer - * (ignoring the current state of next_output_byte & free_in_buffer), - * reset the pointer & count to the start of the buffer, and return TRUE - * indicating that the buffer has been dumped. - * - * In applications that need to be able to suspend compression due to output - * overrun, a FALSE return indicates that the buffer cannot be emptied now. - * In this situation, the compressor will return to its caller (possibly with - * an indication that it has not accepted all the supplied scanlines). The - * application should resume compression after it has made more room in the - * output buffer. Note that there are substantial restrictions on the use of - * suspension --- see the documentation. - * - * When suspending, the compressor will back up to a convenient restart point - * (typically the start of the current MCU). next_output_byte & free_in_buffer - * indicate where the restart point will be if the current call returns FALSE. - * Data beyond this point will be regenerated after resumption, so do not - * write it out when emptying the buffer externally. - */ - -METHODDEF(boolean) -empty_output_buffer (j_compress_ptr cinfo) -{ - my_dest_ptr dest = (my_dest_ptr) cinfo->dest; - - if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != - (size_t) OUTPUT_BUF_SIZE) - ERREXIT(cinfo, JERR_FILE_WRITE); - - dest->pub.next_output_byte = dest->buffer; - dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; - - return TRUE; -} - -METHODDEF(boolean) -empty_mem_output_buffer (j_compress_ptr cinfo) -{ - size_t nextsize; - JOCTET * nextbuffer; - my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; - - /* Try to allocate new buffer with double size */ - nextsize = dest->bufsize * 2; - nextbuffer = malloc(nextsize); - - if (nextbuffer == NULL) - ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); - - MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); - - if (dest->newbuffer != NULL) - free(dest->newbuffer); - - dest->newbuffer = nextbuffer; - - dest->pub.next_output_byte = nextbuffer + dest->bufsize; - dest->pub.free_in_buffer = dest->bufsize; - - dest->buffer = nextbuffer; - dest->bufsize = nextsize; - - return TRUE; -} - - -/* - * Terminate destination --- called by jpeg_finish_compress - * after all data has been written. Usually needs to flush buffer. - * - * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding - * application must deal with any cleanup that should happen even - * for error exit. - */ - -METHODDEF(void) -term_destination (j_compress_ptr cinfo) -{ - my_dest_ptr dest = (my_dest_ptr) cinfo->dest; - size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; - - /* Write any data remaining in the buffer */ - if (datacount > 0) { - if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) - ERREXIT(cinfo, JERR_FILE_WRITE); - } - fflush(dest->outfile); - /* Make sure we wrote the output file OK */ - if (ferror(dest->outfile)) - ERREXIT(cinfo, JERR_FILE_WRITE); -} - -METHODDEF(void) -term_mem_destination (j_compress_ptr cinfo) -{ - my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; - - *dest->outbuffer = dest->buffer; - *dest->outsize = dest->bufsize - dest->pub.free_in_buffer; -} - - -/* - * Prepare for output to a stdio stream. - * The caller must have already opened the stream, and is responsible - * for closing it after finishing compression. - */ - -GLOBAL(void) -jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile) -{ - my_dest_ptr dest; - - /* The destination object is made permanent so that multiple JPEG images - * can be written to the same file without re-executing jpeg_stdio_dest. - * This makes it dangerous to use this manager and a different destination - * manager serially with the same JPEG object, because their private object - * sizes may be different. Caveat programmer. - */ - if (cinfo->dest == NULL) { /* first time for this JPEG object? */ - cinfo->dest = (struct jpeg_destination_mgr *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - SIZEOF(my_destination_mgr)); - } - - dest = (my_dest_ptr) cinfo->dest; - dest->pub.init_destination = init_destination; - dest->pub.empty_output_buffer = empty_output_buffer; - dest->pub.term_destination = term_destination; - dest->outfile = outfile; -} - - -/* - * Prepare for output to a memory buffer. - * The caller may supply an own initial buffer with appropriate size. - * Otherwise, or when the actual data output exceeds the given size, - * the library adapts the buffer size as necessary. - * The standard library functions malloc/free are used for allocating - * larger memory, so the buffer is available to the application after - * finishing compression, and then the application is responsible for - * freeing the requested memory. - */ - -GLOBAL(void) -jpeg_mem_dest (j_compress_ptr cinfo, - unsigned char ** outbuffer, unsigned long * outsize) -{ - my_mem_dest_ptr dest; - - if (outbuffer == NULL || outsize == NULL) /* sanity check */ - ERREXIT(cinfo, JERR_BUFFER_SIZE); - - /* The destination object is made permanent so that multiple JPEG images - * can be written to the same buffer without re-executing jpeg_mem_dest. - */ - if (cinfo->dest == NULL) { /* first time for this JPEG object? */ - cinfo->dest = (struct jpeg_destination_mgr *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - SIZEOF(my_mem_destination_mgr)); - } - - dest = (my_mem_dest_ptr) cinfo->dest; - dest->pub.init_destination = init_mem_destination; - dest->pub.empty_output_buffer = empty_mem_output_buffer; - dest->pub.term_destination = term_mem_destination; - dest->outbuffer = outbuffer; - dest->outsize = outsize; - dest->newbuffer = NULL; - - if (*outbuffer == NULL || *outsize == 0) { - /* Allocate initial buffer */ - dest->newbuffer = *outbuffer = malloc(OUTPUT_BUF_SIZE); - if (dest->newbuffer == NULL) - ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); - *outsize = OUTPUT_BUF_SIZE; - } - - dest->pub.next_output_byte = dest->buffer = *outbuffer; - dest->pub.free_in_buffer = dest->bufsize = *outsize; -} diff --git a/src/jpeg-8c/jdatasrc.c b/src/jpeg-8c/jdatasrc.c deleted file mode 100644 index c8fe3daf..00000000 --- a/src/jpeg-8c/jdatasrc.c +++ /dev/null @@ -1,274 +0,0 @@ -/* - * jdatasrc.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2009-2010 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains decompression data source routines for the case of - * reading JPEG data from memory or from a file (or any stdio stream). - * While these routines are sufficient for most applications, - * some will want to use a different source manager. - * IMPORTANT: we assume that fread() will correctly transcribe an array of - * JOCTETs from 8-bit-wide elements on external storage. If char is wider - * than 8 bits on your machine, you may need to do some tweaking. - */ - -/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ -#include "jinclude.h" -#include "jpeglib.h" -#include "jerror.h" - - -/* Expanded data source object for stdio input */ - -typedef struct { - struct jpeg_source_mgr pub; /* public fields */ - - FILE * infile; /* source stream */ - JOCTET * buffer; /* start of buffer */ - boolean start_of_file; /* have we gotten any data yet? */ -} my_source_mgr; - -typedef my_source_mgr * my_src_ptr; - -#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ - - -/* - * Initialize source --- called by jpeg_read_header - * before any data is actually read. - */ - -METHODDEF(void) -init_source (j_decompress_ptr cinfo) -{ - my_src_ptr src = (my_src_ptr) cinfo->src; - - /* We reset the empty-input-file flag for each image, - * but we don't clear the input buffer. - * This is correct behavior for reading a series of images from one source. - */ - src->start_of_file = TRUE; -} - -METHODDEF(void) -init_mem_source (j_decompress_ptr cinfo) -{ - /* no work necessary here */ -} - - -/* - * Fill the input buffer --- called whenever buffer is emptied. - * - * In typical applications, this should read fresh data into the buffer - * (ignoring the current state of next_input_byte & bytes_in_buffer), - * reset the pointer & count to the start of the buffer, and return TRUE - * indicating that the buffer has been reloaded. It is not necessary to - * fill the buffer entirely, only to obtain at least one more byte. - * - * There is no such thing as an EOF return. If the end of the file has been - * reached, the routine has a choice of ERREXIT() or inserting fake data into - * the buffer. In most cases, generating a warning message and inserting a - * fake EOI marker is the best course of action --- this will allow the - * decompressor to output however much of the image is there. However, - * the resulting error message is misleading if the real problem is an empty - * input file, so we handle that case specially. - * - * In applications that need to be able to suspend compression due to input - * not being available yet, a FALSE return indicates that no more data can be - * obtained right now, but more may be forthcoming later. In this situation, - * the decompressor will return to its caller (with an indication of the - * number of scanlines it has read, if any). The application should resume - * decompression after it has loaded more data into the input buffer. Note - * that there are substantial restrictions on the use of suspension --- see - * the documentation. - * - * When suspending, the decompressor will back up to a convenient restart point - * (typically the start of the current MCU). next_input_byte & bytes_in_buffer - * indicate where the restart point will be if the current call returns FALSE. - * Data beyond this point must be rescanned after resumption, so move it to - * the front of the buffer rather than discarding it. - */ - -METHODDEF(boolean) -fill_input_buffer (j_decompress_ptr cinfo) -{ - my_src_ptr src = (my_src_ptr) cinfo->src; - size_t nbytes; - - nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); - - if (nbytes <= 0) { - if (src->start_of_file) /* Treat empty input file as fatal error */ - ERREXIT(cinfo, JERR_INPUT_EMPTY); - WARNMS(cinfo, JWRN_JPEG_EOF); - /* Insert a fake EOI marker */ - src->buffer[0] = (JOCTET) 0xFF; - src->buffer[1] = (JOCTET) JPEG_EOI; - nbytes = 2; - } - - src->pub.next_input_byte = src->buffer; - src->pub.bytes_in_buffer = nbytes; - src->start_of_file = FALSE; - - return TRUE; -} - -METHODDEF(boolean) -fill_mem_input_buffer (j_decompress_ptr cinfo) -{ - static JOCTET mybuffer[4]; - - /* The whole JPEG data is expected to reside in the supplied memory - * buffer, so any request for more data beyond the given buffer size - * is treated as an error. - */ - WARNMS(cinfo, JWRN_JPEG_EOF); - /* Insert a fake EOI marker */ - mybuffer[0] = (JOCTET) 0xFF; - mybuffer[1] = (JOCTET) JPEG_EOI; - - cinfo->src->next_input_byte = mybuffer; - cinfo->src->bytes_in_buffer = 2; - - return TRUE; -} - - -/* - * Skip data --- used to skip over a potentially large amount of - * uninteresting data (such as an APPn marker). - * - * Writers of suspendable-input applications must note that skip_input_data - * is not granted the right to give a suspension return. If the skip extends - * beyond the data currently in the buffer, the buffer can be marked empty so - * that the next read will cause a fill_input_buffer call that can suspend. - * Arranging for additional bytes to be discarded before reloading the input - * buffer is the application writer's problem. - */ - -METHODDEF(void) -skip_input_data (j_decompress_ptr cinfo, long num_bytes) -{ - struct jpeg_source_mgr * src = cinfo->src; - - /* Just a dumb implementation for now. Could use fseek() except - * it doesn't work on pipes. Not clear that being smart is worth - * any trouble anyway --- large skips are infrequent. - */ - if (num_bytes > 0) { - while (num_bytes > (long) src->bytes_in_buffer) { - num_bytes -= (long) src->bytes_in_buffer; - (void) (*src->fill_input_buffer) (cinfo); - /* note we assume that fill_input_buffer will never return FALSE, - * so suspension need not be handled. - */ - } - src->next_input_byte += (size_t) num_bytes; - src->bytes_in_buffer -= (size_t) num_bytes; - } -} - - -/* - * An additional method that can be provided by data source modules is the - * resync_to_restart method for error recovery in the presence of RST markers. - * For the moment, this source module just uses the default resync method - * provided by the JPEG library. That method assumes that no backtracking - * is possible. - */ - - -/* - * Terminate source --- called by jpeg_finish_decompress - * after all data has been read. Often a no-op. - * - * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding - * application must deal with any cleanup that should happen even - * for error exit. - */ - -METHODDEF(void) -term_source (j_decompress_ptr cinfo) -{ - /* no work necessary here */ -} - - -/* - * Prepare for input from a stdio stream. - * The caller must have already opened the stream, and is responsible - * for closing it after finishing decompression. - */ - -GLOBAL(void) -jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile) -{ - my_src_ptr src; - - /* The source object and input buffer are made permanent so that a series - * of JPEG images can be read from the same file by calling jpeg_stdio_src - * only before the first one. (If we discarded the buffer at the end of - * one image, we'd likely lose the start of the next one.) - * This makes it unsafe to use this manager and a different source - * manager serially with the same JPEG object. Caveat programmer. - */ - if (cinfo->src == NULL) { /* first time for this JPEG object? */ - cinfo->src = (struct jpeg_source_mgr *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - SIZEOF(my_source_mgr)); - src = (my_src_ptr) cinfo->src; - src->buffer = (JOCTET *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - INPUT_BUF_SIZE * SIZEOF(JOCTET)); - } - - src = (my_src_ptr) cinfo->src; - src->pub.init_source = init_source; - src->pub.fill_input_buffer = fill_input_buffer; - src->pub.skip_input_data = skip_input_data; - src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ - src->pub.term_source = term_source; - src->infile = infile; - src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ - src->pub.next_input_byte = NULL; /* until buffer loaded */ -} - - -/* - * Prepare for input from a supplied memory buffer. - * The buffer must contain the whole JPEG data. - */ - -GLOBAL(void) -jpeg_mem_src (j_decompress_ptr cinfo, - unsigned char * inbuffer, unsigned long insize) -{ - struct jpeg_source_mgr * src; - - if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ - ERREXIT(cinfo, JERR_INPUT_EMPTY); - - /* The source object is made permanent so that a series of JPEG images - * can be read from the same buffer by calling jpeg_mem_src only before - * the first one. - */ - if (cinfo->src == NULL) { /* first time for this JPEG object? */ - cinfo->src = (struct jpeg_source_mgr *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - SIZEOF(struct jpeg_source_mgr)); - } - - src = cinfo->src; - src->init_source = init_mem_source; - src->fill_input_buffer = fill_mem_input_buffer; - src->skip_input_data = skip_input_data; - src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ - src->term_source = term_source; - src->bytes_in_buffer = (size_t) insize; - src->next_input_byte = (JOCTET *) inbuffer; -} diff --git a/src/jpeg-8c/jdcoefct.c b/src/jpeg-8c/jdcoefct.c deleted file mode 100644 index 462e92c6..00000000 --- a/src/jpeg-8c/jdcoefct.c +++ /dev/null @@ -1,736 +0,0 @@ -/* - * jdcoefct.c - * - * Copyright (C) 1994-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the coefficient buffer controller for decompression. - * This controller is the top level of the JPEG decompressor proper. - * The coefficient buffer lies between entropy decoding and inverse-DCT steps. - * - * In buffered-image mode, this controller is the interface between - * input-oriented processing and output-oriented processing. - * Also, the input side (only) is used when reading a file for transcoding. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -/* Block smoothing is only applicable for progressive JPEG, so: */ -#ifndef D_PROGRESSIVE_SUPPORTED -#undef BLOCK_SMOOTHING_SUPPORTED -#endif - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_d_coef_controller pub; /* public fields */ - - /* These variables keep track of the current location of the input side. */ - /* cinfo->input_iMCU_row is also used for this. */ - JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ - int MCU_vert_offset; /* counts MCU rows within iMCU row */ - int MCU_rows_per_iMCU_row; /* number of such rows needed */ - - /* The output side's location is represented by cinfo->output_iMCU_row. */ - - /* In single-pass modes, it's sufficient to buffer just one MCU. - * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, - * and let the entropy decoder write into that workspace each time. - * (On 80x86, the workspace is FAR even though it's not really very big; - * this is to keep the module interfaces unchanged when a large coefficient - * buffer is necessary.) - * In multi-pass modes, this array points to the current MCU's blocks - * within the virtual arrays; it is used only by the input side. - */ - JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; - -#ifdef D_MULTISCAN_FILES_SUPPORTED - /* In multi-pass modes, we need a virtual block array for each component. */ - jvirt_barray_ptr whole_image[MAX_COMPONENTS]; -#endif - -#ifdef BLOCK_SMOOTHING_SUPPORTED - /* When doing block smoothing, we latch coefficient Al values here */ - int * coef_bits_latch; -#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ -#endif -} my_coef_controller; - -typedef my_coef_controller * my_coef_ptr; - -/* Forward declarations */ -METHODDEF(int) decompress_onepass - JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); -#ifdef D_MULTISCAN_FILES_SUPPORTED -METHODDEF(int) decompress_data - JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); -#endif -#ifdef BLOCK_SMOOTHING_SUPPORTED -LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); -METHODDEF(int) decompress_smooth_data - JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); -#endif - - -LOCAL(void) -start_iMCU_row (j_decompress_ptr cinfo) -/* Reset within-iMCU-row counters for a new row (input side) */ -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - - /* In an interleaved scan, an MCU row is the same as an iMCU row. - * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. - * But at the bottom of the image, process only what's left. - */ - if (cinfo->comps_in_scan > 1) { - coef->MCU_rows_per_iMCU_row = 1; - } else { - if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) - coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; - else - coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; - } - - coef->MCU_ctr = 0; - coef->MCU_vert_offset = 0; -} - - -/* - * Initialize for an input processing pass. - */ - -METHODDEF(void) -start_input_pass (j_decompress_ptr cinfo) -{ - cinfo->input_iMCU_row = 0; - start_iMCU_row(cinfo); -} - - -/* - * Initialize for an output processing pass. - */ - -METHODDEF(void) -start_output_pass (j_decompress_ptr cinfo) -{ -#ifdef BLOCK_SMOOTHING_SUPPORTED - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - - /* If multipass, check to see whether to use block smoothing on this pass */ - if (coef->pub.coef_arrays != NULL) { - if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) - coef->pub.decompress_data = decompress_smooth_data; - else - coef->pub.decompress_data = decompress_data; - } -#endif - cinfo->output_iMCU_row = 0; -} - - -/* - * Decompress and return some data in the single-pass case. - * Always attempts to emit one fully interleaved MCU row ("iMCU" row). - * Input and output must run in lockstep since we have only a one-MCU buffer. - * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. - * - * NB: output_buf contains a plane for each component in image, - * which we index according to the component's SOF position. - */ - -METHODDEF(int) -decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION MCU_col_num; /* index of current MCU within row */ - JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; - JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; - int blkn, ci, xindex, yindex, yoffset, useful_width; - JSAMPARRAY output_ptr; - JDIMENSION start_col, output_col; - jpeg_component_info *compptr; - inverse_DCT_method_ptr inverse_DCT; - - /* Loop to process as much as one whole iMCU row */ - for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; - yoffset++) { - for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; - MCU_col_num++) { - /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ - jzero_far((void FAR *) coef->MCU_buffer[0], - (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); - if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { - /* Suspension forced; update state counters and exit */ - coef->MCU_vert_offset = yoffset; - coef->MCU_ctr = MCU_col_num; - return JPEG_SUSPENDED; - } - /* Determine where data should go in output_buf and do the IDCT thing. - * We skip dummy blocks at the right and bottom edges (but blkn gets - * incremented past them!). Note the inner loop relies on having - * allocated the MCU_buffer[] blocks sequentially. - */ - blkn = 0; /* index of current DCT block within MCU */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Don't bother to IDCT an uninteresting component. */ - if (! compptr->component_needed) { - blkn += compptr->MCU_blocks; - continue; - } - inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; - useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width - : compptr->last_col_width; - output_ptr = output_buf[compptr->component_index] + - yoffset * compptr->DCT_v_scaled_size; - start_col = MCU_col_num * compptr->MCU_sample_width; - for (yindex = 0; yindex < compptr->MCU_height; yindex++) { - if (cinfo->input_iMCU_row < last_iMCU_row || - yoffset+yindex < compptr->last_row_height) { - output_col = start_col; - for (xindex = 0; xindex < useful_width; xindex++) { - (*inverse_DCT) (cinfo, compptr, - (JCOEFPTR) coef->MCU_buffer[blkn+xindex], - output_ptr, output_col); - output_col += compptr->DCT_h_scaled_size; - } - } - blkn += compptr->MCU_width; - output_ptr += compptr->DCT_v_scaled_size; - } - } - } - /* Completed an MCU row, but perhaps not an iMCU row */ - coef->MCU_ctr = 0; - } - /* Completed the iMCU row, advance counters for next one */ - cinfo->output_iMCU_row++; - if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { - start_iMCU_row(cinfo); - return JPEG_ROW_COMPLETED; - } - /* Completed the scan */ - (*cinfo->inputctl->finish_input_pass) (cinfo); - return JPEG_SCAN_COMPLETED; -} - - -/* - * Dummy consume-input routine for single-pass operation. - */ - -METHODDEF(int) -dummy_consume_data (j_decompress_ptr cinfo) -{ - return JPEG_SUSPENDED; /* Always indicate nothing was done */ -} - - -#ifdef D_MULTISCAN_FILES_SUPPORTED - -/* - * Consume input data and store it in the full-image coefficient buffer. - * We read as much as one fully interleaved MCU row ("iMCU" row) per call, - * ie, v_samp_factor block rows for each component in the scan. - * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. - */ - -METHODDEF(int) -consume_data (j_decompress_ptr cinfo) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION MCU_col_num; /* index of current MCU within row */ - int blkn, ci, xindex, yindex, yoffset; - JDIMENSION start_col; - JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; - JBLOCKROW buffer_ptr; - jpeg_component_info *compptr; - - /* Align the virtual buffers for the components used in this scan. */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - buffer[ci] = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], - cinfo->input_iMCU_row * compptr->v_samp_factor, - (JDIMENSION) compptr->v_samp_factor, TRUE); - /* Note: entropy decoder expects buffer to be zeroed, - * but this is handled automatically by the memory manager - * because we requested a pre-zeroed array. - */ - } - - /* Loop to process one whole iMCU row */ - for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; - yoffset++) { - for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; - MCU_col_num++) { - /* Construct list of pointers to DCT blocks belonging to this MCU */ - blkn = 0; /* index of current DCT block within MCU */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - start_col = MCU_col_num * compptr->MCU_width; - for (yindex = 0; yindex < compptr->MCU_height; yindex++) { - buffer_ptr = buffer[ci][yindex+yoffset] + start_col; - for (xindex = 0; xindex < compptr->MCU_width; xindex++) { - coef->MCU_buffer[blkn++] = buffer_ptr++; - } - } - } - /* Try to fetch the MCU. */ - if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { - /* Suspension forced; update state counters and exit */ - coef->MCU_vert_offset = yoffset; - coef->MCU_ctr = MCU_col_num; - return JPEG_SUSPENDED; - } - } - /* Completed an MCU row, but perhaps not an iMCU row */ - coef->MCU_ctr = 0; - } - /* Completed the iMCU row, advance counters for next one */ - if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { - start_iMCU_row(cinfo); - return JPEG_ROW_COMPLETED; - } - /* Completed the scan */ - (*cinfo->inputctl->finish_input_pass) (cinfo); - return JPEG_SCAN_COMPLETED; -} - - -/* - * Decompress and return some data in the multi-pass case. - * Always attempts to emit one fully interleaved MCU row ("iMCU" row). - * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. - * - * NB: output_buf contains a plane for each component in image. - */ - -METHODDEF(int) -decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; - JDIMENSION block_num; - int ci, block_row, block_rows; - JBLOCKARRAY buffer; - JBLOCKROW buffer_ptr; - JSAMPARRAY output_ptr; - JDIMENSION output_col; - jpeg_component_info *compptr; - inverse_DCT_method_ptr inverse_DCT; - - /* Force some input to be done if we are getting ahead of the input. */ - while (cinfo->input_scan_number < cinfo->output_scan_number || - (cinfo->input_scan_number == cinfo->output_scan_number && - cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { - if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) - return JPEG_SUSPENDED; - } - - /* OK, output from the virtual arrays. */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Don't bother to IDCT an uninteresting component. */ - if (! compptr->component_needed) - continue; - /* Align the virtual buffer for this component. */ - buffer = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[ci], - cinfo->output_iMCU_row * compptr->v_samp_factor, - (JDIMENSION) compptr->v_samp_factor, FALSE); - /* Count non-dummy DCT block rows in this iMCU row. */ - if (cinfo->output_iMCU_row < last_iMCU_row) - block_rows = compptr->v_samp_factor; - else { - /* NB: can't use last_row_height here; it is input-side-dependent! */ - block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); - if (block_rows == 0) block_rows = compptr->v_samp_factor; - } - inverse_DCT = cinfo->idct->inverse_DCT[ci]; - output_ptr = output_buf[ci]; - /* Loop over all DCT blocks to be processed. */ - for (block_row = 0; block_row < block_rows; block_row++) { - buffer_ptr = buffer[block_row]; - output_col = 0; - for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { - (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, - output_ptr, output_col); - buffer_ptr++; - output_col += compptr->DCT_h_scaled_size; - } - output_ptr += compptr->DCT_v_scaled_size; - } - } - - if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) - return JPEG_ROW_COMPLETED; - return JPEG_SCAN_COMPLETED; -} - -#endif /* D_MULTISCAN_FILES_SUPPORTED */ - - -#ifdef BLOCK_SMOOTHING_SUPPORTED - -/* - * This code applies interblock smoothing as described by section K.8 - * of the JPEG standard: the first 5 AC coefficients are estimated from - * the DC values of a DCT block and its 8 neighboring blocks. - * We apply smoothing only for progressive JPEG decoding, and only if - * the coefficients it can estimate are not yet known to full precision. - */ - -/* Natural-order array positions of the first 5 zigzag-order coefficients */ -#define Q01_POS 1 -#define Q10_POS 8 -#define Q20_POS 16 -#define Q11_POS 9 -#define Q02_POS 2 - -/* - * Determine whether block smoothing is applicable and safe. - * We also latch the current states of the coef_bits[] entries for the - * AC coefficients; otherwise, if the input side of the decompressor - * advances into a new scan, we might think the coefficients are known - * more accurately than they really are. - */ - -LOCAL(boolean) -smoothing_ok (j_decompress_ptr cinfo) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - boolean smoothing_useful = FALSE; - int ci, coefi; - jpeg_component_info *compptr; - JQUANT_TBL * qtable; - int * coef_bits; - int * coef_bits_latch; - - if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) - return FALSE; - - /* Allocate latch area if not already done */ - if (coef->coef_bits_latch == NULL) - coef->coef_bits_latch = (int *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components * - (SAVED_COEFS * SIZEOF(int))); - coef_bits_latch = coef->coef_bits_latch; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* All components' quantization values must already be latched. */ - if ((qtable = compptr->quant_table) == NULL) - return FALSE; - /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ - if (qtable->quantval[0] == 0 || - qtable->quantval[Q01_POS] == 0 || - qtable->quantval[Q10_POS] == 0 || - qtable->quantval[Q20_POS] == 0 || - qtable->quantval[Q11_POS] == 0 || - qtable->quantval[Q02_POS] == 0) - return FALSE; - /* DC values must be at least partly known for all components. */ - coef_bits = cinfo->coef_bits[ci]; - if (coef_bits[0] < 0) - return FALSE; - /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ - for (coefi = 1; coefi <= 5; coefi++) { - coef_bits_latch[coefi] = coef_bits[coefi]; - if (coef_bits[coefi] != 0) - smoothing_useful = TRUE; - } - coef_bits_latch += SAVED_COEFS; - } - - return smoothing_useful; -} - - -/* - * Variant of decompress_data for use when doing block smoothing. - */ - -METHODDEF(int) -decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) -{ - my_coef_ptr coef = (my_coef_ptr) cinfo->coef; - JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; - JDIMENSION block_num, last_block_column; - int ci, block_row, block_rows, access_rows; - JBLOCKARRAY buffer; - JBLOCKROW buffer_ptr, prev_block_row, next_block_row; - JSAMPARRAY output_ptr; - JDIMENSION output_col; - jpeg_component_info *compptr; - inverse_DCT_method_ptr inverse_DCT; - boolean first_row, last_row; - JBLOCK workspace; - int *coef_bits; - JQUANT_TBL *quanttbl; - INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; - int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; - int Al, pred; - - /* Force some input to be done if we are getting ahead of the input. */ - while (cinfo->input_scan_number <= cinfo->output_scan_number && - ! cinfo->inputctl->eoi_reached) { - if (cinfo->input_scan_number == cinfo->output_scan_number) { - /* If input is working on current scan, we ordinarily want it to - * have completed the current row. But if input scan is DC, - * we want it to keep one row ahead so that next block row's DC - * values are up to date. - */ - JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; - if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) - break; - } - if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) - return JPEG_SUSPENDED; - } - - /* OK, output from the virtual arrays. */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Don't bother to IDCT an uninteresting component. */ - if (! compptr->component_needed) - continue; - /* Count non-dummy DCT block rows in this iMCU row. */ - if (cinfo->output_iMCU_row < last_iMCU_row) { - block_rows = compptr->v_samp_factor; - access_rows = block_rows * 2; /* this and next iMCU row */ - last_row = FALSE; - } else { - /* NB: can't use last_row_height here; it is input-side-dependent! */ - block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); - if (block_rows == 0) block_rows = compptr->v_samp_factor; - access_rows = block_rows; /* this iMCU row only */ - last_row = TRUE; - } - /* Align the virtual buffer for this component. */ - if (cinfo->output_iMCU_row > 0) { - access_rows += compptr->v_samp_factor; /* prior iMCU row too */ - buffer = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[ci], - (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, - (JDIMENSION) access_rows, FALSE); - buffer += compptr->v_samp_factor; /* point to current iMCU row */ - first_row = FALSE; - } else { - buffer = (*cinfo->mem->access_virt_barray) - ((j_common_ptr) cinfo, coef->whole_image[ci], - (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); - first_row = TRUE; - } - /* Fetch component-dependent info */ - coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); - quanttbl = compptr->quant_table; - Q00 = quanttbl->quantval[0]; - Q01 = quanttbl->quantval[Q01_POS]; - Q10 = quanttbl->quantval[Q10_POS]; - Q20 = quanttbl->quantval[Q20_POS]; - Q11 = quanttbl->quantval[Q11_POS]; - Q02 = quanttbl->quantval[Q02_POS]; - inverse_DCT = cinfo->idct->inverse_DCT[ci]; - output_ptr = output_buf[ci]; - /* Loop over all DCT blocks to be processed. */ - for (block_row = 0; block_row < block_rows; block_row++) { - buffer_ptr = buffer[block_row]; - if (first_row && block_row == 0) - prev_block_row = buffer_ptr; - else - prev_block_row = buffer[block_row-1]; - if (last_row && block_row == block_rows-1) - next_block_row = buffer_ptr; - else - next_block_row = buffer[block_row+1]; - /* We fetch the surrounding DC values using a sliding-register approach. - * Initialize all nine here so as to do the right thing on narrow pics. - */ - DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; - DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; - DC7 = DC8 = DC9 = (int) next_block_row[0][0]; - output_col = 0; - last_block_column = compptr->width_in_blocks - 1; - for (block_num = 0; block_num <= last_block_column; block_num++) { - /* Fetch current DCT block into workspace so we can modify it. */ - jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); - /* Update DC values */ - if (block_num < last_block_column) { - DC3 = (int) prev_block_row[1][0]; - DC6 = (int) buffer_ptr[1][0]; - DC9 = (int) next_block_row[1][0]; - } - /* Compute coefficient estimates per K.8. - * An estimate is applied only if coefficient is still zero, - * and is not known to be fully accurate. - */ - /* AC01 */ - if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { - num = 36 * Q00 * (DC4 - DC6); - if (num >= 0) { - pred = (int) (((Q01<<7) + num) / (Q01<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - } else { - pred = (int) (((Q01<<7) - num) / (Q01<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - pred = -pred; - } - workspace[1] = (JCOEF) pred; - } - /* AC10 */ - if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { - num = 36 * Q00 * (DC2 - DC8); - if (num >= 0) { - pred = (int) (((Q10<<7) + num) / (Q10<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - } else { - pred = (int) (((Q10<<7) - num) / (Q10<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - pred = -pred; - } - workspace[8] = (JCOEF) pred; - } - /* AC20 */ - if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { - num = 9 * Q00 * (DC2 + DC8 - 2*DC5); - if (num >= 0) { - pred = (int) (((Q20<<7) + num) / (Q20<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - } else { - pred = (int) (((Q20<<7) - num) / (Q20<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - pred = -pred; - } - workspace[16] = (JCOEF) pred; - } - /* AC11 */ - if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { - num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); - if (num >= 0) { - pred = (int) (((Q11<<7) + num) / (Q11<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - } else { - pred = (int) (((Q11<<7) - num) / (Q11<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - pred = -pred; - } - workspace[9] = (JCOEF) pred; - } - /* AC02 */ - if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { - num = 9 * Q00 * (DC4 + DC6 - 2*DC5); - if (num >= 0) { - pred = (int) (((Q02<<7) + num) / (Q02<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - } else { - pred = (int) (((Q02<<7) - num) / (Q02<<8)); - if (Al > 0 && pred >= (1<<Al)) - pred = (1<<Al)-1; - pred = -pred; - } - workspace[2] = (JCOEF) pred; - } - /* OK, do the IDCT */ - (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, - output_ptr, output_col); - /* Advance for next column */ - DC1 = DC2; DC2 = DC3; - DC4 = DC5; DC5 = DC6; - DC7 = DC8; DC8 = DC9; - buffer_ptr++, prev_block_row++, next_block_row++; - output_col += compptr->DCT_h_scaled_size; - } - output_ptr += compptr->DCT_v_scaled_size; - } - } - - if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) - return JPEG_ROW_COMPLETED; - return JPEG_SCAN_COMPLETED; -} - -#endif /* BLOCK_SMOOTHING_SUPPORTED */ - - -/* - * Initialize coefficient buffer controller. - */ - -GLOBAL(void) -jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) -{ - my_coef_ptr coef; - - coef = (my_coef_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_coef_controller)); - cinfo->coef = (struct jpeg_d_coef_controller *) coef; - coef->pub.start_input_pass = start_input_pass; - coef->pub.start_output_pass = start_output_pass; -#ifdef BLOCK_SMOOTHING_SUPPORTED - coef->coef_bits_latch = NULL; -#endif - - /* Create the coefficient buffer. */ - if (need_full_buffer) { -#ifdef D_MULTISCAN_FILES_SUPPORTED - /* Allocate a full-image virtual array for each component, */ - /* padded to a multiple of samp_factor DCT blocks in each direction. */ - /* Note we ask for a pre-zeroed array. */ - int ci, access_rows; - jpeg_component_info *compptr; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - access_rows = compptr->v_samp_factor; -#ifdef BLOCK_SMOOTHING_SUPPORTED - /* If block smoothing could be used, need a bigger window */ - if (cinfo->progressive_mode) - access_rows *= 3; -#endif - coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, - (JDIMENSION) jround_up((long) compptr->width_in_blocks, - (long) compptr->h_samp_factor), - (JDIMENSION) jround_up((long) compptr->height_in_blocks, - (long) compptr->v_samp_factor), - (JDIMENSION) access_rows); - } - coef->pub.consume_data = consume_data; - coef->pub.decompress_data = decompress_data; - coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } else { - /* We only need a single-MCU buffer. */ - JBLOCKROW buffer; - int i; - - buffer = (JBLOCKROW) - (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); - for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { - coef->MCU_buffer[i] = buffer + i; - } - coef->pub.consume_data = dummy_consume_data; - coef->pub.decompress_data = decompress_onepass; - coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ - } -} diff --git a/src/jpeg-8c/jdcolor.c b/src/jpeg-8c/jdcolor.c deleted file mode 100644 index 6c04dfe8..00000000 --- a/src/jpeg-8c/jdcolor.c +++ /dev/null @@ -1,396 +0,0 @@ -/* - * jdcolor.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains output colorspace conversion routines. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Private subobject */ - -typedef struct { - struct jpeg_color_deconverter pub; /* public fields */ - - /* Private state for YCC->RGB conversion */ - int * Cr_r_tab; /* => table for Cr to R conversion */ - int * Cb_b_tab; /* => table for Cb to B conversion */ - INT32 * Cr_g_tab; /* => table for Cr to G conversion */ - INT32 * Cb_g_tab; /* => table for Cb to G conversion */ -} my_color_deconverter; - -typedef my_color_deconverter * my_cconvert_ptr; - - -/**************** YCbCr -> RGB conversion: most common case **************/ - -/* - * YCbCr is defined per CCIR 601-1, except that Cb and Cr are - * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. - * The conversion equations to be implemented are therefore - * R = Y + 1.40200 * Cr - * G = Y - 0.34414 * Cb - 0.71414 * Cr - * B = Y + 1.77200 * Cb - * where Cb and Cr represent the incoming values less CENTERJSAMPLE. - * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) - * - * To avoid floating-point arithmetic, we represent the fractional constants - * as integers scaled up by 2^16 (about 4 digits precision); we have to divide - * the products by 2^16, with appropriate rounding, to get the correct answer. - * Notice that Y, being an integral input, does not contribute any fraction - * so it need not participate in the rounding. - * - * For even more speed, we avoid doing any multiplications in the inner loop - * by precalculating the constants times Cb and Cr for all possible values. - * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); - * for 12-bit samples it is still acceptable. It's not very reasonable for - * 16-bit samples, but if you want lossless storage you shouldn't be changing - * colorspace anyway. - * The Cr=>R and Cb=>B values can be rounded to integers in advance; the - * values for the G calculation are left scaled up, since we must add them - * together before rounding. - */ - -#define SCALEBITS 16 /* speediest right-shift on some machines */ -#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) -#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) - - -/* - * Initialize tables for YCC->RGB colorspace conversion. - */ - -LOCAL(void) -build_ycc_rgb_table (j_decompress_ptr cinfo) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - int i; - INT32 x; - SHIFT_TEMPS - - cconvert->Cr_r_tab = (int *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(int)); - cconvert->Cb_b_tab = (int *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(int)); - cconvert->Cr_g_tab = (INT32 *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(INT32)); - cconvert->Cb_g_tab = (INT32 *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(INT32)); - - for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { - /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ - /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ - /* Cr=>R value is nearest int to 1.40200 * x */ - cconvert->Cr_r_tab[i] = (int) - RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); - /* Cb=>B value is nearest int to 1.77200 * x */ - cconvert->Cb_b_tab[i] = (int) - RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); - /* Cr=>G value is scaled-up -0.71414 * x */ - cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; - /* Cb=>G value is scaled-up -0.34414 * x */ - /* We also add in ONE_HALF so that need not do it in inner loop */ - cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; - } -} - - -/* - * Convert some rows of samples to the output colorspace. - * - * Note that we change from noninterleaved, one-plane-per-component format - * to interleaved-pixel format. The output buffer is therefore three times - * as wide as the input buffer. - * A starting row offset is provided only for the input buffer. The caller - * can easily adjust the passed output_buf value to accommodate any row - * offset required on that side. - */ - -METHODDEF(void) -ycc_rgb_convert (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION input_row, - JSAMPARRAY output_buf, int num_rows) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - register int y, cb, cr; - register JSAMPROW outptr; - register JSAMPROW inptr0, inptr1, inptr2; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->output_width; - /* copy these pointers into registers if possible */ - register JSAMPLE * range_limit = cinfo->sample_range_limit; - register int * Crrtab = cconvert->Cr_r_tab; - register int * Cbbtab = cconvert->Cb_b_tab; - register INT32 * Crgtab = cconvert->Cr_g_tab; - register INT32 * Cbgtab = cconvert->Cb_g_tab; - SHIFT_TEMPS - - while (--num_rows >= 0) { - inptr0 = input_buf[0][input_row]; - inptr1 = input_buf[1][input_row]; - inptr2 = input_buf[2][input_row]; - input_row++; - outptr = *output_buf++; - for (col = 0; col < num_cols; col++) { - y = GETJSAMPLE(inptr0[col]); - cb = GETJSAMPLE(inptr1[col]); - cr = GETJSAMPLE(inptr2[col]); - /* Range-limiting is essential due to noise introduced by DCT losses. */ - outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; - outptr[RGB_GREEN] = range_limit[y + - ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], - SCALEBITS))]; - outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; - outptr += RGB_PIXELSIZE; - } - } -} - - -/**************** Cases other than YCbCr -> RGB **************/ - - -/* - * Color conversion for no colorspace change: just copy the data, - * converting from separate-planes to interleaved representation. - */ - -METHODDEF(void) -null_convert (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION input_row, - JSAMPARRAY output_buf, int num_rows) -{ - register JSAMPROW inptr, outptr; - register JDIMENSION count; - register int num_components = cinfo->num_components; - JDIMENSION num_cols = cinfo->output_width; - int ci; - - while (--num_rows >= 0) { - for (ci = 0; ci < num_components; ci++) { - inptr = input_buf[ci][input_row]; - outptr = output_buf[0] + ci; - for (count = num_cols; count > 0; count--) { - *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */ - outptr += num_components; - } - } - input_row++; - output_buf++; - } -} - - -/* - * Color conversion for grayscale: just copy the data. - * This also works for YCbCr -> grayscale conversion, in which - * we just copy the Y (luminance) component and ignore chrominance. - */ - -METHODDEF(void) -grayscale_convert (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION input_row, - JSAMPARRAY output_buf, int num_rows) -{ - jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, - num_rows, cinfo->output_width); -} - - -/* - * Convert grayscale to RGB: just duplicate the graylevel three times. - * This is provided to support applications that don't want to cope - * with grayscale as a separate case. - */ - -METHODDEF(void) -gray_rgb_convert (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION input_row, - JSAMPARRAY output_buf, int num_rows) -{ - register JSAMPROW inptr, outptr; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->output_width; - - while (--num_rows >= 0) { - inptr = input_buf[0][input_row++]; - outptr = *output_buf++; - for (col = 0; col < num_cols; col++) { - /* We can dispense with GETJSAMPLE() here */ - outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; - outptr += RGB_PIXELSIZE; - } - } -} - - -/* - * Adobe-style YCCK->CMYK conversion. - * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same - * conversion as above, while passing K (black) unchanged. - * We assume build_ycc_rgb_table has been called. - */ - -METHODDEF(void) -ycck_cmyk_convert (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION input_row, - JSAMPARRAY output_buf, int num_rows) -{ - my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; - register int y, cb, cr; - register JSAMPROW outptr; - register JSAMPROW inptr0, inptr1, inptr2, inptr3; - register JDIMENSION col; - JDIMENSION num_cols = cinfo->output_width; - /* copy these pointers into registers if possible */ - register JSAMPLE * range_limit = cinfo->sample_range_limit; - register int * Crrtab = cconvert->Cr_r_tab; - register int * Cbbtab = cconvert->Cb_b_tab; - register INT32 * Crgtab = cconvert->Cr_g_tab; - register INT32 * Cbgtab = cconvert->Cb_g_tab; - SHIFT_TEMPS - - while (--num_rows >= 0) { - inptr0 = input_buf[0][input_row]; - inptr1 = input_buf[1][input_row]; - inptr2 = input_buf[2][input_row]; - inptr3 = input_buf[3][input_row]; - input_row++; - outptr = *output_buf++; - for (col = 0; col < num_cols; col++) { - y = GETJSAMPLE(inptr0[col]); - cb = GETJSAMPLE(inptr1[col]); - cr = GETJSAMPLE(inptr2[col]); - /* Range-limiting is essential due to noise introduced by DCT losses. */ - outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ - outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ - ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], - SCALEBITS)))]; - outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ - /* K passes through unchanged */ - outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ - outptr += 4; - } - } -} - - -/* - * Empty method for start_pass. - */ - -METHODDEF(void) -start_pass_dcolor (j_decompress_ptr cinfo) -{ - /* no work needed */ -} - - -/* - * Module initialization routine for output colorspace conversion. - */ - -GLOBAL(void) -jinit_color_deconverter (j_decompress_ptr cinfo) -{ - my_cconvert_ptr cconvert; - int ci; - - cconvert = (my_cconvert_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_color_deconverter)); - cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert; - cconvert->pub.start_pass = start_pass_dcolor; - - /* Make sure num_components agrees with jpeg_color_space */ - switch (cinfo->jpeg_color_space) { - case JCS_GRAYSCALE: - if (cinfo->num_components != 1) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - break; - - case JCS_RGB: - case JCS_YCbCr: - if (cinfo->num_components != 3) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - break; - - case JCS_CMYK: - case JCS_YCCK: - if (cinfo->num_components != 4) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - break; - - default: /* JCS_UNKNOWN can be anything */ - if (cinfo->num_components < 1) - ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - break; - } - - /* Set out_color_components and conversion method based on requested space. - * Also clear the component_needed flags for any unused components, - * so that earlier pipeline stages can avoid useless computation. - */ - - switch (cinfo->out_color_space) { - case JCS_GRAYSCALE: - cinfo->out_color_components = 1; - if (cinfo->jpeg_color_space == JCS_GRAYSCALE || - cinfo->jpeg_color_space == JCS_YCbCr) { - cconvert->pub.color_convert = grayscale_convert; - /* For color->grayscale conversion, only the Y (0) component is needed */ - for (ci = 1; ci < cinfo->num_components; ci++) - cinfo->comp_info[ci].component_needed = FALSE; - } else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - case JCS_RGB: - cinfo->out_color_components = RGB_PIXELSIZE; - if (cinfo->jpeg_color_space == JCS_YCbCr) { - cconvert->pub.color_convert = ycc_rgb_convert; - build_ycc_rgb_table(cinfo); - } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { - cconvert->pub.color_convert = gray_rgb_convert; - } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) { - cconvert->pub.color_convert = null_convert; - } else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - case JCS_CMYK: - cinfo->out_color_components = 4; - if (cinfo->jpeg_color_space == JCS_YCCK) { - cconvert->pub.color_convert = ycck_cmyk_convert; - build_ycc_rgb_table(cinfo); - } else if (cinfo->jpeg_color_space == JCS_CMYK) { - cconvert->pub.color_convert = null_convert; - } else - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - - default: - /* Permit null conversion to same output space */ - if (cinfo->out_color_space == cinfo->jpeg_color_space) { - cinfo->out_color_components = cinfo->num_components; - cconvert->pub.color_convert = null_convert; - } else /* unsupported non-null conversion */ - ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; - } - - if (cinfo->quantize_colors) - cinfo->output_components = 1; /* single colormapped output component */ - else - cinfo->output_components = cinfo->out_color_components; -} diff --git a/src/jpeg-8c/jdct.h b/src/jpeg-8c/jdct.h deleted file mode 100644 index 360dec80..00000000 --- a/src/jpeg-8c/jdct.h +++ /dev/null @@ -1,393 +0,0 @@ -/* - * jdct.h - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This include file contains common declarations for the forward and - * inverse DCT modules. These declarations are private to the DCT managers - * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. - * The individual DCT algorithms are kept in separate files to ease - * machine-dependent tuning (e.g., assembly coding). - */ - - -/* - * A forward DCT routine is given a pointer to an input sample array and - * a pointer to a work area of type DCTELEM[]; the DCT is to be performed - * in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32 - * for 12-bit samples. (NOTE: Floating-point DCT implementations use an - * array of type FAST_FLOAT, instead.) - * The input data is to be fetched from the sample array starting at a - * specified column. (Any row offset needed will be applied to the array - * pointer before it is passed to the FDCT code.) - * Note that the number of samples fetched by the FDCT routine is - * DCT_h_scaled_size * DCT_v_scaled_size. - * The DCT outputs are returned scaled up by a factor of 8; they therefore - * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This - * convention improves accuracy in integer implementations and saves some - * work in floating-point ones. - * Quantization of the output coefficients is done by jcdctmgr.c. - */ - -#if BITS_IN_JSAMPLE == 8 -typedef int DCTELEM; /* 16 or 32 bits is fine */ -#else -typedef INT32 DCTELEM; /* must have 32 bits */ -#endif - -typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, - JSAMPARRAY sample_data, - JDIMENSION start_col)); -typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, - JSAMPARRAY sample_data, - JDIMENSION start_col)); - - -/* - * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer - * to an output sample array. The routine must dequantize the input data as - * well as perform the IDCT; for dequantization, it uses the multiplier table - * pointed to by compptr->dct_table. The output data is to be placed into the - * sample array starting at a specified column. (Any row offset needed will - * be applied to the array pointer before it is passed to the IDCT code.) - * Note that the number of samples emitted by the IDCT routine is - * DCT_h_scaled_size * DCT_v_scaled_size. - */ - -/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ - -/* - * Each IDCT routine has its own ideas about the best dct_table element type. - */ - -typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ -#if BITS_IN_JSAMPLE == 8 -typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ -#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ -#else -typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ -#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ -#endif -typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ - - -/* - * Each IDCT routine is responsible for range-limiting its results and - * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could - * be quite far out of range if the input data is corrupt, so a bulletproof - * range-limiting step is required. We use a mask-and-table-lookup method - * to do the combined operations quickly. See the comments with - * prepare_range_limit_table (in jdmaster.c) for more info. - */ - -#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) - -#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ - - -/* Short forms of external names for systems with brain-damaged linkers. */ - -#ifdef NEED_SHORT_EXTERNAL_NAMES -#define jpeg_fdct_islow jFDislow -#define jpeg_fdct_ifast jFDifast -#define jpeg_fdct_float jFDfloat -#define jpeg_fdct_7x7 jFD7x7 -#define jpeg_fdct_6x6 jFD6x6 -#define jpeg_fdct_5x5 jFD5x5 -#define jpeg_fdct_4x4 jFD4x4 -#define jpeg_fdct_3x3 jFD3x3 -#define jpeg_fdct_2x2 jFD2x2 -#define jpeg_fdct_1x1 jFD1x1 -#define jpeg_fdct_9x9 jFD9x9 -#define jpeg_fdct_10x10 jFD10x10 -#define jpeg_fdct_11x11 jFD11x11 -#define jpeg_fdct_12x12 jFD12x12 -#define jpeg_fdct_13x13 jFD13x13 -#define jpeg_fdct_14x14 jFD14x14 -#define jpeg_fdct_15x15 jFD15x15 -#define jpeg_fdct_16x16 jFD16x16 -#define jpeg_fdct_16x8 jFD16x8 -#define jpeg_fdct_14x7 jFD14x7 -#define jpeg_fdct_12x6 jFD12x6 -#define jpeg_fdct_10x5 jFD10x5 -#define jpeg_fdct_8x4 jFD8x4 -#define jpeg_fdct_6x3 jFD6x3 -#define jpeg_fdct_4x2 jFD4x2 -#define jpeg_fdct_2x1 jFD2x1 -#define jpeg_fdct_8x16 jFD8x16 -#define jpeg_fdct_7x14 jFD7x14 -#define jpeg_fdct_6x12 jFD6x12 -#define jpeg_fdct_5x10 jFD5x10 -#define jpeg_fdct_4x8 jFD4x8 -#define jpeg_fdct_3x6 jFD3x6 -#define jpeg_fdct_2x4 jFD2x4 -#define jpeg_fdct_1x2 jFD1x2 -#define jpeg_idct_islow jRDislow -#define jpeg_idct_ifast jRDifast -#define jpeg_idct_float jRDfloat -#define jpeg_idct_7x7 jRD7x7 -#define jpeg_idct_6x6 jRD6x6 -#define jpeg_idct_5x5 jRD5x5 -#define jpeg_idct_4x4 jRD4x4 -#define jpeg_idct_3x3 jRD3x3 -#define jpeg_idct_2x2 jRD2x2 -#define jpeg_idct_1x1 jRD1x1 -#define jpeg_idct_9x9 jRD9x9 -#define jpeg_idct_10x10 jRD10x10 -#define jpeg_idct_11x11 jRD11x11 -#define jpeg_idct_12x12 jRD12x12 -#define jpeg_idct_13x13 jRD13x13 -#define jpeg_idct_14x14 jRD14x14 -#define jpeg_idct_15x15 jRD15x15 -#define jpeg_idct_16x16 jRD16x16 -#define jpeg_idct_16x8 jRD16x8 -#define jpeg_idct_14x7 jRD14x7 -#define jpeg_idct_12x6 jRD12x6 -#define jpeg_idct_10x5 jRD10x5 -#define jpeg_idct_8x4 jRD8x4 -#define jpeg_idct_6x3 jRD6x3 -#define jpeg_idct_4x2 jRD4x2 -#define jpeg_idct_2x1 jRD2x1 -#define jpeg_idct_8x16 jRD8x16 -#define jpeg_idct_7x14 jRD7x14 -#define jpeg_idct_6x12 jRD6x12 -#define jpeg_idct_5x10 jRD5x10 -#define jpeg_idct_4x8 jRD4x8 -#define jpeg_idct_3x6 jRD3x8 -#define jpeg_idct_2x4 jRD2x4 -#define jpeg_idct_1x2 jRD1x2 -#endif /* NEED_SHORT_EXTERNAL_NAMES */ - -/* Extern declarations for the forward and inverse DCT routines. */ - -EXTERN(void) jpeg_fdct_islow - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_ifast - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_float - JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_7x7 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_6x6 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_5x5 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_4x4 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_3x3 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_2x2 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_1x1 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_9x9 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_10x10 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_11x11 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_12x12 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_13x13 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_14x14 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_15x15 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_16x16 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_16x8 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_14x7 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_12x6 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_10x5 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_8x4 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_6x3 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_4x2 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_2x1 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_8x16 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_7x14 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_6x12 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_5x10 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_4x8 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_3x6 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_2x4 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); -EXTERN(void) jpeg_fdct_1x2 - JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); - -EXTERN(void) jpeg_idct_islow - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_ifast - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_float - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_7x7 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_6x6 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_5x5 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_4x4 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_3x3 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_2x2 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_1x1 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_9x9 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_10x10 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_11x11 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_12x12 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_13x13 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_14x14 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_15x15 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_16x16 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_16x8 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_14x7 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_12x6 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_10x5 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_8x4 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_6x3 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_4x2 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_2x1 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_8x16 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_7x14 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_6x12 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_5x10 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_4x8 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_3x6 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_2x4 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); -EXTERN(void) jpeg_idct_1x2 - JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); - - -/* - * Macros for handling fixed-point arithmetic; these are used by many - * but not all of the DCT/IDCT modules. - * - * All values are expected to be of type INT32. - * Fractional constants are scaled left by CONST_BITS bits. - * CONST_BITS is defined within each module using these macros, - * and may differ from one module to the next. - */ - -#define ONE ((INT32) 1) -#define CONST_SCALE (ONE << CONST_BITS) - -/* Convert a positive real constant to an integer scaled by CONST_SCALE. - * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, - * thus causing a lot of useless floating-point operations at run time. - */ - -#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) - -/* Descale and correctly round an INT32 value that's scaled by N bits. - * We assume RIGHT_SHIFT rounds towards minus infinity, so adding - * the fudge factor is correct for either sign of X. - */ - -#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) - -/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. - * This macro is used only when the two inputs will actually be no more than - * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a - * full 32x32 multiply. This provides a useful speedup on many machines. - * Unfortunately there is no way to specify a 16x16->32 multiply portably - * in C, but some C compilers will do the right thing if you provide the - * correct combination of casts. - */ - -#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ -#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) -#endif -#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ -#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) -#endif - -#ifndef MULTIPLY16C16 /* default definition */ -#define MULTIPLY16C16(var,const) ((var) * (const)) -#endif - -/* Same except both inputs are variables. */ - -#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ -#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) -#endif - -#ifndef MULTIPLY16V16 /* default definition */ -#define MULTIPLY16V16(var1,var2) ((var1) * (var2)) -#endif diff --git a/src/jpeg-8c/jddctmgr.c b/src/jpeg-8c/jddctmgr.c deleted file mode 100644 index 0ded9d57..00000000 --- a/src/jpeg-8c/jddctmgr.c +++ /dev/null @@ -1,384 +0,0 @@ -/* - * jddctmgr.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2002-2010 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the inverse-DCT management logic. - * This code selects a particular IDCT implementation to be used, - * and it performs related housekeeping chores. No code in this file - * is executed per IDCT step, only during output pass setup. - * - * Note that the IDCT routines are responsible for performing coefficient - * dequantization as well as the IDCT proper. This module sets up the - * dequantization multiplier table needed by the IDCT routine. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - - -/* - * The decompressor input side (jdinput.c) saves away the appropriate - * quantization table for each component at the start of the first scan - * involving that component. (This is necessary in order to correctly - * decode files that reuse Q-table slots.) - * When we are ready to make an output pass, the saved Q-table is converted - * to a multiplier table that will actually be used by the IDCT routine. - * The multiplier table contents are IDCT-method-dependent. To support - * application changes in IDCT method between scans, we can remake the - * multiplier tables if necessary. - * In buffered-image mode, the first output pass may occur before any data - * has been seen for some components, and thus before their Q-tables have - * been saved away. To handle this case, multiplier tables are preset - * to zeroes; the result of the IDCT will be a neutral gray level. - */ - - -/* Private subobject for this module */ - -typedef struct { - struct jpeg_inverse_dct pub; /* public fields */ - - /* This array contains the IDCT method code that each multiplier table - * is currently set up for, or -1 if it's not yet set up. - * The actual multiplier tables are pointed to by dct_table in the - * per-component comp_info structures. - */ - int cur_method[MAX_COMPONENTS]; -} my_idct_controller; - -typedef my_idct_controller * my_idct_ptr; - - -/* Allocated multiplier tables: big enough for any supported variant */ - -typedef union { - ISLOW_MULT_TYPE islow_array[DCTSIZE2]; -#ifdef DCT_IFAST_SUPPORTED - IFAST_MULT_TYPE ifast_array[DCTSIZE2]; -#endif -#ifdef DCT_FLOAT_SUPPORTED - FLOAT_MULT_TYPE float_array[DCTSIZE2]; -#endif -} multiplier_table; - - -/* The current scaled-IDCT routines require ISLOW-style multiplier tables, - * so be sure to compile that code if either ISLOW or SCALING is requested. - */ -#ifdef DCT_ISLOW_SUPPORTED -#define PROVIDE_ISLOW_TABLES -#else -#ifdef IDCT_SCALING_SUPPORTED -#define PROVIDE_ISLOW_TABLES -#endif -#endif - - -/* - * Prepare for an output pass. - * Here we select the proper IDCT routine for each component and build - * a matching multiplier table. - */ - -METHODDEF(void) -start_pass (j_decompress_ptr cinfo) -{ - my_idct_ptr idct = (my_idct_ptr) cinfo->idct; - int ci, i; - jpeg_component_info *compptr; - int method = 0; - inverse_DCT_method_ptr method_ptr = NULL; - JQUANT_TBL * qtbl; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Select the proper IDCT routine for this component's scaling */ - switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { -#ifdef IDCT_SCALING_SUPPORTED - case ((1 << 8) + 1): - method_ptr = jpeg_idct_1x1; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((2 << 8) + 2): - method_ptr = jpeg_idct_2x2; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((3 << 8) + 3): - method_ptr = jpeg_idct_3x3; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((4 << 8) + 4): - method_ptr = jpeg_idct_4x4; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((5 << 8) + 5): - method_ptr = jpeg_idct_5x5; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((6 << 8) + 6): - method_ptr = jpeg_idct_6x6; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((7 << 8) + 7): - method_ptr = jpeg_idct_7x7; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((9 << 8) + 9): - method_ptr = jpeg_idct_9x9; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((10 << 8) + 10): - method_ptr = jpeg_idct_10x10; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((11 << 8) + 11): - method_ptr = jpeg_idct_11x11; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((12 << 8) + 12): - method_ptr = jpeg_idct_12x12; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((13 << 8) + 13): - method_ptr = jpeg_idct_13x13; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((14 << 8) + 14): - method_ptr = jpeg_idct_14x14; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((15 << 8) + 15): - method_ptr = jpeg_idct_15x15; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((16 << 8) + 16): - method_ptr = jpeg_idct_16x16; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((16 << 8) + 8): - method_ptr = jpeg_idct_16x8; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((14 << 8) + 7): - method_ptr = jpeg_idct_14x7; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((12 << 8) + 6): - method_ptr = jpeg_idct_12x6; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((10 << 8) + 5): - method_ptr = jpeg_idct_10x5; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((8 << 8) + 4): - method_ptr = jpeg_idct_8x4; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((6 << 8) + 3): - method_ptr = jpeg_idct_6x3; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((4 << 8) + 2): - method_ptr = jpeg_idct_4x2; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((2 << 8) + 1): - method_ptr = jpeg_idct_2x1; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((8 << 8) + 16): - method_ptr = jpeg_idct_8x16; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((7 << 8) + 14): - method_ptr = jpeg_idct_7x14; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((6 << 8) + 12): - method_ptr = jpeg_idct_6x12; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((5 << 8) + 10): - method_ptr = jpeg_idct_5x10; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((4 << 8) + 8): - method_ptr = jpeg_idct_4x8; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((3 << 8) + 6): - method_ptr = jpeg_idct_3x6; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((2 << 8) + 4): - method_ptr = jpeg_idct_2x4; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; - case ((1 << 8) + 2): - method_ptr = jpeg_idct_1x2; - method = JDCT_ISLOW; /* jidctint uses islow-style table */ - break; -#endif - case ((DCTSIZE << 8) + DCTSIZE): - switch (cinfo->dct_method) { -#ifdef DCT_ISLOW_SUPPORTED - case JDCT_ISLOW: - method_ptr = jpeg_idct_islow; - method = JDCT_ISLOW; - break; -#endif -#ifdef DCT_IFAST_SUPPORTED - case JDCT_IFAST: - method_ptr = jpeg_idct_ifast; - method = JDCT_IFAST; - break; -#endif -#ifdef DCT_FLOAT_SUPPORTED - case JDCT_FLOAT: - method_ptr = jpeg_idct_float; - method = JDCT_FLOAT; - break; -#endif - default: - ERREXIT(cinfo, JERR_NOT_COMPILED); - break; - } - break; - default: - ERREXIT2(cinfo, JERR_BAD_DCTSIZE, - compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); - break; - } - idct->pub.inverse_DCT[ci] = method_ptr; - /* Create multiplier table from quant table. - * However, we can skip this if the component is uninteresting - * or if we already built the table. Also, if no quant table - * has yet been saved for the component, we leave the - * multiplier table all-zero; we'll be reading zeroes from the - * coefficient controller's buffer anyway. - */ - if (! compptr->component_needed || idct->cur_method[ci] == method) - continue; - qtbl = compptr->quant_table; - if (qtbl == NULL) /* happens if no data yet for component */ - continue; - idct->cur_method[ci] = method; - switch (method) { -#ifdef PROVIDE_ISLOW_TABLES - case JDCT_ISLOW: - { - /* For LL&M IDCT method, multipliers are equal to raw quantization - * coefficients, but are stored as ints to ensure access efficiency. - */ - ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; - for (i = 0; i < DCTSIZE2; i++) { - ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; - } - } - break; -#endif -#ifdef DCT_IFAST_SUPPORTED - case JDCT_IFAST: - { - /* For AA&N IDCT method, multipliers are equal to quantization - * coefficients scaled by scalefactor[row]*scalefactor[col], where - * scalefactor[0] = 1 - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 - * For integer operation, the multiplier table is to be scaled by - * IFAST_SCALE_BITS. - */ - IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; -#define CONST_BITS 14 - static const INT16 aanscales[DCTSIZE2] = { - /* precomputed values scaled up by 14 bits */ - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, - 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, - 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, - 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, - 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, - 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, - 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 - }; - SHIFT_TEMPS - - for (i = 0; i < DCTSIZE2; i++) { - ifmtbl[i] = (IFAST_MULT_TYPE) - DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], - (INT32) aanscales[i]), - CONST_BITS-IFAST_SCALE_BITS); - } - } - break; -#endif -#ifdef DCT_FLOAT_SUPPORTED - case JDCT_FLOAT: - { - /* For float AA&N IDCT method, multipliers are equal to quantization - * coefficients scaled by scalefactor[row]*scalefactor[col], where - * scalefactor[0] = 1 - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 - * We apply a further scale factor of 1/8. - */ - FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; - int row, col; - static const double aanscalefactor[DCTSIZE] = { - 1.0, 1.387039845, 1.306562965, 1.175875602, - 1.0, 0.785694958, 0.541196100, 0.275899379 - }; - - i = 0; - for (row = 0; row < DCTSIZE; row++) { - for (col = 0; col < DCTSIZE; col++) { - fmtbl[i] = (FLOAT_MULT_TYPE) - ((double) qtbl->quantval[i] * - aanscalefactor[row] * aanscalefactor[col] * 0.125); - i++; - } - } - } - break; -#endif - default: - ERREXIT(cinfo, JERR_NOT_COMPILED); - break; - } - } -} - - -/* - * Initialize IDCT manager. - */ - -GLOBAL(void) -jinit_inverse_dct (j_decompress_ptr cinfo) -{ - my_idct_ptr idct; - int ci; - jpeg_component_info *compptr; - - idct = (my_idct_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_idct_controller)); - cinfo->idct = (struct jpeg_inverse_dct *) idct; - idct->pub.start_pass = start_pass; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Allocate and pre-zero a multiplier table for each component */ - compptr->dct_table = - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(multiplier_table)); - MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); - /* Mark multiplier table not yet set up for any method */ - idct->cur_method[ci] = -1; - } -} diff --git a/src/jpeg-8c/jdhuff.c b/src/jpeg-8c/jdhuff.c deleted file mode 100644 index 06f92fe4..00000000 --- a/src/jpeg-8c/jdhuff.c +++ /dev/null @@ -1,1541 +0,0 @@ -/* - * jdhuff.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2006-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains Huffman entropy decoding routines. - * Both sequential and progressive modes are supported in this single module. - * - * Much of the complexity here has to do with supporting input suspension. - * If the data source module demands suspension, we want to be able to back - * up to the start of the current MCU. To do this, we copy state variables - * into local working storage, and update them back to the permanent - * storage only upon successful completion of an MCU. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Derived data constructed for each Huffman table */ - -#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ - -typedef struct { - /* Basic tables: (element [0] of each array is unused) */ - INT32 maxcode[18]; /* largest code of length k (-1 if none) */ - /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ - INT32 valoffset[17]; /* huffval[] offset for codes of length k */ - /* valoffset[k] = huffval[] index of 1st symbol of code length k, less - * the smallest code of length k; so given a code of length k, the - * corresponding symbol is huffval[code + valoffset[k]] - */ - - /* Link to public Huffman table (needed only in jpeg_huff_decode) */ - JHUFF_TBL *pub; - - /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of - * the input data stream. If the next Huffman code is no more - * than HUFF_LOOKAHEAD bits long, we can obtain its length and - * the corresponding symbol directly from these tables. - */ - int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ - UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ -} d_derived_tbl; - - -/* - * Fetching the next N bits from the input stream is a time-critical operation - * for the Huffman decoders. We implement it with a combination of inline - * macros and out-of-line subroutines. Note that N (the number of bits - * demanded at one time) never exceeds 15 for JPEG use. - * - * We read source bytes into get_buffer and dole out bits as needed. - * If get_buffer already contains enough bits, they are fetched in-line - * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough - * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer - * as full as possible (not just to the number of bits needed; this - * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). - * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. - * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains - * at least the requested number of bits --- dummy zeroes are inserted if - * necessary. - */ - -typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ -#define BIT_BUF_SIZE 32 /* size of buffer in bits */ - -/* If long is > 32 bits on your machine, and shifting/masking longs is - * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE - * appropriately should be a win. Unfortunately we can't define the size - * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) - * because not all machines measure sizeof in 8-bit bytes. - */ - -typedef struct { /* Bitreading state saved across MCUs */ - bit_buf_type get_buffer; /* current bit-extraction buffer */ - int bits_left; /* # of unused bits in it */ -} bitread_perm_state; - -typedef struct { /* Bitreading working state within an MCU */ - /* Current data source location */ - /* We need a copy, rather than munging the original, in case of suspension */ - const JOCTET * next_input_byte; /* => next byte to read from source */ - size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ - /* Bit input buffer --- note these values are kept in register variables, - * not in this struct, inside the inner loops. - */ - bit_buf_type get_buffer; /* current bit-extraction buffer */ - int bits_left; /* # of unused bits in it */ - /* Pointer needed by jpeg_fill_bit_buffer. */ - j_decompress_ptr cinfo; /* back link to decompress master record */ -} bitread_working_state; - -/* Macros to declare and load/save bitread local variables. */ -#define BITREAD_STATE_VARS \ - register bit_buf_type get_buffer; \ - register int bits_left; \ - bitread_working_state br_state - -#define BITREAD_LOAD_STATE(cinfop,permstate) \ - br_state.cinfo = cinfop; \ - br_state.next_input_byte = cinfop->src->next_input_byte; \ - br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ - get_buffer = permstate.get_buffer; \ - bits_left = permstate.bits_left; - -#define BITREAD_SAVE_STATE(cinfop,permstate) \ - cinfop->src->next_input_byte = br_state.next_input_byte; \ - cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ - permstate.get_buffer = get_buffer; \ - permstate.bits_left = bits_left - -/* - * These macros provide the in-line portion of bit fetching. - * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer - * before using GET_BITS, PEEK_BITS, or DROP_BITS. - * The variables get_buffer and bits_left are assumed to be locals, - * but the state struct might not be (jpeg_huff_decode needs this). - * CHECK_BIT_BUFFER(state,n,action); - * Ensure there are N bits in get_buffer; if suspend, take action. - * val = GET_BITS(n); - * Fetch next N bits. - * val = PEEK_BITS(n); - * Fetch next N bits without removing them from the buffer. - * DROP_BITS(n); - * Discard next N bits. - * The value N should be a simple variable, not an expression, because it - * is evaluated multiple times. - */ - -#define CHECK_BIT_BUFFER(state,nbits,action) \ - { if (bits_left < (nbits)) { \ - if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ - { action; } \ - get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } - -#define GET_BITS(nbits) \ - (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) - -#define PEEK_BITS(nbits) \ - (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits)) - -#define DROP_BITS(nbits) \ - (bits_left -= (nbits)) - - -/* - * Code for extracting next Huffman-coded symbol from input bit stream. - * Again, this is time-critical and we make the main paths be macros. - * - * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits - * without looping. Usually, more than 95% of the Huffman codes will be 8 - * or fewer bits long. The few overlength codes are handled with a loop, - * which need not be inline code. - * - * Notes about the HUFF_DECODE macro: - * 1. Near the end of the data segment, we may fail to get enough bits - * for a lookahead. In that case, we do it the hard way. - * 2. If the lookahead table contains no entry, the next code must be - * more than HUFF_LOOKAHEAD bits long. - * 3. jpeg_huff_decode returns -1 if forced to suspend. - */ - -#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ -{ register int nb, look; \ - if (bits_left < HUFF_LOOKAHEAD) { \ - if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ - get_buffer = state.get_buffer; bits_left = state.bits_left; \ - if (bits_left < HUFF_LOOKAHEAD) { \ - nb = 1; goto slowlabel; \ - } \ - } \ - look = PEEK_BITS(HUFF_LOOKAHEAD); \ - if ((nb = htbl->look_nbits[look]) != 0) { \ - DROP_BITS(nb); \ - result = htbl->look_sym[look]; \ - } else { \ - nb = HUFF_LOOKAHEAD+1; \ -slowlabel: \ - if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ - { failaction; } \ - get_buffer = state.get_buffer; bits_left = state.bits_left; \ - } \ -} - - -/* - * Expanded entropy decoder object for Huffman decoding. - * - * The savable_state subrecord contains fields that change within an MCU, - * but must not be updated permanently until we complete the MCU. - */ - -typedef struct { - unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ -} savable_state; - -/* This macro is to work around compilers with missing or broken - * structure assignment. You'll need to fix this code if you have - * such a compiler and you change MAX_COMPS_IN_SCAN. - */ - -#ifndef NO_STRUCT_ASSIGN -#define ASSIGN_STATE(dest,src) ((dest) = (src)) -#else -#if MAX_COMPS_IN_SCAN == 4 -#define ASSIGN_STATE(dest,src) \ - ((dest).EOBRUN = (src).EOBRUN, \ - (dest).last_dc_val[0] = (src).last_dc_val[0], \ - (dest).last_dc_val[1] = (src).last_dc_val[1], \ - (dest).last_dc_val[2] = (src).last_dc_val[2], \ - (dest).last_dc_val[3] = (src).last_dc_val[3]) -#endif -#endif - - -typedef struct { - struct jpeg_entropy_decoder pub; /* public fields */ - - /* These fields are loaded into local variables at start of each MCU. - * In case of suspension, we exit WITHOUT updating them. - */ - bitread_perm_state bitstate; /* Bit buffer at start of MCU */ - savable_state saved; /* Other state at start of MCU */ - - /* These fields are NOT loaded into local working state. */ - boolean insufficient_data; /* set TRUE after emitting warning */ - unsigned int restarts_to_go; /* MCUs left in this restart interval */ - - /* Following two fields used only in progressive mode */ - - /* Pointers to derived tables (these workspaces have image lifespan) */ - d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; - - d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ - - /* Following fields used only in sequential mode */ - - /* Pointers to derived tables (these workspaces have image lifespan) */ - d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; - d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; - - /* Precalculated info set up by start_pass for use in decode_mcu: */ - - /* Pointers to derived tables to be used for each block within an MCU */ - d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; - d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; - /* Whether we care about the DC and AC coefficient values for each block */ - int coef_limit[D_MAX_BLOCKS_IN_MCU]; -} huff_entropy_decoder; - -typedef huff_entropy_decoder * huff_entropy_ptr; - - -static const int jpeg_zigzag_order[8][8] = { - { 0, 1, 5, 6, 14, 15, 27, 28 }, - { 2, 4, 7, 13, 16, 26, 29, 42 }, - { 3, 8, 12, 17, 25, 30, 41, 43 }, - { 9, 11, 18, 24, 31, 40, 44, 53 }, - { 10, 19, 23, 32, 39, 45, 52, 54 }, - { 20, 22, 33, 38, 46, 51, 55, 60 }, - { 21, 34, 37, 47, 50, 56, 59, 61 }, - { 35, 36, 48, 49, 57, 58, 62, 63 } -}; - -static const int jpeg_zigzag_order7[7][7] = { - { 0, 1, 5, 6, 14, 15, 27 }, - { 2, 4, 7, 13, 16, 26, 28 }, - { 3, 8, 12, 17, 25, 29, 38 }, - { 9, 11, 18, 24, 30, 37, 39 }, - { 10, 19, 23, 31, 36, 40, 45 }, - { 20, 22, 32, 35, 41, 44, 46 }, - { 21, 33, 34, 42, 43, 47, 48 } -}; - -static const int jpeg_zigzag_order6[6][6] = { - { 0, 1, 5, 6, 14, 15 }, - { 2, 4, 7, 13, 16, 25 }, - { 3, 8, 12, 17, 24, 26 }, - { 9, 11, 18, 23, 27, 32 }, - { 10, 19, 22, 28, 31, 33 }, - { 20, 21, 29, 30, 34, 35 } -}; - -static const int jpeg_zigzag_order5[5][5] = { - { 0, 1, 5, 6, 14 }, - { 2, 4, 7, 13, 15 }, - { 3, 8, 12, 16, 21 }, - { 9, 11, 17, 20, 22 }, - { 10, 18, 19, 23, 24 } -}; - -static const int jpeg_zigzag_order4[4][4] = { - { 0, 1, 5, 6 }, - { 2, 4, 7, 12 }, - { 3, 8, 11, 13 }, - { 9, 10, 14, 15 } -}; - -static const int jpeg_zigzag_order3[3][3] = { - { 0, 1, 5 }, - { 2, 4, 6 }, - { 3, 7, 8 } -}; - -static const int jpeg_zigzag_order2[2][2] = { - { 0, 1 }, - { 2, 3 } -}; - - -/* - * Compute the derived values for a Huffman table. - * This routine also performs some validation checks on the table. - */ - -LOCAL(void) -jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, - d_derived_tbl ** pdtbl) -{ - JHUFF_TBL *htbl; - d_derived_tbl *dtbl; - int p, i, l, si, numsymbols; - int lookbits, ctr; - char huffsize[257]; - unsigned int huffcode[257]; - unsigned int code; - - /* Note that huffsize[] and huffcode[] are filled in code-length order, - * paralleling the order of the symbols themselves in htbl->huffval[]. - */ - - /* Find the input Huffman table */ - if (tblno < 0 || tblno >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - htbl = - isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; - if (htbl == NULL) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - - /* Allocate a workspace if we haven't already done so. */ - if (*pdtbl == NULL) - *pdtbl = (d_derived_tbl *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(d_derived_tbl)); - dtbl = *pdtbl; - dtbl->pub = htbl; /* fill in back link */ - - /* Figure C.1: make table of Huffman code length for each symbol */ - - p = 0; - for (l = 1; l <= 16; l++) { - i = (int) htbl->bits[l]; - if (i < 0 || p + i > 256) /* protect against table overrun */ - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - while (i--) - huffsize[p++] = (char) l; - } - huffsize[p] = 0; - numsymbols = p; - - /* Figure C.2: generate the codes themselves */ - /* We also validate that the counts represent a legal Huffman code tree. */ - - code = 0; - si = huffsize[0]; - p = 0; - while (huffsize[p]) { - while (((int) huffsize[p]) == si) { - huffcode[p++] = code; - code++; - } - /* code is now 1 more than the last code used for codelength si; but - * it must still fit in si bits, since no code is allowed to be all ones. - */ - if (((INT32) code) >= (((INT32) 1) << si)) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - code <<= 1; - si++; - } - - /* Figure F.15: generate decoding tables for bit-sequential decoding */ - - p = 0; - for (l = 1; l <= 16; l++) { - if (htbl->bits[l]) { - /* valoffset[l] = huffval[] index of 1st symbol of code length l, - * minus the minimum code of length l - */ - dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; - p += htbl->bits[l]; - dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ - } else { - dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ - } - } - dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ - - /* Compute lookahead tables to speed up decoding. - * First we set all the table entries to 0, indicating "too long"; - * then we iterate through the Huffman codes that are short enough and - * fill in all the entries that correspond to bit sequences starting - * with that code. - */ - - MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); - - p = 0; - for (l = 1; l <= HUFF_LOOKAHEAD; l++) { - for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { - /* l = current code's length, p = its index in huffcode[] & huffval[]. */ - /* Generate left-justified code followed by all possible bit sequences */ - lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); - for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { - dtbl->look_nbits[lookbits] = l; - dtbl->look_sym[lookbits] = htbl->huffval[p]; - lookbits++; - } - } - } - - /* Validate symbols as being reasonable. - * For AC tables, we make no check, but accept all byte values 0..255. - * For DC tables, we require the symbols to be in range 0..15. - * (Tighter bounds could be applied depending on the data depth and mode, - * but this is sufficient to ensure safe decoding.) - */ - if (isDC) { - for (i = 0; i < numsymbols; i++) { - int sym = htbl->huffval[i]; - if (sym < 0 || sym > 15) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - } - } -} - - -/* - * Out-of-line code for bit fetching. - * Note: current values of get_buffer and bits_left are passed as parameters, - * but are returned in the corresponding fields of the state struct. - * - * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width - * of get_buffer to be used. (On machines with wider words, an even larger - * buffer could be used.) However, on some machines 32-bit shifts are - * quite slow and take time proportional to the number of places shifted. - * (This is true with most PC compilers, for instance.) In this case it may - * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the - * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. - */ - -#ifdef SLOW_SHIFT_32 -#define MIN_GET_BITS 15 /* minimum allowable value */ -#else -#define MIN_GET_BITS (BIT_BUF_SIZE-7) -#endif - - -LOCAL(boolean) -jpeg_fill_bit_buffer (bitread_working_state * state, - register bit_buf_type get_buffer, register int bits_left, - int nbits) -/* Load up the bit buffer to a depth of at least nbits */ -{ - /* Copy heavily used state fields into locals (hopefully registers) */ - register const JOCTET * next_input_byte = state->next_input_byte; - register size_t bytes_in_buffer = state->bytes_in_buffer; - j_decompress_ptr cinfo = state->cinfo; - - /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ - /* (It is assumed that no request will be for more than that many bits.) */ - /* We fail to do so only if we hit a marker or are forced to suspend. */ - - if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ - while (bits_left < MIN_GET_BITS) { - register int c; - - /* Attempt to read a byte */ - if (bytes_in_buffer == 0) { - if (! (*cinfo->src->fill_input_buffer) (cinfo)) - return FALSE; - next_input_byte = cinfo->src->next_input_byte; - bytes_in_buffer = cinfo->src->bytes_in_buffer; - } - bytes_in_buffer--; - c = GETJOCTET(*next_input_byte++); - - /* If it's 0xFF, check and discard stuffed zero byte */ - if (c == 0xFF) { - /* Loop here to discard any padding FF's on terminating marker, - * so that we can save a valid unread_marker value. NOTE: we will - * accept multiple FF's followed by a 0 as meaning a single FF data - * byte. This data pattern is not valid according to the standard. - */ - do { - if (bytes_in_buffer == 0) { - if (! (*cinfo->src->fill_input_buffer) (cinfo)) - return FALSE; - next_input_byte = cinfo->src->next_input_byte; - bytes_in_buffer = cinfo->src->bytes_in_buffer; - } - bytes_in_buffer--; - c = GETJOCTET(*next_input_byte++); - } while (c == 0xFF); - - if (c == 0) { - /* Found FF/00, which represents an FF data byte */ - c = 0xFF; - } else { - /* Oops, it's actually a marker indicating end of compressed data. - * Save the marker code for later use. - * Fine point: it might appear that we should save the marker into - * bitread working state, not straight into permanent state. But - * once we have hit a marker, we cannot need to suspend within the - * current MCU, because we will read no more bytes from the data - * source. So it is OK to update permanent state right away. - */ - cinfo->unread_marker = c; - /* See if we need to insert some fake zero bits. */ - goto no_more_bytes; - } - } - - /* OK, load c into get_buffer */ - get_buffer = (get_buffer << 8) | c; - bits_left += 8; - } /* end while */ - } else { - no_more_bytes: - /* We get here if we've read the marker that terminates the compressed - * data segment. There should be enough bits in the buffer register - * to satisfy the request; if so, no problem. - */ - if (nbits > bits_left) { - /* Uh-oh. Report corrupted data to user and stuff zeroes into - * the data stream, so that we can produce some kind of image. - * We use a nonvolatile flag to ensure that only one warning message - * appears per data segment. - */ - if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { - WARNMS(cinfo, JWRN_HIT_MARKER); - ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; - } - /* Fill the buffer with zero bits */ - get_buffer <<= MIN_GET_BITS - bits_left; - bits_left = MIN_GET_BITS; - } - } - - /* Unload the local registers */ - state->next_input_byte = next_input_byte; - state->bytes_in_buffer = bytes_in_buffer; - state->get_buffer = get_buffer; - state->bits_left = bits_left; - - return TRUE; -} - - -/* - * Figure F.12: extend sign bit. - * On some machines, a shift and sub will be faster than a table lookup. - */ - -#ifdef AVOID_TABLES - -#define BIT_MASK(nbits) ((1<<(nbits))-1) -#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) - -#else - -#define BIT_MASK(nbits) bmask[nbits] -#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) - -static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ - { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, - 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; - -#endif /* AVOID_TABLES */ - - -/* - * Out-of-line code for Huffman code decoding. - */ - -LOCAL(int) -jpeg_huff_decode (bitread_working_state * state, - register bit_buf_type get_buffer, register int bits_left, - d_derived_tbl * htbl, int min_bits) -{ - register int l = min_bits; - register INT32 code; - - /* HUFF_DECODE has determined that the code is at least min_bits */ - /* bits long, so fetch that many bits in one swoop. */ - - CHECK_BIT_BUFFER(*state, l, return -1); - code = GET_BITS(l); - - /* Collect the rest of the Huffman code one bit at a time. */ - /* This is per Figure F.16 in the JPEG spec. */ - - while (code > htbl->maxcode[l]) { - code <<= 1; - CHECK_BIT_BUFFER(*state, 1, return -1); - code |= GET_BITS(1); - l++; - } - - /* Unload the local registers */ - state->get_buffer = get_buffer; - state->bits_left = bits_left; - - /* With garbage input we may reach the sentinel value l = 17. */ - - if (l > 16) { - WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); - return 0; /* fake a zero as the safest result */ - } - - return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; -} - - -/* - * Check for a restart marker & resynchronize decoder. - * Returns FALSE if must suspend. - */ - -LOCAL(boolean) -process_restart (j_decompress_ptr cinfo) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci; - - /* Throw away any unused bits remaining in bit buffer; */ - /* include any full bytes in next_marker's count of discarded bytes */ - cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; - entropy->bitstate.bits_left = 0; - - /* Advance past the RSTn marker */ - if (! (*cinfo->marker->read_restart_marker) (cinfo)) - return FALSE; - - /* Re-initialize DC predictions to 0 */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) - entropy->saved.last_dc_val[ci] = 0; - /* Re-init EOB run count, too */ - entropy->saved.EOBRUN = 0; - - /* Reset restart counter */ - entropy->restarts_to_go = cinfo->restart_interval; - - /* Reset out-of-data flag, unless read_restart_marker left us smack up - * against a marker. In that case we will end up treating the next data - * segment as empty, and we can avoid producing bogus output pixels by - * leaving the flag set. - */ - if (cinfo->unread_marker == 0) - entropy->insufficient_data = FALSE; - - return TRUE; -} - - -/* - * Huffman MCU decoding. - * Each of these routines decodes and returns one MCU's worth of - * Huffman-compressed coefficients. - * The coefficients are reordered from zigzag order into natural array order, - * but are not dequantized. - * - * The i'th block of the MCU is stored into the block pointed to by - * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. - * (Wholesale zeroing is usually a little faster than retail...) - * - * We return FALSE if data source requested suspension. In that case no - * changes have been made to permanent state. (Exception: some output - * coefficients may already have been assigned. This is harmless for - * spectral selection, since we'll just re-assign them on the next call. - * Successive approximation AC refinement has to be more careful, however.) - */ - -/* - * MCU decoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int Al = cinfo->Al; - register int s, r; - int blkn, ci; - JBLOCKROW block; - BITREAD_STATE_VARS; - savable_state state; - d_derived_tbl * tbl; - jpeg_component_info * compptr; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) - return FALSE; - } - - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { - - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(state, entropy->saved); - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - tbl = entropy->derived_tbls[compptr->dc_tbl_no]; - - /* Decode a single block's worth of coefficients */ - - /* Section F.2.2.1: decode the DC coefficient difference */ - HUFF_DECODE(s, br_state, tbl, return FALSE, label1); - if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - } - - /* Convert DC difference to actual value, update last_dc_val */ - s += state.last_dc_val[ci]; - state.last_dc_val[ci] = s; - /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ - (*block)[0] = (JCOEF) (s << Al); - } - - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(entropy->saved, state); - } - - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; - - return TRUE; -} - - -/* - * MCU decoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int s, k, r; - unsigned int EOBRUN; - int Se, Al; - const int * natural_order; - JBLOCKROW block; - BITREAD_STATE_VARS; - d_derived_tbl * tbl; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) - return FALSE; - } - - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { - - Se = cinfo->Se; - Al = cinfo->Al; - natural_order = cinfo->natural_order; - - /* Load up working state. - * We can avoid loading/saving bitread state if in an EOB run. - */ - EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ - - /* There is always only one block per MCU */ - - if (EOBRUN > 0) /* if it's a band of zeroes... */ - EOBRUN--; /* ...process it now (we do nothing) */ - else { - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - block = MCU_data[0]; - tbl = entropy->ac_derived_tbl; - - for (k = cinfo->Ss; k <= Se; k++) { - HUFF_DECODE(s, br_state, tbl, return FALSE, label2); - r = s >> 4; - s &= 15; - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - /* Scale and output coefficient in natural (dezigzagged) order */ - (*block)[natural_order[k]] = (JCOEF) (s << Al); - } else { - if (r == 15) { /* ZRL */ - k += 15; /* skip 15 zeroes in band */ - } else { /* EOBr, run length is 2^r + appended bits */ - EOBRUN = 1 << r; - if (r) { /* EOBr, r > 0 */ - CHECK_BIT_BUFFER(br_state, r, return FALSE); - r = GET_BITS(r); - EOBRUN += r; - } - EOBRUN--; /* this band is processed at this moment */ - break; /* force end-of-band */ - } - } - } - - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - } - - /* Completed MCU, so update state */ - entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ - } - - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; - - return TRUE; -} - - -/* - * MCU decoding for DC successive approximation refinement scan. - * Note: we assume such scans can be multi-component, although the spec - * is not very clear on the point. - */ - -METHODDEF(boolean) -decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - int blkn; - JBLOCKROW block; - BITREAD_STATE_VARS; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) - return FALSE; - } - - /* Not worth the cycles to check insufficient_data here, - * since we will not change the data anyway if we read zeroes. - */ - - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - - /* Encoded data is simply the next bit of the two's-complement DC value */ - CHECK_BIT_BUFFER(br_state, 1, return FALSE); - if (GET_BITS(1)) - (*block)[0] |= p1; - /* Note: since we use |=, repeating the assignment later is safe */ - } - - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; - - return TRUE; -} - - -/* - * MCU decoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int s, k, r; - unsigned int EOBRUN; - int Se, p1, m1; - const int * natural_order; - JBLOCKROW block; - JCOEFPTR thiscoef; - BITREAD_STATE_VARS; - d_derived_tbl * tbl; - int num_newnz; - int newnz_pos[DCTSIZE2]; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) - return FALSE; - } - - /* If we've run out of data, don't modify the MCU. - */ - if (! entropy->insufficient_data) { - - Se = cinfo->Se; - p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ - natural_order = cinfo->natural_order; - - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ - - /* There is always only one block per MCU */ - block = MCU_data[0]; - tbl = entropy->ac_derived_tbl; - - /* If we are forced to suspend, we must undo the assignments to any newly - * nonzero coefficients in the block, because otherwise we'd get confused - * next time about which coefficients were already nonzero. - * But we need not undo addition of bits to already-nonzero coefficients; - * instead, we can test the current bit to see if we already did it. - */ - num_newnz = 0; - - /* initialize coefficient loop counter to start of band */ - k = cinfo->Ss; - - if (EOBRUN == 0) { - for (; k <= Se; k++) { - HUFF_DECODE(s, br_state, tbl, goto undoit, label3); - r = s >> 4; - s &= 15; - if (s) { - if (s != 1) /* size of new coef should always be 1 */ - WARNMS(cinfo, JWRN_HUFF_BAD_CODE); - CHECK_BIT_BUFFER(br_state, 1, goto undoit); - if (GET_BITS(1)) - s = p1; /* newly nonzero coef is positive */ - else - s = m1; /* newly nonzero coef is negative */ - } else { - if (r != 15) { - EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ - if (r) { - CHECK_BIT_BUFFER(br_state, r, goto undoit); - r = GET_BITS(r); - EOBRUN += r; - } - break; /* rest of block is handled by EOB logic */ - } - /* note s = 0 for processing ZRL */ - } - /* Advance over already-nonzero coefs and r still-zero coefs, - * appending correction bits to the nonzeroes. A correction bit is 1 - * if the absolute value of the coefficient must be increased. - */ - do { - thiscoef = *block + natural_order[k]; - if (*thiscoef != 0) { - CHECK_BIT_BUFFER(br_state, 1, goto undoit); - if (GET_BITS(1)) { - if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ - if (*thiscoef >= 0) - *thiscoef += p1; - else - *thiscoef += m1; - } - } - } else { - if (--r < 0) - break; /* reached target zero coefficient */ - } - k++; - } while (k <= Se); - if (s) { - int pos = natural_order[k]; - /* Output newly nonzero coefficient */ - (*block)[pos] = (JCOEF) s; - /* Remember its position in case we have to suspend */ - newnz_pos[num_newnz++] = pos; - } - } - } - - if (EOBRUN > 0) { - /* Scan any remaining coefficient positions after the end-of-band - * (the last newly nonzero coefficient, if any). Append a correction - * bit to each already-nonzero coefficient. A correction bit is 1 - * if the absolute value of the coefficient must be increased. - */ - for (; k <= Se; k++) { - thiscoef = *block + natural_order[k]; - if (*thiscoef != 0) { - CHECK_BIT_BUFFER(br_state, 1, goto undoit); - if (GET_BITS(1)) { - if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ - if (*thiscoef >= 0) - *thiscoef += p1; - else - *thiscoef += m1; - } - } - } - } - /* Count one block completed in EOB run */ - EOBRUN--; - } - - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ - } - - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; - - return TRUE; - -undoit: - /* Re-zero any output coefficients that we made newly nonzero */ - while (num_newnz > 0) - (*block)[newnz_pos[--num_newnz]] = 0; - - return FALSE; -} - - -/* - * Decode one MCU's worth of Huffman-compressed coefficients, - * partial blocks. - */ - -METHODDEF(boolean) -decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - const int * natural_order; - int Se, blkn; - BITREAD_STATE_VARS; - savable_state state; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) - return FALSE; - } - - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { - - natural_order = cinfo->natural_order; - Se = cinfo->lim_Se; - - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(state, entropy->saved); - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - JBLOCKROW block = MCU_data[blkn]; - d_derived_tbl * htbl; - register int s, k, r; - int coef_limit, ci; - - /* Decode a single block's worth of coefficients */ - - /* Section F.2.2.1: decode the DC coefficient difference */ - htbl = entropy->dc_cur_tbls[blkn]; - HUFF_DECODE(s, br_state, htbl, return FALSE, label1); - - htbl = entropy->ac_cur_tbls[blkn]; - k = 1; - coef_limit = entropy->coef_limit[blkn]; - if (coef_limit) { - /* Convert DC difference to actual value, update last_dc_val */ - if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - } - ci = cinfo->MCU_membership[blkn]; - s += state.last_dc_val[ci]; - state.last_dc_val[ci] = s; - /* Output the DC coefficient */ - (*block)[0] = (JCOEF) s; - - /* Section F.2.2.2: decode the AC coefficients */ - /* Since zeroes are skipped, output area must be cleared beforehand */ - for (; k < coef_limit; k++) { - HUFF_DECODE(s, br_state, htbl, return FALSE, label2); - - r = s >> 4; - s &= 15; - - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - /* Output coefficient in natural (dezigzagged) order. - * Note: the extra entries in natural_order[] will save us - * if k > Se, which could happen if the data is corrupted. - */ - (*block)[natural_order[k]] = (JCOEF) s; - } else { - if (r != 15) - goto EndOfBlock; - k += 15; - } - } - } else { - if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); - } - } - - /* Section F.2.2.2: decode the AC coefficients */ - /* In this path we just discard the values */ - for (; k <= Se; k++) { - HUFF_DECODE(s, br_state, htbl, return FALSE, label3); - - r = s >> 4; - s &= 15; - - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); - } else { - if (r != 15) - break; - k += 15; - } - } - - EndOfBlock: ; - } - - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(entropy->saved, state); - } - - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; - - return TRUE; -} - - -/* - * Decode one MCU's worth of Huffman-compressed coefficients, - * full-size blocks. - */ - -METHODDEF(boolean) -decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int blkn; - BITREAD_STATE_VARS; - savable_state state; - - /* Process restart marker if needed; may have to suspend */ - if (cinfo->restart_interval) { - if (entropy->restarts_to_go == 0) - if (! process_restart(cinfo)) - return FALSE; - } - - /* If we've run out of data, just leave the MCU set to zeroes. - * This way, we return uniform gray for the remainder of the segment. - */ - if (! entropy->insufficient_data) { - - /* Load up working state */ - BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(state, entropy->saved); - - /* Outer loop handles each block in the MCU */ - - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - JBLOCKROW block = MCU_data[blkn]; - d_derived_tbl * htbl; - register int s, k, r; - int coef_limit, ci; - - /* Decode a single block's worth of coefficients */ - - /* Section F.2.2.1: decode the DC coefficient difference */ - htbl = entropy->dc_cur_tbls[blkn]; - HUFF_DECODE(s, br_state, htbl, return FALSE, label1); - - htbl = entropy->ac_cur_tbls[blkn]; - k = 1; - coef_limit = entropy->coef_limit[blkn]; - if (coef_limit) { - /* Convert DC difference to actual value, update last_dc_val */ - if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - } - ci = cinfo->MCU_membership[blkn]; - s += state.last_dc_val[ci]; - state.last_dc_val[ci] = s; - /* Output the DC coefficient */ - (*block)[0] = (JCOEF) s; - - /* Section F.2.2.2: decode the AC coefficients */ - /* Since zeroes are skipped, output area must be cleared beforehand */ - for (; k < coef_limit; k++) { - HUFF_DECODE(s, br_state, htbl, return FALSE, label2); - - r = s >> 4; - s &= 15; - - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - r = GET_BITS(s); - s = HUFF_EXTEND(r, s); - /* Output coefficient in natural (dezigzagged) order. - * Note: the extra entries in jpeg_natural_order[] will save us - * if k >= DCTSIZE2, which could happen if the data is corrupted. - */ - (*block)[jpeg_natural_order[k]] = (JCOEF) s; - } else { - if (r != 15) - goto EndOfBlock; - k += 15; - } - } - } else { - if (s) { - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); - } - } - - /* Section F.2.2.2: decode the AC coefficients */ - /* In this path we just discard the values */ - for (; k < DCTSIZE2; k++) { - HUFF_DECODE(s, br_state, htbl, return FALSE, label3); - - r = s >> 4; - s &= 15; - - if (s) { - k += r; - CHECK_BIT_BUFFER(br_state, s, return FALSE); - DROP_BITS(s); - } else { - if (r != 15) - break; - k += 15; - } - } - - EndOfBlock: ; - } - - /* Completed MCU, so update state */ - BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - ASSIGN_STATE(entropy->saved, state); - } - - /* Account for restart interval (no-op if not using restarts) */ - entropy->restarts_to_go--; - - return TRUE; -} - - -/* - * Initialize for a Huffman-compressed scan. - */ - -METHODDEF(void) -start_pass_huff_decoder (j_decompress_ptr cinfo) -{ - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int ci, blkn, tbl, i; - jpeg_component_info * compptr; - - if (cinfo->progressive_mode) { - /* Validate progressive scan parameters */ - if (cinfo->Ss == 0) { - if (cinfo->Se != 0) - goto bad; - } else { - /* need not check Ss/Se < 0 since they came from unsigned bytes */ - if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) - goto bad; - /* AC scans may have only one component */ - if (cinfo->comps_in_scan != 1) - goto bad; - } - if (cinfo->Ah != 0) { - /* Successive approximation refinement scan: must have Al = Ah-1. */ - if (cinfo->Ah-1 != cinfo->Al) - goto bad; - } - if (cinfo->Al > 13) { /* need not check for < 0 */ - /* Arguably the maximum Al value should be less than 13 for 8-bit precision, - * but the spec doesn't say so, and we try to be liberal about what we - * accept. Note: large Al values could result in out-of-range DC - * coefficients during early scans, leading to bizarre displays due to - * overflows in the IDCT math. But we won't crash. - */ - bad: - ERREXIT4(cinfo, JERR_BAD_PROGRESSION, - cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); - } - /* Update progression status, and verify that scan order is legal. - * Note that inter-scan inconsistencies are treated as warnings - * not fatal errors ... not clear if this is right way to behave. - */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; - int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; - if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ - WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); - for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { - int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; - if (cinfo->Ah != expected) - WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); - coef_bit_ptr[coefi] = cinfo->Al; - } - } - - /* Select MCU decoding routine */ - if (cinfo->Ah == 0) { - if (cinfo->Ss == 0) - entropy->pub.decode_mcu = decode_mcu_DC_first; - else - entropy->pub.decode_mcu = decode_mcu_AC_first; - } else { - if (cinfo->Ss == 0) - entropy->pub.decode_mcu = decode_mcu_DC_refine; - else - entropy->pub.decode_mcu = decode_mcu_AC_refine; - } - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Make sure requested tables are present, and compute derived tables. - * We may build same derived table more than once, but it's not expensive. - */ - if (cinfo->Ss == 0) { - if (cinfo->Ah == 0) { /* DC refinement needs no table */ - tbl = compptr->dc_tbl_no; - jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, - & entropy->derived_tbls[tbl]); - } - } else { - tbl = compptr->ac_tbl_no; - jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, - & entropy->derived_tbls[tbl]); - /* remember the single active table */ - entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; - } - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - } - - /* Initialize private state variables */ - entropy->saved.EOBRUN = 0; - } else { - /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. - * This ought to be an error condition, but we make it a warning because - * there are some baseline files out there with all zeroes in these bytes. - */ - if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || - ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && - cinfo->Se != cinfo->lim_Se)) - WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); - - /* Select MCU decoding routine */ - /* We retain the hard-coded case for full-size blocks. - * This is not necessary, but it appears that this version is slightly - * more performant in the given implementation. - * With an improved implementation we would prefer a single optimized - * function. - */ - if (cinfo->lim_Se != DCTSIZE2-1) - entropy->pub.decode_mcu = decode_mcu_sub; - else - entropy->pub.decode_mcu = decode_mcu; - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Compute derived values for Huffman tables */ - /* We may do this more than once for a table, but it's not expensive */ - tbl = compptr->dc_tbl_no; - jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, - & entropy->dc_derived_tbls[tbl]); - if (cinfo->lim_Se) { /* AC needs no table when not present */ - tbl = compptr->ac_tbl_no; - jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, - & entropy->ac_derived_tbls[tbl]); - } - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - } - - /* Precalculate decoding info for each block in an MCU of this scan */ - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; - /* Precalculate which table to use for each block */ - entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; - entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; - /* Decide whether we really care about the coefficient values */ - if (compptr->component_needed) { - ci = compptr->DCT_v_scaled_size; - i = compptr->DCT_h_scaled_size; - switch (cinfo->lim_Se) { - case (1*1-1): - entropy->coef_limit[blkn] = 1; - break; - case (2*2-1): - if (ci <= 0 || ci > 2) ci = 2; - if (i <= 0 || i > 2) i = 2; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; - break; - case (3*3-1): - if (ci <= 0 || ci > 3) ci = 3; - if (i <= 0 || i > 3) i = 3; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; - break; - case (4*4-1): - if (ci <= 0 || ci > 4) ci = 4; - if (i <= 0 || i > 4) i = 4; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; - break; - case (5*5-1): - if (ci <= 0 || ci > 5) ci = 5; - if (i <= 0 || i > 5) i = 5; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; - break; - case (6*6-1): - if (ci <= 0 || ci > 6) ci = 6; - if (i <= 0 || i > 6) i = 6; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; - break; - case (7*7-1): - if (ci <= 0 || ci > 7) ci = 7; - if (i <= 0 || i > 7) i = 7; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; - break; - default: - if (ci <= 0 || ci > 8) ci = 8; - if (i <= 0 || i > 8) i = 8; - entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; - break; - } - } else { - entropy->coef_limit[blkn] = 0; - } - } - } - - /* Initialize bitread state variables */ - entropy->bitstate.bits_left = 0; - entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ - entropy->insufficient_data = FALSE; - - /* Initialize restart counter */ - entropy->restarts_to_go = cinfo->restart_interval; -} - - -/* - * Module initialization routine for Huffman entropy decoding. - */ - -GLOBAL(void) -jinit_huff_decoder (j_decompress_ptr cinfo) -{ - huff_entropy_ptr entropy; - int i; - - entropy = (huff_entropy_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(huff_entropy_decoder)); - cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; - entropy->pub.start_pass = start_pass_huff_decoder; - - if (cinfo->progressive_mode) { - /* Create progression status table */ - int *coef_bit_ptr, ci; - cinfo->coef_bits = (int (*)[DCTSIZE2]) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components*DCTSIZE2*SIZEOF(int)); - coef_bit_ptr = & cinfo->coef_bits[0][0]; - for (ci = 0; ci < cinfo->num_components; ci++) - for (i = 0; i < DCTSIZE2; i++) - *coef_bit_ptr++ = -1; - - /* Mark derived tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->derived_tbls[i] = NULL; - } - } else { - /* Mark tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; - } - } -} diff --git a/src/jpeg-8c/jdinput.c b/src/jpeg-8c/jdinput.c deleted file mode 100644 index 2c5c717b..00000000 --- a/src/jpeg-8c/jdinput.c +++ /dev/null @@ -1,661 +0,0 @@ -/* - * jdinput.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2002-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains input control logic for the JPEG decompressor. - * These routines are concerned with controlling the decompressor's input - * processing (marker reading and coefficient decoding). The actual input - * reading is done in jdmarker.c, jdhuff.c, and jdarith.c. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Private state */ - -typedef struct { - struct jpeg_input_controller pub; /* public fields */ - - int inheaders; /* Nonzero until first SOS is reached */ -} my_input_controller; - -typedef my_input_controller * my_inputctl_ptr; - - -/* Forward declarations */ -METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo)); - - -/* - * Routines to calculate various quantities related to the size of the image. - */ - - -/* - * Compute output image dimensions and related values. - * NOTE: this is exported for possible use by application. - * Hence it mustn't do anything that can't be done twice. - */ - -GLOBAL(void) -jpeg_core_output_dimensions (j_decompress_ptr cinfo) -/* Do computations that are needed before master selection phase. - * This function is used for transcoding and full decompression. - */ -{ -#ifdef IDCT_SCALING_SUPPORTED - int ci; - jpeg_component_info *compptr; - - /* Compute actual output image dimensions and DCT scaling choices. */ - if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) { - /* Provide 1/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 1; - cinfo->min_DCT_v_scaled_size = 1; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) { - /* Provide 2/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 2; - cinfo->min_DCT_v_scaled_size = 2; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) { - /* Provide 3/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 3; - cinfo->min_DCT_v_scaled_size = 3; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) { - /* Provide 4/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 4; - cinfo->min_DCT_v_scaled_size = 4; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) { - /* Provide 5/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 5; - cinfo->min_DCT_v_scaled_size = 5; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) { - /* Provide 6/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 6; - cinfo->min_DCT_v_scaled_size = 6; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) { - /* Provide 7/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 7; - cinfo->min_DCT_v_scaled_size = 7; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) { - /* Provide 8/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 8; - cinfo->min_DCT_v_scaled_size = 8; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) { - /* Provide 9/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 9; - cinfo->min_DCT_v_scaled_size = 9; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) { - /* Provide 10/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 10; - cinfo->min_DCT_v_scaled_size = 10; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) { - /* Provide 11/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 11; - cinfo->min_DCT_v_scaled_size = 11; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) { - /* Provide 12/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 12; - cinfo->min_DCT_v_scaled_size = 12; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) { - /* Provide 13/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 13; - cinfo->min_DCT_v_scaled_size = 13; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) { - /* Provide 14/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 14; - cinfo->min_DCT_v_scaled_size = 14; - } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) { - /* Provide 15/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 15; - cinfo->min_DCT_v_scaled_size = 15; - } else { - /* Provide 16/block_size scaling */ - cinfo->output_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size); - cinfo->output_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size); - cinfo->min_DCT_h_scaled_size = 16; - cinfo->min_DCT_v_scaled_size = 16; - } - - /* Recompute dimensions of components */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size; - compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size; - } - -#else /* !IDCT_SCALING_SUPPORTED */ - - /* Hardwire it to "no scaling" */ - cinfo->output_width = cinfo->image_width; - cinfo->output_height = cinfo->image_height; - /* jdinput.c has already initialized DCT_scaled_size, - * and has computed unscaled downsampled_width and downsampled_height. - */ - -#endif /* IDCT_SCALING_SUPPORTED */ -} - - -LOCAL(void) -initial_setup (j_decompress_ptr cinfo) -/* Called once, when first SOS marker is reached */ -{ - int ci; - jpeg_component_info *compptr; - - /* Make sure image isn't bigger than I can handle */ - if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || - (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) - ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); - - /* For now, precision must match compiled-in value... */ - if (cinfo->data_precision != BITS_IN_JSAMPLE) - ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); - - /* Check that number of components won't exceed internal array sizes */ - if (cinfo->num_components > MAX_COMPONENTS) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, - MAX_COMPONENTS); - - /* Compute maximum sampling factors; check factor validity */ - cinfo->max_h_samp_factor = 1; - cinfo->max_v_samp_factor = 1; - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || - compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) - ERREXIT(cinfo, JERR_BAD_SAMPLING); - cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, - compptr->h_samp_factor); - cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, - compptr->v_samp_factor); - } - - /* Derive block_size, natural_order, and lim_Se */ - if (cinfo->is_baseline || (cinfo->progressive_mode && - cinfo->comps_in_scan)) { /* no pseudo SOS marker */ - cinfo->block_size = DCTSIZE; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - } else - switch (cinfo->Se) { - case (1*1-1): - cinfo->block_size = 1; - cinfo->natural_order = jpeg_natural_order; /* not needed */ - cinfo->lim_Se = cinfo->Se; - break; - case (2*2-1): - cinfo->block_size = 2; - cinfo->natural_order = jpeg_natural_order2; - cinfo->lim_Se = cinfo->Se; - break; - case (3*3-1): - cinfo->block_size = 3; - cinfo->natural_order = jpeg_natural_order3; - cinfo->lim_Se = cinfo->Se; - break; - case (4*4-1): - cinfo->block_size = 4; - cinfo->natural_order = jpeg_natural_order4; - cinfo->lim_Se = cinfo->Se; - break; - case (5*5-1): - cinfo->block_size = 5; - cinfo->natural_order = jpeg_natural_order5; - cinfo->lim_Se = cinfo->Se; - break; - case (6*6-1): - cinfo->block_size = 6; - cinfo->natural_order = jpeg_natural_order6; - cinfo->lim_Se = cinfo->Se; - break; - case (7*7-1): - cinfo->block_size = 7; - cinfo->natural_order = jpeg_natural_order7; - cinfo->lim_Se = cinfo->Se; - break; - case (8*8-1): - cinfo->block_size = 8; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (9*9-1): - cinfo->block_size = 9; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (10*10-1): - cinfo->block_size = 10; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (11*11-1): - cinfo->block_size = 11; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (12*12-1): - cinfo->block_size = 12; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (13*13-1): - cinfo->block_size = 13; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (14*14-1): - cinfo->block_size = 14; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (15*15-1): - cinfo->block_size = 15; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - case (16*16-1): - cinfo->block_size = 16; - cinfo->natural_order = jpeg_natural_order; - cinfo->lim_Se = DCTSIZE2-1; - break; - default: - ERREXIT4(cinfo, JERR_BAD_PROGRESSION, - cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); - break; - } - - /* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size. - * In the full decompressor, - * this will be overridden by jpeg_calc_output_dimensions in jdmaster.c; - * but in the transcoder, - * jpeg_calc_output_dimensions is not used, so we must do it here. - */ - cinfo->min_DCT_h_scaled_size = cinfo->block_size; - cinfo->min_DCT_v_scaled_size = cinfo->block_size; - - /* Compute dimensions of components */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - compptr->DCT_h_scaled_size = cinfo->block_size; - compptr->DCT_v_scaled_size = cinfo->block_size; - /* Size in DCT blocks */ - compptr->width_in_blocks = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, - (long) (cinfo->max_h_samp_factor * cinfo->block_size)); - compptr->height_in_blocks = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - /* downsampled_width and downsampled_height will also be overridden by - * jdmaster.c if we are doing full decompression. The transcoder library - * doesn't use these values, but the calling application might. - */ - /* Size in samples */ - compptr->downsampled_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, - (long) cinfo->max_h_samp_factor); - compptr->downsampled_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, - (long) cinfo->max_v_samp_factor); - /* Mark component needed, until color conversion says otherwise */ - compptr->component_needed = TRUE; - /* Mark no quantization table yet saved for component */ - compptr->quant_table = NULL; - } - - /* Compute number of fully interleaved MCU rows. */ - cinfo->total_iMCU_rows = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height, - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - - /* Decide whether file contains multiple scans */ - if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) - cinfo->inputctl->has_multiple_scans = TRUE; - else - cinfo->inputctl->has_multiple_scans = FALSE; -} - - -LOCAL(void) -per_scan_setup (j_decompress_ptr cinfo) -/* Do computations that are needed before processing a JPEG scan */ -/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ -{ - int ci, mcublks, tmp; - jpeg_component_info *compptr; - - if (cinfo->comps_in_scan == 1) { - - /* Noninterleaved (single-component) scan */ - compptr = cinfo->cur_comp_info[0]; - - /* Overall image size in MCUs */ - cinfo->MCUs_per_row = compptr->width_in_blocks; - cinfo->MCU_rows_in_scan = compptr->height_in_blocks; - - /* For noninterleaved scan, always one block per MCU */ - compptr->MCU_width = 1; - compptr->MCU_height = 1; - compptr->MCU_blocks = 1; - compptr->MCU_sample_width = compptr->DCT_h_scaled_size; - compptr->last_col_width = 1; - /* For noninterleaved scans, it is convenient to define last_row_height - * as the number of block rows present in the last iMCU row. - */ - tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); - if (tmp == 0) tmp = compptr->v_samp_factor; - compptr->last_row_height = tmp; - - /* Prepare array describing MCU composition */ - cinfo->blocks_in_MCU = 1; - cinfo->MCU_membership[0] = 0; - - } else { - - /* Interleaved (multi-component) scan */ - if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, - MAX_COMPS_IN_SCAN); - - /* Overall image size in MCUs */ - cinfo->MCUs_per_row = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width, - (long) (cinfo->max_h_samp_factor * cinfo->block_size)); - cinfo->MCU_rows_in_scan = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height, - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - - cinfo->blocks_in_MCU = 0; - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Sampling factors give # of blocks of component in each MCU */ - compptr->MCU_width = compptr->h_samp_factor; - compptr->MCU_height = compptr->v_samp_factor; - compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; - compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; - /* Figure number of non-dummy blocks in last MCU column & row */ - tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); - if (tmp == 0) tmp = compptr->MCU_width; - compptr->last_col_width = tmp; - tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); - if (tmp == 0) tmp = compptr->MCU_height; - compptr->last_row_height = tmp; - /* Prepare array describing MCU composition */ - mcublks = compptr->MCU_blocks; - if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) - ERREXIT(cinfo, JERR_BAD_MCU_SIZE); - while (mcublks-- > 0) { - cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; - } - } - - } -} - - -/* - * Save away a copy of the Q-table referenced by each component present - * in the current scan, unless already saved during a prior scan. - * - * In a multiple-scan JPEG file, the encoder could assign different components - * the same Q-table slot number, but change table definitions between scans - * so that each component uses a different Q-table. (The IJG encoder is not - * currently capable of doing this, but other encoders might.) Since we want - * to be able to dequantize all the components at the end of the file, this - * means that we have to save away the table actually used for each component. - * We do this by copying the table at the start of the first scan containing - * the component. - * The JPEG spec prohibits the encoder from changing the contents of a Q-table - * slot between scans of a component using that slot. If the encoder does so - * anyway, this decoder will simply use the Q-table values that were current - * at the start of the first scan for the component. - * - * The decompressor output side looks only at the saved quant tables, - * not at the current Q-table slots. - */ - -LOCAL(void) -latch_quant_tables (j_decompress_ptr cinfo) -{ - int ci, qtblno; - jpeg_component_info *compptr; - JQUANT_TBL * qtbl; - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* No work if we already saved Q-table for this component */ - if (compptr->quant_table != NULL) - continue; - /* Make sure specified quantization table is present */ - qtblno = compptr->quant_tbl_no; - if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || - cinfo->quant_tbl_ptrs[qtblno] == NULL) - ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); - /* OK, save away the quantization table */ - qtbl = (JQUANT_TBL *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(JQUANT_TBL)); - MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); - compptr->quant_table = qtbl; - } -} - - -/* - * Initialize the input modules to read a scan of compressed data. - * The first call to this is done by jdmaster.c after initializing - * the entire decompressor (during jpeg_start_decompress). - * Subsequent calls come from consume_markers, below. - */ - -METHODDEF(void) -start_input_pass (j_decompress_ptr cinfo) -{ - per_scan_setup(cinfo); - latch_quant_tables(cinfo); - (*cinfo->entropy->start_pass) (cinfo); - (*cinfo->coef->start_input_pass) (cinfo); - cinfo->inputctl->consume_input = cinfo->coef->consume_data; -} - - -/* - * Finish up after inputting a compressed-data scan. - * This is called by the coefficient controller after it's read all - * the expected data of the scan. - */ - -METHODDEF(void) -finish_input_pass (j_decompress_ptr cinfo) -{ - cinfo->inputctl->consume_input = consume_markers; -} - - -/* - * Read JPEG markers before, between, or after compressed-data scans. - * Change state as necessary when a new scan is reached. - * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. - * - * The consume_input method pointer points either here or to the - * coefficient controller's consume_data routine, depending on whether - * we are reading a compressed data segment or inter-segment markers. - * - * Note: This function should NOT return a pseudo SOS marker (with zero - * component number) to the caller. A pseudo marker received by - * read_markers is processed and then skipped for other markers. - */ - -METHODDEF(int) -consume_markers (j_decompress_ptr cinfo) -{ - my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; - int val; - - if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ - return JPEG_REACHED_EOI; - - for (;;) { /* Loop to pass pseudo SOS marker */ - val = (*cinfo->marker->read_markers) (cinfo); - - switch (val) { - case JPEG_REACHED_SOS: /* Found SOS */ - if (inputctl->inheaders) { /* 1st SOS */ - if (inputctl->inheaders == 1) - initial_setup(cinfo); - if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */ - inputctl->inheaders = 2; - break; - } - inputctl->inheaders = 0; - /* Note: start_input_pass must be called by jdmaster.c - * before any more input can be consumed. jdapimin.c is - * responsible for enforcing this sequencing. - */ - } else { /* 2nd or later SOS marker */ - if (! inputctl->pub.has_multiple_scans) - ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ - if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */ - break; - start_input_pass(cinfo); - } - return val; - case JPEG_REACHED_EOI: /* Found EOI */ - inputctl->pub.eoi_reached = TRUE; - if (inputctl->inheaders) { /* Tables-only datastream, apparently */ - if (cinfo->marker->saw_SOF) - ERREXIT(cinfo, JERR_SOF_NO_SOS); - } else { - /* Prevent infinite loop in coef ctlr's decompress_data routine - * if user set output_scan_number larger than number of scans. - */ - if (cinfo->output_scan_number > cinfo->input_scan_number) - cinfo->output_scan_number = cinfo->input_scan_number; - } - return val; - case JPEG_SUSPENDED: - return val; - default: - return val; - } - } -} - - -/* - * Reset state to begin a fresh datastream. - */ - -METHODDEF(void) -reset_input_controller (j_decompress_ptr cinfo) -{ - my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; - - inputctl->pub.consume_input = consume_markers; - inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ - inputctl->pub.eoi_reached = FALSE; - inputctl->inheaders = 1; - /* Reset other modules */ - (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); - (*cinfo->marker->reset_marker_reader) (cinfo); - /* Reset progression state -- would be cleaner if entropy decoder did this */ - cinfo->coef_bits = NULL; -} - - -/* - * Initialize the input controller module. - * This is called only once, when the decompression object is created. - */ - -GLOBAL(void) -jinit_input_controller (j_decompress_ptr cinfo) -{ - my_inputctl_ptr inputctl; - - /* Create subobject in permanent pool */ - inputctl = (my_inputctl_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - SIZEOF(my_input_controller)); - cinfo->inputctl = (struct jpeg_input_controller *) inputctl; - /* Initialize method pointers */ - inputctl->pub.consume_input = consume_markers; - inputctl->pub.reset_input_controller = reset_input_controller; - inputctl->pub.start_input_pass = start_input_pass; - inputctl->pub.finish_input_pass = finish_input_pass; - /* Initialize state: can't use reset_input_controller since we don't - * want to try to reset other modules yet. - */ - inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ - inputctl->pub.eoi_reached = FALSE; - inputctl->inheaders = 1; -} diff --git a/src/jpeg-8c/jdmainct.c b/src/jpeg-8c/jdmainct.c deleted file mode 100644 index c04e8223..00000000 --- a/src/jpeg-8c/jdmainct.c +++ /dev/null @@ -1,512 +0,0 @@ -/* - * jdmainct.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the main buffer controller for decompression. - * The main buffer lies between the JPEG decompressor proper and the - * post-processor; it holds downsampled data in the JPEG colorspace. - * - * Note that this code is bypassed in raw-data mode, since the application - * supplies the equivalent of the main buffer in that case. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * In the current system design, the main buffer need never be a full-image - * buffer; any full-height buffers will be found inside the coefficient or - * postprocessing controllers. Nonetheless, the main controller is not - * trivial. Its responsibility is to provide context rows for upsampling/ - * rescaling, and doing this in an efficient fashion is a bit tricky. - * - * Postprocessor input data is counted in "row groups". A row group - * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) - * sample rows of each component. (We require DCT_scaled_size values to be - * chosen such that these numbers are integers. In practice DCT_scaled_size - * values will likely be powers of two, so we actually have the stronger - * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) - * Upsampling will typically produce max_v_samp_factor pixel rows from each - * row group (times any additional scale factor that the upsampler is - * applying). - * - * The coefficient controller will deliver data to us one iMCU row at a time; - * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or - * exactly min_DCT_scaled_size row groups. (This amount of data corresponds - * to one row of MCUs when the image is fully interleaved.) Note that the - * number of sample rows varies across components, but the number of row - * groups does not. Some garbage sample rows may be included in the last iMCU - * row at the bottom of the image. - * - * Depending on the vertical scaling algorithm used, the upsampler may need - * access to the sample row(s) above and below its current input row group. - * The upsampler is required to set need_context_rows TRUE at global selection - * time if so. When need_context_rows is FALSE, this controller can simply - * obtain one iMCU row at a time from the coefficient controller and dole it - * out as row groups to the postprocessor. - * - * When need_context_rows is TRUE, this controller guarantees that the buffer - * passed to postprocessing contains at least one row group's worth of samples - * above and below the row group(s) being processed. Note that the context - * rows "above" the first passed row group appear at negative row offsets in - * the passed buffer. At the top and bottom of the image, the required - * context rows are manufactured by duplicating the first or last real sample - * row; this avoids having special cases in the upsampling inner loops. - * - * The amount of context is fixed at one row group just because that's a - * convenient number for this controller to work with. The existing - * upsamplers really only need one sample row of context. An upsampler - * supporting arbitrary output rescaling might wish for more than one row - * group of context when shrinking the image; tough, we don't handle that. - * (This is justified by the assumption that downsizing will be handled mostly - * by adjusting the DCT_scaled_size values, so that the actual scale factor at - * the upsample step needn't be much less than one.) - * - * To provide the desired context, we have to retain the last two row groups - * of one iMCU row while reading in the next iMCU row. (The last row group - * can't be processed until we have another row group for its below-context, - * and so we have to save the next-to-last group too for its above-context.) - * We could do this most simply by copying data around in our buffer, but - * that'd be very slow. We can avoid copying any data by creating a rather - * strange pointer structure. Here's how it works. We allocate a workspace - * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number - * of row groups per iMCU row). We create two sets of redundant pointers to - * the workspace. Labeling the physical row groups 0 to M+1, the synthesized - * pointer lists look like this: - * M+1 M-1 - * master pointer --> 0 master pointer --> 0 - * 1 1 - * ... ... - * M-3 M-3 - * M-2 M - * M-1 M+1 - * M M-2 - * M+1 M-1 - * 0 0 - * We read alternate iMCU rows using each master pointer; thus the last two - * row groups of the previous iMCU row remain un-overwritten in the workspace. - * The pointer lists are set up so that the required context rows appear to - * be adjacent to the proper places when we pass the pointer lists to the - * upsampler. - * - * The above pictures describe the normal state of the pointer lists. - * At top and bottom of the image, we diddle the pointer lists to duplicate - * the first or last sample row as necessary (this is cheaper than copying - * sample rows around). - * - * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that - * situation each iMCU row provides only one row group so the buffering logic - * must be different (eg, we must read two iMCU rows before we can emit the - * first row group). For now, we simply do not support providing context - * rows when min_DCT_scaled_size is 1. That combination seems unlikely to - * be worth providing --- if someone wants a 1/8th-size preview, they probably - * want it quick and dirty, so a context-free upsampler is sufficient. - */ - - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_d_main_controller pub; /* public fields */ - - /* Pointer to allocated workspace (M or M+2 row groups). */ - JSAMPARRAY buffer[MAX_COMPONENTS]; - - boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ - JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ - - /* Remaining fields are only used in the context case. */ - - /* These are the master pointers to the funny-order pointer lists. */ - JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ - - int whichptr; /* indicates which pointer set is now in use */ - int context_state; /* process_data state machine status */ - JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ - JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ -} my_main_controller; - -typedef my_main_controller * my_main_ptr; - -/* context_state values: */ -#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ -#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ -#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ - - -/* Forward declarations */ -METHODDEF(void) process_data_simple_main - JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, - JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); -METHODDEF(void) process_data_context_main - JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, - JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); -#ifdef QUANT_2PASS_SUPPORTED -METHODDEF(void) process_data_crank_post - JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, - JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); -#endif - - -LOCAL(void) -alloc_funny_pointers (j_decompress_ptr cinfo) -/* Allocate space for the funny pointer lists. - * This is done only once, not once per pass. - */ -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, rgroup; - int M = cinfo->min_DCT_v_scaled_size; - jpeg_component_info *compptr; - JSAMPARRAY xbuf; - - /* Get top-level space for component array pointers. - * We alloc both arrays with one call to save a few cycles. - */ - main_ptr->xbuffer[0] = (JSAMPIMAGE) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); - main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ - /* Get space for pointer lists --- M+4 row groups in each list. - * We alloc both pointer lists with one call to save a few cycles. - */ - xbuf = (JSAMPARRAY) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); - xbuf += rgroup; /* want one row group at negative offsets */ - main_ptr->xbuffer[0][ci] = xbuf; - xbuf += rgroup * (M + 4); - main_ptr->xbuffer[1][ci] = xbuf; - } -} - - -LOCAL(void) -make_funny_pointers (j_decompress_ptr cinfo) -/* Create the funny pointer lists discussed in the comments above. - * The actual workspace is already allocated (in main_ptr->buffer), - * and the space for the pointer lists is allocated too. - * This routine just fills in the curiously ordered lists. - * This will be repeated at the beginning of each pass. - */ -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, i, rgroup; - int M = cinfo->min_DCT_v_scaled_size; - jpeg_component_info *compptr; - JSAMPARRAY buf, xbuf0, xbuf1; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ - xbuf0 = main_ptr->xbuffer[0][ci]; - xbuf1 = main_ptr->xbuffer[1][ci]; - /* First copy the workspace pointers as-is */ - buf = main_ptr->buffer[ci]; - for (i = 0; i < rgroup * (M + 2); i++) { - xbuf0[i] = xbuf1[i] = buf[i]; - } - /* In the second list, put the last four row groups in swapped order */ - for (i = 0; i < rgroup * 2; i++) { - xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; - xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; - } - /* The wraparound pointers at top and bottom will be filled later - * (see set_wraparound_pointers, below). Initially we want the "above" - * pointers to duplicate the first actual data line. This only needs - * to happen in xbuffer[0]. - */ - for (i = 0; i < rgroup; i++) { - xbuf0[i - rgroup] = xbuf0[0]; - } - } -} - - -LOCAL(void) -set_wraparound_pointers (j_decompress_ptr cinfo) -/* Set up the "wraparound" pointers at top and bottom of the pointer lists. - * This changes the pointer list state from top-of-image to the normal state. - */ -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, i, rgroup; - int M = cinfo->min_DCT_v_scaled_size; - jpeg_component_info *compptr; - JSAMPARRAY xbuf0, xbuf1; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ - xbuf0 = main_ptr->xbuffer[0][ci]; - xbuf1 = main_ptr->xbuffer[1][ci]; - for (i = 0; i < rgroup; i++) { - xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; - xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; - xbuf0[rgroup*(M+2) + i] = xbuf0[i]; - xbuf1[rgroup*(M+2) + i] = xbuf1[i]; - } - } -} - - -LOCAL(void) -set_bottom_pointers (j_decompress_ptr cinfo) -/* Change the pointer lists to duplicate the last sample row at the bottom - * of the image. whichptr indicates which xbuffer holds the final iMCU row. - * Also sets rowgroups_avail to indicate number of nondummy row groups in row. - */ -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - int ci, i, rgroup, iMCUheight, rows_left; - jpeg_component_info *compptr; - JSAMPARRAY xbuf; - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Count sample rows in one iMCU row and in one row group */ - iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size; - rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size; - /* Count nondummy sample rows remaining for this component */ - rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); - if (rows_left == 0) rows_left = iMCUheight; - /* Count nondummy row groups. Should get same answer for each component, - * so we need only do it once. - */ - if (ci == 0) { - main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); - } - /* Duplicate the last real sample row rgroup*2 times; this pads out the - * last partial rowgroup and ensures at least one full rowgroup of context. - */ - xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci]; - for (i = 0; i < rgroup * 2; i++) { - xbuf[rows_left + i] = xbuf[rows_left-1]; - } - } -} - - -/* - * Initialize for a processing pass. - */ - -METHODDEF(void) -start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - switch (pass_mode) { - case JBUF_PASS_THRU: - if (cinfo->upsample->need_context_rows) { - main_ptr->pub.process_data = process_data_context_main; - make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ - main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ - main_ptr->context_state = CTX_PREPARE_FOR_IMCU; - main_ptr->iMCU_row_ctr = 0; - } else { - /* Simple case with no context needed */ - main_ptr->pub.process_data = process_data_simple_main; - } - main_ptr->buffer_full = FALSE; /* Mark buffer empty */ - main_ptr->rowgroup_ctr = 0; - break; -#ifdef QUANT_2PASS_SUPPORTED - case JBUF_CRANK_DEST: - /* For last pass of 2-pass quantization, just crank the postprocessor */ - main_ptr->pub.process_data = process_data_crank_post; - break; -#endif - default: - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - break; - } -} - - -/* - * Process some data. - * This handles the simple case where no context is required. - */ - -METHODDEF(void) -process_data_simple_main (j_decompress_ptr cinfo, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - JDIMENSION rowgroups_avail; - - /* Read input data if we haven't filled the main buffer yet */ - if (! main_ptr->buffer_full) { - if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer)) - return; /* suspension forced, can do nothing more */ - main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ - } - - /* There are always min_DCT_scaled_size row groups in an iMCU row. */ - rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size; - /* Note: at the bottom of the image, we may pass extra garbage row groups - * to the postprocessor. The postprocessor has to check for bottom - * of image anyway (at row resolution), so no point in us doing it too. - */ - - /* Feed the postprocessor */ - (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer, - &main_ptr->rowgroup_ctr, rowgroups_avail, - output_buf, out_row_ctr, out_rows_avail); - - /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ - if (main_ptr->rowgroup_ctr >= rowgroups_avail) { - main_ptr->buffer_full = FALSE; - main_ptr->rowgroup_ctr = 0; - } -} - - -/* - * Process some data. - * This handles the case where context rows must be provided. - */ - -METHODDEF(void) -process_data_context_main (j_decompress_ptr cinfo, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - my_main_ptr main_ptr = (my_main_ptr) cinfo->main; - - /* Read input data if we haven't filled the main buffer yet */ - if (! main_ptr->buffer_full) { - if (! (*cinfo->coef->decompress_data) (cinfo, - main_ptr->xbuffer[main_ptr->whichptr])) - return; /* suspension forced, can do nothing more */ - main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ - main_ptr->iMCU_row_ctr++; /* count rows received */ - } - - /* Postprocessor typically will not swallow all the input data it is handed - * in one call (due to filling the output buffer first). Must be prepared - * to exit and restart. This switch lets us keep track of how far we got. - * Note that each case falls through to the next on successful completion. - */ - switch (main_ptr->context_state) { - case CTX_POSTPONED_ROW: - /* Call postprocessor using previously set pointers for postponed row */ - (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], - &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, - output_buf, out_row_ctr, out_rows_avail); - if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) - return; /* Need to suspend */ - main_ptr->context_state = CTX_PREPARE_FOR_IMCU; - if (*out_row_ctr >= out_rows_avail) - return; /* Postprocessor exactly filled output buf */ - /*FALLTHROUGH*/ - case CTX_PREPARE_FOR_IMCU: - /* Prepare to process first M-1 row groups of this iMCU row */ - main_ptr->rowgroup_ctr = 0; - main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); - /* Check for bottom of image: if so, tweak pointers to "duplicate" - * the last sample row, and adjust rowgroups_avail to ignore padding rows. - */ - if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows) - set_bottom_pointers(cinfo); - main_ptr->context_state = CTX_PROCESS_IMCU; - /*FALLTHROUGH*/ - case CTX_PROCESS_IMCU: - /* Call postprocessor using previously set pointers */ - (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], - &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, - output_buf, out_row_ctr, out_rows_avail); - if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) - return; /* Need to suspend */ - /* After the first iMCU, change wraparound pointers to normal state */ - if (main_ptr->iMCU_row_ctr == 1) - set_wraparound_pointers(cinfo); - /* Prepare to load new iMCU row using other xbuffer list */ - main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */ - main_ptr->buffer_full = FALSE; - /* Still need to process last row group of this iMCU row, */ - /* which is saved at index M+1 of the other xbuffer */ - main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); - main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); - main_ptr->context_state = CTX_POSTPONED_ROW; - } -} - - -/* - * Process some data. - * Final pass of two-pass quantization: just call the postprocessor. - * Source data will be the postprocessor controller's internal buffer. - */ - -#ifdef QUANT_2PASS_SUPPORTED - -METHODDEF(void) -process_data_crank_post (j_decompress_ptr cinfo, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, - (JDIMENSION *) NULL, (JDIMENSION) 0, - output_buf, out_row_ctr, out_rows_avail); -} - -#endif /* QUANT_2PASS_SUPPORTED */ - - -/* - * Initialize main buffer controller. - */ - -GLOBAL(void) -jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) -{ - my_main_ptr main_ptr; - int ci, rgroup, ngroups; - jpeg_component_info *compptr; - - main_ptr = (my_main_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_main_controller)); - cinfo->main = (struct jpeg_d_main_controller *) main_ptr; - main_ptr->pub.start_pass = start_pass_main; - - if (need_full_buffer) /* shouldn't happen */ - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - - /* Allocate the workspace. - * ngroups is the number of row groups we need. - */ - if (cinfo->upsample->need_context_rows) { - if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */ - ERREXIT(cinfo, JERR_NOTIMPL); - alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ - ngroups = cinfo->min_DCT_v_scaled_size + 2; - } else { - ngroups = cinfo->min_DCT_v_scaled_size; - } - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ - main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - compptr->width_in_blocks * compptr->DCT_h_scaled_size, - (JDIMENSION) (rgroup * ngroups)); - } -} diff --git a/src/jpeg-8c/jdmarker.c b/src/jpeg-8c/jdmarker.c deleted file mode 100644 index f2a9cc42..00000000 --- a/src/jpeg-8c/jdmarker.c +++ /dev/null @@ -1,1406 +0,0 @@ -/* - * jdmarker.c - * - * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains routines to decode JPEG datastream markers. - * Most of the complexity arises from our desire to support input - * suspension: if not all of the data for a marker is available, - * we must exit back to the application. On resumption, we reprocess - * the marker. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -typedef enum { /* JPEG marker codes */ - M_SOF0 = 0xc0, - M_SOF1 = 0xc1, - M_SOF2 = 0xc2, - M_SOF3 = 0xc3, - - M_SOF5 = 0xc5, - M_SOF6 = 0xc6, - M_SOF7 = 0xc7, - - M_JPG = 0xc8, - M_SOF9 = 0xc9, - M_SOF10 = 0xca, - M_SOF11 = 0xcb, - - M_SOF13 = 0xcd, - M_SOF14 = 0xce, - M_SOF15 = 0xcf, - - M_DHT = 0xc4, - - M_DAC = 0xcc, - - M_RST0 = 0xd0, - M_RST1 = 0xd1, - M_RST2 = 0xd2, - M_RST3 = 0xd3, - M_RST4 = 0xd4, - M_RST5 = 0xd5, - M_RST6 = 0xd6, - M_RST7 = 0xd7, - - M_SOI = 0xd8, - M_EOI = 0xd9, - M_SOS = 0xda, - M_DQT = 0xdb, - M_DNL = 0xdc, - M_DRI = 0xdd, - M_DHP = 0xde, - M_EXP = 0xdf, - - M_APP0 = 0xe0, - M_APP1 = 0xe1, - M_APP2 = 0xe2, - M_APP3 = 0xe3, - M_APP4 = 0xe4, - M_APP5 = 0xe5, - M_APP6 = 0xe6, - M_APP7 = 0xe7, - M_APP8 = 0xe8, - M_APP9 = 0xe9, - M_APP10 = 0xea, - M_APP11 = 0xeb, - M_APP12 = 0xec, - M_APP13 = 0xed, - M_APP14 = 0xee, - M_APP15 = 0xef, - - M_JPG0 = 0xf0, - M_JPG13 = 0xfd, - M_COM = 0xfe, - - M_TEM = 0x01, - - M_ERROR = 0x100 -} JPEG_MARKER; - - -/* Private state */ - -typedef struct { - struct jpeg_marker_reader pub; /* public fields */ - - /* Application-overridable marker processing methods */ - jpeg_marker_parser_method process_COM; - jpeg_marker_parser_method process_APPn[16]; - - /* Limit on marker data length to save for each marker type */ - unsigned int length_limit_COM; - unsigned int length_limit_APPn[16]; - - /* Status of COM/APPn marker saving */ - jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */ - unsigned int bytes_read; /* data bytes read so far in marker */ - /* Note: cur_marker is not linked into marker_list until it's all read. */ -} my_marker_reader; - -typedef my_marker_reader * my_marker_ptr; - - -/* - * Macros for fetching data from the data source module. - * - * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect - * the current restart point; we update them only when we have reached a - * suitable place to restart if a suspension occurs. - */ - -/* Declare and initialize local copies of input pointer/count */ -#define INPUT_VARS(cinfo) \ - struct jpeg_source_mgr * datasrc = (cinfo)->src; \ - const JOCTET * next_input_byte = datasrc->next_input_byte; \ - size_t bytes_in_buffer = datasrc->bytes_in_buffer - -/* Unload the local copies --- do this only at a restart boundary */ -#define INPUT_SYNC(cinfo) \ - ( datasrc->next_input_byte = next_input_byte, \ - datasrc->bytes_in_buffer = bytes_in_buffer ) - -/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */ -#define INPUT_RELOAD(cinfo) \ - ( next_input_byte = datasrc->next_input_byte, \ - bytes_in_buffer = datasrc->bytes_in_buffer ) - -/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available. - * Note we do *not* do INPUT_SYNC before calling fill_input_buffer, - * but we must reload the local copies after a successful fill. - */ -#define MAKE_BYTE_AVAIL(cinfo,action) \ - if (bytes_in_buffer == 0) { \ - if (! (*datasrc->fill_input_buffer) (cinfo)) \ - { action; } \ - INPUT_RELOAD(cinfo); \ - } - -/* Read a byte into variable V. - * If must suspend, take the specified action (typically "return FALSE"). - */ -#define INPUT_BYTE(cinfo,V,action) \ - MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ - bytes_in_buffer--; \ - V = GETJOCTET(*next_input_byte++); ) - -/* As above, but read two bytes interpreted as an unsigned 16-bit integer. - * V should be declared unsigned int or perhaps INT32. - */ -#define INPUT_2BYTES(cinfo,V,action) \ - MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ - bytes_in_buffer--; \ - V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \ - MAKE_BYTE_AVAIL(cinfo,action); \ - bytes_in_buffer--; \ - V += GETJOCTET(*next_input_byte++); ) - - -/* - * Routines to process JPEG markers. - * - * Entry condition: JPEG marker itself has been read and its code saved - * in cinfo->unread_marker; input restart point is just after the marker. - * - * Exit: if return TRUE, have read and processed any parameters, and have - * updated the restart point to point after the parameters. - * If return FALSE, was forced to suspend before reaching end of - * marker parameters; restart point has not been moved. Same routine - * will be called again after application supplies more input data. - * - * This approach to suspension assumes that all of a marker's parameters - * can fit into a single input bufferload. This should hold for "normal" - * markers. Some COM/APPn markers might have large parameter segments - * that might not fit. If we are simply dropping such a marker, we use - * skip_input_data to get past it, and thereby put the problem on the - * source manager's shoulders. If we are saving the marker's contents - * into memory, we use a slightly different convention: when forced to - * suspend, the marker processor updates the restart point to the end of - * what it's consumed (ie, the end of the buffer) before returning FALSE. - * On resumption, cinfo->unread_marker still contains the marker code, - * but the data source will point to the next chunk of marker data. - * The marker processor must retain internal state to deal with this. - * - * Note that we don't bother to avoid duplicate trace messages if a - * suspension occurs within marker parameters. Other side effects - * require more care. - */ - - -LOCAL(boolean) -get_soi (j_decompress_ptr cinfo) -/* Process an SOI marker */ -{ - int i; - - TRACEMS(cinfo, 1, JTRC_SOI); - - if (cinfo->marker->saw_SOI) - ERREXIT(cinfo, JERR_SOI_DUPLICATE); - - /* Reset all parameters that are defined to be reset by SOI */ - - for (i = 0; i < NUM_ARITH_TBLS; i++) { - cinfo->arith_dc_L[i] = 0; - cinfo->arith_dc_U[i] = 1; - cinfo->arith_ac_K[i] = 5; - } - cinfo->restart_interval = 0; - - /* Set initial assumptions for colorspace etc */ - - cinfo->jpeg_color_space = JCS_UNKNOWN; - cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */ - - cinfo->saw_JFIF_marker = FALSE; - cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */ - cinfo->JFIF_minor_version = 1; - cinfo->density_unit = 0; - cinfo->X_density = 1; - cinfo->Y_density = 1; - cinfo->saw_Adobe_marker = FALSE; - cinfo->Adobe_transform = 0; - - cinfo->marker->saw_SOI = TRUE; - - return TRUE; -} - - -LOCAL(boolean) -get_sof (j_decompress_ptr cinfo, boolean is_baseline, boolean is_prog, - boolean is_arith) -/* Process a SOFn marker */ -{ - INT32 length; - int c, ci; - jpeg_component_info * compptr; - INPUT_VARS(cinfo); - - cinfo->is_baseline = is_baseline; - cinfo->progressive_mode = is_prog; - cinfo->arith_code = is_arith; - - INPUT_2BYTES(cinfo, length, return FALSE); - - INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE); - INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE); - INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE); - INPUT_BYTE(cinfo, cinfo->num_components, return FALSE); - - length -= 8; - - TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker, - (int) cinfo->image_width, (int) cinfo->image_height, - cinfo->num_components); - - if (cinfo->marker->saw_SOF) - ERREXIT(cinfo, JERR_SOF_DUPLICATE); - - /* We don't support files in which the image height is initially specified */ - /* as 0 and is later redefined by DNL. As long as we have to check that, */ - /* might as well have a general sanity check. */ - if (cinfo->image_height <= 0 || cinfo->image_width <= 0 - || cinfo->num_components <= 0) - ERREXIT(cinfo, JERR_EMPTY_IMAGE); - - if (length != (cinfo->num_components * 3)) - ERREXIT(cinfo, JERR_BAD_LENGTH); - - if (cinfo->comp_info == NULL) /* do only once, even if suspend */ - cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->num_components * SIZEOF(jpeg_component_info)); - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - compptr->component_index = ci; - INPUT_BYTE(cinfo, compptr->component_id, return FALSE); - INPUT_BYTE(cinfo, c, return FALSE); - compptr->h_samp_factor = (c >> 4) & 15; - compptr->v_samp_factor = (c ) & 15; - INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE); - - TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT, - compptr->component_id, compptr->h_samp_factor, - compptr->v_samp_factor, compptr->quant_tbl_no); - } - - cinfo->marker->saw_SOF = TRUE; - - INPUT_SYNC(cinfo); - return TRUE; -} - - -LOCAL(boolean) -get_sos (j_decompress_ptr cinfo) -/* Process a SOS marker */ -{ - INT32 length; - int i, ci, n, c, cc; - jpeg_component_info * compptr; - INPUT_VARS(cinfo); - - if (! cinfo->marker->saw_SOF) - ERREXIT(cinfo, JERR_SOS_NO_SOF); - - INPUT_2BYTES(cinfo, length, return FALSE); - - INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */ - - TRACEMS1(cinfo, 1, JTRC_SOS, n); - - if (length != (n * 2 + 6) || n > MAX_COMPS_IN_SCAN || - (n == 0 && !cinfo->progressive_mode)) - /* pseudo SOS marker only allowed in progressive mode */ - ERREXIT(cinfo, JERR_BAD_LENGTH); - - cinfo->comps_in_scan = n; - - /* Collect the component-spec parameters */ - - for (i = 0; i < n; i++) { - INPUT_BYTE(cinfo, cc, return FALSE); - INPUT_BYTE(cinfo, c, return FALSE); - - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - if (cc == compptr->component_id) - goto id_found; - } - - ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); - - id_found: - - cinfo->cur_comp_info[i] = compptr; - compptr->dc_tbl_no = (c >> 4) & 15; - compptr->ac_tbl_no = (c ) & 15; - - TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc, - compptr->dc_tbl_no, compptr->ac_tbl_no); - } - - /* Collect the additional scan parameters Ss, Se, Ah/Al. */ - INPUT_BYTE(cinfo, c, return FALSE); - cinfo->Ss = c; - INPUT_BYTE(cinfo, c, return FALSE); - cinfo->Se = c; - INPUT_BYTE(cinfo, c, return FALSE); - cinfo->Ah = (c >> 4) & 15; - cinfo->Al = (c ) & 15; - - TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se, - cinfo->Ah, cinfo->Al); - - /* Prepare to scan data & restart markers */ - cinfo->marker->next_restart_num = 0; - - /* Count another (non-pseudo) SOS marker */ - if (n) cinfo->input_scan_number++; - - INPUT_SYNC(cinfo); - return TRUE; -} - - -#ifdef D_ARITH_CODING_SUPPORTED - -LOCAL(boolean) -get_dac (j_decompress_ptr cinfo) -/* Process a DAC marker */ -{ - INT32 length; - int index, val; - INPUT_VARS(cinfo); - - INPUT_2BYTES(cinfo, length, return FALSE); - length -= 2; - - while (length > 0) { - INPUT_BYTE(cinfo, index, return FALSE); - INPUT_BYTE(cinfo, val, return FALSE); - - length -= 2; - - TRACEMS2(cinfo, 1, JTRC_DAC, index, val); - - if (index < 0 || index >= (2*NUM_ARITH_TBLS)) - ERREXIT1(cinfo, JERR_DAC_INDEX, index); - - if (index >= NUM_ARITH_TBLS) { /* define AC table */ - cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val; - } else { /* define DC table */ - cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F); - cinfo->arith_dc_U[index] = (UINT8) (val >> 4); - if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index]) - ERREXIT1(cinfo, JERR_DAC_VALUE, val); - } - } - - if (length != 0) - ERREXIT(cinfo, JERR_BAD_LENGTH); - - INPUT_SYNC(cinfo); - return TRUE; -} - -#else /* ! D_ARITH_CODING_SUPPORTED */ - -#define get_dac(cinfo) skip_variable(cinfo) - -#endif /* D_ARITH_CODING_SUPPORTED */ - - -LOCAL(boolean) -get_dht (j_decompress_ptr cinfo) -/* Process a DHT marker */ -{ - INT32 length; - UINT8 bits[17]; - UINT8 huffval[256]; - int i, index, count; - JHUFF_TBL **htblptr; - INPUT_VARS(cinfo); - - INPUT_2BYTES(cinfo, length, return FALSE); - length -= 2; - - while (length > 16) { - INPUT_BYTE(cinfo, index, return FALSE); - - TRACEMS1(cinfo, 1, JTRC_DHT, index); - - bits[0] = 0; - count = 0; - for (i = 1; i <= 16; i++) { - INPUT_BYTE(cinfo, bits[i], return FALSE); - count += bits[i]; - } - - length -= 1 + 16; - - TRACEMS8(cinfo, 2, JTRC_HUFFBITS, - bits[1], bits[2], bits[3], bits[4], - bits[5], bits[6], bits[7], bits[8]); - TRACEMS8(cinfo, 2, JTRC_HUFFBITS, - bits[9], bits[10], bits[11], bits[12], - bits[13], bits[14], bits[15], bits[16]); - - /* Here we just do minimal validation of the counts to avoid walking - * off the end of our table space. jdhuff.c will check more carefully. - */ - if (count > 256 || ((INT32) count) > length) - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); - - for (i = 0; i < count; i++) - INPUT_BYTE(cinfo, huffval[i], return FALSE); - - length -= count; - - if (index & 0x10) { /* AC table definition */ - index -= 0x10; - htblptr = &cinfo->ac_huff_tbl_ptrs[index]; - } else { /* DC table definition */ - htblptr = &cinfo->dc_huff_tbl_ptrs[index]; - } - - if (index < 0 || index >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_DHT_INDEX, index); - - if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); - - MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); - MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval)); - } - - if (length != 0) - ERREXIT(cinfo, JERR_BAD_LENGTH); - - INPUT_SYNC(cinfo); - return TRUE; -} - - -LOCAL(boolean) -get_dqt (j_decompress_ptr cinfo) -/* Process a DQT marker */ -{ - INT32 length, count, i; - int n, prec; - unsigned int tmp; - JQUANT_TBL *quant_ptr; - const int *natural_order; - INPUT_VARS(cinfo); - - INPUT_2BYTES(cinfo, length, return FALSE); - length -= 2; - - while (length > 0) { - length--; - INPUT_BYTE(cinfo, n, return FALSE); - prec = n >> 4; - n &= 0x0F; - - TRACEMS2(cinfo, 1, JTRC_DQT, n, prec); - - if (n >= NUM_QUANT_TBLS) - ERREXIT1(cinfo, JERR_DQT_INDEX, n); - - if (cinfo->quant_tbl_ptrs[n] == NULL) - cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo); - quant_ptr = cinfo->quant_tbl_ptrs[n]; - - if (prec) { - if (length < DCTSIZE2 * 2) { - /* Initialize full table for safety. */ - for (i = 0; i < DCTSIZE2; i++) { - quant_ptr->quantval[i] = 1; - } - count = length >> 1; - } else - count = DCTSIZE2; - } else { - if (length < DCTSIZE2) { - /* Initialize full table for safety. */ - for (i = 0; i < DCTSIZE2; i++) { - quant_ptr->quantval[i] = 1; - } - count = length; - } else - count = DCTSIZE2; - } - - switch (count) { - case (2*2): natural_order = jpeg_natural_order2; break; - case (3*3): natural_order = jpeg_natural_order3; break; - case (4*4): natural_order = jpeg_natural_order4; break; - case (5*5): natural_order = jpeg_natural_order5; break; - case (6*6): natural_order = jpeg_natural_order6; break; - case (7*7): natural_order = jpeg_natural_order7; break; - default: natural_order = jpeg_natural_order; break; - } - - for (i = 0; i < count; i++) { - if (prec) - INPUT_2BYTES(cinfo, tmp, return FALSE); - else - INPUT_BYTE(cinfo, tmp, return FALSE); - /* We convert the zigzag-order table to natural array order. */ - quant_ptr->quantval[natural_order[i]] = (UINT16) tmp; - } - - if (cinfo->err->trace_level >= 2) { - for (i = 0; i < DCTSIZE2; i += 8) { - TRACEMS8(cinfo, 2, JTRC_QUANTVALS, - quant_ptr->quantval[i], quant_ptr->quantval[i+1], - quant_ptr->quantval[i+2], quant_ptr->quantval[i+3], - quant_ptr->quantval[i+4], quant_ptr->quantval[i+5], - quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]); - } - } - - length -= count; - if (prec) length -= count; - } - - if (length != 0) - ERREXIT(cinfo, JERR_BAD_LENGTH); - - INPUT_SYNC(cinfo); - return TRUE; -} - - -LOCAL(boolean) -get_dri (j_decompress_ptr cinfo) -/* Process a DRI marker */ -{ - INT32 length; - unsigned int tmp; - INPUT_VARS(cinfo); - - INPUT_2BYTES(cinfo, length, return FALSE); - - if (length != 4) - ERREXIT(cinfo, JERR_BAD_LENGTH); - - INPUT_2BYTES(cinfo, tmp, return FALSE); - - TRACEMS1(cinfo, 1, JTRC_DRI, tmp); - - cinfo->restart_interval = tmp; - - INPUT_SYNC(cinfo); - return TRUE; -} - - -/* - * Routines for processing APPn and COM markers. - * These are either saved in memory or discarded, per application request. - * APP0 and APP14 are specially checked to see if they are - * JFIF and Adobe markers, respectively. - */ - -#define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */ -#define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */ -#define APPN_DATA_LEN 14 /* Must be the largest of the above!! */ - - -LOCAL(void) -examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data, - unsigned int datalen, INT32 remaining) -/* Examine first few bytes from an APP0. - * Take appropriate action if it is a JFIF marker. - * datalen is # of bytes at data[], remaining is length of rest of marker data. - */ -{ - INT32 totallen = (INT32) datalen + remaining; - - if (datalen >= APP0_DATA_LEN && - GETJOCTET(data[0]) == 0x4A && - GETJOCTET(data[1]) == 0x46 && - GETJOCTET(data[2]) == 0x49 && - GETJOCTET(data[3]) == 0x46 && - GETJOCTET(data[4]) == 0) { - /* Found JFIF APP0 marker: save info */ - cinfo->saw_JFIF_marker = TRUE; - cinfo->JFIF_major_version = GETJOCTET(data[5]); - cinfo->JFIF_minor_version = GETJOCTET(data[6]); - cinfo->density_unit = GETJOCTET(data[7]); - cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]); - cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]); - /* Check version. - * Major version must be 1, anything else signals an incompatible change. - * (We used to treat this as an error, but now it's a nonfatal warning, - * because some bozo at Hijaak couldn't read the spec.) - * Minor version should be 0..2, but process anyway if newer. - */ - if (cinfo->JFIF_major_version != 1) - WARNMS2(cinfo, JWRN_JFIF_MAJOR, - cinfo->JFIF_major_version, cinfo->JFIF_minor_version); - /* Generate trace messages */ - TRACEMS5(cinfo, 1, JTRC_JFIF, - cinfo->JFIF_major_version, cinfo->JFIF_minor_version, - cinfo->X_density, cinfo->Y_density, cinfo->density_unit); - /* Validate thumbnail dimensions and issue appropriate messages */ - if (GETJOCTET(data[12]) | GETJOCTET(data[13])) - TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, - GETJOCTET(data[12]), GETJOCTET(data[13])); - totallen -= APP0_DATA_LEN; - if (totallen != - ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3)) - TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen); - } else if (datalen >= 6 && - GETJOCTET(data[0]) == 0x4A && - GETJOCTET(data[1]) == 0x46 && - GETJOCTET(data[2]) == 0x58 && - GETJOCTET(data[3]) == 0x58 && - GETJOCTET(data[4]) == 0) { - /* Found JFIF "JFXX" extension APP0 marker */ - /* The library doesn't actually do anything with these, - * but we try to produce a helpful trace message. - */ - switch (GETJOCTET(data[5])) { - case 0x10: - TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen); - break; - case 0x11: - TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen); - break; - case 0x13: - TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen); - break; - default: - TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION, - GETJOCTET(data[5]), (int) totallen); - break; - } - } else { - /* Start of APP0 does not match "JFIF" or "JFXX", or too short */ - TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen); - } -} - - -LOCAL(void) -examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data, - unsigned int datalen, INT32 remaining) -/* Examine first few bytes from an APP14. - * Take appropriate action if it is an Adobe marker. - * datalen is # of bytes at data[], remaining is length of rest of marker data. - */ -{ - unsigned int version, flags0, flags1, transform; - - if (datalen >= APP14_DATA_LEN && - GETJOCTET(data[0]) == 0x41 && - GETJOCTET(data[1]) == 0x64 && - GETJOCTET(data[2]) == 0x6F && - GETJOCTET(data[3]) == 0x62 && - GETJOCTET(data[4]) == 0x65) { - /* Found Adobe APP14 marker */ - version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]); - flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]); - flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]); - transform = GETJOCTET(data[11]); - TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform); - cinfo->saw_Adobe_marker = TRUE; - cinfo->Adobe_transform = (UINT8) transform; - } else { - /* Start of APP14 does not match "Adobe", or too short */ - TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining)); - } -} - - -METHODDEF(boolean) -get_interesting_appn (j_decompress_ptr cinfo) -/* Process an APP0 or APP14 marker without saving it */ -{ - INT32 length; - JOCTET b[APPN_DATA_LEN]; - unsigned int i, numtoread; - INPUT_VARS(cinfo); - - INPUT_2BYTES(cinfo, length, return FALSE); - length -= 2; - - /* get the interesting part of the marker data */ - if (length >= APPN_DATA_LEN) - numtoread = APPN_DATA_LEN; - else if (length > 0) - numtoread = (unsigned int) length; - else - numtoread = 0; - for (i = 0; i < numtoread; i++) - INPUT_BYTE(cinfo, b[i], return FALSE); - length -= numtoread; - - /* process it */ - switch (cinfo->unread_marker) { - case M_APP0: - examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length); - break; - case M_APP14: - examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length); - break; - default: - /* can't get here unless jpeg_save_markers chooses wrong processor */ - ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); - break; - } - - /* skip any remaining data -- could be lots */ - INPUT_SYNC(cinfo); - if (length > 0) - (*cinfo->src->skip_input_data) (cinfo, (long) length); - - return TRUE; -} - - -#ifdef SAVE_MARKERS_SUPPORTED - -METHODDEF(boolean) -save_marker (j_decompress_ptr cinfo) -/* Save an APPn or COM marker into the marker list */ -{ - my_marker_ptr marker = (my_marker_ptr) cinfo->marker; - jpeg_saved_marker_ptr cur_marker = marker->cur_marker; - unsigned int bytes_read, data_length; - JOCTET FAR * data; - INT32 length = 0; - INPUT_VARS(cinfo); - - if (cur_marker == NULL) { - /* begin reading a marker */ - INPUT_2BYTES(cinfo, length, return FALSE); - length -= 2; - if (length >= 0) { /* watch out for bogus length word */ - /* figure out how much we want to save */ - unsigned int limit; - if (cinfo->unread_marker == (int) M_COM) - limit = marker->length_limit_COM; - else - limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0]; - if ((unsigned int) length < limit) - limit = (unsigned int) length; - /* allocate and initialize the marker item */ - cur_marker = (jpeg_saved_marker_ptr) - (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(struct jpeg_marker_struct) + limit); - cur_marker->next = NULL; - cur_marker->marker = (UINT8) cinfo->unread_marker; - cur_marker->original_length = (unsigned int) length; - cur_marker->data_length = limit; - /* data area is just beyond the jpeg_marker_struct */ - data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1); - marker->cur_marker = cur_marker; - marker->bytes_read = 0; - bytes_read = 0; - data_length = limit; - } else { - /* deal with bogus length word */ - bytes_read = data_length = 0; - data = NULL; - } - } else { - /* resume reading a marker */ - bytes_read = marker->bytes_read; - data_length = cur_marker->data_length; - data = cur_marker->data + bytes_read; - } - - while (bytes_read < data_length) { - INPUT_SYNC(cinfo); /* move the restart point to here */ - marker->bytes_read = bytes_read; - /* If there's not at least one byte in buffer, suspend */ - MAKE_BYTE_AVAIL(cinfo, return FALSE); - /* Copy bytes with reasonable rapidity */ - while (bytes_read < data_length && bytes_in_buffer > 0) { - *data++ = *next_input_byte++; - bytes_in_buffer--; - bytes_read++; - } - } - - /* Done reading what we want to read */ - if (cur_marker != NULL) { /* will be NULL if bogus length word */ - /* Add new marker to end of list */ - if (cinfo->marker_list == NULL) { - cinfo->marker_list = cur_marker; - } else { - jpeg_saved_marker_ptr prev = cinfo->marker_list; - while (prev->next != NULL) - prev = prev->next; - prev->next = cur_marker; - } - /* Reset pointer & calc remaining data length */ - data = cur_marker->data; - length = cur_marker->original_length - data_length; - } - /* Reset to initial state for next marker */ - marker->cur_marker = NULL; - - /* Process the marker if interesting; else just make a generic trace msg */ - switch (cinfo->unread_marker) { - case M_APP0: - examine_app0(cinfo, data, data_length, length); - break; - case M_APP14: - examine_app14(cinfo, data, data_length, length); - break; - default: - TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, - (int) (data_length + length)); - break; - } - - /* skip any remaining data -- could be lots */ - INPUT_SYNC(cinfo); /* do before skip_input_data */ - if (length > 0) - (*cinfo->src->skip_input_data) (cinfo, (long) length); - - return TRUE; -} - -#endif /* SAVE_MARKERS_SUPPORTED */ - - -METHODDEF(boolean) -skip_variable (j_decompress_ptr cinfo) -/* Skip over an unknown or uninteresting variable-length marker */ -{ - INT32 length; - INPUT_VARS(cinfo); - - INPUT_2BYTES(cinfo, length, return FALSE); - length -= 2; - - TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length); - - INPUT_SYNC(cinfo); /* do before skip_input_data */ - if (length > 0) - (*cinfo->src->skip_input_data) (cinfo, (long) length); - - return TRUE; -} - - -/* - * Find the next JPEG marker, save it in cinfo->unread_marker. - * Returns FALSE if had to suspend before reaching a marker; - * in that case cinfo->unread_marker is unchanged. - * - * Note that the result might not be a valid marker code, - * but it will never be 0 or FF. - */ - -LOCAL(boolean) -next_marker (j_decompress_ptr cinfo) -{ - int c; - INPUT_VARS(cinfo); - - for (;;) { - INPUT_BYTE(cinfo, c, return FALSE); - /* Skip any non-FF bytes. - * This may look a bit inefficient, but it will not occur in a valid file. - * We sync after each discarded byte so that a suspending data source - * can discard the byte from its buffer. - */ - while (c != 0xFF) { - cinfo->marker->discarded_bytes++; - INPUT_SYNC(cinfo); - INPUT_BYTE(cinfo, c, return FALSE); - } - /* This loop swallows any duplicate FF bytes. Extra FFs are legal as - * pad bytes, so don't count them in discarded_bytes. We assume there - * will not be so many consecutive FF bytes as to overflow a suspending - * data source's input buffer. - */ - do { - INPUT_BYTE(cinfo, c, return FALSE); - } while (c == 0xFF); - if (c != 0) - break; /* found a valid marker, exit loop */ - /* Reach here if we found a stuffed-zero data sequence (FF/00). - * Discard it and loop back to try again. - */ - cinfo->marker->discarded_bytes += 2; - INPUT_SYNC(cinfo); - } - - if (cinfo->marker->discarded_bytes != 0) { - WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c); - cinfo->marker->discarded_bytes = 0; - } - - cinfo->unread_marker = c; - - INPUT_SYNC(cinfo); - return TRUE; -} - - -LOCAL(boolean) -first_marker (j_decompress_ptr cinfo) -/* Like next_marker, but used to obtain the initial SOI marker. */ -/* For this marker, we do not allow preceding garbage or fill; otherwise, - * we might well scan an entire input file before realizing it ain't JPEG. - * If an application wants to process non-JFIF files, it must seek to the - * SOI before calling the JPEG library. - */ -{ - int c, c2; - INPUT_VARS(cinfo); - - INPUT_BYTE(cinfo, c, return FALSE); - INPUT_BYTE(cinfo, c2, return FALSE); - if (c != 0xFF || c2 != (int) M_SOI) - ERREXIT2(cinfo, JERR_NO_SOI, c, c2); - - cinfo->unread_marker = c2; - - INPUT_SYNC(cinfo); - return TRUE; -} - - -/* - * Read markers until SOS or EOI. - * - * Returns same codes as are defined for jpeg_consume_input: - * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. - * - * Note: This function may return a pseudo SOS marker (with zero - * component number) for treat by input controller's consume_input. - * consume_input itself should filter out (skip) the pseudo marker - * after processing for the caller. - */ - -METHODDEF(int) -read_markers (j_decompress_ptr cinfo) -{ - /* Outer loop repeats once for each marker. */ - for (;;) { - /* Collect the marker proper, unless we already did. */ - /* NB: first_marker() enforces the requirement that SOI appear first. */ - if (cinfo->unread_marker == 0) { - if (! cinfo->marker->saw_SOI) { - if (! first_marker(cinfo)) - return JPEG_SUSPENDED; - } else { - if (! next_marker(cinfo)) - return JPEG_SUSPENDED; - } - } - /* At this point cinfo->unread_marker contains the marker code and the - * input point is just past the marker proper, but before any parameters. - * A suspension will cause us to return with this state still true. - */ - switch (cinfo->unread_marker) { - case M_SOI: - if (! get_soi(cinfo)) - return JPEG_SUSPENDED; - break; - - case M_SOF0: /* Baseline */ - if (! get_sof(cinfo, TRUE, FALSE, FALSE)) - return JPEG_SUSPENDED; - break; - - case M_SOF1: /* Extended sequential, Huffman */ - if (! get_sof(cinfo, FALSE, FALSE, FALSE)) - return JPEG_SUSPENDED; - break; - - case M_SOF2: /* Progressive, Huffman */ - if (! get_sof(cinfo, FALSE, TRUE, FALSE)) - return JPEG_SUSPENDED; - break; - - case M_SOF9: /* Extended sequential, arithmetic */ - if (! get_sof(cinfo, FALSE, FALSE, TRUE)) - return JPEG_SUSPENDED; - break; - - case M_SOF10: /* Progressive, arithmetic */ - if (! get_sof(cinfo, FALSE, TRUE, TRUE)) - return JPEG_SUSPENDED; - break; - - /* Currently unsupported SOFn types */ - case M_SOF3: /* Lossless, Huffman */ - case M_SOF5: /* Differential sequential, Huffman */ - case M_SOF6: /* Differential progressive, Huffman */ - case M_SOF7: /* Differential lossless, Huffman */ - case M_JPG: /* Reserved for JPEG extensions */ - case M_SOF11: /* Lossless, arithmetic */ - case M_SOF13: /* Differential sequential, arithmetic */ - case M_SOF14: /* Differential progressive, arithmetic */ - case M_SOF15: /* Differential lossless, arithmetic */ - ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker); - break; - - case M_SOS: - if (! get_sos(cinfo)) - return JPEG_SUSPENDED; - cinfo->unread_marker = 0; /* processed the marker */ - return JPEG_REACHED_SOS; - - case M_EOI: - TRACEMS(cinfo, 1, JTRC_EOI); - cinfo->unread_marker = 0; /* processed the marker */ - return JPEG_REACHED_EOI; - - case M_DAC: - if (! get_dac(cinfo)) - return JPEG_SUSPENDED; - break; - - case M_DHT: - if (! get_dht(cinfo)) - return JPEG_SUSPENDED; - break; - - case M_DQT: - if (! get_dqt(cinfo)) - return JPEG_SUSPENDED; - break; - - case M_DRI: - if (! get_dri(cinfo)) - return JPEG_SUSPENDED; - break; - - case M_APP0: - case M_APP1: - case M_APP2: - case M_APP3: - case M_APP4: - case M_APP5: - case M_APP6: - case M_APP7: - case M_APP8: - case M_APP9: - case M_APP10: - case M_APP11: - case M_APP12: - case M_APP13: - case M_APP14: - case M_APP15: - if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[ - cinfo->unread_marker - (int) M_APP0]) (cinfo)) - return JPEG_SUSPENDED; - break; - - case M_COM: - if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo)) - return JPEG_SUSPENDED; - break; - - case M_RST0: /* these are all parameterless */ - case M_RST1: - case M_RST2: - case M_RST3: - case M_RST4: - case M_RST5: - case M_RST6: - case M_RST7: - case M_TEM: - TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker); - break; - - case M_DNL: /* Ignore DNL ... perhaps the wrong thing */ - if (! skip_variable(cinfo)) - return JPEG_SUSPENDED; - break; - - default: /* must be DHP, EXP, JPGn, or RESn */ - /* For now, we treat the reserved markers as fatal errors since they are - * likely to be used to signal incompatible JPEG Part 3 extensions. - * Once the JPEG 3 version-number marker is well defined, this code - * ought to change! - */ - ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); - break; - } - /* Successfully processed marker, so reset state variable */ - cinfo->unread_marker = 0; - } /* end loop */ -} - - -/* - * Read a restart marker, which is expected to appear next in the datastream; - * if the marker is not there, take appropriate recovery action. - * Returns FALSE if suspension is required. - * - * This is called by the entropy decoder after it has read an appropriate - * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder - * has already read a marker from the data source. Under normal conditions - * cinfo->unread_marker will be reset to 0 before returning; if not reset, - * it holds a marker which the decoder will be unable to read past. - */ - -METHODDEF(boolean) -read_restart_marker (j_decompress_ptr cinfo) -{ - /* Obtain a marker unless we already did. */ - /* Note that next_marker will complain if it skips any data. */ - if (cinfo->unread_marker == 0) { - if (! next_marker(cinfo)) - return FALSE; - } - - if (cinfo->unread_marker == - ((int) M_RST0 + cinfo->marker->next_restart_num)) { - /* Normal case --- swallow the marker and let entropy decoder continue */ - TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num); - cinfo->unread_marker = 0; - } else { - /* Uh-oh, the restart markers have been messed up. */ - /* Let the data source manager determine how to resync. */ - if (! (*cinfo->src->resync_to_restart) (cinfo, - cinfo->marker->next_restart_num)) - return FALSE; - } - - /* Update next-restart state */ - cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7; - - return TRUE; -} - - -/* - * This is the default resync_to_restart method for data source managers - * to use if they don't have any better approach. Some data source managers - * may be able to back up, or may have additional knowledge about the data - * which permits a more intelligent recovery strategy; such managers would - * presumably supply their own resync method. - * - * read_restart_marker calls resync_to_restart if it finds a marker other than - * the restart marker it was expecting. (This code is *not* used unless - * a nonzero restart interval has been declared.) cinfo->unread_marker is - * the marker code actually found (might be anything, except 0 or FF). - * The desired restart marker number (0..7) is passed as a parameter. - * This routine is supposed to apply whatever error recovery strategy seems - * appropriate in order to position the input stream to the next data segment. - * Note that cinfo->unread_marker is treated as a marker appearing before - * the current data-source input point; usually it should be reset to zero - * before returning. - * Returns FALSE if suspension is required. - * - * This implementation is substantially constrained by wanting to treat the - * input as a data stream; this means we can't back up. Therefore, we have - * only the following actions to work with: - * 1. Simply discard the marker and let the entropy decoder resume at next - * byte of file. - * 2. Read forward until we find another marker, discarding intervening - * data. (In theory we could look ahead within the current bufferload, - * without having to discard data if we don't find the desired marker. - * This idea is not implemented here, in part because it makes behavior - * dependent on buffer size and chance buffer-boundary positions.) - * 3. Leave the marker unread (by failing to zero cinfo->unread_marker). - * This will cause the entropy decoder to process an empty data segment, - * inserting dummy zeroes, and then we will reprocess the marker. - * - * #2 is appropriate if we think the desired marker lies ahead, while #3 is - * appropriate if the found marker is a future restart marker (indicating - * that we have missed the desired restart marker, probably because it got - * corrupted). - * We apply #2 or #3 if the found marker is a restart marker no more than - * two counts behind or ahead of the expected one. We also apply #2 if the - * found marker is not a legal JPEG marker code (it's certainly bogus data). - * If the found marker is a restart marker more than 2 counts away, we do #1 - * (too much risk that the marker is erroneous; with luck we will be able to - * resync at some future point). - * For any valid non-restart JPEG marker, we apply #3. This keeps us from - * overrunning the end of a scan. An implementation limited to single-scan - * files might find it better to apply #2 for markers other than EOI, since - * any other marker would have to be bogus data in that case. - */ - -GLOBAL(boolean) -jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired) -{ - int marker = cinfo->unread_marker; - int action = 1; - - /* Always put up a warning. */ - WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired); - - /* Outer loop handles repeated decision after scanning forward. */ - for (;;) { - if (marker < (int) M_SOF0) - action = 2; /* invalid marker */ - else if (marker < (int) M_RST0 || marker > (int) M_RST7) - action = 3; /* valid non-restart marker */ - else { - if (marker == ((int) M_RST0 + ((desired+1) & 7)) || - marker == ((int) M_RST0 + ((desired+2) & 7))) - action = 3; /* one of the next two expected restarts */ - else if (marker == ((int) M_RST0 + ((desired-1) & 7)) || - marker == ((int) M_RST0 + ((desired-2) & 7))) - action = 2; /* a prior restart, so advance */ - else - action = 1; /* desired restart or too far away */ - } - TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action); - switch (action) { - case 1: - /* Discard marker and let entropy decoder resume processing. */ - cinfo->unread_marker = 0; - return TRUE; - case 2: - /* Scan to the next marker, and repeat the decision loop. */ - if (! next_marker(cinfo)) - return FALSE; - marker = cinfo->unread_marker; - break; - case 3: - /* Return without advancing past this marker. */ - /* Entropy decoder will be forced to process an empty segment. */ - return TRUE; - } - } /* end loop */ -} - - -/* - * Reset marker processing state to begin a fresh datastream. - */ - -METHODDEF(void) -reset_marker_reader (j_decompress_ptr cinfo) -{ - my_marker_ptr marker = (my_marker_ptr) cinfo->marker; - - cinfo->comp_info = NULL; /* until allocated by get_sof */ - cinfo->input_scan_number = 0; /* no SOS seen yet */ - cinfo->unread_marker = 0; /* no pending marker */ - marker->pub.saw_SOI = FALSE; /* set internal state too */ - marker->pub.saw_SOF = FALSE; - marker->pub.discarded_bytes = 0; - marker->cur_marker = NULL; -} - - -/* - * Initialize the marker reader module. - * This is called only once, when the decompression object is created. - */ - -GLOBAL(void) -jinit_marker_reader (j_decompress_ptr cinfo) -{ - my_marker_ptr marker; - int i; - - /* Create subobject in permanent pool */ - marker = (my_marker_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, - SIZEOF(my_marker_reader)); - cinfo->marker = (struct jpeg_marker_reader *) marker; - /* Initialize public method pointers */ - marker->pub.reset_marker_reader = reset_marker_reader; - marker->pub.read_markers = read_markers; - marker->pub.read_restart_marker = read_restart_marker; - /* Initialize COM/APPn processing. - * By default, we examine and then discard APP0 and APP14, - * but simply discard COM and all other APPn. - */ - marker->process_COM = skip_variable; - marker->length_limit_COM = 0; - for (i = 0; i < 16; i++) { - marker->process_APPn[i] = skip_variable; - marker->length_limit_APPn[i] = 0; - } - marker->process_APPn[0] = get_interesting_appn; - marker->process_APPn[14] = get_interesting_appn; - /* Reset marker processing state */ - reset_marker_reader(cinfo); -} - - -/* - * Control saving of COM and APPn markers into marker_list. - */ - -#ifdef SAVE_MARKERS_SUPPORTED - -GLOBAL(void) -jpeg_save_markers (j_decompress_ptr cinfo, int marker_code, - unsigned int length_limit) -{ - my_marker_ptr marker = (my_marker_ptr) cinfo->marker; - long maxlength; - jpeg_marker_parser_method processor; - - /* Length limit mustn't be larger than what we can allocate - * (should only be a concern in a 16-bit environment). - */ - maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct); - if (((long) length_limit) > maxlength) - length_limit = (unsigned int) maxlength; - - /* Choose processor routine to use. - * APP0/APP14 have special requirements. - */ - if (length_limit) { - processor = save_marker; - /* If saving APP0/APP14, save at least enough for our internal use. */ - if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN) - length_limit = APP0_DATA_LEN; - else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN) - length_limit = APP14_DATA_LEN; - } else { - processor = skip_variable; - /* If discarding APP0/APP14, use our regular on-the-fly processor. */ - if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14) - processor = get_interesting_appn; - } - - if (marker_code == (int) M_COM) { - marker->process_COM = processor; - marker->length_limit_COM = length_limit; - } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) { - marker->process_APPn[marker_code - (int) M_APP0] = processor; - marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit; - } else - ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); -} - -#endif /* SAVE_MARKERS_SUPPORTED */ - - -/* - * Install a special processing method for COM or APPn markers. - */ - -GLOBAL(void) -jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code, - jpeg_marker_parser_method routine) -{ - my_marker_ptr marker = (my_marker_ptr) cinfo->marker; - - if (marker_code == (int) M_COM) - marker->process_COM = routine; - else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) - marker->process_APPn[marker_code - (int) M_APP0] = routine; - else - ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); -} diff --git a/src/jpeg-8c/jdmaster.c b/src/jpeg-8c/jdmaster.c deleted file mode 100644 index 8c1146e4..00000000 --- a/src/jpeg-8c/jdmaster.c +++ /dev/null @@ -1,533 +0,0 @@ -/* - * jdmaster.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2002-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains master control logic for the JPEG decompressor. - * These routines are concerned with selecting the modules to be executed - * and with determining the number of passes and the work to be done in each - * pass. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Private state */ - -typedef struct { - struct jpeg_decomp_master pub; /* public fields */ - - int pass_number; /* # of passes completed */ - - boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ - - /* Saved references to initialized quantizer modules, - * in case we need to switch modes. - */ - struct jpeg_color_quantizer * quantizer_1pass; - struct jpeg_color_quantizer * quantizer_2pass; -} my_decomp_master; - -typedef my_decomp_master * my_master_ptr; - - -/* - * Determine whether merged upsample/color conversion should be used. - * CRUCIAL: this must match the actual capabilities of jdmerge.c! - */ - -LOCAL(boolean) -use_merged_upsample (j_decompress_ptr cinfo) -{ -#ifdef UPSAMPLE_MERGING_SUPPORTED - /* Merging is the equivalent of plain box-filter upsampling */ - if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) - return FALSE; - /* jdmerge.c only supports YCC=>RGB color conversion */ - if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || - cinfo->out_color_space != JCS_RGB || - cinfo->out_color_components != RGB_PIXELSIZE) - return FALSE; - /* and it only handles 2h1v or 2h2v sampling ratios */ - if (cinfo->comp_info[0].h_samp_factor != 2 || - cinfo->comp_info[1].h_samp_factor != 1 || - cinfo->comp_info[2].h_samp_factor != 1 || - cinfo->comp_info[0].v_samp_factor > 2 || - cinfo->comp_info[1].v_samp_factor != 1 || - cinfo->comp_info[2].v_samp_factor != 1) - return FALSE; - /* furthermore, it doesn't work if we've scaled the IDCTs differently */ - if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || - cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || - cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || - cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || - cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || - cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size) - return FALSE; - /* ??? also need to test for upsample-time rescaling, when & if supported */ - return TRUE; /* by golly, it'll work... */ -#else - return FALSE; -#endif -} - - -/* - * Compute output image dimensions and related values. - * NOTE: this is exported for possible use by application. - * Hence it mustn't do anything that can't be done twice. - * Also note that it may be called before the master module is initialized! - */ - -GLOBAL(void) -jpeg_calc_output_dimensions (j_decompress_ptr cinfo) -/* Do computations that are needed before master selection phase. - * This function is used for full decompression. - */ -{ -#ifdef IDCT_SCALING_SUPPORTED - int ci; - jpeg_component_info *compptr; -#endif - - /* Prevent application from calling me at wrong times */ - if (cinfo->global_state != DSTATE_READY) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - /* Compute core output image dimensions and DCT scaling choices. */ - jpeg_core_output_dimensions(cinfo); - -#ifdef IDCT_SCALING_SUPPORTED - - /* In selecting the actual DCT scaling for each component, we try to - * scale up the chroma components via IDCT scaling rather than upsampling. - * This saves time if the upsampler gets to use 1:1 scaling. - * Note this code adapts subsampling ratios which are powers of 2. - */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - int ssize = 1; - while (cinfo->min_DCT_h_scaled_size * ssize <= - (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && - (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) { - ssize = ssize * 2; - } - compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; - ssize = 1; - while (cinfo->min_DCT_v_scaled_size * ssize <= - (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && - (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) { - ssize = ssize * 2; - } - compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; - - /* We don't support IDCT ratios larger than 2. */ - if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) - compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; - else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) - compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; - } - - /* Recompute downsampled dimensions of components; - * application needs to know these if using raw downsampled data. - */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Size in samples, after IDCT scaling */ - compptr->downsampled_width = (JDIMENSION) - jdiv_round_up((long) cinfo->image_width * - (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), - (long) (cinfo->max_h_samp_factor * cinfo->block_size)); - compptr->downsampled_height = (JDIMENSION) - jdiv_round_up((long) cinfo->image_height * - (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), - (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - } - -#endif /* IDCT_SCALING_SUPPORTED */ - - /* Report number of components in selected colorspace. */ - /* Probably this should be in the color conversion module... */ - switch (cinfo->out_color_space) { - case JCS_GRAYSCALE: - cinfo->out_color_components = 1; - break; - case JCS_RGB: -#if RGB_PIXELSIZE != 3 - cinfo->out_color_components = RGB_PIXELSIZE; - break; -#endif /* else share code with YCbCr */ - case JCS_YCbCr: - cinfo->out_color_components = 3; - break; - case JCS_CMYK: - case JCS_YCCK: - cinfo->out_color_components = 4; - break; - default: /* else must be same colorspace as in file */ - cinfo->out_color_components = cinfo->num_components; - break; - } - cinfo->output_components = (cinfo->quantize_colors ? 1 : - cinfo->out_color_components); - - /* See if upsampler will want to emit more than one row at a time */ - if (use_merged_upsample(cinfo)) - cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; - else - cinfo->rec_outbuf_height = 1; -} - - -/* - * Several decompression processes need to range-limit values to the range - * 0..MAXJSAMPLE; the input value may fall somewhat outside this range - * due to noise introduced by quantization, roundoff error, etc. These - * processes are inner loops and need to be as fast as possible. On most - * machines, particularly CPUs with pipelines or instruction prefetch, - * a (subscript-check-less) C table lookup - * x = sample_range_limit[x]; - * is faster than explicit tests - * if (x < 0) x = 0; - * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; - * These processes all use a common table prepared by the routine below. - * - * For most steps we can mathematically guarantee that the initial value - * of x is within MAXJSAMPLE+1 of the legal range, so a table running from - * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial - * limiting step (just after the IDCT), a wildly out-of-range value is - * possible if the input data is corrupt. To avoid any chance of indexing - * off the end of memory and getting a bad-pointer trap, we perform the - * post-IDCT limiting thus: - * x = range_limit[x & MASK]; - * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit - * samples. Under normal circumstances this is more than enough range and - * a correct output will be generated; with bogus input data the mask will - * cause wraparound, and we will safely generate a bogus-but-in-range output. - * For the post-IDCT step, we want to convert the data from signed to unsigned - * representation by adding CENTERJSAMPLE at the same time that we limit it. - * So the post-IDCT limiting table ends up looking like this: - * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, - * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), - * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), - * 0,1,...,CENTERJSAMPLE-1 - * Negative inputs select values from the upper half of the table after - * masking. - * - * We can save some space by overlapping the start of the post-IDCT table - * with the simpler range limiting table. The post-IDCT table begins at - * sample_range_limit + CENTERJSAMPLE. - * - * Note that the table is allocated in near data space on PCs; it's small - * enough and used often enough to justify this. - */ - -LOCAL(void) -prepare_range_limit_table (j_decompress_ptr cinfo) -/* Allocate and fill in the sample_range_limit table */ -{ - JSAMPLE * table; - int i; - - table = (JSAMPLE *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); - table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ - cinfo->sample_range_limit = table; - /* First segment of "simple" table: limit[x] = 0 for x < 0 */ - MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); - /* Main part of "simple" table: limit[x] = x */ - for (i = 0; i <= MAXJSAMPLE; i++) - table[i] = (JSAMPLE) i; - table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ - /* End of simple table, rest of first half of post-IDCT table */ - for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) - table[i] = MAXJSAMPLE; - /* Second half of post-IDCT table */ - MEMZERO(table + (2 * (MAXJSAMPLE+1)), - (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); - MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), - cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); -} - - -/* - * Master selection of decompression modules. - * This is done once at jpeg_start_decompress time. We determine - * which modules will be used and give them appropriate initialization calls. - * We also initialize the decompressor input side to begin consuming data. - * - * Since jpeg_read_header has finished, we know what is in the SOF - * and (first) SOS markers. We also have all the application parameter - * settings. - */ - -LOCAL(void) -master_selection (j_decompress_ptr cinfo) -{ - my_master_ptr master = (my_master_ptr) cinfo->master; - boolean use_c_buffer; - long samplesperrow; - JDIMENSION jd_samplesperrow; - - /* Initialize dimensions and other stuff */ - jpeg_calc_output_dimensions(cinfo); - prepare_range_limit_table(cinfo); - - /* Width of an output scanline must be representable as JDIMENSION. */ - samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; - jd_samplesperrow = (JDIMENSION) samplesperrow; - if ((long) jd_samplesperrow != samplesperrow) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - - /* Initialize my private state */ - master->pass_number = 0; - master->using_merged_upsample = use_merged_upsample(cinfo); - - /* Color quantizer selection */ - master->quantizer_1pass = NULL; - master->quantizer_2pass = NULL; - /* No mode changes if not using buffered-image mode. */ - if (! cinfo->quantize_colors || ! cinfo->buffered_image) { - cinfo->enable_1pass_quant = FALSE; - cinfo->enable_external_quant = FALSE; - cinfo->enable_2pass_quant = FALSE; - } - if (cinfo->quantize_colors) { - if (cinfo->raw_data_out) - ERREXIT(cinfo, JERR_NOTIMPL); - /* 2-pass quantizer only works in 3-component color space. */ - if (cinfo->out_color_components != 3) { - cinfo->enable_1pass_quant = TRUE; - cinfo->enable_external_quant = FALSE; - cinfo->enable_2pass_quant = FALSE; - cinfo->colormap = NULL; - } else if (cinfo->colormap != NULL) { - cinfo->enable_external_quant = TRUE; - } else if (cinfo->two_pass_quantize) { - cinfo->enable_2pass_quant = TRUE; - } else { - cinfo->enable_1pass_quant = TRUE; - } - - if (cinfo->enable_1pass_quant) { -#ifdef QUANT_1PASS_SUPPORTED - jinit_1pass_quantizer(cinfo); - master->quantizer_1pass = cinfo->cquantize; -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } - - /* We use the 2-pass code to map to external colormaps. */ - if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { -#ifdef QUANT_2PASS_SUPPORTED - jinit_2pass_quantizer(cinfo); - master->quantizer_2pass = cinfo->cquantize; -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } - /* If both quantizers are initialized, the 2-pass one is left active; - * this is necessary for starting with quantization to an external map. - */ - } - - /* Post-processing: in particular, color conversion first */ - if (! cinfo->raw_data_out) { - if (master->using_merged_upsample) { -#ifdef UPSAMPLE_MERGING_SUPPORTED - jinit_merged_upsampler(cinfo); /* does color conversion too */ -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif - } else { - jinit_color_deconverter(cinfo); - jinit_upsampler(cinfo); - } - jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); - } - /* Inverse DCT */ - jinit_inverse_dct(cinfo); - /* Entropy decoding: either Huffman or arithmetic coding. */ - if (cinfo->arith_code) - jinit_arith_decoder(cinfo); - else { - jinit_huff_decoder(cinfo); - } - - /* Initialize principal buffer controllers. */ - use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; - jinit_d_coef_controller(cinfo, use_c_buffer); - - if (! cinfo->raw_data_out) - jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); - - /* We can now tell the memory manager to allocate virtual arrays. */ - (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); - - /* Initialize input side of decompressor to consume first scan. */ - (*cinfo->inputctl->start_input_pass) (cinfo); - -#ifdef D_MULTISCAN_FILES_SUPPORTED - /* If jpeg_start_decompress will read the whole file, initialize - * progress monitoring appropriately. The input step is counted - * as one pass. - */ - if (cinfo->progress != NULL && ! cinfo->buffered_image && - cinfo->inputctl->has_multiple_scans) { - int nscans; - /* Estimate number of scans to set pass_limit. */ - if (cinfo->progressive_mode) { - /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ - nscans = 2 + 3 * cinfo->num_components; - } else { - /* For a nonprogressive multiscan file, estimate 1 scan per component. */ - nscans = cinfo->num_components; - } - cinfo->progress->pass_counter = 0L; - cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; - cinfo->progress->completed_passes = 0; - cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); - /* Count the input pass as done */ - master->pass_number++; - } -#endif /* D_MULTISCAN_FILES_SUPPORTED */ -} - - -/* - * Per-pass setup. - * This is called at the beginning of each output pass. We determine which - * modules will be active during this pass and give them appropriate - * start_pass calls. We also set is_dummy_pass to indicate whether this - * is a "real" output pass or a dummy pass for color quantization. - * (In the latter case, jdapistd.c will crank the pass to completion.) - */ - -METHODDEF(void) -prepare_for_output_pass (j_decompress_ptr cinfo) -{ - my_master_ptr master = (my_master_ptr) cinfo->master; - - if (master->pub.is_dummy_pass) { -#ifdef QUANT_2PASS_SUPPORTED - /* Final pass of 2-pass quantization */ - master->pub.is_dummy_pass = FALSE; - (*cinfo->cquantize->start_pass) (cinfo, FALSE); - (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); - (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); -#else - ERREXIT(cinfo, JERR_NOT_COMPILED); -#endif /* QUANT_2PASS_SUPPORTED */ - } else { - if (cinfo->quantize_colors && cinfo->colormap == NULL) { - /* Select new quantization method */ - if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { - cinfo->cquantize = master->quantizer_2pass; - master->pub.is_dummy_pass = TRUE; - } else if (cinfo->enable_1pass_quant) { - cinfo->cquantize = master->quantizer_1pass; - } else { - ERREXIT(cinfo, JERR_MODE_CHANGE); - } - } - (*cinfo->idct->start_pass) (cinfo); - (*cinfo->coef->start_output_pass) (cinfo); - if (! cinfo->raw_data_out) { - if (! master->using_merged_upsample) - (*cinfo->cconvert->start_pass) (cinfo); - (*cinfo->upsample->start_pass) (cinfo); - if (cinfo->quantize_colors) - (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); - (*cinfo->post->start_pass) (cinfo, - (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); - (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); - } - } - - /* Set up progress monitor's pass info if present */ - if (cinfo->progress != NULL) { - cinfo->progress->completed_passes = master->pass_number; - cinfo->progress->total_passes = master->pass_number + - (master->pub.is_dummy_pass ? 2 : 1); - /* In buffered-image mode, we assume one more output pass if EOI not - * yet reached, but no more passes if EOI has been reached. - */ - if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { - cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); - } - } -} - - -/* - * Finish up at end of an output pass. - */ - -METHODDEF(void) -finish_output_pass (j_decompress_ptr cinfo) -{ - my_master_ptr master = (my_master_ptr) cinfo->master; - - if (cinfo->quantize_colors) - (*cinfo->cquantize->finish_pass) (cinfo); - master->pass_number++; -} - - -#ifdef D_MULTISCAN_FILES_SUPPORTED - -/* - * Switch to a new external colormap between output passes. - */ - -GLOBAL(void) -jpeg_new_colormap (j_decompress_ptr cinfo) -{ - my_master_ptr master = (my_master_ptr) cinfo->master; - - /* Prevent application from calling me at wrong times */ - if (cinfo->global_state != DSTATE_BUFIMAGE) - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - - if (cinfo->quantize_colors && cinfo->enable_external_quant && - cinfo->colormap != NULL) { - /* Select 2-pass quantizer for external colormap use */ - cinfo->cquantize = master->quantizer_2pass; - /* Notify quantizer of colormap change */ - (*cinfo->cquantize->new_color_map) (cinfo); - master->pub.is_dummy_pass = FALSE; /* just in case */ - } else - ERREXIT(cinfo, JERR_MODE_CHANGE); -} - -#endif /* D_MULTISCAN_FILES_SUPPORTED */ - - -/* - * Initialize master decompression control and select active modules. - * This is performed at the start of jpeg_start_decompress. - */ - -GLOBAL(void) -jinit_master_decompress (j_decompress_ptr cinfo) -{ - my_master_ptr master; - - master = (my_master_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_decomp_master)); - cinfo->master = (struct jpeg_decomp_master *) master; - master->pub.prepare_for_output_pass = prepare_for_output_pass; - master->pub.finish_output_pass = finish_output_pass; - - master->pub.is_dummy_pass = FALSE; - - master_selection(cinfo); -} diff --git a/src/jpeg-8c/jdmerge.c b/src/jpeg-8c/jdmerge.c deleted file mode 100644 index 37444468..00000000 --- a/src/jpeg-8c/jdmerge.c +++ /dev/null @@ -1,400 +0,0 @@ -/* - * jdmerge.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains code for merged upsampling/color conversion. - * - * This file combines functions from jdsample.c and jdcolor.c; - * read those files first to understand what's going on. - * - * When the chroma components are to be upsampled by simple replication - * (ie, box filtering), we can save some work in color conversion by - * calculating all the output pixels corresponding to a pair of chroma - * samples at one time. In the conversion equations - * R = Y + K1 * Cr - * G = Y + K2 * Cb + K3 * Cr - * B = Y + K4 * Cb - * only the Y term varies among the group of pixels corresponding to a pair - * of chroma samples, so the rest of the terms can be calculated just once. - * At typical sampling ratios, this eliminates half or three-quarters of the - * multiplications needed for color conversion. - * - * This file currently provides implementations for the following cases: - * YCbCr => RGB color conversion only. - * Sampling ratios of 2h1v or 2h2v. - * No scaling needed at upsample time. - * Corner-aligned (non-CCIR601) sampling alignment. - * Other special cases could be added, but in most applications these are - * the only common cases. (For uncommon cases we fall back on the more - * general code in jdsample.c and jdcolor.c.) - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -#ifdef UPSAMPLE_MERGING_SUPPORTED - - -/* Private subobject */ - -typedef struct { - struct jpeg_upsampler pub; /* public fields */ - - /* Pointer to routine to do actual upsampling/conversion of one row group */ - JMETHOD(void, upmethod, (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, - JSAMPARRAY output_buf)); - - /* Private state for YCC->RGB conversion */ - int * Cr_r_tab; /* => table for Cr to R conversion */ - int * Cb_b_tab; /* => table for Cb to B conversion */ - INT32 * Cr_g_tab; /* => table for Cr to G conversion */ - INT32 * Cb_g_tab; /* => table for Cb to G conversion */ - - /* For 2:1 vertical sampling, we produce two output rows at a time. - * We need a "spare" row buffer to hold the second output row if the - * application provides just a one-row buffer; we also use the spare - * to discard the dummy last row if the image height is odd. - */ - JSAMPROW spare_row; - boolean spare_full; /* T if spare buffer is occupied */ - - JDIMENSION out_row_width; /* samples per output row */ - JDIMENSION rows_to_go; /* counts rows remaining in image */ -} my_upsampler; - -typedef my_upsampler * my_upsample_ptr; - -#define SCALEBITS 16 /* speediest right-shift on some machines */ -#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) -#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) - - -/* - * Initialize tables for YCC->RGB colorspace conversion. - * This is taken directly from jdcolor.c; see that file for more info. - */ - -LOCAL(void) -build_ycc_rgb_table (j_decompress_ptr cinfo) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - int i; - INT32 x; - SHIFT_TEMPS - - upsample->Cr_r_tab = (int *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(int)); - upsample->Cb_b_tab = (int *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(int)); - upsample->Cr_g_tab = (INT32 *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(INT32)); - upsample->Cb_g_tab = (INT32 *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (MAXJSAMPLE+1) * SIZEOF(INT32)); - - for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { - /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ - /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ - /* Cr=>R value is nearest int to 1.40200 * x */ - upsample->Cr_r_tab[i] = (int) - RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); - /* Cb=>B value is nearest int to 1.77200 * x */ - upsample->Cb_b_tab[i] = (int) - RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); - /* Cr=>G value is scaled-up -0.71414 * x */ - upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; - /* Cb=>G value is scaled-up -0.34414 * x */ - /* We also add in ONE_HALF so that need not do it in inner loop */ - upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; - } -} - - -/* - * Initialize for an upsampling pass. - */ - -METHODDEF(void) -start_pass_merged_upsample (j_decompress_ptr cinfo) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - - /* Mark the spare buffer empty */ - upsample->spare_full = FALSE; - /* Initialize total-height counter for detecting bottom of image */ - upsample->rows_to_go = cinfo->output_height; -} - - -/* - * Control routine to do upsampling (and color conversion). - * - * The control routine just handles the row buffering considerations. - */ - -METHODDEF(void) -merged_2v_upsample (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -/* 2:1 vertical sampling case: may need a spare row. */ -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - JSAMPROW work_ptrs[2]; - JDIMENSION num_rows; /* number of rows returned to caller */ - - if (upsample->spare_full) { - /* If we have a spare row saved from a previous cycle, just return it. */ - jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, - 1, upsample->out_row_width); - num_rows = 1; - upsample->spare_full = FALSE; - } else { - /* Figure number of rows to return to caller. */ - num_rows = 2; - /* Not more than the distance to the end of the image. */ - if (num_rows > upsample->rows_to_go) - num_rows = upsample->rows_to_go; - /* And not more than what the client can accept: */ - out_rows_avail -= *out_row_ctr; - if (num_rows > out_rows_avail) - num_rows = out_rows_avail; - /* Create output pointer array for upsampler. */ - work_ptrs[0] = output_buf[*out_row_ctr]; - if (num_rows > 1) { - work_ptrs[1] = output_buf[*out_row_ctr + 1]; - } else { - work_ptrs[1] = upsample->spare_row; - upsample->spare_full = TRUE; - } - /* Now do the upsampling. */ - (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); - } - - /* Adjust counts */ - *out_row_ctr += num_rows; - upsample->rows_to_go -= num_rows; - /* When the buffer is emptied, declare this input row group consumed */ - if (! upsample->spare_full) - (*in_row_group_ctr)++; -} - - -METHODDEF(void) -merged_1v_upsample (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -/* 1:1 vertical sampling case: much easier, never need a spare row. */ -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - - /* Just do the upsampling. */ - (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, - output_buf + *out_row_ctr); - /* Adjust counts */ - (*out_row_ctr)++; - (*in_row_group_ctr)++; -} - - -/* - * These are the routines invoked by the control routines to do - * the actual upsampling/conversion. One row group is processed per call. - * - * Note: since we may be writing directly into application-supplied buffers, - * we have to be honest about the output width; we can't assume the buffer - * has been rounded up to an even width. - */ - - -/* - * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. - */ - -METHODDEF(void) -h2v1_merged_upsample (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, - JSAMPARRAY output_buf) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - register int y, cred, cgreen, cblue; - int cb, cr; - register JSAMPROW outptr; - JSAMPROW inptr0, inptr1, inptr2; - JDIMENSION col; - /* copy these pointers into registers if possible */ - register JSAMPLE * range_limit = cinfo->sample_range_limit; - int * Crrtab = upsample->Cr_r_tab; - int * Cbbtab = upsample->Cb_b_tab; - INT32 * Crgtab = upsample->Cr_g_tab; - INT32 * Cbgtab = upsample->Cb_g_tab; - SHIFT_TEMPS - - inptr0 = input_buf[0][in_row_group_ctr]; - inptr1 = input_buf[1][in_row_group_ctr]; - inptr2 = input_buf[2][in_row_group_ctr]; - outptr = output_buf[0]; - /* Loop for each pair of output pixels */ - for (col = cinfo->output_width >> 1; col > 0; col--) { - /* Do the chroma part of the calculation */ - cb = GETJSAMPLE(*inptr1++); - cr = GETJSAMPLE(*inptr2++); - cred = Crrtab[cr]; - cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); - cblue = Cbbtab[cb]; - /* Fetch 2 Y values and emit 2 pixels */ - y = GETJSAMPLE(*inptr0++); - outptr[RGB_RED] = range_limit[y + cred]; - outptr[RGB_GREEN] = range_limit[y + cgreen]; - outptr[RGB_BLUE] = range_limit[y + cblue]; - outptr += RGB_PIXELSIZE; - y = GETJSAMPLE(*inptr0++); - outptr[RGB_RED] = range_limit[y + cred]; - outptr[RGB_GREEN] = range_limit[y + cgreen]; - outptr[RGB_BLUE] = range_limit[y + cblue]; - outptr += RGB_PIXELSIZE; - } - /* If image width is odd, do the last output column separately */ - if (cinfo->output_width & 1) { - cb = GETJSAMPLE(*inptr1); - cr = GETJSAMPLE(*inptr2); - cred = Crrtab[cr]; - cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); - cblue = Cbbtab[cb]; - y = GETJSAMPLE(*inptr0); - outptr[RGB_RED] = range_limit[y + cred]; - outptr[RGB_GREEN] = range_limit[y + cgreen]; - outptr[RGB_BLUE] = range_limit[y + cblue]; - } -} - - -/* - * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. - */ - -METHODDEF(void) -h2v2_merged_upsample (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, - JSAMPARRAY output_buf) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - register int y, cred, cgreen, cblue; - int cb, cr; - register JSAMPROW outptr0, outptr1; - JSAMPROW inptr00, inptr01, inptr1, inptr2; - JDIMENSION col; - /* copy these pointers into registers if possible */ - register JSAMPLE * range_limit = cinfo->sample_range_limit; - int * Crrtab = upsample->Cr_r_tab; - int * Cbbtab = upsample->Cb_b_tab; - INT32 * Crgtab = upsample->Cr_g_tab; - INT32 * Cbgtab = upsample->Cb_g_tab; - SHIFT_TEMPS - - inptr00 = input_buf[0][in_row_group_ctr*2]; - inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; - inptr1 = input_buf[1][in_row_group_ctr]; - inptr2 = input_buf[2][in_row_group_ctr]; - outptr0 = output_buf[0]; - outptr1 = output_buf[1]; - /* Loop for each group of output pixels */ - for (col = cinfo->output_width >> 1; col > 0; col--) { - /* Do the chroma part of the calculation */ - cb = GETJSAMPLE(*inptr1++); - cr = GETJSAMPLE(*inptr2++); - cred = Crrtab[cr]; - cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); - cblue = Cbbtab[cb]; - /* Fetch 4 Y values and emit 4 pixels */ - y = GETJSAMPLE(*inptr00++); - outptr0[RGB_RED] = range_limit[y + cred]; - outptr0[RGB_GREEN] = range_limit[y + cgreen]; - outptr0[RGB_BLUE] = range_limit[y + cblue]; - outptr0 += RGB_PIXELSIZE; - y = GETJSAMPLE(*inptr00++); - outptr0[RGB_RED] = range_limit[y + cred]; - outptr0[RGB_GREEN] = range_limit[y + cgreen]; - outptr0[RGB_BLUE] = range_limit[y + cblue]; - outptr0 += RGB_PIXELSIZE; - y = GETJSAMPLE(*inptr01++); - outptr1[RGB_RED] = range_limit[y + cred]; - outptr1[RGB_GREEN] = range_limit[y + cgreen]; - outptr1[RGB_BLUE] = range_limit[y + cblue]; - outptr1 += RGB_PIXELSIZE; - y = GETJSAMPLE(*inptr01++); - outptr1[RGB_RED] = range_limit[y + cred]; - outptr1[RGB_GREEN] = range_limit[y + cgreen]; - outptr1[RGB_BLUE] = range_limit[y + cblue]; - outptr1 += RGB_PIXELSIZE; - } - /* If image width is odd, do the last output column separately */ - if (cinfo->output_width & 1) { - cb = GETJSAMPLE(*inptr1); - cr = GETJSAMPLE(*inptr2); - cred = Crrtab[cr]; - cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); - cblue = Cbbtab[cb]; - y = GETJSAMPLE(*inptr00); - outptr0[RGB_RED] = range_limit[y + cred]; - outptr0[RGB_GREEN] = range_limit[y + cgreen]; - outptr0[RGB_BLUE] = range_limit[y + cblue]; - y = GETJSAMPLE(*inptr01); - outptr1[RGB_RED] = range_limit[y + cred]; - outptr1[RGB_GREEN] = range_limit[y + cgreen]; - outptr1[RGB_BLUE] = range_limit[y + cblue]; - } -} - - -/* - * Module initialization routine for merged upsampling/color conversion. - * - * NB: this is called under the conditions determined by use_merged_upsample() - * in jdmaster.c. That routine MUST correspond to the actual capabilities - * of this module; no safety checks are made here. - */ - -GLOBAL(void) -jinit_merged_upsampler (j_decompress_ptr cinfo) -{ - my_upsample_ptr upsample; - - upsample = (my_upsample_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_upsampler)); - cinfo->upsample = (struct jpeg_upsampler *) upsample; - upsample->pub.start_pass = start_pass_merged_upsample; - upsample->pub.need_context_rows = FALSE; - - upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; - - if (cinfo->max_v_samp_factor == 2) { - upsample->pub.upsample = merged_2v_upsample; - upsample->upmethod = h2v2_merged_upsample; - /* Allocate a spare row buffer */ - upsample->spare_row = (JSAMPROW) - (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); - } else { - upsample->pub.upsample = merged_1v_upsample; - upsample->upmethod = h2v1_merged_upsample; - /* No spare row needed */ - upsample->spare_row = NULL; - } - - build_ycc_rgb_table(cinfo); -} - -#endif /* UPSAMPLE_MERGING_SUPPORTED */ diff --git a/src/jpeg-8c/jdpostct.c b/src/jpeg-8c/jdpostct.c deleted file mode 100644 index 571563d7..00000000 --- a/src/jpeg-8c/jdpostct.c +++ /dev/null @@ -1,290 +0,0 @@ -/* - * jdpostct.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the decompression postprocessing controller. - * This controller manages the upsampling, color conversion, and color - * quantization/reduction steps; specifically, it controls the buffering - * between upsample/color conversion and color quantization/reduction. - * - * If no color quantization/reduction is required, then this module has no - * work to do, and it just hands off to the upsample/color conversion code. - * An integrated upsample/convert/quantize process would replace this module - * entirely. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Private buffer controller object */ - -typedef struct { - struct jpeg_d_post_controller pub; /* public fields */ - - /* Color quantization source buffer: this holds output data from - * the upsample/color conversion step to be passed to the quantizer. - * For two-pass color quantization, we need a full-image buffer; - * for one-pass operation, a strip buffer is sufficient. - */ - jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ - JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ - JDIMENSION strip_height; /* buffer size in rows */ - /* for two-pass mode only: */ - JDIMENSION starting_row; /* row # of first row in current strip */ - JDIMENSION next_row; /* index of next row to fill/empty in strip */ -} my_post_controller; - -typedef my_post_controller * my_post_ptr; - - -/* Forward declarations */ -METHODDEF(void) post_process_1pass - JPP((j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail)); -#ifdef QUANT_2PASS_SUPPORTED -METHODDEF(void) post_process_prepass - JPP((j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail)); -METHODDEF(void) post_process_2pass - JPP((j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail)); -#endif - - -/* - * Initialize for a processing pass. - */ - -METHODDEF(void) -start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) -{ - my_post_ptr post = (my_post_ptr) cinfo->post; - - switch (pass_mode) { - case JBUF_PASS_THRU: - if (cinfo->quantize_colors) { - /* Single-pass processing with color quantization. */ - post->pub.post_process_data = post_process_1pass; - /* We could be doing buffered-image output before starting a 2-pass - * color quantization; in that case, jinit_d_post_controller did not - * allocate a strip buffer. Use the virtual-array buffer as workspace. - */ - if (post->buffer == NULL) { - post->buffer = (*cinfo->mem->access_virt_sarray) - ((j_common_ptr) cinfo, post->whole_image, - (JDIMENSION) 0, post->strip_height, TRUE); - } - } else { - /* For single-pass processing without color quantization, - * I have no work to do; just call the upsampler directly. - */ - post->pub.post_process_data = cinfo->upsample->upsample; - } - break; -#ifdef QUANT_2PASS_SUPPORTED - case JBUF_SAVE_AND_PASS: - /* First pass of 2-pass quantization */ - if (post->whole_image == NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - post->pub.post_process_data = post_process_prepass; - break; - case JBUF_CRANK_DEST: - /* Second pass of 2-pass quantization */ - if (post->whole_image == NULL) - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - post->pub.post_process_data = post_process_2pass; - break; -#endif /* QUANT_2PASS_SUPPORTED */ - default: - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); - break; - } - post->starting_row = post->next_row = 0; -} - - -/* - * Process some data in the one-pass (strip buffer) case. - * This is used for color precision reduction as well as one-pass quantization. - */ - -METHODDEF(void) -post_process_1pass (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - my_post_ptr post = (my_post_ptr) cinfo->post; - JDIMENSION num_rows, max_rows; - - /* Fill the buffer, but not more than what we can dump out in one go. */ - /* Note we rely on the upsampler to detect bottom of image. */ - max_rows = out_rows_avail - *out_row_ctr; - if (max_rows > post->strip_height) - max_rows = post->strip_height; - num_rows = 0; - (*cinfo->upsample->upsample) (cinfo, - input_buf, in_row_group_ctr, in_row_groups_avail, - post->buffer, &num_rows, max_rows); - /* Quantize and emit data. */ - (*cinfo->cquantize->color_quantize) (cinfo, - post->buffer, output_buf + *out_row_ctr, (int) num_rows); - *out_row_ctr += num_rows; -} - - -#ifdef QUANT_2PASS_SUPPORTED - -/* - * Process some data in the first pass of 2-pass quantization. - */ - -METHODDEF(void) -post_process_prepass (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - my_post_ptr post = (my_post_ptr) cinfo->post; - JDIMENSION old_next_row, num_rows; - - /* Reposition virtual buffer if at start of strip. */ - if (post->next_row == 0) { - post->buffer = (*cinfo->mem->access_virt_sarray) - ((j_common_ptr) cinfo, post->whole_image, - post->starting_row, post->strip_height, TRUE); - } - - /* Upsample some data (up to a strip height's worth). */ - old_next_row = post->next_row; - (*cinfo->upsample->upsample) (cinfo, - input_buf, in_row_group_ctr, in_row_groups_avail, - post->buffer, &post->next_row, post->strip_height); - - /* Allow quantizer to scan new data. No data is emitted, */ - /* but we advance out_row_ctr so outer loop can tell when we're done. */ - if (post->next_row > old_next_row) { - num_rows = post->next_row - old_next_row; - (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, - (JSAMPARRAY) NULL, (int) num_rows); - *out_row_ctr += num_rows; - } - - /* Advance if we filled the strip. */ - if (post->next_row >= post->strip_height) { - post->starting_row += post->strip_height; - post->next_row = 0; - } -} - - -/* - * Process some data in the second pass of 2-pass quantization. - */ - -METHODDEF(void) -post_process_2pass (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - my_post_ptr post = (my_post_ptr) cinfo->post; - JDIMENSION num_rows, max_rows; - - /* Reposition virtual buffer if at start of strip. */ - if (post->next_row == 0) { - post->buffer = (*cinfo->mem->access_virt_sarray) - ((j_common_ptr) cinfo, post->whole_image, - post->starting_row, post->strip_height, FALSE); - } - - /* Determine number of rows to emit. */ - num_rows = post->strip_height - post->next_row; /* available in strip */ - max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ - if (num_rows > max_rows) - num_rows = max_rows; - /* We have to check bottom of image here, can't depend on upsampler. */ - max_rows = cinfo->output_height - post->starting_row; - if (num_rows > max_rows) - num_rows = max_rows; - - /* Quantize and emit data. */ - (*cinfo->cquantize->color_quantize) (cinfo, - post->buffer + post->next_row, output_buf + *out_row_ctr, - (int) num_rows); - *out_row_ctr += num_rows; - - /* Advance if we filled the strip. */ - post->next_row += num_rows; - if (post->next_row >= post->strip_height) { - post->starting_row += post->strip_height; - post->next_row = 0; - } -} - -#endif /* QUANT_2PASS_SUPPORTED */ - - -/* - * Initialize postprocessing controller. - */ - -GLOBAL(void) -jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) -{ - my_post_ptr post; - - post = (my_post_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_post_controller)); - cinfo->post = (struct jpeg_d_post_controller *) post; - post->pub.start_pass = start_pass_dpost; - post->whole_image = NULL; /* flag for no virtual arrays */ - post->buffer = NULL; /* flag for no strip buffer */ - - /* Create the quantization buffer, if needed */ - if (cinfo->quantize_colors) { - /* The buffer strip height is max_v_samp_factor, which is typically - * an efficient number of rows for upsampling to return. - * (In the presence of output rescaling, we might want to be smarter?) - */ - post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; - if (need_full_buffer) { - /* Two-pass color quantization: need full-image storage. */ - /* We round up the number of rows to a multiple of the strip height. */ -#ifdef QUANT_2PASS_SUPPORTED - post->whole_image = (*cinfo->mem->request_virt_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, - cinfo->output_width * cinfo->out_color_components, - (JDIMENSION) jround_up((long) cinfo->output_height, - (long) post->strip_height), - post->strip_height); -#else - ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); -#endif /* QUANT_2PASS_SUPPORTED */ - } else { - /* One-pass color quantization: just make a strip buffer. */ - post->buffer = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - cinfo->output_width * cinfo->out_color_components, - post->strip_height); - } - } -} diff --git a/src/jpeg-8c/jdsample.c b/src/jpeg-8c/jdsample.c deleted file mode 100644 index 7bc8885b..00000000 --- a/src/jpeg-8c/jdsample.c +++ /dev/null @@ -1,361 +0,0 @@ -/* - * jdsample.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * Modified 2002-2008 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains upsampling routines. - * - * Upsampling input data is counted in "row groups". A row group - * is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) - * sample rows of each component. Upsampling will normally produce - * max_v_samp_factor pixel rows from each row group (but this could vary - * if the upsampler is applying a scale factor of its own). - * - * An excellent reference for image resampling is - * Digital Image Warping, George Wolberg, 1990. - * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Pointer to routine to upsample a single component */ -typedef JMETHOD(void, upsample1_ptr, - (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); - -/* Private subobject */ - -typedef struct { - struct jpeg_upsampler pub; /* public fields */ - - /* Color conversion buffer. When using separate upsampling and color - * conversion steps, this buffer holds one upsampled row group until it - * has been color converted and output. - * Note: we do not allocate any storage for component(s) which are full-size, - * ie do not need rescaling. The corresponding entry of color_buf[] is - * simply set to point to the input data array, thereby avoiding copying. - */ - JSAMPARRAY color_buf[MAX_COMPONENTS]; - - /* Per-component upsampling method pointers */ - upsample1_ptr methods[MAX_COMPONENTS]; - - int next_row_out; /* counts rows emitted from color_buf */ - JDIMENSION rows_to_go; /* counts rows remaining in image */ - - /* Height of an input row group for each component. */ - int rowgroup_height[MAX_COMPONENTS]; - - /* These arrays save pixel expansion factors so that int_expand need not - * recompute them each time. They are unused for other upsampling methods. - */ - UINT8 h_expand[MAX_COMPONENTS]; - UINT8 v_expand[MAX_COMPONENTS]; -} my_upsampler; - -typedef my_upsampler * my_upsample_ptr; - - -/* - * Initialize for an upsampling pass. - */ - -METHODDEF(void) -start_pass_upsample (j_decompress_ptr cinfo) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - - /* Mark the conversion buffer empty */ - upsample->next_row_out = cinfo->max_v_samp_factor; - /* Initialize total-height counter for detecting bottom of image */ - upsample->rows_to_go = cinfo->output_height; -} - - -/* - * Control routine to do upsampling (and color conversion). - * - * In this version we upsample each component independently. - * We upsample one row group into the conversion buffer, then apply - * color conversion a row at a time. - */ - -METHODDEF(void) -sep_upsample (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - int ci; - jpeg_component_info * compptr; - JDIMENSION num_rows; - - /* Fill the conversion buffer, if it's empty */ - if (upsample->next_row_out >= cinfo->max_v_samp_factor) { - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Invoke per-component upsample method. Notice we pass a POINTER - * to color_buf[ci], so that fullsize_upsample can change it. - */ - (*upsample->methods[ci]) (cinfo, compptr, - input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), - upsample->color_buf + ci); - } - upsample->next_row_out = 0; - } - - /* Color-convert and emit rows */ - - /* How many we have in the buffer: */ - num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); - /* Not more than the distance to the end of the image. Need this test - * in case the image height is not a multiple of max_v_samp_factor: - */ - if (num_rows > upsample->rows_to_go) - num_rows = upsample->rows_to_go; - /* And not more than what the client can accept: */ - out_rows_avail -= *out_row_ctr; - if (num_rows > out_rows_avail) - num_rows = out_rows_avail; - - (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, - (JDIMENSION) upsample->next_row_out, - output_buf + *out_row_ctr, - (int) num_rows); - - /* Adjust counts */ - *out_row_ctr += num_rows; - upsample->rows_to_go -= num_rows; - upsample->next_row_out += num_rows; - /* When the buffer is emptied, declare this input row group consumed */ - if (upsample->next_row_out >= cinfo->max_v_samp_factor) - (*in_row_group_ctr)++; -} - - -/* - * These are the routines invoked by sep_upsample to upsample pixel values - * of a single component. One row group is processed per call. - */ - - -/* - * For full-size components, we just make color_buf[ci] point at the - * input buffer, and thus avoid copying any data. Note that this is - * safe only because sep_upsample doesn't declare the input row group - * "consumed" until we are done color converting and emitting it. - */ - -METHODDEF(void) -fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) -{ - *output_data_ptr = input_data; -} - - -/* - * This is a no-op version used for "uninteresting" components. - * These components will not be referenced by color conversion. - */ - -METHODDEF(void) -noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) -{ - *output_data_ptr = NULL; /* safety check */ -} - - -/* - * This version handles any integral sampling ratios. - * This is not used for typical JPEG files, so it need not be fast. - * Nor, for that matter, is it particularly accurate: the algorithm is - * simple replication of the input pixel onto the corresponding output - * pixels. The hi-falutin sampling literature refers to this as a - * "box filter". A box filter tends to introduce visible artifacts, - * so if you are actually going to use 3:1 or 4:1 sampling ratios - * you would be well advised to improve this code. - */ - -METHODDEF(void) -int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) -{ - my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; - JSAMPARRAY output_data = *output_data_ptr; - register JSAMPROW inptr, outptr; - register JSAMPLE invalue; - register int h; - JSAMPROW outend; - int h_expand, v_expand; - int inrow, outrow; - - h_expand = upsample->h_expand[compptr->component_index]; - v_expand = upsample->v_expand[compptr->component_index]; - - inrow = outrow = 0; - while (outrow < cinfo->max_v_samp_factor) { - /* Generate one output row with proper horizontal expansion */ - inptr = input_data[inrow]; - outptr = output_data[outrow]; - outend = outptr + cinfo->output_width; - while (outptr < outend) { - invalue = *inptr++; /* don't need GETJSAMPLE() here */ - for (h = h_expand; h > 0; h--) { - *outptr++ = invalue; - } - } - /* Generate any additional output rows by duplicating the first one */ - if (v_expand > 1) { - jcopy_sample_rows(output_data, outrow, output_data, outrow+1, - v_expand-1, cinfo->output_width); - } - inrow++; - outrow += v_expand; - } -} - - -/* - * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. - * It's still a box filter. - */ - -METHODDEF(void) -h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) -{ - JSAMPARRAY output_data = *output_data_ptr; - register JSAMPROW inptr, outptr; - register JSAMPLE invalue; - JSAMPROW outend; - int outrow; - - for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) { - inptr = input_data[outrow]; - outptr = output_data[outrow]; - outend = outptr + cinfo->output_width; - while (outptr < outend) { - invalue = *inptr++; /* don't need GETJSAMPLE() here */ - *outptr++ = invalue; - *outptr++ = invalue; - } - } -} - - -/* - * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. - * It's still a box filter. - */ - -METHODDEF(void) -h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) -{ - JSAMPARRAY output_data = *output_data_ptr; - register JSAMPROW inptr, outptr; - register JSAMPLE invalue; - JSAMPROW outend; - int inrow, outrow; - - inrow = outrow = 0; - while (outrow < cinfo->max_v_samp_factor) { - inptr = input_data[inrow]; - outptr = output_data[outrow]; - outend = outptr + cinfo->output_width; - while (outptr < outend) { - invalue = *inptr++; /* don't need GETJSAMPLE() here */ - *outptr++ = invalue; - *outptr++ = invalue; - } - jcopy_sample_rows(output_data, outrow, output_data, outrow+1, - 1, cinfo->output_width); - inrow++; - outrow += 2; - } -} - - -/* - * Module initialization routine for upsampling. - */ - -GLOBAL(void) -jinit_upsampler (j_decompress_ptr cinfo) -{ - my_upsample_ptr upsample; - int ci; - jpeg_component_info * compptr; - boolean need_buffer; - int h_in_group, v_in_group, h_out_group, v_out_group; - - upsample = (my_upsample_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_upsampler)); - cinfo->upsample = (struct jpeg_upsampler *) upsample; - upsample->pub.start_pass = start_pass_upsample; - upsample->pub.upsample = sep_upsample; - upsample->pub.need_context_rows = FALSE; /* until we find out differently */ - - if (cinfo->CCIR601_sampling) /* this isn't supported */ - ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); - - /* Verify we can handle the sampling factors, select per-component methods, - * and create storage as needed. - */ - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; - ci++, compptr++) { - /* Compute size of an "input group" after IDCT scaling. This many samples - * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. - */ - h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / - cinfo->min_DCT_h_scaled_size; - v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / - cinfo->min_DCT_v_scaled_size; - h_out_group = cinfo->max_h_samp_factor; - v_out_group = cinfo->max_v_samp_factor; - upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ - need_buffer = TRUE; - if (! compptr->component_needed) { - /* Don't bother to upsample an uninteresting component. */ - upsample->methods[ci] = noop_upsample; - need_buffer = FALSE; - } else if (h_in_group == h_out_group && v_in_group == v_out_group) { - /* Fullsize components can be processed without any work. */ - upsample->methods[ci] = fullsize_upsample; - need_buffer = FALSE; - } else if (h_in_group * 2 == h_out_group && - v_in_group == v_out_group) { - /* Special case for 2h1v upsampling */ - upsample->methods[ci] = h2v1_upsample; - } else if (h_in_group * 2 == h_out_group && - v_in_group * 2 == v_out_group) { - /* Special case for 2h2v upsampling */ - upsample->methods[ci] = h2v2_upsample; - } else if ((h_out_group % h_in_group) == 0 && - (v_out_group % v_in_group) == 0) { - /* Generic integral-factors upsampling method */ - upsample->methods[ci] = int_upsample; - upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); - upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); - } else - ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); - if (need_buffer) { - upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - (JDIMENSION) jround_up((long) cinfo->output_width, - (long) cinfo->max_h_samp_factor), - (JDIMENSION) cinfo->max_v_samp_factor); - } - } -} diff --git a/src/jpeg-8c/jdtrans.c b/src/jpeg-8c/jdtrans.c deleted file mode 100644 index e358b1bb..00000000 --- a/src/jpeg-8c/jdtrans.c +++ /dev/null @@ -1,140 +0,0 @@ -/* - * jdtrans.c - * - * Copyright (C) 1995-1997, Thomas G. Lane. - * Modified 2000-2013 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains library routines for transcoding decompression, - * that is, reading raw DCT coefficient arrays from an input JPEG file. - * The routines in jdapimin.c will also be needed by a transcoder. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Forward declarations */ -LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo)); - - -/* - * Read the coefficient arrays from a JPEG file. - * jpeg_read_header must be completed before calling this. - * - * The entire image is read into a set of virtual coefficient-block arrays, - * one per component. The return value is a pointer to the array of - * virtual-array descriptors. These can be manipulated directly via the - * JPEG memory manager, or handed off to jpeg_write_coefficients(). - * To release the memory occupied by the virtual arrays, call - * jpeg_finish_decompress() when done with the data. - * - * An alternative usage is to simply obtain access to the coefficient arrays - * during a buffered-image-mode decompression operation. This is allowed - * after any jpeg_finish_output() call. The arrays can be accessed until - * jpeg_finish_decompress() is called. (Note that any call to the library - * may reposition the arrays, so don't rely on access_virt_barray() results - * to stay valid across library calls.) - * - * Returns NULL if suspended. This case need be checked only if - * a suspending data source is used. - */ - -GLOBAL(jvirt_barray_ptr *) -jpeg_read_coefficients (j_decompress_ptr cinfo) -{ - if (cinfo->global_state == DSTATE_READY) { - /* First call: initialize active modules */ - transdecode_master_selection(cinfo); - cinfo->global_state = DSTATE_RDCOEFS; - } - if (cinfo->global_state == DSTATE_RDCOEFS) { - /* Absorb whole file into the coef buffer */ - for (;;) { - int retcode; - /* Call progress monitor hook if present */ - if (cinfo->progress != NULL) - (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); - /* Absorb some more input */ - retcode = (*cinfo->inputctl->consume_input) (cinfo); - if (retcode == JPEG_SUSPENDED) - return NULL; - if (retcode == JPEG_REACHED_EOI) - break; - /* Advance progress counter if appropriate */ - if (cinfo->progress != NULL && - (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { - if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { - /* startup underestimated number of scans; ratchet up one scan */ - cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; - } - } - } - /* Set state so that jpeg_finish_decompress does the right thing */ - cinfo->global_state = DSTATE_STOPPING; - } - /* At this point we should be in state DSTATE_STOPPING if being used - * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access - * to the coefficients during a full buffered-image-mode decompression. - */ - if ((cinfo->global_state == DSTATE_STOPPING || - cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { - return cinfo->coef->coef_arrays; - } - /* Oops, improper usage */ - ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); - return NULL; /* keep compiler happy */ -} - - -/* - * Master selection of decompression modules for transcoding. - * This substitutes for jdmaster.c's initialization of the full decompressor. - */ - -LOCAL(void) -transdecode_master_selection (j_decompress_ptr cinfo) -{ - /* This is effectively a buffered-image operation. */ - cinfo->buffered_image = TRUE; - - /* Compute output image dimensions and related values. */ - jpeg_core_output_dimensions(cinfo); - - /* Entropy decoding: either Huffman or arithmetic coding. */ - if (cinfo->arith_code) - jinit_arith_decoder(cinfo); - else { - jinit_huff_decoder(cinfo); - } - - /* Always get a full-image coefficient buffer. */ - jinit_d_coef_controller(cinfo, TRUE); - - /* We can now tell the memory manager to allocate virtual arrays. */ - (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); - - /* Initialize input side of decompressor to consume first scan. */ - (*cinfo->inputctl->start_input_pass) (cinfo); - - /* Initialize progress monitoring. */ - if (cinfo->progress != NULL) { - int nscans; - /* Estimate number of scans to set pass_limit. */ - if (cinfo->progressive_mode) { - /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ - nscans = 2 + 3 * cinfo->num_components; - } else if (cinfo->inputctl->has_multiple_scans) { - /* For a nonprogressive multiscan file, estimate 1 scan per component. */ - nscans = cinfo->num_components; - } else { - nscans = 1; - } - cinfo->progress->pass_counter = 0L; - cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; - cinfo->progress->completed_passes = 0; - cinfo->progress->total_passes = 1; - } -} diff --git a/src/jpeg-8c/jerror.c b/src/jpeg-8c/jerror.c deleted file mode 100644 index 2860d3fa..00000000 --- a/src/jpeg-8c/jerror.c +++ /dev/null @@ -1,254 +0,0 @@ -/* - * jerror.c - * - * Copyright (C) 1991-1998, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains simple error-reporting and trace-message routines. - * These are suitable for Unix-like systems and others where writing to - * stderr is the right thing to do. Many applications will want to replace - * some or all of these routines. - * - * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, - * you get a Windows-specific hack to display error messages in a dialog box. - * It ain't much, but it beats dropping error messages into the bit bucket, - * which is what happens to output to stderr under most Windows C compilers. - * - * These routines are used by both the compression and decompression code. - */ - -/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ -#include "jinclude.h" -#include "jpeglib.h" -#include "jversion.h" -#include "jerror.h" - -#include <stdlib.h> - -#ifdef USE_WINDOWS_MESSAGEBOX -#include <windows.h> -#endif - -#ifndef EXIT_FAILURE /* define exit() codes if not provided */ -#define EXIT_FAILURE 1 -#endif - - -/* - * Create the message string table. - * We do this from the master message list in jerror.h by re-reading - * jerror.h with a suitable definition for macro JMESSAGE. - * The message table is made an external symbol just in case any applications - * want to refer to it directly. - */ - -#ifdef NEED_SHORT_EXTERNAL_NAMES -#define jpeg_std_message_table jMsgTable -#endif - -#define JMESSAGE(code,string) string , - -const char * const jpeg_std_message_table[] = { -#include "jerror.h" - NULL -}; - - -/* - * Error exit handler: must not return to caller. - * - * Applications may override this if they want to get control back after - * an error. Typically one would longjmp somewhere instead of exiting. - * The setjmp buffer can be made a private field within an expanded error - * handler object. Note that the info needed to generate an error message - * is stored in the error object, so you can generate the message now or - * later, at your convenience. - * You should make sure that the JPEG object is cleaned up (with jpeg_abort - * or jpeg_destroy) at some point. - */ - -METHODDEF(void) -error_exit (j_common_ptr cinfo) -{ - /* Always display the message */ - (*cinfo->err->output_message) (cinfo); - - /* Let the memory manager delete any temp files before we die */ - jpeg_destroy(cinfo); - - exit(EXIT_FAILURE); -} - - -/* - * Actual output of an error or trace message. - * Applications may override this method to send JPEG messages somewhere - * other than stderr. - * - * On Windows, printing to stderr is generally completely useless, - * so we provide optional code to produce an error-dialog popup. - * Most Windows applications will still prefer to override this routine, - * but if they don't, it'll do something at least marginally useful. - * - * NOTE: to use the library in an environment that doesn't support the - * C stdio library, you may have to delete the call to fprintf() entirely, - * not just not use this routine. - */ - -METHODDEF(void) -output_message (j_common_ptr cinfo) -{ - char buffer[JMSG_LENGTH_MAX]; - - /* Create the message */ - (*cinfo->err->format_message) (cinfo, buffer); - -#ifdef USE_WINDOWS_MESSAGEBOX - /* Display it in a message dialog box */ - MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", - MB_OK | MB_ICONERROR); -#else - /* Send it to stderr, adding a newline */ - fprintf(stderr, "%s\n", buffer); -#endif -} - - -/* - * Decide whether to emit a trace or warning message. - * msg_level is one of: - * -1: recoverable corrupt-data warning, may want to abort. - * 0: important advisory messages (always display to user). - * 1: first level of tracing detail. - * 2,3,...: successively more detailed tracing messages. - * An application might override this method if it wanted to abort on warnings - * or change the policy about which messages to display. - */ - -METHODDEF(void) -emit_message (j_common_ptr cinfo, int msg_level) -{ - struct jpeg_error_mgr * err = cinfo->err; - - if (msg_level < 0) { - /* It's a warning message. Since corrupt files may generate many warnings, - * the policy implemented here is to show only the first warning, - * unless trace_level >= 3. - */ - if (err->num_warnings == 0 || err->trace_level >= 3) - (*err->output_message) (cinfo); - /* Always count warnings in num_warnings. */ - err->num_warnings++; - } else { - /* It's a trace message. Show it if trace_level >= msg_level. */ - if (err->trace_level >= msg_level) - (*err->output_message) (cinfo); - } -} - - -/* - * Format a message string for the most recent JPEG error or message. - * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX - * characters. Note that no '\n' character is added to the string. - * Few applications should need to override this method. - */ - -METHODDEF(void) -format_message (j_common_ptr cinfo, char * buffer) -{ - struct jpeg_error_mgr * err = cinfo->err; - int msg_code = err->msg_code; - const char * msgtext = NULL; - const char * msgptr; - char ch; - boolean isstring; - - /* Look up message string in proper table */ - if (msg_code > 0 && msg_code <= err->last_jpeg_message) { - msgtext = err->jpeg_message_table[msg_code]; - } else if (err->addon_message_table != NULL && - msg_code >= err->first_addon_message && - msg_code <= err->last_addon_message) { - msgtext = err->addon_message_table[msg_code - err->first_addon_message]; - } - - /* Defend against bogus message number */ - if (msgtext == NULL) { - err->msg_parm.i[0] = msg_code; - msgtext = err->jpeg_message_table[0]; - } - - /* Check for string parameter, as indicated by %s in the message text */ - isstring = FALSE; - msgptr = msgtext; - while ((ch = *msgptr++) != '\0') { - if (ch == '%') { - if (*msgptr == 's') isstring = TRUE; - break; - } - } - - /* Format the message into the passed buffer */ - if (isstring) - sprintf(buffer, msgtext, err->msg_parm.s); - else - sprintf(buffer, msgtext, - err->msg_parm.i[0], err->msg_parm.i[1], - err->msg_parm.i[2], err->msg_parm.i[3], - err->msg_parm.i[4], err->msg_parm.i[5], - err->msg_parm.i[6], err->msg_parm.i[7]); -} - - -/* - * Reset error state variables at start of a new image. - * This is called during compression startup to reset trace/error - * processing to default state, without losing any application-specific - * method pointers. An application might possibly want to override - * this method if it has additional error processing state. - */ - -METHODDEF(void) -reset_error_mgr (j_common_ptr cinfo) -{ - cinfo->err->num_warnings = 0; - /* trace_level is not reset since it is an application-supplied parameter */ - cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */ -} - - -/* - * Fill in the standard error-handling methods in a jpeg_error_mgr object. - * Typical call is: - * struct jpeg_compress_struct cinfo; - * struct jpeg_error_mgr err; - * - * cinfo.err = jpeg_std_error(&err); - * after which the application may override some of the methods. - */ - -GLOBAL(struct jpeg_error_mgr *) -jpeg_std_error (struct jpeg_error_mgr * err) -{ - err->error_exit = error_exit; - err->emit_message = emit_message; - err->output_message = output_message; - err->format_message = format_message; - err->reset_error_mgr = reset_error_mgr; - - err->trace_level = 0; /* default = no tracing */ - err->num_warnings = 0; /* no warnings emitted yet */ - err->msg_code = 0; /* may be useful as a flag for "no error" */ - - /* Initialize message table pointers */ - err->jpeg_message_table = jpeg_std_message_table; - err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; - - err->addon_message_table = NULL; - err->first_addon_message = 0; /* for safety */ - err->last_addon_message = 0; - - return err; -} diff --git a/src/jpeg-8c/jerror.h b/src/jpeg-8c/jerror.h deleted file mode 100644 index 1cfb2b19..00000000 --- a/src/jpeg-8c/jerror.h +++ /dev/null @@ -1,304 +0,0 @@ -/* - * jerror.h - * - * Copyright (C) 1994-1997, Thomas G. Lane. - * Modified 1997-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file defines the error and message codes for the JPEG library. - * Edit this file to add new codes, or to translate the message strings to - * some other language. - * A set of error-reporting macros are defined too. Some applications using - * the JPEG library may wish to include this file to get the error codes - * and/or the macros. - */ - -/* - * To define the enum list of message codes, include this file without - * defining macro JMESSAGE. To create a message string table, include it - * again with a suitable JMESSAGE definition (see jerror.c for an example). - */ -#ifndef JMESSAGE -#ifndef JERROR_H -/* First time through, define the enum list */ -#define JMAKE_ENUM_LIST -#else -/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ -#define JMESSAGE(code,string) -#endif /* JERROR_H */ -#endif /* JMESSAGE */ - -#ifdef JMAKE_ENUM_LIST - -typedef enum { - -#define JMESSAGE(code,string) code , - -#endif /* JMAKE_ENUM_LIST */ - -JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ - -/* For maintenance convenience, list is alphabetical by message code name */ -JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") -JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") -JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") -JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") -JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") -JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") -JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported") -JMESSAGE(JERR_BAD_DROP_SAMPLING, - "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") -JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") -JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") -JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") -JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") -JMESSAGE(JERR_BAD_LIB_VERSION, - "Wrong JPEG library version: library is %d, caller expects %d") -JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") -JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") -JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") -JMESSAGE(JERR_BAD_PROGRESSION, - "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") -JMESSAGE(JERR_BAD_PROG_SCRIPT, - "Invalid progressive parameters at scan script entry %d") -JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") -JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") -JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") -JMESSAGE(JERR_BAD_STRUCT_SIZE, - "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") -JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") -JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") -JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") -JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") -JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") -JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") -JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") -JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") -JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") -JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") -JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") -JMESSAGE(JERR_EMS_READ, "Read from EMS failed") -JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") -JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") -JMESSAGE(JERR_FILE_READ, "Input file read error") -JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") -JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") -JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") -JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") -JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") -JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") -JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") -JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, - "Cannot transcode due to multiple use of quantization table %d") -JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") -JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") -JMESSAGE(JERR_NOTIMPL, "Not implemented yet") -JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") -JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") -JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") -JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") -JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") -JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") -JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") -JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") -JMESSAGE(JERR_QUANT_COMPONENTS, - "Cannot quantize more than %d color components") -JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") -JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") -JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") -JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") -JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") -JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") -JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") -JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") -JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") -JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") -JMESSAGE(JERR_TFILE_WRITE, - "Write failed on temporary file --- out of disk space?") -JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") -JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") -JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") -JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") -JMESSAGE(JERR_XMS_READ, "Read from XMS failed") -JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") -JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) -JMESSAGE(JMSG_VERSION, JVERSION) -JMESSAGE(JTRC_16BIT_TABLES, - "Caution: quantization tables are too coarse for baseline JPEG") -JMESSAGE(JTRC_ADOBE, - "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") -JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") -JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") -JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") -JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") -JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") -JMESSAGE(JTRC_DRI, "Define Restart Interval %u") -JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") -JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") -JMESSAGE(JTRC_EOI, "End Of Image") -JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") -JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") -JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, - "Warning: thumbnail image size does not match data length %u") -JMESSAGE(JTRC_JFIF_EXTENSION, - "JFIF extension marker: type 0x%02x, length %u") -JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") -JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") -JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") -JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") -JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") -JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") -JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") -JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") -JMESSAGE(JTRC_RST, "RST%d") -JMESSAGE(JTRC_SMOOTH_NOTIMPL, - "Smoothing not supported with nonstandard sampling ratios") -JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") -JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") -JMESSAGE(JTRC_SOI, "Start of Image") -JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") -JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") -JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") -JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") -JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") -JMESSAGE(JTRC_THUMB_JPEG, - "JFIF extension marker: JPEG-compressed thumbnail image, length %u") -JMESSAGE(JTRC_THUMB_PALETTE, - "JFIF extension marker: palette thumbnail image, length %u") -JMESSAGE(JTRC_THUMB_RGB, - "JFIF extension marker: RGB thumbnail image, length %u") -JMESSAGE(JTRC_UNKNOWN_IDS, - "Unrecognized component IDs %d %d %d, assuming YCbCr") -JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") -JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") -JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") -JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") -JMESSAGE(JWRN_BOGUS_PROGRESSION, - "Inconsistent progression sequence for component %d coefficient %d") -JMESSAGE(JWRN_EXTRANEOUS_DATA, - "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") -JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") -JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") -JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") -JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") -JMESSAGE(JWRN_MUST_RESYNC, - "Corrupt JPEG data: found marker 0x%02x instead of RST%d") -JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") -JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") - -#ifdef JMAKE_ENUM_LIST - - JMSG_LASTMSGCODE -} J_MESSAGE_CODE; - -#undef JMAKE_ENUM_LIST -#endif /* JMAKE_ENUM_LIST */ - -/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ -#undef JMESSAGE - - -#ifndef JERROR_H -#define JERROR_H - -/* Macros to simplify using the error and trace message stuff */ -/* The first parameter is either type of cinfo pointer */ - -/* Fatal errors (print message and exit) */ -#define ERREXIT(cinfo,code) \ - ((cinfo)->err->msg_code = (code), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) -#define ERREXIT1(cinfo,code,p1) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) -#define ERREXIT2(cinfo,code,p1,p2) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (cinfo)->err->msg_parm.i[1] = (p2), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) -#define ERREXIT3(cinfo,code,p1,p2,p3) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (cinfo)->err->msg_parm.i[1] = (p2), \ - (cinfo)->err->msg_parm.i[2] = (p3), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) -#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (cinfo)->err->msg_parm.i[1] = (p2), \ - (cinfo)->err->msg_parm.i[2] = (p3), \ - (cinfo)->err->msg_parm.i[3] = (p4), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) -#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (cinfo)->err->msg_parm.i[1] = (p2), \ - (cinfo)->err->msg_parm.i[2] = (p3), \ - (cinfo)->err->msg_parm.i[3] = (p4), \ - (cinfo)->err->msg_parm.i[4] = (p5), \ - (cinfo)->err->msg_parm.i[5] = (p6), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) -#define ERREXITS(cinfo,code,str) \ - ((cinfo)->err->msg_code = (code), \ - strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ - (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) - -#define MAKESTMT(stuff) do { stuff } while (0) - -/* Nonfatal errors (we can keep going, but the data is probably corrupt) */ -#define WARNMS(cinfo,code) \ - ((cinfo)->err->msg_code = (code), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) -#define WARNMS1(cinfo,code,p1) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) -#define WARNMS2(cinfo,code,p1,p2) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (cinfo)->err->msg_parm.i[1] = (p2), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) - -/* Informational/debugging messages */ -#define TRACEMS(cinfo,lvl,code) \ - ((cinfo)->err->msg_code = (code), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) -#define TRACEMS1(cinfo,lvl,code,p1) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) -#define TRACEMS2(cinfo,lvl,code,p1,p2) \ - ((cinfo)->err->msg_code = (code), \ - (cinfo)->err->msg_parm.i[0] = (p1), \ - (cinfo)->err->msg_parm.i[1] = (p2), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) -#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ - MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ - _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ - (cinfo)->err->msg_code = (code); \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) -#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ - MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ - _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ - (cinfo)->err->msg_code = (code); \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) -#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ - MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ - _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ - _mp[4] = (p5); \ - (cinfo)->err->msg_code = (code); \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) -#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ - MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ - _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ - _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ - (cinfo)->err->msg_code = (code); \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) -#define TRACEMSS(cinfo,lvl,code,str) \ - ((cinfo)->err->msg_code = (code), \ - strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ - (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) - -#endif /* JERROR_H */ diff --git a/src/jpeg-8c/jfdctflt.c b/src/jpeg-8c/jfdctflt.c deleted file mode 100644 index 74d0d862..00000000 --- a/src/jpeg-8c/jfdctflt.c +++ /dev/null @@ -1,174 +0,0 @@ -/* - * jfdctflt.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2003-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a floating-point implementation of the - * forward DCT (Discrete Cosine Transform). - * - * This implementation should be more accurate than either of the integer - * DCT implementations. However, it may not give the same results on all - * machines because of differences in roundoff behavior. Speed will depend - * on the hardware's floating point capacity. - * - * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT - * on each column. Direct algorithms are also available, but they are - * much more complex and seem not to be any faster when reduced to code. - * - * This implementation is based on Arai, Agui, and Nakajima's algorithm for - * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in - * Japanese, but the algorithm is described in the Pennebaker & Mitchell - * JPEG textbook (see REFERENCES section in file README). The following code - * is based directly on figure 4-8 in P&M. - * While an 8-point DCT cannot be done in less than 11 multiplies, it is - * possible to arrange the computation so that many of the multiplies are - * simple scalings of the final outputs. These multiplies can then be - * folded into the multiplications or divisions by the JPEG quantization - * table entries. The AA&N method leaves only 5 multiplies and 29 adds - * to be done in the DCT itself. - * The primary disadvantage of this method is that with a fixed-point - * implementation, accuracy is lost due to imprecise representation of the - * scaled quantization values. However, that problem does not arise if - * we use floating point arithmetic. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_FLOAT_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* - * Perform the forward DCT on one block of samples. - */ - -GLOBAL(void) -jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - FAST_FLOAT tmp10, tmp11, tmp12, tmp13; - FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; - FAST_FLOAT *dataptr; - JSAMPROW elemptr; - int ctr; - - /* Pass 1: process rows. */ - - dataptr = data; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Load data into workspace */ - tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); - tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); - tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); - tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); - tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); - tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); - tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); - tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); - - /* Even part */ - - tmp10 = tmp0 + tmp3; /* phase 2 */ - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - /* Apply unsigned->signed conversion */ - dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ - dataptr[4] = tmp10 - tmp11; - - z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ - dataptr[2] = tmp13 + z1; /* phase 5 */ - dataptr[6] = tmp13 - z1; - - /* Odd part */ - - tmp10 = tmp4 + tmp5; /* phase 2 */ - tmp11 = tmp5 + tmp6; - tmp12 = tmp6 + tmp7; - - /* The rotator is modified from fig 4-8 to avoid extra negations. */ - z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ - z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ - z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ - z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ - - z11 = tmp7 + z3; /* phase 5 */ - z13 = tmp7 - z3; - - dataptr[5] = z13 + z2; /* phase 6 */ - dataptr[3] = z13 - z2; - dataptr[1] = z11 + z4; - dataptr[7] = z11 - z4; - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; - tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; - tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; - tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - - /* Even part */ - - tmp10 = tmp0 + tmp3; /* phase 2 */ - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ - dataptr[DCTSIZE*4] = tmp10 - tmp11; - - z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ - dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ - dataptr[DCTSIZE*6] = tmp13 - z1; - - /* Odd part */ - - tmp10 = tmp4 + tmp5; /* phase 2 */ - tmp11 = tmp5 + tmp6; - tmp12 = tmp6 + tmp7; - - /* The rotator is modified from fig 4-8 to avoid extra negations. */ - z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ - z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ - z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ - z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ - - z11 = tmp7 + z3; /* phase 5 */ - z13 = tmp7 - z3; - - dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ - dataptr[DCTSIZE*3] = z13 - z2; - dataptr[DCTSIZE*1] = z11 + z4; - dataptr[DCTSIZE*7] = z11 - z4; - - dataptr++; /* advance pointer to next column */ - } -} - -#endif /* DCT_FLOAT_SUPPORTED */ diff --git a/src/jpeg-8c/jfdctfst.c b/src/jpeg-8c/jfdctfst.c deleted file mode 100644 index 8cad5f22..00000000 --- a/src/jpeg-8c/jfdctfst.c +++ /dev/null @@ -1,230 +0,0 @@ -/* - * jfdctfst.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2003-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a fast, not so accurate integer implementation of the - * forward DCT (Discrete Cosine Transform). - * - * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT - * on each column. Direct algorithms are also available, but they are - * much more complex and seem not to be any faster when reduced to code. - * - * This implementation is based on Arai, Agui, and Nakajima's algorithm for - * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in - * Japanese, but the algorithm is described in the Pennebaker & Mitchell - * JPEG textbook (see REFERENCES section in file README). The following code - * is based directly on figure 4-8 in P&M. - * While an 8-point DCT cannot be done in less than 11 multiplies, it is - * possible to arrange the computation so that many of the multiplies are - * simple scalings of the final outputs. These multiplies can then be - * folded into the multiplications or divisions by the JPEG quantization - * table entries. The AA&N method leaves only 5 multiplies and 29 adds - * to be done in the DCT itself. - * The primary disadvantage of this method is that with fixed-point math, - * accuracy is lost due to imprecise representation of the scaled - * quantization values. The smaller the quantization table entry, the less - * precise the scaled value, so this implementation does worse with high- - * quality-setting files than with low-quality ones. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_IFAST_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* Scaling decisions are generally the same as in the LL&M algorithm; - * see jfdctint.c for more details. However, we choose to descale - * (right shift) multiplication products as soon as they are formed, - * rather than carrying additional fractional bits into subsequent additions. - * This compromises accuracy slightly, but it lets us save a few shifts. - * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) - * everywhere except in the multiplications proper; this saves a good deal - * of work on 16-bit-int machines. - * - * Again to save a few shifts, the intermediate results between pass 1 and - * pass 2 are not upscaled, but are represented only to integral precision. - * - * A final compromise is to represent the multiplicative constants to only - * 8 fractional bits, rather than 13. This saves some shifting work on some - * machines, and may also reduce the cost of multiplication (since there - * are fewer one-bits in the constants). - */ - -#define CONST_BITS 8 - - -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus - * causing a lot of useless floating-point operations at run time. - * To get around this we use the following pre-calculated constants. - * If you change CONST_BITS you may want to add appropriate values. - * (With a reasonable C compiler, you can just rely on the FIX() macro...) - */ - -#if CONST_BITS == 8 -#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ -#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ -#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ -#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ -#else -#define FIX_0_382683433 FIX(0.382683433) -#define FIX_0_541196100 FIX(0.541196100) -#define FIX_0_707106781 FIX(0.707106781) -#define FIX_1_306562965 FIX(1.306562965) -#endif - - -/* We can gain a little more speed, with a further compromise in accuracy, - * by omitting the addition in a descaling shift. This yields an incorrectly - * rounded result half the time... - */ - -#ifndef USE_ACCURATE_ROUNDING -#undef DESCALE -#define DESCALE(x,n) RIGHT_SHIFT(x, n) -#endif - - -/* Multiply a DCTELEM variable by an INT32 constant, and immediately - * descale to yield a DCTELEM result. - */ - -#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) - - -/* - * Perform the forward DCT on one block of samples. - */ - -GLOBAL(void) -jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - DCTELEM tmp10, tmp11, tmp12, tmp13; - DCTELEM z1, z2, z3, z4, z5, z11, z13; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - - dataptr = data; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Load data into workspace */ - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); - tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); - tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); - tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); - tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); - - /* Even part */ - - tmp10 = tmp0 + tmp3; /* phase 2 */ - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - /* Apply unsigned->signed conversion */ - dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ - dataptr[4] = tmp10 - tmp11; - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ - dataptr[2] = tmp13 + z1; /* phase 5 */ - dataptr[6] = tmp13 - z1; - - /* Odd part */ - - tmp10 = tmp4 + tmp5; /* phase 2 */ - tmp11 = tmp5 + tmp6; - tmp12 = tmp6 + tmp7; - - /* The rotator is modified from fig 4-8 to avoid extra negations. */ - z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ - z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ - z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ - z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ - - z11 = tmp7 + z3; /* phase 5 */ - z13 = tmp7 - z3; - - dataptr[5] = z13 + z2; /* phase 6 */ - dataptr[3] = z13 - z2; - dataptr[1] = z11 + z4; - dataptr[7] = z11 - z4; - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; - tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; - tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; - tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - - /* Even part */ - - tmp10 = tmp0 + tmp3; /* phase 2 */ - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ - dataptr[DCTSIZE*4] = tmp10 - tmp11; - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ - dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ - dataptr[DCTSIZE*6] = tmp13 - z1; - - /* Odd part */ - - tmp10 = tmp4 + tmp5; /* phase 2 */ - tmp11 = tmp5 + tmp6; - tmp12 = tmp6 + tmp7; - - /* The rotator is modified from fig 4-8 to avoid extra negations. */ - z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ - z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ - z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ - z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ - - z11 = tmp7 + z3; /* phase 5 */ - z13 = tmp7 - z3; - - dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ - dataptr[DCTSIZE*3] = z13 - z2; - dataptr[DCTSIZE*1] = z11 + z4; - dataptr[DCTSIZE*7] = z11 - z4; - - dataptr++; /* advance pointer to next column */ - } -} - -#endif /* DCT_IFAST_SUPPORTED */ diff --git a/src/jpeg-8c/jfdctint.c b/src/jpeg-8c/jfdctint.c deleted file mode 100644 index 1dde58c4..00000000 --- a/src/jpeg-8c/jfdctint.c +++ /dev/null @@ -1,4348 +0,0 @@ -/* - * jfdctint.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * Modification developed 2003-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a slow-but-accurate integer implementation of the - * forward DCT (Discrete Cosine Transform). - * - * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT - * on each column. Direct algorithms are also available, but they are - * much more complex and seem not to be any faster when reduced to code. - * - * This implementation is based on an algorithm described in - * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT - * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, - * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. - * The primary algorithm described there uses 11 multiplies and 29 adds. - * We use their alternate method with 12 multiplies and 32 adds. - * The advantage of this method is that no data path contains more than one - * multiplication; this allows a very simple and accurate implementation in - * scaled fixed-point arithmetic, with a minimal number of shifts. - * - * We also provide FDCT routines with various input sample block sizes for - * direct resolution reduction or enlargement and for direct resolving the - * common 2x1 and 1x2 subsampling cases without additional resampling: NxN - * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block. - * - * For N<8 we fill the remaining block coefficients with zero. - * For N>8 we apply a partial N-point FDCT on the input samples, computing - * just the lower 8 frequency coefficients and discarding the rest. - * - * We must scale the output coefficients of the N-point FDCT appropriately - * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling - * is folded into the constant multipliers (pass 2) and/or final/initial - * shifting. - * - * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases - * since there would be too many additional constants to pre-calculate. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_ISLOW_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ -#endif - - -/* - * The poop on this scaling stuff is as follows: - * - * Each 1-D DCT step produces outputs which are a factor of sqrt(N) - * larger than the true DCT outputs. The final outputs are therefore - * a factor of N larger than desired; since N=8 this can be cured by - * a simple right shift at the end of the algorithm. The advantage of - * this arrangement is that we save two multiplications per 1-D DCT, - * because the y0 and y4 outputs need not be divided by sqrt(N). - * In the IJG code, this factor of 8 is removed by the quantization step - * (in jcdctmgr.c), NOT in this module. - * - * We have to do addition and subtraction of the integer inputs, which - * is no problem, and multiplication by fractional constants, which is - * a problem to do in integer arithmetic. We multiply all the constants - * by CONST_SCALE and convert them to integer constants (thus retaining - * CONST_BITS bits of precision in the constants). After doing a - * multiplication we have to divide the product by CONST_SCALE, with proper - * rounding, to produce the correct output. This division can be done - * cheaply as a right shift of CONST_BITS bits. We postpone shifting - * as long as possible so that partial sums can be added together with - * full fractional precision. - * - * The outputs of the first pass are scaled up by PASS1_BITS bits so that - * they are represented to better-than-integral precision. These outputs - * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word - * with the recommended scaling. (For 12-bit sample data, the intermediate - * array is INT32 anyway.) - * - * To avoid overflow of the 32-bit intermediate results in pass 2, we must - * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis - * shows that the values given below are the most effective. - */ - -#if BITS_IN_JSAMPLE == 8 -#define CONST_BITS 13 -#define PASS1_BITS 2 -#else -#define CONST_BITS 13 -#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ -#endif - -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus - * causing a lot of useless floating-point operations at run time. - * To get around this we use the following pre-calculated constants. - * If you change CONST_BITS you may want to add appropriate values. - * (With a reasonable C compiler, you can just rely on the FIX() macro...) - */ - -#if CONST_BITS == 13 -#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ -#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ -#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ -#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ -#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ -#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ -#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ -#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ -#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ -#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ -#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ -#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ -#else -#define FIX_0_298631336 FIX(0.298631336) -#define FIX_0_390180644 FIX(0.390180644) -#define FIX_0_541196100 FIX(0.541196100) -#define FIX_0_765366865 FIX(0.765366865) -#define FIX_0_899976223 FIX(0.899976223) -#define FIX_1_175875602 FIX(1.175875602) -#define FIX_1_501321110 FIX(1.501321110) -#define FIX_1_847759065 FIX(1.847759065) -#define FIX_1_961570560 FIX(1.961570560) -#define FIX_2_053119869 FIX(2.053119869) -#define FIX_2_562915447 FIX(2.562915447) -#define FIX_3_072711026 FIX(3.072711026) -#endif - - -/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. - * For 8-bit samples with the recommended scaling, all the variable - * and constant values involved are no more than 16 bits wide, so a - * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. - * For 12-bit samples, a full 32-bit multiplication will be needed. - */ - -#if BITS_IN_JSAMPLE == 8 -#define MULTIPLY(var,const) MULTIPLY16C16(var,const) -#else -#define MULTIPLY(var,const) ((var) * (const)) -#endif - - -/* - * Perform the forward DCT on one block of samples. - */ - -GLOBAL(void) -jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - - dataptr = data; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); - - tmp10 = tmp0 + tmp3; - tmp12 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp13 = tmp1 - tmp2; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS-PASS1_BITS); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * cK represents sqrt(2) * cos(K*pi/16). - * i0..i3 in the paper are tmp0..tmp3 here. - */ - - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp0 + tmp2; - tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - - tmp12 += z1; - tmp13 += z1; - - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; - - /* Add fudge factor here for final descale. */ - tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); - tmp12 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp13 = tmp1 - tmp2; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - - dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS+PASS1_BITS-1); - dataptr[DCTSIZE*2] = (DCTELEM) - RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) - RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * cK represents sqrt(2) * cos(K*pi/16). - * i0..i3 in the paper are tmp0..tmp3 here. - */ - - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp0 + tmp2; - tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS+PASS1_BITS-1); - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - - tmp12 += z1; - tmp13 += z1; - - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - -#ifdef DCT_SCALING_SUPPORTED - - -/* - * Perform the forward DCT on a 7x7 sample block. - */ - -GLOBAL(void) -jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12; - INT32 z1, z2, z3; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* cK represents sqrt(2) * cos(K*pi/14). */ - - dataptr = data; - for (ctr = 0; ctr < 7; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); - tmp3 = GETJSAMPLE(elemptr[3]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); - tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); - - z1 = tmp0 + tmp2; - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); - tmp3 += tmp3; - z1 -= tmp3; - z1 -= tmp3; - z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ - z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ - z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ - dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); - z1 -= z2; - z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ - dataptr[4] = (DCTELEM) - DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ - tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ - tmp0 = tmp1 - tmp2; - tmp1 += tmp2; - tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ - tmp1 += tmp2; - tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ - tmp0 += tmp3; - tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/7)**2 = 64/49, which we fold - * into the constant multipliers: - * cK now represents sqrt(2) * cos(K*pi/14) * 64/49. - */ - - dataptr = data; - for (ctr = 0; ctr < 7; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; - tmp3 = dataptr[DCTSIZE*3]; - - tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; - tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; - tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; - - z1 = tmp0 + tmp2; - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ - CONST_BITS+PASS1_BITS); - tmp3 += tmp3; - z1 -= tmp3; - z1 -= tmp3; - z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ - z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ - z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS); - z1 -= z2; - z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ - tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ - tmp0 = tmp1 - tmp2; - tmp1 += tmp2; - tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ - tmp1 += tmp2; - tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ - tmp0 += tmp3; - tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 6x6 sample block. - */ - -GLOBAL(void) -jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2; - INT32 tmp10, tmp11, tmp12; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* cK represents sqrt(2) * cos(K*pi/12). */ - - dataptr = data; - for (ctr = 0; ctr < 6; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); - tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); - - tmp10 = tmp0 + tmp2; - tmp12 = tmp0 - tmp2; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ - CONST_BITS-PASS1_BITS); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ - CONST_BITS-PASS1_BITS); - - dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); - dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); - dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/6)**2 = 16/9, which we fold - * into the constant multipliers: - * cK now represents sqrt(2) * cos(K*pi/12) * 16/9. - */ - - dataptr = data; - for (ctr = 0; ctr < 6; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; - tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; - - tmp10 = tmp0 + tmp2; - tmp12 = tmp0 - tmp2; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 5x5 sample block. - */ - -GLOBAL(void) -jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2; - INT32 tmp10, tmp11; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/10). */ - - dataptr = data; - for (ctr = 0; ctr < 5; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); - tmp2 = GETJSAMPLE(elemptr[2]); - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1)); - tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ - tmp10 -= tmp2 << 2; - tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ - dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1); - dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ - - dataptr[1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ - CONST_BITS-PASS1_BITS-1); - dataptr[3] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ - CONST_BITS-PASS1_BITS-1); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/5)**2 = 64/25, which we partially - * fold into the constant multipliers (other part was done in pass 1): - * cK now represents sqrt(2) * cos(K*pi/10) * 32/25. - */ - - dataptr = data; - for (ctr = 0; ctr < 5; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; - tmp2 = dataptr[DCTSIZE*2]; - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ - CONST_BITS+PASS1_BITS); - tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ - tmp10 -= tmp2 << 2; - tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 4x4 sample block. - */ - -GLOBAL(void) -jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1; - INT32 tmp10, tmp11; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */ - /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ - - dataptr = data; - for (ctr = 0; ctr < 4; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2)); - dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2)); - - /* Odd part */ - - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-3); - - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ - CONST_BITS-PASS1_BITS-2); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ - CONST_BITS-PASS1_BITS-2); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - */ - - dataptr = data; - for (ctr = 0; ctr < 4; ctr++) { - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; - - tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; - tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; - - dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); - - /* Odd part */ - - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); - - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 3x3 sample block. - */ - -GLOBAL(void) -jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2**2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/6). */ - - dataptr = data; - for (ctr = 0; ctr < 3; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); - tmp1 = GETJSAMPLE(elemptr[1]); - - tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2)); - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ - CONST_BITS-PASS1_BITS-2); - - /* Odd part */ - - dataptr[1] = (DCTELEM) - DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ - CONST_BITS-PASS1_BITS-2); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/3)**2 = 64/9, which we partially - * fold into the constant multipliers (other part was done in pass 1): - * cK now represents sqrt(2) * cos(K*pi/6) * 16/9. - */ - - dataptr = data; - for (ctr = 0; ctr < 3; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; - tmp1 = dataptr[DCTSIZE*1]; - - tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 2x2 sample block. - */ - -GLOBAL(void) -jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - JSAMPROW elemptr; - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - - /* Row 0 */ - elemptr = sample_data[0] + start_col; - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); - tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); - - /* Row 1 */ - elemptr = sample_data[1] + start_col; - - tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); - tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/2)**2 = 2**4. - */ - - /* Column 0 */ - /* Apply unsigned->signed conversion */ - data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4); - data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4); - - /* Column 1 */ - data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4); - data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4); -} - - -/* - * Perform the forward DCT on a 1x1 sample block. - */ - -GLOBAL(void) -jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* We leave the result scaled up by an overall factor of 8. */ - /* We must also scale the output by (8/1)**2 = 2**6. */ - /* Apply unsigned->signed conversion */ - data[0] = (DCTELEM) - ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6); -} - - -/* - * Perform the forward DCT on a 9x9 sample block. - */ - -GLOBAL(void) -jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2; - DCTELEM workspace[8]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* we scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/18). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]); - tmp4 = GETJSAMPLE(elemptr[4]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]); - tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]); - tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]); - - z1 = tmp0 + tmp2 + tmp3; - z2 = tmp1 + tmp4; - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1); - dataptr[6] = (DCTELEM) - DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */ - CONST_BITS-1); - z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */ - z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */ - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */ - + z1 + z2, CONST_BITS-1); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */ - + z1 - z2, CONST_BITS-1); - - /* Odd part */ - - dataptr[3] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */ - CONST_BITS-1); - - tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */ - tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */ - tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1); - - tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */ - - dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1); - dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 9) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/9)**2 = 64/81, which we partially - * fold into the constant multipliers and final/initial shifting: - * cK now represents sqrt(2) * cos(K*pi/18) * 128/81. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5]; - tmp4 = dataptr[DCTSIZE*4]; - - tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0]; - tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7]; - tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6]; - tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5]; - - z1 = tmp0 + tmp2 + tmp3; - z2 = tmp1 + tmp4; - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */ - CONST_BITS+2); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */ - CONST_BITS+2); - z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */ - z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */ - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */ - + z1 + z2, CONST_BITS+2); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */ - + z1 - z2, CONST_BITS+2); - - /* Odd part */ - - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */ - CONST_BITS+2); - - tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */ - tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */ - tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2); - - tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */ - - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2); - dataptr[DCTSIZE*7] = (DCTELEM) - DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 10x10 sample block. - */ - -GLOBAL(void) -jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - DCTELEM workspace[8*2]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* we scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/20). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); - tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); - - tmp10 = tmp0 + tmp4; - tmp13 = tmp0 - tmp4; - tmp11 = tmp1 + tmp3; - tmp14 = tmp1 - tmp3; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1); - tmp12 += tmp12; - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ - MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ - CONST_BITS-1); - tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ - dataptr[2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ - CONST_BITS-1); - dataptr[6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ - CONST_BITS-1); - - /* Odd part */ - - tmp10 = tmp0 + tmp4; - tmp11 = tmp1 - tmp3; - dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1); - tmp2 <<= CONST_BITS; - dataptr[1] = (DCTELEM) - DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ - MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ - MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ - MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ - CONST_BITS-1); - tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ - MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ - tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ - (tmp11 << (CONST_BITS - 1)) - tmp2; - dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1); - dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 10) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/10)**2 = 16/25, which we partially - * fold into the constant multipliers and final/initial shifting: - * cK now represents sqrt(2) * cos(K*pi/20) * 32/25. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; - tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; - tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; - - tmp10 = tmp0 + tmp4; - tmp13 = tmp0 - tmp4; - tmp11 = tmp1 + tmp3; - tmp14 = tmp1 - tmp3; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; - tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; - tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ - CONST_BITS+2); - tmp12 += tmp12; - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ - MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ - CONST_BITS+2); - tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ - CONST_BITS+2); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ - CONST_BITS+2); - - /* Odd part */ - - tmp10 = tmp0 + tmp4; - tmp11 = tmp1 - tmp3; - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ - CONST_BITS+2); - tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ - MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ - MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ - MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ - CONST_BITS+2); - tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ - MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ - tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ - MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on an 11x11 sample block. - */ - -GLOBAL(void) -jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - INT32 z1, z2, z3; - DCTELEM workspace[8*3]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* we scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/22). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]); - tmp5 = GETJSAMPLE(elemptr[5]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]); - tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]); - tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]); - tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1); - tmp5 += tmp5; - tmp0 -= tmp5; - tmp1 -= tmp5; - tmp2 -= tmp5; - tmp3 -= tmp5; - tmp4 -= tmp5; - z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */ - MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */ - z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */ - z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */ - dataptr[2] = (DCTELEM) - DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */ - - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */ - CONST_BITS-1); - dataptr[4] = (DCTELEM) - DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */ - - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */ - + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */ - CONST_BITS-1); - dataptr[6] = (DCTELEM) - DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */ - - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */ - CONST_BITS-1); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */ - tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */ - tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */ - tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */ - + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */ - tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */ - tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */ - tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */ - - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */ - tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */ - tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */ - + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */ - tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */ - - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1); - dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1); - dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1); - dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 11) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/11)**2 = 64/121, which we partially - * fold into the constant multipliers and final/initial shifting: - * cK now represents sqrt(2) * cos(K*pi/22) * 128/121. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7]; - tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6]; - tmp5 = dataptr[DCTSIZE*5]; - - tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2]; - tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1]; - tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0]; - tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7]; - tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5, - FIX(1.057851240)), /* 128/121 */ - CONST_BITS+2); - tmp5 += tmp5; - tmp0 -= tmp5; - tmp1 -= tmp5; - tmp2 -= tmp5; - tmp3 -= tmp5; - tmp4 -= tmp5; - z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */ - MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */ - z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */ - z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */ - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */ - - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */ - CONST_BITS+2); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */ - - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */ - + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */ - CONST_BITS+2); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */ - - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */ - CONST_BITS+2); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */ - tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */ - tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */ - tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */ - + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */ - tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */ - tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */ - tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */ - - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */ - tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */ - tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */ - + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */ - tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */ - - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 12x12 sample block. - */ - -GLOBAL(void) -jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - DCTELEM workspace[8*4]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/24). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); - - tmp10 = tmp0 + tmp5; - tmp13 = tmp0 - tmp5; - tmp11 = tmp1 + tmp4; - tmp14 = tmp1 - tmp4; - tmp12 = tmp2 + tmp3; - tmp15 = tmp2 - tmp3; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); - tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE); - dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ - CONST_BITS); - dataptr[2] = (DCTELEM) - DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ - CONST_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ - tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ - tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ - tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ - + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ - tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ - tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ - + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ - tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ - - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ - tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ - - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 12) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/12)**2 = 4/9, which we partially - * fold into the constant multipliers and final shifting: - * cK now represents sqrt(2) * cos(K*pi/24) * 8/9. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; - tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; - tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; - tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; - - tmp10 = tmp0 + tmp5; - tmp13 = tmp0 - tmp5; - tmp11 = tmp1 + tmp4; - tmp14 = tmp1 - tmp4; - tmp12 = tmp2 + tmp3; - tmp15 = tmp2 - tmp3; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; - tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; - tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; - tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; - tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ - CONST_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ - CONST_BITS+1); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ - CONST_BITS+1); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ - MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ - CONST_BITS+1); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ - tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ - tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ - tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ - + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ - tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ - tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ - + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ - tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ - - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ - tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ - - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 13x13 sample block. - */ - -GLOBAL(void) -jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - INT32 z1, z2; - DCTELEM workspace[8*5]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/26). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]); - tmp6 = GETJSAMPLE(elemptr[6]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]); - tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]); - tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]); - tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]); - tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE); - tmp6 += tmp6; - tmp0 -= tmp6; - tmp1 -= tmp6; - tmp2 -= tmp6; - tmp3 -= tmp6; - tmp4 -= tmp6; - tmp5 -= tmp6; - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */ - MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */ - MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */ - MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */ - MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */ - MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */ - CONST_BITS); - z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */ - MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */ - MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */ - z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */ - MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */ - MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */ - - dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS); - dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */ - tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */ - tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */ - MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */ - tmp0 = tmp1 + tmp2 + tmp3 - - MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */ - MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */ - tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */ - MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */ - tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */ - tmp1 += tmp4 + tmp5 + - MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */ - MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */ - tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */ - tmp2 += tmp4 + tmp6 - - MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */ - MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */ - tmp3 += tmp5 + tmp6 + - MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */ - MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 13) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/13)**2 = 64/169, which we partially - * fold into the constant multipliers and final shifting: - * cK now represents sqrt(2) * cos(K*pi/26) * 128/169. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2]; - tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1]; - tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0]; - tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7]; - tmp6 = dataptr[DCTSIZE*6]; - - tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4]; - tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3]; - tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2]; - tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1]; - tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0]; - tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6, - FIX(0.757396450)), /* 128/169 */ - CONST_BITS+1); - tmp6 += tmp6; - tmp0 -= tmp6; - tmp1 -= tmp6; - tmp2 -= tmp6; - tmp3 -= tmp6; - tmp4 -= tmp6; - tmp5 -= tmp6; - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */ - MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */ - MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */ - MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */ - MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */ - MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */ - CONST_BITS+1); - z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */ - MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */ - MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */ - z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */ - MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */ - MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */ - - dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */ - tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */ - tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */ - MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */ - tmp0 = tmp1 + tmp2 + tmp3 - - MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */ - MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */ - tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */ - MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */ - tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */ - tmp1 += tmp4 + tmp5 + - MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */ - MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */ - tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */ - tmp2 += tmp4 + tmp6 - - MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */ - MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */ - tmp3 += tmp5 + tmp6 + - MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */ - MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 14x14 sample block. - */ - -GLOBAL(void) -jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - DCTELEM workspace[8*6]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/28). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); - tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); - tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); - - tmp10 = tmp0 + tmp6; - tmp14 = tmp0 - tmp6; - tmp11 = tmp1 + tmp5; - tmp15 = tmp1 - tmp5; - tmp12 = tmp2 + tmp4; - tmp16 = tmp2 - tmp4; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); - tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); - tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE); - tmp13 += tmp13; - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ - MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ - MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ - CONST_BITS); - - tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ - - dataptr[2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ - + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ - CONST_BITS); - dataptr[6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ - - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ - CONST_BITS); - - /* Odd part */ - - tmp10 = tmp1 + tmp2; - tmp11 = tmp5 - tmp4; - dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6); - tmp3 <<= CONST_BITS; - tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ - tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ - tmp10 += tmp11 - tmp3; - tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ - MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ - dataptr[5] = (DCTELEM) - DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ - + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ - CONST_BITS); - tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ - MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ - dataptr[3] = (DCTELEM) - DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ - - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ - CONST_BITS); - dataptr[1] = (DCTELEM) - DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - - MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ - CONST_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 14) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/14)**2 = 16/49, which we partially - * fold into the constant multipliers and final shifting: - * cK now represents sqrt(2) * cos(K*pi/28) * 32/49. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; - tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; - tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; - tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; - tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; - - tmp10 = tmp0 + tmp6; - tmp14 = tmp0 - tmp6; - tmp11 = tmp1 + tmp5; - tmp15 = tmp1 - tmp5; - tmp12 = tmp2 + tmp4; - tmp16 = tmp2 - tmp4; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; - tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; - tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; - tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; - tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, - FIX(0.653061224)), /* 32/49 */ - CONST_BITS+1); - tmp13 += tmp13; - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ - MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ - MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ - CONST_BITS+1); - - tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ - - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ - + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ - CONST_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ - - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ - CONST_BITS+1); - - /* Odd part */ - - tmp10 = tmp1 + tmp2; - tmp11 = tmp5 - tmp4; - dataptr[DCTSIZE*7] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, - FIX(0.653061224)), /* 32/49 */ - CONST_BITS+1); - tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ - tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ - tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ - tmp10 += tmp11 - tmp3; - tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ - MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ - + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ - CONST_BITS+1); - tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ - MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ - - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ - CONST_BITS+1); - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp11 + tmp12 + tmp3 - - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ - - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ - CONST_BITS+1); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 15x15 sample block. - */ - -GLOBAL(void) -jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 z1, z2, z3; - DCTELEM workspace[8*7]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/30). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]); - tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]); - tmp7 = GETJSAMPLE(elemptr[7]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]); - tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]); - tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]); - tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]); - tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]); - tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]); - - z1 = tmp0 + tmp4 + tmp5; - z2 = tmp1 + tmp3 + tmp6; - z3 = tmp2 + tmp7; - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE); - z3 += z3; - dataptr[6] = (DCTELEM) - DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */ - MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */ - CONST_BITS); - tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; - z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */ - MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */ - z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */ - MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */ - z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */ - MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */ - MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */ - - dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS); - dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS); - - /* Odd part */ - - tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, - FIX(1.224744871)); /* c5 */ - tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */ - MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */ - tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */ - tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */ - MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */ - MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */ - tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */ - MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */ - MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */ - tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */ - MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */ - MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 15) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/15)**2 = 64/225, which we partially - * fold into the constant multipliers and final shifting: - * cK now represents sqrt(2) * cos(K*pi/30) * 256/225. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4]; - tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3]; - tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2]; - tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1]; - tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0]; - tmp7 = dataptr[DCTSIZE*7]; - - tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6]; - tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5]; - tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4]; - tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3]; - tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2]; - tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1]; - tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0]; - - z1 = tmp0 + tmp4 + tmp5; - z2 = tmp1 + tmp3 + tmp6; - z3 = tmp2 + tmp7; - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */ - CONST_BITS+2); - z3 += z3; - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */ - MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */ - CONST_BITS+2); - tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; - z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */ - MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */ - z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */ - MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */ - z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */ - MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */ - MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */ - - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2); - dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2); - - /* Odd part */ - - tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, - FIX(1.393487498)); /* c5 */ - tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */ - MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */ - tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */ - tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */ - MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */ - MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */ - tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */ - MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */ - MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */ - tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */ - MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */ - MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 16x16 sample block. - */ - -GLOBAL(void) -jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; - DCTELEM workspace[DCTSIZE2]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* cK represents sqrt(2) * cos(K*pi/32). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); - tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); - tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); - - tmp10 = tmp0 + tmp7; - tmp14 = tmp0 - tmp7; - tmp11 = tmp1 + tmp6; - tmp15 = tmp1 - tmp6; - tmp12 = tmp2 + tmp5; - tmp16 = tmp2 - tmp5; - tmp13 = tmp3 + tmp4; - tmp17 = tmp3 - tmp4; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); - tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); - tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); - tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ - MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ - CONST_BITS-PASS1_BITS); - - tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ - MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ - - dataptr[2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ - + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ - - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ - MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ - MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ - MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ - tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ - MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ - tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ - MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ - tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ - MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ - MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ - tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ - - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ - tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ - + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ - tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ - + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == DCTSIZE * 2) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/16)**2 = 1/2**2. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; - tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; - tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; - tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; - - tmp10 = tmp0 + tmp7; - tmp14 = tmp0 - tmp7; - tmp11 = tmp1 + tmp6; - tmp15 = tmp1 - tmp6; - tmp12 = tmp2 + tmp5; - tmp16 = tmp2 - tmp5; - tmp13 = tmp3 + tmp4; - tmp17 = tmp3 - tmp4; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; - tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; - tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; - tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ - MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ - CONST_BITS+PASS1_BITS+2); - - tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ - MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ - - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ - + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */ - CONST_BITS+PASS1_BITS+2); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ - - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ - CONST_BITS+PASS1_BITS+2); - - /* Odd part */ - - tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ - MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ - MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ - MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ - tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ - MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ - tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ - MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ - tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ - MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ - MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ - tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ - - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ - tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ - + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ - tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ - + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 16x8 sample block. - * - * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; - INT32 z1; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ - - dataptr = data; - ctr = 0; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); - tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); - tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); - - tmp10 = tmp0 + tmp7; - tmp14 = tmp0 - tmp7; - tmp11 = tmp1 + tmp6; - tmp15 = tmp1 - tmp6; - tmp12 = tmp2 + tmp5; - tmp16 = tmp2 - tmp5; - tmp13 = tmp3 + tmp4; - tmp17 = tmp3 - tmp4; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); - tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); - tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); - tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ - MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ - CONST_BITS-PASS1_BITS); - - tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ - MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ - - dataptr[2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ - + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ - - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ - MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ - MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ - MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ - tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ - MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ - tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ - MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ - tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ - MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ - MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ - tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ - - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ - tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ - + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ - tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ - + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by 8/16 = 1/2. - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; - - tmp10 = tmp0 + tmp3; - tmp12 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp13 = tmp1 - tmp2; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - - dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1); - dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS+PASS1_BITS+1); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - * i0..i3 in the paper are tmp0..tmp3 here. - */ - - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp0 + tmp2; - tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - - tmp12 += z1; - tmp13 += z1; - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, - CONST_BITS+PASS1_BITS+1); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 14x7 sample block. - * - * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 z1, z2, z3; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Zero bottom row of output coefficient block. */ - MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ - - dataptr = data; - for (ctr = 0; ctr < 7; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); - tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); - tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); - - tmp10 = tmp0 + tmp6; - tmp14 = tmp0 - tmp6; - tmp11 = tmp1 + tmp5; - tmp15 = tmp1 - tmp5; - tmp12 = tmp2 + tmp4; - tmp16 = tmp2 - tmp4; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); - tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); - tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS); - tmp13 += tmp13; - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ - MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ - MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ - CONST_BITS-PASS1_BITS); - - tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ - - dataptr[2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ - + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ - - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp10 = tmp1 + tmp2; - tmp11 = tmp5 - tmp4; - dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS); - tmp3 <<= CONST_BITS; - tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ - tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ - tmp10 += tmp11 - tmp3; - tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ - MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ - dataptr[5] = (DCTELEM) - DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ - + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ - CONST_BITS-PASS1_BITS); - tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ - MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ - dataptr[3] = (DCTELEM) - DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ - - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ - CONST_BITS-PASS1_BITS); - dataptr[1] = (DCTELEM) - DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - - MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ - CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/14)*(8/7) = 32/49, which we - * partially fold into the constant multipliers and final shifting: - * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49. - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; - tmp3 = dataptr[DCTSIZE*3]; - - tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; - tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; - tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; - - z1 = tmp0 + tmp2; - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ - CONST_BITS+PASS1_BITS+1); - tmp3 += tmp3; - z1 -= tmp3; - z1 -= tmp3; - z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ - z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ - z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1); - z1 -= z2; - z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ - tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ - tmp0 = tmp1 - tmp2; - tmp1 += tmp2; - tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ - tmp1 += tmp2; - tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ - tmp0 += tmp3; - tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 12x6 sample block. - * - * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Zero 2 bottom rows of output coefficient block. */ - MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ - - dataptr = data; - for (ctr = 0; ctr < 6; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); - tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); - - tmp10 = tmp0 + tmp5; - tmp13 = tmp0 - tmp5; - tmp11 = tmp1 + tmp4; - tmp14 = tmp1 - tmp4; - tmp12 = tmp2 + tmp3; - tmp15 = tmp2 - tmp3; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); - tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ - CONST_BITS-PASS1_BITS); - dataptr[2] = (DCTELEM) - DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ - tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ - tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ - tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ - + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ - tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ - tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ - + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ - tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ - - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ - tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ - - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/12)*(8/6) = 8/9, which we - * partially fold into the constant multipliers and final shifting: - * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; - tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; - - tmp10 = tmp0 + tmp2; - tmp12 = tmp0 - tmp2; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ - CONST_BITS+PASS1_BITS+1); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS+1); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 10x5 sample block. - * - * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Zero 3 bottom rows of output coefficient block. */ - MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ - - dataptr = data; - for (ctr = 0; ctr < 5; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); - tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); - tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); - - tmp10 = tmp0 + tmp4; - tmp13 = tmp0 - tmp4; - tmp11 = tmp1 + tmp3; - tmp14 = tmp1 - tmp3; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); - tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS); - tmp12 += tmp12; - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ - MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ - CONST_BITS-PASS1_BITS); - tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ - dataptr[2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp10 = tmp0 + tmp4; - tmp11 = tmp1 - tmp3; - dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS); - tmp2 <<= CONST_BITS; - dataptr[1] = (DCTELEM) - DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ - MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ - MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ - MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ - CONST_BITS-PASS1_BITS); - tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ - MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ - tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ - (tmp11 << (CONST_BITS - 1)) - tmp2; - dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/10)*(8/5) = 32/25, which we - * fold into the constant multipliers: - * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25. - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; - tmp2 = dataptr[DCTSIZE*2]; - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ - CONST_BITS+PASS1_BITS); - tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ - tmp10 -= tmp2 << 2; - tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on an 8x4 sample block. - * - * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Zero 4 bottom rows of output coefficient block. */ - MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by 8/4 = 2, which we add here. */ - - dataptr = data; - for (ctr = 0; ctr < 4; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); - - tmp10 = tmp0 + tmp3; - tmp12 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp13 = tmp1 - tmp2; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1)); - dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1)); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-2); - dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS-PASS1_BITS-1); - dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS-PASS1_BITS-1); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - * i0..i3 in the paper are tmp0..tmp3 here. - */ - - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp0 + tmp2; - tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-2); - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - - tmp12 += z1; - tmp13 += z1; - - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1); - dataptr[5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1); - dataptr[7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; - - tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; - tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; - - dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); - - /* Odd part */ - - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); - - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 6x3 sample block. - * - * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2; - INT32 tmp10, tmp11, tmp12; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ - - dataptr = data; - for (ctr = 0; ctr < 3; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); - tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); - - tmp10 = tmp0 + tmp2; - tmp12 = tmp0 - tmp2; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1)); - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ - CONST_BITS-PASS1_BITS-1); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ - CONST_BITS-PASS1_BITS-1); - - /* Odd part */ - - tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ - CONST_BITS-PASS1_BITS-1); - - dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1))); - dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1)); - dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1))); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially - * fold into the constant multipliers (other part was done in pass 1): - * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9. - */ - - dataptr = data; - for (ctr = 0; ctr < 6; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; - tmp1 = dataptr[DCTSIZE*1]; - - tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 4x2 sample block. - * - * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1; - INT32 tmp10, tmp11; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */ - /* 4-point FDCT kernel, */ - /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ - - dataptr = data; - for (ctr = 0; ctr < 2; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3)); - dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3)); - - /* Odd part */ - - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-4); - - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ - CONST_BITS-PASS1_BITS-3); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ - CONST_BITS-PASS1_BITS-3); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - */ - - dataptr = data; - for (ctr = 0; ctr < 4; ctr++) { - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1)); - tmp1 = dataptr[DCTSIZE*1]; - - dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); - - /* Odd part */ - - dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 2x1 sample block. - * - * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1; - JSAMPROW elemptr; - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - elemptr = sample_data[0] + start_col; - - tmp0 = GETJSAMPLE(elemptr[0]); - tmp1 = GETJSAMPLE(elemptr[1]); - - /* We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/2)*(8/1) = 2**5. - */ - - /* Even part */ - /* Apply unsigned->signed conversion */ - data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); - - /* Odd part */ - data[1] = (DCTELEM) ((tmp0 - tmp1) << 5); -} - - -/* - * Perform the forward DCT on an 8x16 sample block. - * - * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; - INT32 z1; - DCTELEM workspace[DCTSIZE2]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); - - tmp10 = tmp0 + tmp3; - tmp12 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp13 = tmp1 - tmp2; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); - tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS-PASS1_BITS); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - * i0..i3 in the paper are tmp0..tmp3 here. - */ - - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp0 + tmp2; - tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - - tmp12 += z1; - tmp13 += z1; - - dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == DCTSIZE * 2) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by 8/16 = 1/2. - * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). - */ - - dataptr = data; - wsptr = workspace; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; - tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; - tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; - tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; - - tmp10 = tmp0 + tmp7; - tmp14 = tmp0 - tmp7; - tmp11 = tmp1 + tmp6; - tmp15 = tmp1 - tmp6; - tmp12 = tmp2 + tmp5; - tmp16 = tmp2 - tmp5; - tmp13 = tmp3 + tmp4; - tmp17 = tmp3 - tmp4; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; - tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; - tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; - tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ - MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ - CONST_BITS+PASS1_BITS+1); - - tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ - MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ - - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ - + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ - - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ - CONST_BITS+PASS1_BITS+1); - - /* Odd part */ - - tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ - MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ - MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ - MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ - tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ - MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ - tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ - MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ - tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ - MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ - MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ - tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ - - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ - tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ - + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ - tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ - + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 7x14 sample block. - * - * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 z1, z2, z3; - DCTELEM workspace[8*6]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); - tmp3 = GETJSAMPLE(elemptr[3]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); - tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); - - z1 = tmp0 + tmp2; - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); - tmp3 += tmp3; - z1 -= tmp3; - z1 -= tmp3; - z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ - z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ - z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ - dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); - z1 -= z2; - z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ - dataptr[4] = (DCTELEM) - DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ - tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ - tmp0 = tmp1 - tmp2; - tmp1 += tmp2; - tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ - tmp1 += tmp2; - tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ - tmp0 += tmp3; - tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ - - dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 14) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/7)*(8/14) = 32/49, which we - * fold into the constant multipliers: - * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = 0; ctr < 7; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; - tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; - tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; - tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; - tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; - - tmp10 = tmp0 + tmp6; - tmp14 = tmp0 - tmp6; - tmp11 = tmp1 + tmp5; - tmp15 = tmp1 - tmp5; - tmp12 = tmp2 + tmp4; - tmp16 = tmp2 - tmp4; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; - tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; - tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; - tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; - tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, - FIX(0.653061224)), /* 32/49 */ - CONST_BITS+PASS1_BITS); - tmp13 += tmp13; - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ - MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ - MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ - CONST_BITS+PASS1_BITS); - - tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ - - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ - + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ - - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = tmp1 + tmp2; - tmp11 = tmp5 - tmp4; - dataptr[DCTSIZE*7] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, - FIX(0.653061224)), /* 32/49 */ - CONST_BITS+PASS1_BITS); - tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ - tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ - tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ - tmp10 += tmp11 - tmp3; - tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ - MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ - + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ - CONST_BITS+PASS1_BITS); - tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ - MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ - - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp11 + tmp12 + tmp3 - - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ - - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 6x12 sample block. - * - * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - DCTELEM workspace[8*4]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); - tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); - tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); - - tmp10 = tmp0 + tmp2; - tmp12 = tmp0 - tmp2; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); - tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ - CONST_BITS-PASS1_BITS); - dataptr[4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ - CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ - CONST_BITS-PASS1_BITS); - - dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); - dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); - dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 12) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/6)*(8/12) = 8/9, which we - * fold into the constant multipliers: - * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; - tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; - tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; - tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; - tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; - - tmp10 = tmp0 + tmp5; - tmp13 = tmp0 - tmp5; - tmp11 = tmp1 + tmp4; - tmp14 = tmp1 - tmp4; - tmp12 = tmp2 + tmp3; - tmp15 = tmp2 - tmp3; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; - tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; - tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; - tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; - tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ - MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ - tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ - tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ - tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ - tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ - tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ - + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ - tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ - tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ - + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ - tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ - - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ - tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ - - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ - - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 5x10 sample block. - * - * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4; - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - DCTELEM workspace[8*2]; - DCTELEM *dataptr; - DCTELEM *wsptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ - - dataptr = data; - ctr = 0; - for (;;) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); - tmp2 = GETJSAMPLE(elemptr[2]); - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - - tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); - tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS); - tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ - tmp10 -= tmp2 << 2; - tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ - dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS); - dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ - - dataptr[1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ - CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ - CONST_BITS-PASS1_BITS); - - ctr++; - - if (ctr != DCTSIZE) { - if (ctr == 10) - break; /* Done. */ - dataptr += DCTSIZE; /* advance pointer to next row */ - } else - dataptr = workspace; /* switch pointer to extended workspace */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/5)*(8/10) = 32/25, which we - * fold into the constant multipliers: - * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25. - */ - - dataptr = data; - wsptr = workspace; - for (ctr = 0; ctr < 5; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; - tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; - tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; - tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; - - tmp10 = tmp0 + tmp4; - tmp13 = tmp0 - tmp4; - tmp11 = tmp1 + tmp3; - tmp14 = tmp1 - tmp3; - - tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; - tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; - tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; - tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ - CONST_BITS+PASS1_BITS); - tmp12 += tmp12; - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ - MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ - CONST_BITS+PASS1_BITS); - tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) - DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = tmp0 + tmp4; - tmp11 = tmp1 - tmp3; - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ - CONST_BITS+PASS1_BITS); - tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ - MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ - MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ - MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ - CONST_BITS+PASS1_BITS); - tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ - MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ - tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ - MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - wsptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 4x8 sample block. - * - * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by 8/4 = 2, which we add here. */ - /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ - - dataptr = data; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); - tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); - - tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); - tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1)); - dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1)); - - /* Odd part */ - - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-2); - - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ - CONST_BITS-PASS1_BITS-1); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ - CONST_BITS-PASS1_BITS-1); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - */ - - dataptr = data; - for (ctr = 0; ctr < 4; ctr++) { - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; - - /* Add fudge factor here for final descale. */ - tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); - tmp12 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp13 = tmp1 - tmp2; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - - dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS+PASS1_BITS-1); - dataptr[DCTSIZE*2] = (DCTELEM) - RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) - RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - * i0..i3 in the paper are tmp0..tmp3 here. - */ - - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp0 + tmp2; - tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS+PASS1_BITS-1); - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - - tmp12 += z1; - tmp13 += z1; - - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 3x6 sample block. - * - * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1, tmp2; - INT32 tmp10, tmp11, tmp12; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ - - dataptr = data; - for (ctr = 0; ctr < 6; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); - tmp1 = GETJSAMPLE(elemptr[1]); - - tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) - ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1)); - dataptr[2] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ - CONST_BITS-PASS1_BITS-1); - - /* Odd part */ - - dataptr[1] = (DCTELEM) - DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ - CONST_BITS-PASS1_BITS-1); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially - * fold into the constant multipliers (other part was done in pass 1): - * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. - */ - - dataptr = data; - for (ctr = 0; ctr < 3; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; - tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; - - tmp10 = tmp0 + tmp2; - tmp12 = tmp0 - tmp2; - - tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; - tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; - tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; - - dataptr[DCTSIZE*0] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*2] = (DCTELEM) - DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) - DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ - CONST_BITS+PASS1_BITS); - - /* Odd part */ - - tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ - - dataptr[DCTSIZE*1] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) - DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 2x4 sample block. - * - * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1; - INT32 tmp10, tmp11; - DCTELEM *dataptr; - JSAMPROW elemptr; - int ctr; - SHIFT_TEMPS - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */ - - dataptr = data; - for (ctr = 0; ctr < 4; ctr++) { - elemptr = sample_data[ctr] + start_col; - - /* Even part */ - - tmp0 = GETJSAMPLE(elemptr[0]); - tmp1 = GETJSAMPLE(elemptr[1]); - - /* Apply unsigned->signed conversion */ - dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3); - - /* Odd part */ - - dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We leave the results scaled up by an overall factor of 8. - * 4-point FDCT kernel, - * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. - */ - - dataptr = data; - for (ctr = 0; ctr < 2; ctr++) { - /* Even part */ - - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; - - tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; - tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; - - dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1); - dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1); - - /* Odd part */ - - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-1); - - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ - CONST_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ - CONST_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - - -/* - * Perform the forward DCT on a 1x2 sample block. - * - * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). - */ - -GLOBAL(void) -jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ - INT32 tmp0, tmp1; - - /* Pre-zero output coefficient block. */ - MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - - tmp0 = GETJSAMPLE(sample_data[0][start_col]); - tmp1 = GETJSAMPLE(sample_data[1][start_col]); - - /* We leave the results scaled up by an overall factor of 8. - * We must also scale the output by (8/1)*(8/2) = 2**5. - */ - - /* Even part */ - /* Apply unsigned->signed conversion */ - data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); - - /* Odd part */ - data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5); -} - -#endif /* DCT_SCALING_SUPPORTED */ -#endif /* DCT_ISLOW_SUPPORTED */ diff --git a/src/jpeg-8c/jidctflt.c b/src/jpeg-8c/jidctflt.c deleted file mode 100644 index 23ae9d33..00000000 --- a/src/jpeg-8c/jidctflt.c +++ /dev/null @@ -1,235 +0,0 @@ -/* - * jidctflt.c - * - * Copyright (C) 1994-1998, Thomas G. Lane. - * Modified 2010 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a floating-point implementation of the - * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine - * must also perform dequantization of the input coefficients. - * - * This implementation should be more accurate than either of the integer - * IDCT implementations. However, it may not give the same results on all - * machines because of differences in roundoff behavior. Speed will depend - * on the hardware's floating point capacity. - * - * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT - * on each row (or vice versa, but it's more convenient to emit a row at - * a time). Direct algorithms are also available, but they are much more - * complex and seem not to be any faster when reduced to code. - * - * This implementation is based on Arai, Agui, and Nakajima's algorithm for - * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in - * Japanese, but the algorithm is described in the Pennebaker & Mitchell - * JPEG textbook (see REFERENCES section in file README). The following code - * is based directly on figure 4-8 in P&M. - * While an 8-point DCT cannot be done in less than 11 multiplies, it is - * possible to arrange the computation so that many of the multiplies are - * simple scalings of the final outputs. These multiplies can then be - * folded into the multiplications or divisions by the JPEG quantization - * table entries. The AA&N method leaves only 5 multiplies and 29 adds - * to be done in the DCT itself. - * The primary disadvantage of this method is that with a fixed-point - * implementation, accuracy is lost due to imprecise representation of the - * scaled quantization values. However, that problem does not arise if - * we use floating point arithmetic. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_FLOAT_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* Dequantize a coefficient by multiplying it by the multiplier-table - * entry; produce a float result. - */ - -#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) - - -/* - * Perform dequantization and inverse DCT on one block of coefficients. - */ - -GLOBAL(void) -jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - FAST_FLOAT tmp10, tmp11, tmp12, tmp13; - FAST_FLOAT z5, z10, z11, z12, z13; - JCOEFPTR inptr; - FLOAT_MULT_TYPE * quantptr; - FAST_FLOAT * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = cinfo->sample_range_limit; - int ctr; - FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = DCTSIZE; ctr > 0; ctr--) { - /* Due to quantization, we will usually find that many of the input - * coefficients are zero, especially the AC terms. We can exploit this - * by short-circuiting the IDCT calculation for any column in which all - * the AC terms are zero. In that case each output is equal to the - * DC coefficient (with scale factor as needed). - * With typical images and quantization tables, half or more of the - * column DCT calculations can be simplified this way. - */ - - if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && - inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && - inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && - inptr[DCTSIZE*7] == 0) { - /* AC terms all zero */ - FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - - wsptr[DCTSIZE*0] = dcval; - wsptr[DCTSIZE*1] = dcval; - wsptr[DCTSIZE*2] = dcval; - wsptr[DCTSIZE*3] = dcval; - wsptr[DCTSIZE*4] = dcval; - wsptr[DCTSIZE*5] = dcval; - wsptr[DCTSIZE*6] = dcval; - wsptr[DCTSIZE*7] = dcval; - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - continue; - } - - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp10 = tmp0 + tmp2; /* phase 3 */ - tmp11 = tmp0 - tmp2; - - tmp13 = tmp1 + tmp3; /* phases 5-3 */ - tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ - - tmp0 = tmp10 + tmp13; /* phase 2 */ - tmp3 = tmp10 - tmp13; - tmp1 = tmp11 + tmp12; - tmp2 = tmp11 - tmp12; - - /* Odd part */ - - tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - z13 = tmp6 + tmp5; /* phase 6 */ - z10 = tmp6 - tmp5; - z11 = tmp4 + tmp7; - z12 = tmp4 - tmp7; - - tmp7 = z11 + z13; /* phase 5 */ - tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ - - z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ - tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ - tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ - - tmp6 = tmp12 - tmp7; /* phase 2 */ - tmp5 = tmp11 - tmp6; - tmp4 = tmp10 - tmp5; - - wsptr[DCTSIZE*0] = tmp0 + tmp7; - wsptr[DCTSIZE*7] = tmp0 - tmp7; - wsptr[DCTSIZE*1] = tmp1 + tmp6; - wsptr[DCTSIZE*6] = tmp1 - tmp6; - wsptr[DCTSIZE*2] = tmp2 + tmp5; - wsptr[DCTSIZE*5] = tmp2 - tmp5; - wsptr[DCTSIZE*3] = tmp3 + tmp4; - wsptr[DCTSIZE*4] = tmp3 - tmp4; - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - } - - /* Pass 2: process rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - outptr = output_buf[ctr] + output_col; - /* Rows of zeroes can be exploited in the same way as we did with columns. - * However, the column calculation has created many nonzero AC terms, so - * the simplification applies less often (typically 5% to 10% of the time). - * And testing floats for zero is relatively expensive, so we don't bother. - */ - - /* Even part */ - - /* Apply signed->unsigned and prepare float->int conversion */ - z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5); - tmp10 = z5 + wsptr[4]; - tmp11 = z5 - wsptr[4]; - - tmp13 = wsptr[2] + wsptr[6]; - tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; - - tmp0 = tmp10 + tmp13; - tmp3 = tmp10 - tmp13; - tmp1 = tmp11 + tmp12; - tmp2 = tmp11 - tmp12; - - /* Odd part */ - - z13 = wsptr[5] + wsptr[3]; - z10 = wsptr[5] - wsptr[3]; - z11 = wsptr[1] + wsptr[7]; - z12 = wsptr[1] - wsptr[7]; - - tmp7 = z11 + z13; - tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); - - z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ - tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ - tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ - - tmp6 = tmp12 - tmp7; - tmp5 = tmp11 - tmp6; - tmp4 = tmp10 - tmp5; - - /* Final output stage: float->int conversion and range-limit */ - - outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK]; - outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK]; - outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK]; - outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK]; - outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK]; - outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK]; - outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK]; - outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK]; - - wsptr += DCTSIZE; /* advance pointer to next row */ - } -} - -#endif /* DCT_FLOAT_SUPPORTED */ diff --git a/src/jpeg-8c/jidctfst.c b/src/jpeg-8c/jidctfst.c deleted file mode 100644 index dba4216f..00000000 --- a/src/jpeg-8c/jidctfst.c +++ /dev/null @@ -1,368 +0,0 @@ -/* - * jidctfst.c - * - * Copyright (C) 1994-1998, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a fast, not so accurate integer implementation of the - * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine - * must also perform dequantization of the input coefficients. - * - * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT - * on each row (or vice versa, but it's more convenient to emit a row at - * a time). Direct algorithms are also available, but they are much more - * complex and seem not to be any faster when reduced to code. - * - * This implementation is based on Arai, Agui, and Nakajima's algorithm for - * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in - * Japanese, but the algorithm is described in the Pennebaker & Mitchell - * JPEG textbook (see REFERENCES section in file README). The following code - * is based directly on figure 4-8 in P&M. - * While an 8-point DCT cannot be done in less than 11 multiplies, it is - * possible to arrange the computation so that many of the multiplies are - * simple scalings of the final outputs. These multiplies can then be - * folded into the multiplications or divisions by the JPEG quantization - * table entries. The AA&N method leaves only 5 multiplies and 29 adds - * to be done in the DCT itself. - * The primary disadvantage of this method is that with fixed-point math, - * accuracy is lost due to imprecise representation of the scaled - * quantization values. The smaller the quantization table entry, the less - * precise the scaled value, so this implementation does worse with high- - * quality-setting files than with low-quality ones. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_IFAST_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* Scaling decisions are generally the same as in the LL&M algorithm; - * see jidctint.c for more details. However, we choose to descale - * (right shift) multiplication products as soon as they are formed, - * rather than carrying additional fractional bits into subsequent additions. - * This compromises accuracy slightly, but it lets us save a few shifts. - * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) - * everywhere except in the multiplications proper; this saves a good deal - * of work on 16-bit-int machines. - * - * The dequantized coefficients are not integers because the AA&N scaling - * factors have been incorporated. We represent them scaled up by PASS1_BITS, - * so that the first and second IDCT rounds have the same input scaling. - * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to - * avoid a descaling shift; this compromises accuracy rather drastically - * for small quantization table entries, but it saves a lot of shifts. - * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, - * so we use a much larger scaling factor to preserve accuracy. - * - * A final compromise is to represent the multiplicative constants to only - * 8 fractional bits, rather than 13. This saves some shifting work on some - * machines, and may also reduce the cost of multiplication (since there - * are fewer one-bits in the constants). - */ - -#if BITS_IN_JSAMPLE == 8 -#define CONST_BITS 8 -#define PASS1_BITS 2 -#else -#define CONST_BITS 8 -#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ -#endif - -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus - * causing a lot of useless floating-point operations at run time. - * To get around this we use the following pre-calculated constants. - * If you change CONST_BITS you may want to add appropriate values. - * (With a reasonable C compiler, you can just rely on the FIX() macro...) - */ - -#if CONST_BITS == 8 -#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ -#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ -#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ -#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ -#else -#define FIX_1_082392200 FIX(1.082392200) -#define FIX_1_414213562 FIX(1.414213562) -#define FIX_1_847759065 FIX(1.847759065) -#define FIX_2_613125930 FIX(2.613125930) -#endif - - -/* We can gain a little more speed, with a further compromise in accuracy, - * by omitting the addition in a descaling shift. This yields an incorrectly - * rounded result half the time... - */ - -#ifndef USE_ACCURATE_ROUNDING -#undef DESCALE -#define DESCALE(x,n) RIGHT_SHIFT(x, n) -#endif - - -/* Multiply a DCTELEM variable by an INT32 constant, and immediately - * descale to yield a DCTELEM result. - */ - -#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) - - -/* Dequantize a coefficient by multiplying it by the multiplier-table - * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 - * multiplication will do. For 12-bit data, the multiplier table is - * declared INT32, so a 32-bit multiply will be used. - */ - -#if BITS_IN_JSAMPLE == 8 -#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) -#else -#define DEQUANTIZE(coef,quantval) \ - DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) -#endif - - -/* Like DESCALE, but applies to a DCTELEM and produces an int. - * We assume that int right shift is unsigned if INT32 right shift is. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define ISHIFT_TEMPS DCTELEM ishift_temp; -#if BITS_IN_JSAMPLE == 8 -#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ -#else -#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ -#endif -#define IRIGHT_SHIFT(x,shft) \ - ((ishift_temp = (x)) < 0 ? \ - (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ - (ishift_temp >> (shft))) -#else -#define ISHIFT_TEMPS -#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) -#endif - -#ifdef USE_ACCURATE_ROUNDING -#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) -#else -#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) -#endif - - -/* - * Perform dequantization and inverse DCT on one block of coefficients. - */ - -GLOBAL(void) -jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - DCTELEM tmp10, tmp11, tmp12, tmp13; - DCTELEM z5, z10, z11, z12, z13; - JCOEFPTR inptr; - IFAST_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[DCTSIZE2]; /* buffers data between passes */ - SHIFT_TEMPS /* for DESCALE */ - ISHIFT_TEMPS /* for IDESCALE */ - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = DCTSIZE; ctr > 0; ctr--) { - /* Due to quantization, we will usually find that many of the input - * coefficients are zero, especially the AC terms. We can exploit this - * by short-circuiting the IDCT calculation for any column in which all - * the AC terms are zero. In that case each output is equal to the - * DC coefficient (with scale factor as needed). - * With typical images and quantization tables, half or more of the - * column DCT calculations can be simplified this way. - */ - - if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && - inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && - inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && - inptr[DCTSIZE*7] == 0) { - /* AC terms all zero */ - int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - - wsptr[DCTSIZE*0] = dcval; - wsptr[DCTSIZE*1] = dcval; - wsptr[DCTSIZE*2] = dcval; - wsptr[DCTSIZE*3] = dcval; - wsptr[DCTSIZE*4] = dcval; - wsptr[DCTSIZE*5] = dcval; - wsptr[DCTSIZE*6] = dcval; - wsptr[DCTSIZE*7] = dcval; - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - continue; - } - - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp10 = tmp0 + tmp2; /* phase 3 */ - tmp11 = tmp0 - tmp2; - - tmp13 = tmp1 + tmp3; /* phases 5-3 */ - tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ - - tmp0 = tmp10 + tmp13; /* phase 2 */ - tmp3 = tmp10 - tmp13; - tmp1 = tmp11 + tmp12; - tmp2 = tmp11 - tmp12; - - /* Odd part */ - - tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - z13 = tmp6 + tmp5; /* phase 6 */ - z10 = tmp6 - tmp5; - z11 = tmp4 + tmp7; - z12 = tmp4 - tmp7; - - tmp7 = z11 + z13; /* phase 5 */ - tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ - - z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ - tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ - tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ - - tmp6 = tmp12 - tmp7; /* phase 2 */ - tmp5 = tmp11 - tmp6; - tmp4 = tmp10 + tmp5; - - wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); - wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); - wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); - wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); - wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); - wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); - wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); - wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - } - - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ - - wsptr = workspace; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - outptr = output_buf[ctr] + output_col; - /* Rows of zeroes can be exploited in the same way as we did with columns. - * However, the column calculation has created many nonzero AC terms, so - * the simplification applies less often (typically 5% to 10% of the time). - * On machines with very fast multiplication, it's possible that the - * test takes more time than it's worth. In that case this section - * may be commented out. - */ - -#ifndef NO_ZERO_ROW_TEST - if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && - wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { - /* AC terms all zero */ - JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) - & RANGE_MASK]; - - outptr[0] = dcval; - outptr[1] = dcval; - outptr[2] = dcval; - outptr[3] = dcval; - outptr[4] = dcval; - outptr[5] = dcval; - outptr[6] = dcval; - outptr[7] = dcval; - - wsptr += DCTSIZE; /* advance pointer to next row */ - continue; - } -#endif - - /* Even part */ - - tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); - tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); - - tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); - tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) - - tmp13; - - tmp0 = tmp10 + tmp13; - tmp3 = tmp10 - tmp13; - tmp1 = tmp11 + tmp12; - tmp2 = tmp11 - tmp12; - - /* Odd part */ - - z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; - z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; - z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; - z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; - - tmp7 = z11 + z13; /* phase 5 */ - tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ - - z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ - tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ - tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ - - tmp6 = tmp12 - tmp7; /* phase 2 */ - tmp5 = tmp11 - tmp6; - tmp4 = tmp10 + tmp5; - - /* Final output stage: scale down by a factor of 8 and range-limit */ - - outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += DCTSIZE; /* advance pointer to next row */ - } -} - -#endif /* DCT_IFAST_SUPPORTED */ diff --git a/src/jpeg-8c/jidctint.c b/src/jpeg-8c/jidctint.c deleted file mode 100644 index dcdf7ce4..00000000 --- a/src/jpeg-8c/jidctint.c +++ /dev/null @@ -1,5137 +0,0 @@ -/* - * jidctint.c - * - * Copyright (C) 1991-1998, Thomas G. Lane. - * Modification developed 2002-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a slow-but-accurate integer implementation of the - * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine - * must also perform dequantization of the input coefficients. - * - * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT - * on each row (or vice versa, but it's more convenient to emit a row at - * a time). Direct algorithms are also available, but they are much more - * complex and seem not to be any faster when reduced to code. - * - * This implementation is based on an algorithm described in - * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT - * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, - * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. - * The primary algorithm described there uses 11 multiplies and 29 adds. - * We use their alternate method with 12 multiplies and 32 adds. - * The advantage of this method is that no data path contains more than one - * multiplication; this allows a very simple and accurate implementation in - * scaled fixed-point arithmetic, with a minimal number of shifts. - * - * We also provide IDCT routines with various output sample block sizes for - * direct resolution reduction or enlargement and for direct resolving the - * common 2x1 and 1x2 subsampling cases without additional resampling: NxN - * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block. - * - * For N<8 we simply take the corresponding low-frequency coefficients of - * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block - * to yield the downscaled outputs. - * This can be seen as direct low-pass downsampling from the DCT domain - * point of view rather than the usual spatial domain point of view, - * yielding significant computational savings and results at least - * as good as common bilinear (averaging) spatial downsampling. - * - * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as - * lower frequencies and higher frequencies assumed to be zero. - * It turns out that the computational effort is similar to the 8x8 IDCT - * regarding the output size. - * Furthermore, the scaling and descaling is the same for all IDCT sizes. - * - * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases - * since there would be too many additional constants to pre-calculate. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_ISLOW_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ -#endif - - -/* - * The poop on this scaling stuff is as follows: - * - * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) - * larger than the true IDCT outputs. The final outputs are therefore - * a factor of N larger than desired; since N=8 this can be cured by - * a simple right shift at the end of the algorithm. The advantage of - * this arrangement is that we save two multiplications per 1-D IDCT, - * because the y0 and y4 inputs need not be divided by sqrt(N). - * - * We have to do addition and subtraction of the integer inputs, which - * is no problem, and multiplication by fractional constants, which is - * a problem to do in integer arithmetic. We multiply all the constants - * by CONST_SCALE and convert them to integer constants (thus retaining - * CONST_BITS bits of precision in the constants). After doing a - * multiplication we have to divide the product by CONST_SCALE, with proper - * rounding, to produce the correct output. This division can be done - * cheaply as a right shift of CONST_BITS bits. We postpone shifting - * as long as possible so that partial sums can be added together with - * full fractional precision. - * - * The outputs of the first pass are scaled up by PASS1_BITS bits so that - * they are represented to better-than-integral precision. These outputs - * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word - * with the recommended scaling. (To scale up 12-bit sample data further, an - * intermediate INT32 array would be needed.) - * - * To avoid overflow of the 32-bit intermediate results in pass 2, we must - * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis - * shows that the values given below are the most effective. - */ - -#if BITS_IN_JSAMPLE == 8 -#define CONST_BITS 13 -#define PASS1_BITS 2 -#else -#define CONST_BITS 13 -#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ -#endif - -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus - * causing a lot of useless floating-point operations at run time. - * To get around this we use the following pre-calculated constants. - * If you change CONST_BITS you may want to add appropriate values. - * (With a reasonable C compiler, you can just rely on the FIX() macro...) - */ - -#if CONST_BITS == 13 -#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ -#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ -#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ -#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ -#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ -#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ -#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ -#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ -#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ -#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ -#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ -#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ -#else -#define FIX_0_298631336 FIX(0.298631336) -#define FIX_0_390180644 FIX(0.390180644) -#define FIX_0_541196100 FIX(0.541196100) -#define FIX_0_765366865 FIX(0.765366865) -#define FIX_0_899976223 FIX(0.899976223) -#define FIX_1_175875602 FIX(1.175875602) -#define FIX_1_501321110 FIX(1.501321110) -#define FIX_1_847759065 FIX(1.847759065) -#define FIX_1_961570560 FIX(1.961570560) -#define FIX_2_053119869 FIX(2.053119869) -#define FIX_2_562915447 FIX(2.562915447) -#define FIX_3_072711026 FIX(3.072711026) -#endif - - -/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. - * For 8-bit samples with the recommended scaling, all the variable - * and constant values involved are no more than 16 bits wide, so a - * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. - * For 12-bit samples, a full 32-bit multiplication will be needed. - */ - -#if BITS_IN_JSAMPLE == 8 -#define MULTIPLY(var,const) MULTIPLY16C16(var,const) -#else -#define MULTIPLY(var,const) ((var) * (const)) -#endif - - -/* Dequantize a coefficient by multiplying it by the multiplier-table - * entry; produce an int result. In this module, both inputs and result - * are 16 bits or less, so either int or short multiply will work. - */ - -#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) - - -/* - * Perform dequantization and inverse DCT on one block of coefficients. - */ - -GLOBAL(void) -jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[DCTSIZE2]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = DCTSIZE; ctr > 0; ctr--) { - /* Due to quantization, we will usually find that many of the input - * coefficients are zero, especially the AC terms. We can exploit this - * by short-circuiting the IDCT calculation for any column in which all - * the AC terms are zero. In that case each output is equal to the - * DC coefficient (with scale factor as needed). - * With typical images and quantization tables, half or more of the - * column DCT calculations can be simplified this way. - */ - - if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && - inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && - inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && - inptr[DCTSIZE*7] == 0) { - /* AC terms all zero */ - int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; - - wsptr[DCTSIZE*0] = dcval; - wsptr[DCTSIZE*1] = dcval; - wsptr[DCTSIZE*2] = dcval; - wsptr[DCTSIZE*3] = dcval; - wsptr[DCTSIZE*4] = dcval; - wsptr[DCTSIZE*5] = dcval; - wsptr[DCTSIZE*6] = dcval; - wsptr[DCTSIZE*7] = dcval; - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - continue; - } - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - - z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z2 <<= CONST_BITS; - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z2 += ONE << (CONST_BITS-PASS1_BITS-1); - - tmp0 = z2 + z3; - tmp1 = z2 - z3; - - tmp10 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - tmp11 = tmp1 + tmp3; - tmp12 = tmp1 - tmp3; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - - z2 = tmp0 + tmp2; - z3 = tmp1 + tmp3; - - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - z2 += z1; - z3 += z1; - - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - tmp0 += z1 + z2; - tmp3 += z1 + z3; - - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp1 += z1 + z3; - tmp2 += z1 + z2; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - } - - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ - - wsptr = workspace; - for (ctr = 0; ctr < DCTSIZE; ctr++) { - outptr = output_buf[ctr] + output_col; - /* Rows of zeroes can be exploited in the same way as we did with columns. - * However, the column calculation has created many nonzero AC terms, so - * the simplification applies less often (typically 5% to 10% of the time). - * On machines with very fast multiplication, it's possible that the - * test takes more time than it's worth. In that case this section - * may be commented out. - */ - -#ifndef NO_ZERO_ROW_TEST - if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && - wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { - /* AC terms all zero */ - JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) - & RANGE_MASK]; - - outptr[0] = dcval; - outptr[1] = dcval; - outptr[2] = dcval; - outptr[3] = dcval; - outptr[4] = dcval; - outptr[5] = dcval; - outptr[6] = dcval; - outptr[7] = dcval; - - wsptr += DCTSIZE; /* advance pointer to next row */ - continue; - } -#endif - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - - /* Add fudge factor here for final descale. */ - z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 = (INT32) wsptr[4]; - - tmp0 = (z2 + z3) << CONST_BITS; - tmp1 = (z2 - z3) << CONST_BITS; - - tmp10 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - tmp11 = tmp1 + tmp3; - tmp12 = tmp1 - tmp3; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = (INT32) wsptr[7]; - tmp1 = (INT32) wsptr[5]; - tmp2 = (INT32) wsptr[3]; - tmp3 = (INT32) wsptr[1]; - - z2 = tmp0 + tmp2; - z3 = tmp1 + tmp3; - - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - z2 += z1; - z3 += z1; - - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - tmp0 += z1 + z2; - tmp3 += z1 + z3; - - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp1 += z1 + z3; - tmp2 += z1 + z2; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += DCTSIZE; /* advance pointer to next row */ - } -} - -#ifdef IDCT_SCALING_SUPPORTED - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 7x7 output block. - * - * Optimized algorithm with 12 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/14). - */ - -GLOBAL(void) -jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[7*7]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp13 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp13 += ONE << (CONST_BITS-PASS1_BITS-1); - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ - tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ - tmp0 = z1 + z3; - z2 -= tmp0; - tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ - tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ - tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ - tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - - tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ - tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ - tmp0 = tmp1 - tmp2; - tmp1 += tmp2; - tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ - tmp1 += tmp2; - z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ - tmp0 += z2; - tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ - - /* Final output stage */ - - wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 7 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 7; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp13 <<= CONST_BITS; - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[4]; - z3 = (INT32) wsptr[6]; - - tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ - tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ - tmp0 = z1 + z3; - z2 -= tmp0; - tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ - tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ - tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ - tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - - tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ - tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ - tmp0 = tmp1 - tmp2; - tmp1 += tmp2; - tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ - tmp1 += tmp2; - z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ - tmp0 += z2; - tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 7; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 6x6 output block. - * - * Optimized algorithm with 3 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/12). - */ - -GLOBAL(void) -jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[6*6]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ - tmp1 = tmp0 + tmp10; - tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS); - tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ - tmp10 = tmp1 + tmp0; - tmp12 = tmp1 - tmp0; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ - tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); - tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); - tmp1 = (z1 - z2 - z3) << PASS1_BITS; - - /* Final output stage */ - - wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[6*1] = (int) (tmp11 + tmp1); - wsptr[6*4] = (int) (tmp11 - tmp1); - wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 6 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - tmp2 = (INT32) wsptr[4]; - tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ - tmp1 = tmp0 + tmp10; - tmp11 = tmp0 - tmp10 - tmp10; - tmp10 = (INT32) wsptr[2]; - tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ - tmp10 = tmp1 + tmp0; - tmp12 = tmp1 - tmp0; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ - tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); - tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); - tmp1 = (z1 - z2 - z3) << CONST_BITS; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 6; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 5x5 output block. - * - * Optimized algorithm with 5 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/10). - */ - -GLOBAL(void) -jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp10, tmp11, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[5*5]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp12 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp12 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ - z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ - z3 = tmp12 + z2; - tmp10 = z3 + z1; - tmp11 = z3 - z1; - tmp12 -= z2 << 2; - - /* Odd part */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ - tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ - tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ - - /* Final output stage */ - - wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 5 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 5; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp12 <<= CONST_BITS; - tmp0 = (INT32) wsptr[2]; - tmp1 = (INT32) wsptr[4]; - z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ - z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ - z3 = tmp12 + z2; - tmp10 = z3 + z1; - tmp11 = z3 - z1; - tmp12 -= z2 << 2; - - /* Odd part */ - - z2 = (INT32) wsptr[1]; - z3 = (INT32) wsptr[3]; - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ - tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ - tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 5; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 4x4 output block. - * - * Optimized algorithm with 3 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. - */ - -GLOBAL(void) -jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp2, tmp10, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[4*4]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - - tmp10 = (tmp0 + tmp2) << PASS1_BITS; - tmp12 = (tmp0 - tmp2) << PASS1_BITS; - - /* Odd part */ - /* Same rotation as in the even part of the 8x8 LL&M IDCT */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */ - CONST_BITS-PASS1_BITS); - tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */ - CONST_BITS-PASS1_BITS); - - /* Final output stage */ - - wsptr[4*0] = (int) (tmp10 + tmp0); - wsptr[4*3] = (int) (tmp10 - tmp0); - wsptr[4*1] = (int) (tmp12 + tmp2); - wsptr[4*2] = (int) (tmp12 - tmp2); - } - - /* Pass 2: process 4 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 4; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp2 = (INT32) wsptr[2]; - - tmp10 = (tmp0 + tmp2) << CONST_BITS; - tmp12 = (tmp0 - tmp2) << CONST_BITS; - - /* Odd part */ - /* Same rotation as in the even part of the 8x8 LL&M IDCT */ - - z2 = (INT32) wsptr[1]; - z3 = (INT32) wsptr[3]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ - tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ - tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 4; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 3x3 output block. - * - * Optimized algorithm with 2 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/6). - */ - -GLOBAL(void) -jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp2, tmp10, tmp12; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[3*3]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ - tmp10 = tmp0 + tmp12; - tmp2 = tmp0 - tmp12 - tmp12; - - /* Odd part */ - - tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ - - /* Final output stage */ - - wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 3 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 3; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - tmp2 = (INT32) wsptr[2]; - tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ - tmp10 = tmp0 + tmp12; - tmp2 = tmp0 - tmp12 - tmp12; - - /* Odd part */ - - tmp12 = (INT32) wsptr[1]; - tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 3; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 2x2 output block. - * - * Multiplication-less algorithm. - */ - -GLOBAL(void) -jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; - ISLOW_MULT_TYPE * quantptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - SHIFT_TEMPS - - /* Pass 1: process columns from input. */ - - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - - /* Column 0 */ - tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); - /* Add fudge factor here for final descale. */ - tmp4 += ONE << 2; - - tmp0 = tmp4 + tmp5; - tmp2 = tmp4 - tmp5; - - /* Column 1 */ - tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]); - tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]); - - tmp1 = tmp4 + tmp5; - tmp3 = tmp4 - tmp5; - - /* Pass 2: process 2 rows, store into output array. */ - - /* Row 0 */ - outptr = output_buf[0] + output_col; - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK]; - - /* Row 1 */ - outptr = output_buf[1] + output_col; - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK]; -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 1x1 output block. - * - * We hardly need an inverse DCT routine for this: just take the - * average pixel value, which is one-eighth of the DC coefficient. - */ - -GLOBAL(void) -jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - int dcval; - ISLOW_MULT_TYPE * quantptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - SHIFT_TEMPS - - /* 1x1 is trivial: just take the DC coefficient divided by 8. */ - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - dcval = DEQUANTIZE(coef_block[0], quantptr[0]); - dcval = (int) DESCALE((INT32) dcval, 3); - - output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 9x9 output block. - * - * Optimized algorithm with 10 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/18). - */ - -GLOBAL(void) -jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*9]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ - tmp1 = tmp0 + tmp3; - tmp2 = tmp0 - tmp3 - tmp3; - - tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ - tmp11 = tmp2 + tmp0; - tmp14 = tmp2 - tmp0 - tmp0; - - tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ - tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ - tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ - - tmp10 = tmp1 + tmp0 - tmp3; - tmp12 = tmp1 - tmp0 + tmp2; - tmp13 = tmp1 - tmp2 + tmp3; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ - - tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ - tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ - tmp0 = tmp2 + tmp3 - z2; - tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ - tmp2 += z2 - tmp1; - tmp3 += z2 + tmp1; - tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 9 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 9; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[4]; - z3 = (INT32) wsptr[6]; - - tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ - tmp1 = tmp0 + tmp3; - tmp2 = tmp0 - tmp3 - tmp3; - - tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ - tmp11 = tmp2 + tmp0; - tmp14 = tmp2 - tmp0 - tmp0; - - tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ - tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ - tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ - - tmp10 = tmp1 + tmp0 - tmp3; - tmp12 = tmp1 - tmp0 + tmp2; - tmp13 = tmp1 - tmp2 + tmp3; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ - - tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ - tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ - tmp0 = tmp2 + tmp3 - z2; - tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ - tmp2 += z2 - tmp1; - tmp3 += z2 + tmp1; - tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 10x10 output block. - * - * Optimized algorithm with 12 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/20). - */ - -GLOBAL(void) -jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24; - INT32 z1, z2, z3, z4, z5; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*10]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z3 += ONE << (CONST_BITS-PASS1_BITS-1); - z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ - z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ - tmp10 = z3 + z1; - tmp11 = z3 - z2; - - tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */ - CONST_BITS-PASS1_BITS); - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ - tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ - tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ - - tmp20 = tmp10 + tmp12; - tmp24 = tmp10 - tmp12; - tmp21 = tmp11 + tmp13; - tmp23 = tmp11 - tmp13; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = z2 + z4; - tmp13 = z2 - z4; - - tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ - z5 = z3 << CONST_BITS; - - z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ - z4 = z5 + tmp12; - - tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ - tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ - - z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ - z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1)); - - tmp12 = (z1 - tmp13 - z3) << PASS1_BITS; - - tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ - tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) (tmp22 + tmp12); - wsptr[8*7] = (int) (tmp22 - tmp12); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 10 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 10; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 <<= CONST_BITS; - z4 = (INT32) wsptr[4]; - z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ - z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ - tmp10 = z3 + z1; - tmp11 = z3 - z2; - - tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */ - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ - tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ - tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ - - tmp20 = tmp10 + tmp12; - tmp24 = tmp10 - tmp12; - tmp21 = tmp11 + tmp13; - tmp23 = tmp11 - tmp13; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z3 <<= CONST_BITS; - z4 = (INT32) wsptr[7]; - - tmp11 = z2 + z4; - tmp13 = z2 - z4; - - tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ - - z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ - z4 = z3 + tmp12; - - tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ - tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ - - z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ - z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1)); - - tmp12 = ((z1 - tmp13) << CONST_BITS) - z3; - - tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ - tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 11x11 output block. - * - * Optimized algorithm with 24 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/22). - */ - -GLOBAL(void) -jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*11]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp10 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp10 += ONE << (CONST_BITS-PASS1_BITS-1); - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ - tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ - z4 = z1 + z3; - tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ - z4 -= z2; - tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ - tmp21 = tmp20 + tmp23 + tmp25 - - MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ - tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ - tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ - tmp24 += tmp25; - tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ - tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ - MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ - tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = z1 + z2; - tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ - tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ - tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ - tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ - z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ - tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ - tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ - z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ - tmp11 += z1; - tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ - tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ - MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ - MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 11 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 11; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp10 <<= CONST_BITS; - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[4]; - z3 = (INT32) wsptr[6]; - - tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ - tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ - z4 = z1 + z3; - tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ - z4 -= z2; - tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ - tmp21 = tmp20 + tmp23 + tmp25 - - MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ - tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ - tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ - tmp24 += tmp25; - tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ - tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ - MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ - tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - tmp11 = z1 + z2; - tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ - tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ - tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ - tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ - z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ - tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ - tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ - z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ - tmp11 += z1; - tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ - tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ - MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ - MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 12x12 output block. - * - * Optimized algorithm with 15 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/24). - */ - -GLOBAL(void) -jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*12]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z3 += ONE << (CONST_BITS-PASS1_BITS-1); - - z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ - - tmp10 = z3 + z4; - tmp11 = z3 - z4; - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ - z1 <<= CONST_BITS; - z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - z2 <<= CONST_BITS; - - tmp12 = z1 - z2; - - tmp21 = z3 + tmp12; - tmp24 = z3 - tmp12; - - tmp12 = z4 + z2; - - tmp20 = tmp10 + tmp12; - tmp25 = tmp10 - tmp12; - - tmp12 = z4 - z1 - z2; - - tmp22 = tmp11 + tmp12; - tmp23 = tmp11 - tmp12; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ - tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ - - tmp10 = z1 + z3; - tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ - tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ - tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ - tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ - tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ - tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ - tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ - MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ - - z1 -= z4; - z2 -= z3; - z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ - tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ - tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 12 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 12; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 <<= CONST_BITS; - - z4 = (INT32) wsptr[4]; - z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ - - tmp10 = z3 + z4; - tmp11 = z3 - z4; - - z1 = (INT32) wsptr[2]; - z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ - z1 <<= CONST_BITS; - z2 = (INT32) wsptr[6]; - z2 <<= CONST_BITS; - - tmp12 = z1 - z2; - - tmp21 = z3 + tmp12; - tmp24 = z3 - tmp12; - - tmp12 = z4 + z2; - - tmp20 = tmp10 + tmp12; - tmp25 = tmp10 - tmp12; - - tmp12 = z4 - z1 - z2; - - tmp22 = tmp11 + tmp12; - tmp23 = tmp11 - tmp12; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ - tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ - - tmp10 = z1 + z3; - tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ - tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ - tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ - tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ - tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ - tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ - tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ - MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ - - z1 -= z4; - z2 -= z3; - z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ - tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ - tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 13x13 output block. - * - * Optimized algorithm with 29 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/26). - */ - -GLOBAL(void) -jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*13]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z1 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp10 = z3 + z4; - tmp11 = z3 - z4; - - tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ - tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ - - tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ - tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ - - tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ - tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ - - tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ - tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ - - tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ - tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ - - tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ - tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ - - tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ - tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ - tmp15 = z1 + z4; - tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ - tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ - tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ - tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ - tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ - tmp11 += tmp14; - tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ - tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ - tmp12 += tmp14; - tmp13 += tmp14; - tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ - tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ - MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ - z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ - tmp14 += z1; - tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ - MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 13 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 13; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z1 <<= CONST_BITS; - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[4]; - z4 = (INT32) wsptr[6]; - - tmp10 = z3 + z4; - tmp11 = z3 - z4; - - tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ - tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ - - tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ - tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ - - tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ - tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ - - tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ - tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ - - tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ - tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ - - tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ - tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ - - tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ - tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ - tmp15 = z1 + z4; - tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ - tmp10 = tmp11 + tmp12 + tmp13 - - MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ - tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ - tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ - tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ - tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ - tmp11 += tmp14; - tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ - tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ - tmp12 += tmp14; - tmp13 += tmp14; - tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ - tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ - MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ - z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ - tmp14 += z1; - tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ - MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 14x14 output block. - * - * Optimized algorithm with 20 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/28). - */ - -GLOBAL(void) -jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*14]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z1 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ - z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ - z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ - - tmp10 = z1 + z2; - tmp11 = z1 + z3; - tmp12 = z1 - z4; - - tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */ - CONST_BITS-PASS1_BITS); - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ - - tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ - tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ - tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ - MULTIPLY(z2, FIX(1.378756276)); /* c2 */ - - tmp20 = tmp10 + tmp13; - tmp26 = tmp10 - tmp13; - tmp21 = tmp11 + tmp14; - tmp25 = tmp11 - tmp14; - tmp22 = tmp12 + tmp15; - tmp24 = tmp12 - tmp15; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - tmp13 = z4 << CONST_BITS; - - tmp14 = z1 + z3; - tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ - tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ - tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ - tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ - tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ - z1 -= z2; - tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ - tmp16 += tmp15; - z1 += z4; - z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */ - tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ - tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ - z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ - tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ - tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ - - tmp13 = (z1 - z3) << PASS1_BITS; - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) (tmp23 + tmp13); - wsptr[8*10] = (int) (tmp23 - tmp13); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 14 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 14; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z1 <<= CONST_BITS; - z4 = (INT32) wsptr[4]; - z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ - z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ - z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ - - tmp10 = z1 + z2; - tmp11 = z1 + z3; - tmp12 = z1 - z4; - - tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */ - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[6]; - - z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ - - tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ - tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ - tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ - MULTIPLY(z2, FIX(1.378756276)); /* c2 */ - - tmp20 = tmp10 + tmp13; - tmp26 = tmp10 - tmp13; - tmp21 = tmp11 + tmp14; - tmp25 = tmp11 - tmp14; - tmp22 = tmp12 + tmp15; - tmp24 = tmp12 - tmp15; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - z4 <<= CONST_BITS; - - tmp14 = z1 + z3; - tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ - tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ - tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ - tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ - tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ - z1 -= z2; - tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ - tmp16 += tmp15; - tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */ - tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ - tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ - tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ - tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ - tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ - - tmp13 = ((z1 - z3) << CONST_BITS) + z4; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 15x15 output block. - * - * Optimized algorithm with 22 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/30). - */ - -GLOBAL(void) -jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*15]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z1 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ - tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ - - tmp12 = z1 - tmp10; - tmp13 = z1 + tmp11; - z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */ - - z4 = z2 - z3; - z3 += z2; - tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ - tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ - z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ - - tmp20 = tmp13 + tmp10 + tmp11; - tmp23 = tmp12 - tmp10 + tmp11 + z2; - - tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ - tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ - - tmp25 = tmp13 - tmp10 - tmp11; - tmp26 = tmp12 + tmp10 - tmp11 - z2; - - tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ - tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ - - tmp21 = tmp12 + tmp10 + tmp11; - tmp24 = tmp13 - tmp10 + tmp11; - tmp11 += tmp11; - tmp22 = z1 + tmp11; /* c10 = c6-c12 */ - tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp13 = z2 - z4; - tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ - tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ - tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ - - tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ - tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ - z2 = z1 - z4; - tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ - - tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ - tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ - tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ - z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ - tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ - tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 15 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 15; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z1 <<= CONST_BITS; - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[4]; - z4 = (INT32) wsptr[6]; - - tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ - tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ - - tmp12 = z1 - tmp10; - tmp13 = z1 + tmp11; - z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */ - - z4 = z2 - z3; - z3 += z2; - tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ - tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ - z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ - - tmp20 = tmp13 + tmp10 + tmp11; - tmp23 = tmp12 - tmp10 + tmp11 + z2; - - tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ - tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ - - tmp25 = tmp13 - tmp10 - tmp11; - tmp26 = tmp12 + tmp10 - tmp11 - z2; - - tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ - tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ - - tmp21 = tmp12 + tmp10 + tmp11; - tmp24 = tmp13 - tmp10 + tmp11; - tmp11 += tmp11; - tmp22 = z1 + tmp11; /* c10 = c6-c12 */ - tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z4 = (INT32) wsptr[5]; - z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ - z4 = (INT32) wsptr[7]; - - tmp13 = z2 - z4; - tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ - tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ - tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ - - tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ - tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ - z2 = z1 - z4; - tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ - - tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ - tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ - tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ - z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ - tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ - tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 16x16 output block. - * - * Optimized algorithm with 28 multiplications in the 1-D kernel. - * cK represents sqrt(2) * cos(K*pi/32). - */ - -GLOBAL(void) -jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*16]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += 1 << (CONST_BITS-PASS1_BITS-1); - - z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ - tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - tmp12 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - z3 = z1 - z2; - z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ - z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ - - tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ - tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ - tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ - tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ - - tmp20 = tmp10 + tmp0; - tmp27 = tmp10 - tmp0; - tmp21 = tmp12 + tmp1; - tmp26 = tmp12 - tmp1; - tmp22 = tmp13 + tmp2; - tmp25 = tmp13 - tmp2; - tmp23 = tmp11 + tmp3; - tmp24 = tmp11 - tmp3; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = z1 + z3; - - tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ - tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ - tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ - tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ - tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ - tmp0 = tmp1 + tmp2 + tmp3 - - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ - tmp13 = tmp10 + tmp11 + tmp12 - - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ - z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ - tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ - tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ - z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ - tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ - tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ - z2 += z4; - z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ - tmp1 += z1; - tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ - z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ - tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ - tmp12 += z2; - z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ - tmp2 += z2; - tmp3 += z2; - z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ - tmp10 += z2; - tmp11 += z2; - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS); - wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 16 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 16; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - - z1 = (INT32) wsptr[4]; - tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ - tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - tmp12 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[6]; - z3 = z1 - z2; - z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ - z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ - - tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ - tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ - tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ - tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ - - tmp20 = tmp10 + tmp0; - tmp27 = tmp10 - tmp0; - tmp21 = tmp12 + tmp1; - tmp26 = tmp12 - tmp1; - tmp22 = tmp13 + tmp2; - tmp25 = tmp13 - tmp2; - tmp23 = tmp11 + tmp3; - tmp24 = tmp11 - tmp3; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - tmp11 = z1 + z3; - - tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ - tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ - tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ - tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ - tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ - tmp0 = tmp1 + tmp2 + tmp3 - - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ - tmp13 = tmp10 + tmp11 + tmp12 - - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ - z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ - tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ - tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ - z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ - tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ - tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ - z2 += z4; - z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ - tmp1 += z1; - tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ - z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ - tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ - tmp12 += z2; - z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ - tmp2 += z2; - tmp3 += z2; - z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ - tmp10 += z2; - tmp11 += z2; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 16x8 output block. - * - * 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*8]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = DCTSIZE; ctr > 0; ctr--) { - /* Due to quantization, we will usually find that many of the input - * coefficients are zero, especially the AC terms. We can exploit this - * by short-circuiting the IDCT calculation for any column in which all - * the AC terms are zero. In that case each output is equal to the - * DC coefficient (with scale factor as needed). - * With typical images and quantization tables, half or more of the - * column DCT calculations can be simplified this way. - */ - - if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && - inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && - inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && - inptr[DCTSIZE*7] == 0) { - /* AC terms all zero */ - int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; - - wsptr[DCTSIZE*0] = dcval; - wsptr[DCTSIZE*1] = dcval; - wsptr[DCTSIZE*2] = dcval; - wsptr[DCTSIZE*3] = dcval; - wsptr[DCTSIZE*4] = dcval; - wsptr[DCTSIZE*5] = dcval; - wsptr[DCTSIZE*6] = dcval; - wsptr[DCTSIZE*7] = dcval; - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - continue; - } - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - - z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z2 <<= CONST_BITS; - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z2 += ONE << (CONST_BITS-PASS1_BITS-1); - - tmp0 = z2 + z3; - tmp1 = z2 - z3; - - tmp10 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - tmp11 = tmp1 + tmp3; - tmp12 = tmp1 - tmp3; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - - z2 = tmp0 + tmp2; - z3 = tmp1 + tmp3; - - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - z2 += z1; - z3 += z1; - - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - tmp0 += z1 + z2; - tmp3 += z1 + z3; - - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp1 += z1 + z3; - tmp2 += z1 + z2; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - } - - /* Pass 2: process 8 rows from work array, store into output array. - * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32). - */ - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - - z1 = (INT32) wsptr[4]; - tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ - tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - tmp12 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[6]; - z3 = z1 - z2; - z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ - z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ - - tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ - tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ - tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ - tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ - - tmp20 = tmp10 + tmp0; - tmp27 = tmp10 - tmp0; - tmp21 = tmp12 + tmp1; - tmp26 = tmp12 - tmp1; - tmp22 = tmp13 + tmp2; - tmp25 = tmp13 - tmp2; - tmp23 = tmp11 + tmp3; - tmp24 = tmp11 - tmp3; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - tmp11 = z1 + z3; - - tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ - tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ - tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ - tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ - tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ - tmp0 = tmp1 + tmp2 + tmp3 - - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ - tmp13 = tmp10 + tmp11 + tmp12 - - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ - z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ - tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ - tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ - z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ - tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ - tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ - z2 += z4; - z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ - tmp1 += z1; - tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ - z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ - tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ - tmp12 += z2; - z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ - tmp2 += z2; - tmp3 += z2; - z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ - tmp10 += z2; - tmp11 += z2; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 14x7 output block. - * - * 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*7]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp23 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp23 += ONE << (CONST_BITS-PASS1_BITS-1); - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ - tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ - tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ - tmp10 = z1 + z3; - z2 -= tmp10; - tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */ - tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ - tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ - tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - - tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ - tmp10 = tmp11 - tmp12; - tmp11 += tmp12; - tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ - tmp11 += tmp12; - z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ - tmp10 += z2; - tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 7 rows from work array, store into output array. - * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28). - */ - wsptr = workspace; - for (ctr = 0; ctr < 7; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z1 <<= CONST_BITS; - z4 = (INT32) wsptr[4]; - z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ - z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ - z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ - - tmp10 = z1 + z2; - tmp11 = z1 + z3; - tmp12 = z1 - z4; - - tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */ - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[6]; - - z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ - - tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ - tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ - tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ - MULTIPLY(z2, FIX(1.378756276)); /* c2 */ - - tmp20 = tmp10 + tmp13; - tmp26 = tmp10 - tmp13; - tmp21 = tmp11 + tmp14; - tmp25 = tmp11 - tmp14; - tmp22 = tmp12 + tmp15; - tmp24 = tmp12 - tmp15; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - z4 <<= CONST_BITS; - - tmp14 = z1 + z3; - tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ - tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ - tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ - tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ - tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ - z1 -= z2; - tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ - tmp16 += tmp15; - tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */ - tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ - tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ - tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ - tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ - tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ - - tmp13 = ((z1 - z3) << CONST_BITS) + z4; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 12x6 output block. - * - * 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*6]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp10 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp10 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */ - tmp11 = tmp10 + tmp20; - tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS); - tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */ - tmp20 = tmp11 + tmp10; - tmp22 = tmp11 - tmp10; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ - tmp10 = tmp11 + ((z1 + z2) << CONST_BITS); - tmp12 = tmp11 + ((z3 - z2) << CONST_BITS); - tmp11 = (z1 - z2 - z3) << PASS1_BITS; - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) (tmp21 + tmp11); - wsptr[8*4] = (int) (tmp21 - tmp11); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 6 rows from work array, store into output array. - * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24). - */ - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 <<= CONST_BITS; - - z4 = (INT32) wsptr[4]; - z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ - - tmp10 = z3 + z4; - tmp11 = z3 - z4; - - z1 = (INT32) wsptr[2]; - z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ - z1 <<= CONST_BITS; - z2 = (INT32) wsptr[6]; - z2 <<= CONST_BITS; - - tmp12 = z1 - z2; - - tmp21 = z3 + tmp12; - tmp24 = z3 - tmp12; - - tmp12 = z4 + z2; - - tmp20 = tmp10 + tmp12; - tmp25 = tmp10 - tmp12; - - tmp12 = z4 - z1 - z2; - - tmp22 = tmp11 + tmp12; - tmp23 = tmp11 - tmp12; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z4 = (INT32) wsptr[7]; - - tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ - tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ - - tmp10 = z1 + z3; - tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ - tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ - tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ - tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ - tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ - tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ - tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ - MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ - - z1 -= z4; - z2 -= z3; - z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ - tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ - tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 10x5 output block. - * - * 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*5]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp12 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp12 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */ - z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */ - z3 = tmp12 + z2; - tmp10 = z3 + z1; - tmp11 = z3 - z1; - tmp12 -= z2 << 2; - - /* Odd part */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ - tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ - tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 5 rows from work array, store into output array. - * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20). - */ - wsptr = workspace; - for (ctr = 0; ctr < 5; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 <<= CONST_BITS; - z4 = (INT32) wsptr[4]; - z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ - z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ - tmp10 = z3 + z1; - tmp11 = z3 - z2; - - tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */ - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ - tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ - tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ - - tmp20 = tmp10 + tmp12; - tmp24 = tmp10 - tmp12; - tmp21 = tmp11 + tmp13; - tmp23 = tmp11 - tmp13; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - z3 <<= CONST_BITS; - z4 = (INT32) wsptr[7]; - - tmp11 = z2 + z4; - tmp13 = z2 - z4; - - tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ - - z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ - z4 = z3 + tmp12; - - tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ - tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ - - z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ - z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1)); - - tmp12 = ((z1 - tmp13) << CONST_BITS) - z3; - - tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ - tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 8; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 8x4 output block. - * - * 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*4]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - - tmp10 = (tmp0 + tmp2) << PASS1_BITS; - tmp12 = (tmp0 - tmp2) << PASS1_BITS; - - /* Odd part */ - /* Same rotation as in the even part of the 8x8 LL&M IDCT */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */ - CONST_BITS-PASS1_BITS); - tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */ - CONST_BITS-PASS1_BITS); - - /* Final output stage */ - - wsptr[8*0] = (int) (tmp10 + tmp0); - wsptr[8*3] = (int) (tmp10 - tmp0); - wsptr[8*1] = (int) (tmp12 + tmp2); - wsptr[8*2] = (int) (tmp12 - tmp2); - } - - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ - - wsptr = workspace; - for (ctr = 0; ctr < 4; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - - /* Add fudge factor here for final descale. */ - z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 = (INT32) wsptr[4]; - - tmp0 = (z2 + z3) << CONST_BITS; - tmp1 = (z2 - z3) << CONST_BITS; - - tmp10 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - tmp11 = tmp1 + tmp3; - tmp12 = tmp1 - tmp3; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = (INT32) wsptr[7]; - tmp1 = (INT32) wsptr[5]; - tmp2 = (INT32) wsptr[3]; - tmp3 = (INT32) wsptr[1]; - - z2 = tmp0 + tmp2; - z3 = tmp1 + tmp3; - - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - z2 += z1; - z3 += z1; - - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - tmp0 += z1 + z2; - tmp3 += z1 + z3; - - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp1 += z1 + z3; - tmp2 += z1 + z2; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += DCTSIZE; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 6x3 output block. - * - * 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[6*3]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ - tmp10 = tmp0 + tmp12; - tmp2 = tmp0 - tmp12 - tmp12; - - /* Odd part */ - - tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ - - /* Final output stage */ - - wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 3 rows from work array, store into output array. - * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). - */ - wsptr = workspace; - for (ctr = 0; ctr < 3; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - tmp2 = (INT32) wsptr[4]; - tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ - tmp1 = tmp0 + tmp10; - tmp11 = tmp0 - tmp10 - tmp10; - tmp10 = (INT32) wsptr[2]; - tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ - tmp10 = tmp1 + tmp0; - tmp12 = tmp1 - tmp0; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ - tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); - tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); - tmp1 = (z1 - z2 - z3) << CONST_BITS; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 6; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 4x2 output block. - * - * 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp2, tmp10, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - INT32 * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - INT32 workspace[4*2]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - - /* Odd part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - - /* Final output stage */ - - wsptr[4*0] = tmp10 + tmp0; - wsptr[4*1] = tmp10 - tmp0; - } - - /* Pass 2: process 2 rows from work array, store into output array. - * 4-point IDCT kernel, - * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. - */ - wsptr = workspace; - for (ctr = 0; ctr < 2; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = wsptr[0] + (ONE << 2); - tmp2 = wsptr[2]; - - tmp10 = (tmp0 + tmp2) << CONST_BITS; - tmp12 = (tmp0 - tmp2) << CONST_BITS; - - /* Odd part */ - /* Same rotation as in the even part of the 8x8 LL&M IDCT */ - - z2 = wsptr[1]; - z3 = wsptr[3]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ - tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ - tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+3) - & RANGE_MASK]; - - wsptr += 4; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 2x1 output block. - * - * 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp10; - ISLOW_MULT_TYPE * quantptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - SHIFT_TEMPS - - /* Pass 1: empty. */ - - /* Pass 2: process 1 row from input, store into output array. */ - - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - outptr = output_buf[0] + output_col; - - /* Even part */ - - tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]); - /* Add fudge factor here for final descale. */ - tmp10 += ONE << 2; - - /* Odd part */ - - tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]); - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK]; -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 8x16 output block. - * - * 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[8*16]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); - - z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ - tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ - - tmp10 = tmp0 + tmp1; - tmp11 = tmp0 - tmp1; - tmp12 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - z3 = z1 - z2; - z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ - z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ - - tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ - tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ - tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ - tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ - - tmp20 = tmp10 + tmp0; - tmp27 = tmp10 - tmp0; - tmp21 = tmp12 + tmp1; - tmp26 = tmp12 - tmp1; - tmp22 = tmp13 + tmp2; - tmp25 = tmp13 - tmp2; - tmp23 = tmp11 + tmp3; - tmp24 = tmp11 - tmp3; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = z1 + z3; - - tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ - tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ - tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ - tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ - tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ - tmp0 = tmp1 + tmp2 + tmp3 - - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ - tmp13 = tmp10 + tmp11 + tmp12 - - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ - z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ - tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ - tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ - z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ - tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ - tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ - z2 += z4; - z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ - tmp1 += z1; - tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ - z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ - tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ - tmp12 += z2; - z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ - tmp2 += z2; - tmp3 += z2; - z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ - tmp10 += z2; - tmp11 += z2; - - /* Final output stage */ - - wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS); - wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS); - wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ - - wsptr = workspace; - for (ctr = 0; ctr < 16; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = (INT32) wsptr[2]; - z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - - /* Add fudge factor here for final descale. */ - z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - z3 = (INT32) wsptr[4]; - - tmp0 = (z2 + z3) << CONST_BITS; - tmp1 = (z2 - z3) << CONST_BITS; - - tmp10 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - tmp11 = tmp1 + tmp3; - tmp12 = tmp1 - tmp3; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = (INT32) wsptr[7]; - tmp1 = (INT32) wsptr[5]; - tmp2 = (INT32) wsptr[3]; - tmp3 = (INT32) wsptr[1]; - - z2 = tmp0 + tmp2; - z3 = tmp1 + tmp3; - - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - z2 += z1; - z3 += z1; - - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - tmp0 += z1 + z2; - tmp3 += z1 + z3; - - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp1 += z1 + z3; - tmp2 += z1 + z2; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += DCTSIZE; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 7x14 output block. - * - * 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[7*14]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z1 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z1 += ONE << (CONST_BITS-PASS1_BITS-1); - z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ - z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ - z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ - - tmp10 = z1 + z2; - tmp11 = z1 + z3; - tmp12 = z1 - z4; - - tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */ - CONST_BITS-PASS1_BITS); - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ - - tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ - tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ - tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ - MULTIPLY(z2, FIX(1.378756276)); /* c2 */ - - tmp20 = tmp10 + tmp13; - tmp26 = tmp10 - tmp13; - tmp21 = tmp11 + tmp14; - tmp25 = tmp11 - tmp14; - tmp22 = tmp12 + tmp15; - tmp24 = tmp12 - tmp15; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - tmp13 = z4 << CONST_BITS; - - tmp14 = z1 + z3; - tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ - tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ - tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ - tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ - tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ - z1 -= z2; - tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ - tmp16 += tmp15; - z1 += z4; - z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */ - tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ - tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ - z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ - tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ - tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ - - tmp13 = (z1 - z3) << PASS1_BITS; - - /* Final output stage */ - - wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[7*3] = (int) (tmp23 + tmp13); - wsptr[7*10] = (int) (tmp23 - tmp13); - wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); - wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); - wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); - wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 14 rows from work array, store into output array. - * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14). - */ - wsptr = workspace; - for (ctr = 0; ctr < 14; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp23 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp23 <<= CONST_BITS; - - z1 = (INT32) wsptr[2]; - z2 = (INT32) wsptr[4]; - z3 = (INT32) wsptr[6]; - - tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ - tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ - tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ - tmp10 = z1 + z3; - z2 -= tmp10; - tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */ - tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ - tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ - tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - - tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ - tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ - tmp10 = tmp11 - tmp12; - tmp11 += tmp12; - tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ - tmp11 += tmp12; - z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ - tmp10 += z2; - tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 7; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 6x12 output block. - * - * 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; - INT32 z1, z2, z3, z4; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[6*12]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z3 += ONE << (CONST_BITS-PASS1_BITS-1); - - z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ - - tmp10 = z3 + z4; - tmp11 = z3 - z4; - - z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ - z1 <<= CONST_BITS; - z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - z2 <<= CONST_BITS; - - tmp12 = z1 - z2; - - tmp21 = z3 + tmp12; - tmp24 = z3 - tmp12; - - tmp12 = z4 + z2; - - tmp20 = tmp10 + tmp12; - tmp25 = tmp10 - tmp12; - - tmp12 = z4 - z1 - z2; - - tmp22 = tmp11 + tmp12; - tmp23 = tmp11 - tmp12; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ - tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ - - tmp10 = z1 + z3; - tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ - tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ - tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ - tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ - tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ - tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ - tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ - MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ - - z1 -= z4; - z2 -= z3; - z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ - tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ - tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ - - /* Final output stage */ - - wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); - wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); - wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); - wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 12 rows from work array, store into output array. - * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). - */ - wsptr = workspace; - for (ctr = 0; ctr < 12; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp10 <<= CONST_BITS; - tmp12 = (INT32) wsptr[4]; - tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */ - tmp11 = tmp10 + tmp20; - tmp21 = tmp10 - tmp20 - tmp20; - tmp20 = (INT32) wsptr[2]; - tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */ - tmp20 = tmp11 + tmp10; - tmp22 = tmp11 - tmp10; - - /* Odd part */ - - z1 = (INT32) wsptr[1]; - z2 = (INT32) wsptr[3]; - z3 = (INT32) wsptr[5]; - tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ - tmp10 = tmp11 + ((z1 + z2) << CONST_BITS); - tmp12 = tmp11 + ((z3 - z2) << CONST_BITS); - tmp11 = (z1 - z2 - z3) << CONST_BITS; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 6; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 5x10 output block. - * - * 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp10, tmp11, tmp12, tmp13, tmp14; - INT32 tmp20, tmp21, tmp22, tmp23, tmp24; - INT32 z1, z2, z3, z4, z5; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[5*10]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z3 += ONE << (CONST_BITS-PASS1_BITS-1); - z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ - z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ - tmp10 = z3 + z1; - tmp11 = z3 - z2; - - tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */ - CONST_BITS-PASS1_BITS); - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ - tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ - tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ - - tmp20 = tmp10 + tmp12; - tmp24 = tmp10 - tmp12; - tmp21 = tmp11 + tmp13; - tmp23 = tmp11 - tmp13; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - - tmp11 = z2 + z4; - tmp13 = z2 - z4; - - tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ - z5 = z3 << CONST_BITS; - - z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ - z4 = z5 + tmp12; - - tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ - tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ - - z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ - z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1)); - - tmp12 = (z1 - tmp13 - z3) << PASS1_BITS; - - tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ - tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ - - /* Final output stage */ - - wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); - wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); - wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); - wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); - wsptr[5*2] = (int) (tmp22 + tmp12); - wsptr[5*7] = (int) (tmp22 - tmp12); - wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); - wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); - wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); - wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 10 rows from work array, store into output array. - * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10). - */ - wsptr = workspace; - for (ctr = 0; ctr < 10; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp12 <<= CONST_BITS; - tmp13 = (INT32) wsptr[2]; - tmp14 = (INT32) wsptr[4]; - z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */ - z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */ - z3 = tmp12 + z2; - tmp10 = z3 + z1; - tmp11 = z3 - z1; - tmp12 -= z2 << 2; - - /* Odd part */ - - z2 = (INT32) wsptr[1]; - z3 = (INT32) wsptr[3]; - - z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ - tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ - tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 5; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 4x8 output block. - * - * 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[4*8]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 4; ctr > 0; ctr--) { - /* Due to quantization, we will usually find that many of the input - * coefficients are zero, especially the AC terms. We can exploit this - * by short-circuiting the IDCT calculation for any column in which all - * the AC terms are zero. In that case each output is equal to the - * DC coefficient (with scale factor as needed). - * With typical images and quantization tables, half or more of the - * column DCT calculations can be simplified this way. - */ - - if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && - inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && - inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && - inptr[DCTSIZE*7] == 0) { - /* AC terms all zero */ - int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; - - wsptr[4*0] = dcval; - wsptr[4*1] = dcval; - wsptr[4*2] = dcval; - wsptr[4*3] = dcval; - wsptr[4*4] = dcval; - wsptr[4*5] = dcval; - wsptr[4*6] = dcval; - wsptr[4*7] = dcval; - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - continue; - } - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - - z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - z2 <<= CONST_BITS; - z3 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - z2 += ONE << (CONST_BITS-PASS1_BITS-1); - - tmp0 = z2 + z3; - tmp1 = z2 - z3; - - tmp10 = tmp0 + tmp2; - tmp13 = tmp0 - tmp2; - tmp11 = tmp1 + tmp3; - tmp12 = tmp1 - tmp3; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - - z2 = tmp0 + tmp2; - z3 = tmp1 + tmp3; - - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - z2 += z1; - z3 += z1; - - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - tmp0 += z1 + z2; - tmp3 += z1 + z3; - - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp1 += z1 + z3; - tmp2 += z1 + z2; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); - wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); - wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); - wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); - wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); - wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); - - inptr++; /* advance pointers to next column */ - quantptr++; - wsptr++; - } - - /* Pass 2: process 8 rows from work array, store into output array. - * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). - */ - wsptr = workspace; - for (ctr = 0; ctr < 8; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp2 = (INT32) wsptr[2]; - - tmp10 = (tmp0 + tmp2) << CONST_BITS; - tmp12 = (tmp0 - tmp2) << CONST_BITS; - - /* Odd part */ - /* Same rotation as in the even part of the 8x8 LL&M IDCT */ - - z2 = (INT32) wsptr[1]; - z3 = (INT32) wsptr[3]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ - tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ - tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 4; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a reduced-size 3x6 output block. - * - * 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - int * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - int workspace[3*6]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp0 <<= CONST_BITS; - /* Add fudge factor here for final descale. */ - tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); - tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ - tmp1 = tmp0 + tmp10; - tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS); - tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ - tmp10 = tmp1 + tmp0; - tmp12 = tmp1 - tmp0; - - /* Odd part */ - - z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); - tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ - tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); - tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); - tmp1 = (z1 - z2 - z3) << PASS1_BITS; - - /* Final output stage */ - - wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); - wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); - wsptr[3*1] = (int) (tmp11 + tmp1); - wsptr[3*4] = (int) (tmp11 - tmp1); - wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); - wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); - } - - /* Pass 2: process 6 rows from work array, store into output array. - * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6). - */ - wsptr = workspace; - for (ctr = 0; ctr < 6; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); - tmp0 <<= CONST_BITS; - tmp2 = (INT32) wsptr[2]; - tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ - tmp10 = tmp0 + tmp12; - tmp2 = tmp0 - tmp12 - tmp12; - - /* Odd part */ - - tmp12 = (INT32) wsptr[1]; - tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2, - CONST_BITS+PASS1_BITS+3) - & RANGE_MASK]; - - wsptr += 3; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 2x4 output block. - * - * 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp2, tmp10, tmp12; - INT32 z1, z2, z3; - JCOEFPTR inptr; - ISLOW_MULT_TYPE * quantptr; - INT32 * wsptr; - JSAMPROW outptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - int ctr; - INT32 workspace[2*4]; /* buffers data between passes */ - SHIFT_TEMPS - - /* Pass 1: process columns from input, store into work array. - * 4-point IDCT kernel, - * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. - */ - inptr = coef_block; - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - wsptr = workspace; - for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) { - /* Even part */ - - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); - tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); - - tmp10 = (tmp0 + tmp2) << CONST_BITS; - tmp12 = (tmp0 - tmp2) << CONST_BITS; - - /* Odd part */ - /* Same rotation as in the even part of the 8x8 LL&M IDCT */ - - z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ - tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ - tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ - - /* Final output stage */ - - wsptr[2*0] = tmp10 + tmp0; - wsptr[2*3] = tmp10 - tmp0; - wsptr[2*1] = tmp12 + tmp2; - wsptr[2*2] = tmp12 - tmp2; - } - - /* Pass 2: process 4 rows from work array, store into output array. */ - - wsptr = workspace; - for (ctr = 0; ctr < 4; ctr++) { - outptr = output_buf[ctr] + output_col; - - /* Even part */ - - /* Add fudge factor here for final descale. */ - tmp10 = wsptr[0] + (ONE << (CONST_BITS+2)); - - /* Odd part */ - - tmp0 = wsptr[1]; - - /* Final output stage */ - - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3) - & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3) - & RANGE_MASK]; - - wsptr += 2; /* advance pointer to next row */ - } -} - - -/* - * Perform dequantization and inverse DCT on one block of coefficients, - * producing a 1x2 output block. - * - * 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows). - */ - -GLOBAL(void) -jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col) -{ - INT32 tmp0, tmp10; - ISLOW_MULT_TYPE * quantptr; - JSAMPLE *range_limit = IDCT_range_limit(cinfo); - SHIFT_TEMPS - - /* Process 1 column from input, store into output array. */ - - quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; - - /* Even part */ - - tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); - /* Add fudge factor here for final descale. */ - tmp10 += ONE << 2; - - /* Odd part */ - - tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); - - /* Final output stage */ - - output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) - & RANGE_MASK]; - output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) - & RANGE_MASK]; -} - -#endif /* IDCT_SCALING_SUPPORTED */ -#endif /* DCT_ISLOW_SUPPORTED */ diff --git a/src/jpeg-8c/jinclude.h b/src/jpeg-8c/jinclude.h deleted file mode 100644 index 0a4f1514..00000000 --- a/src/jpeg-8c/jinclude.h +++ /dev/null @@ -1,91 +0,0 @@ -/* - * jinclude.h - * - * Copyright (C) 1991-1994, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file exists to provide a single place to fix any problems with - * including the wrong system include files. (Common problems are taken - * care of by the standard jconfig symbols, but on really weird systems - * you may have to edit this file.) - * - * NOTE: this file is NOT intended to be included by applications using the - * JPEG library. Most applications need only include jpeglib.h. - */ - - -/* Include auto-config file to find out which system include files we need. */ - -#include "jconfig.h" /* auto configuration options */ -#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ - -/* - * We need the NULL macro and size_t typedef. - * On an ANSI-conforming system it is sufficient to include <stddef.h>. - * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to - * pull in <sys/types.h> as well. - * Note that the core JPEG library does not require <stdio.h>; - * only the default error handler and data source/destination modules do. - * But we must pull it in because of the references to FILE in jpeglib.h. - * You can remove those references if you want to compile without <stdio.h>. - */ - -#ifdef HAVE_STDDEF_H -#include <stddef.h> -#endif - -#ifdef HAVE_STDLIB_H -#include <stdlib.h> -#endif - -#ifdef NEED_SYS_TYPES_H -#include <sys/types.h> -#endif - -#include <stdio.h> - -/* - * We need memory copying and zeroing functions, plus strncpy(). - * ANSI and System V implementations declare these in <string.h>. - * BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). - * Some systems may declare memset and memcpy in <memory.h>. - * - * NOTE: we assume the size parameters to these functions are of type size_t. - * Change the casts in these macros if not! - */ - -#ifdef NEED_BSD_STRINGS - -#include <strings.h> -#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size)) -#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size)) - -#else /* not BSD, assume ANSI/SysV string lib */ - -#include <string.h> -#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) -#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) - -#endif - -/* - * In ANSI C, and indeed any rational implementation, size_t is also the - * type returned by sizeof(). However, it seems there are some irrational - * implementations out there, in which sizeof() returns an int even though - * size_t is defined as long or unsigned long. To ensure consistent results - * we always use this SIZEOF() macro in place of using sizeof() directly. - */ - -#define SIZEOF(object) ((size_t) sizeof(object)) - -/* - * The modules that use fread() and fwrite() always invoke them through - * these macros. On some systems you may need to twiddle the argument casts. - * CAUTION: argument order is different from underlying functions! - */ - -#define JFREAD(file,buf,sizeofbuf) \ - ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) -#define JFWRITE(file,buf,sizeofbuf) \ - ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) diff --git a/src/jpeg-8c/jmemmgr.c b/src/jpeg-8c/jmemmgr.c deleted file mode 100644 index d801b322..00000000 --- a/src/jpeg-8c/jmemmgr.c +++ /dev/null @@ -1,1118 +0,0 @@ -/* - * jmemmgr.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the JPEG system-independent memory management - * routines. This code is usable across a wide variety of machines; most - * of the system dependencies have been isolated in a separate file. - * The major functions provided here are: - * * pool-based allocation and freeing of memory; - * * policy decisions about how to divide available memory among the - * virtual arrays; - * * control logic for swapping virtual arrays between main memory and - * backing storage. - * The separate system-dependent file provides the actual backing-storage - * access code, and it contains the policy decision about how much total - * main memory to use. - * This file is system-dependent in the sense that some of its functions - * are unnecessary in some systems. For example, if there is enough virtual - * memory so that backing storage will never be used, much of the virtual - * array control logic could be removed. (Of course, if you have that much - * memory then you shouldn't care about a little bit of unused code...) - */ - -#define JPEG_INTERNALS -#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ -#include "jinclude.h" -#include "jpeglib.h" -#include "jmemsys.h" /* import the system-dependent declarations */ - -#ifndef NO_GETENV -#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ -extern char * getenv JPP((const char * name)); -#endif -#endif - - -/* - * Some important notes: - * The allocation routines provided here must never return NULL. - * They should exit to error_exit if unsuccessful. - * - * It's not a good idea to try to merge the sarray and barray routines, - * even though they are textually almost the same, because samples are - * usually stored as bytes while coefficients are shorts or ints. Thus, - * in machines where byte pointers have a different representation from - * word pointers, the resulting machine code could not be the same. - */ - - -/* - * Many machines require storage alignment: longs must start on 4-byte - * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() - * always returns pointers that are multiples of the worst-case alignment - * requirement, and we had better do so too. - * There isn't any really portable way to determine the worst-case alignment - * requirement. This module assumes that the alignment requirement is - * multiples of sizeof(ALIGN_TYPE). - * By default, we define ALIGN_TYPE as double. This is necessary on some - * workstations (where doubles really do need 8-byte alignment) and will work - * fine on nearly everything. If your machine has lesser alignment needs, - * you can save a few bytes by making ALIGN_TYPE smaller. - * The only place I know of where this will NOT work is certain Macintosh - * 680x0 compilers that define double as a 10-byte IEEE extended float. - * Doing 10-byte alignment is counterproductive because longwords won't be - * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have - * such a compiler. - */ - -#ifndef ALIGN_TYPE /* so can override from jconfig.h */ -#define ALIGN_TYPE double -#endif - - -/* - * We allocate objects from "pools", where each pool is gotten with a single - * request to jpeg_get_small() or jpeg_get_large(). There is no per-object - * overhead within a pool, except for alignment padding. Each pool has a - * header with a link to the next pool of the same class. - * Small and large pool headers are identical except that the latter's - * link pointer must be FAR on 80x86 machines. - * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE - * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple - * of the alignment requirement of ALIGN_TYPE. - */ - -typedef union small_pool_struct * small_pool_ptr; - -typedef union small_pool_struct { - struct { - small_pool_ptr next; /* next in list of pools */ - size_t bytes_used; /* how many bytes already used within pool */ - size_t bytes_left; /* bytes still available in this pool */ - } hdr; - ALIGN_TYPE dummy; /* included in union to ensure alignment */ -} small_pool_hdr; - -typedef union large_pool_struct FAR * large_pool_ptr; - -typedef union large_pool_struct { - struct { - large_pool_ptr next; /* next in list of pools */ - size_t bytes_used; /* how many bytes already used within pool */ - size_t bytes_left; /* bytes still available in this pool */ - } hdr; - ALIGN_TYPE dummy; /* included in union to ensure alignment */ -} large_pool_hdr; - - -/* - * Here is the full definition of a memory manager object. - */ - -typedef struct { - struct jpeg_memory_mgr pub; /* public fields */ - - /* Each pool identifier (lifetime class) names a linked list of pools. */ - small_pool_ptr small_list[JPOOL_NUMPOOLS]; - large_pool_ptr large_list[JPOOL_NUMPOOLS]; - - /* Since we only have one lifetime class of virtual arrays, only one - * linked list is necessary (for each datatype). Note that the virtual - * array control blocks being linked together are actually stored somewhere - * in the small-pool list. - */ - jvirt_sarray_ptr virt_sarray_list; - jvirt_barray_ptr virt_barray_list; - - /* This counts total space obtained from jpeg_get_small/large */ - long total_space_allocated; - - /* alloc_sarray and alloc_barray set this value for use by virtual - * array routines. - */ - JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ -} my_memory_mgr; - -typedef my_memory_mgr * my_mem_ptr; - - -/* - * The control blocks for virtual arrays. - * Note that these blocks are allocated in the "small" pool area. - * System-dependent info for the associated backing store (if any) is hidden - * inside the backing_store_info struct. - */ - -struct jvirt_sarray_control { - JSAMPARRAY mem_buffer; /* => the in-memory buffer */ - JDIMENSION rows_in_array; /* total virtual array height */ - JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ - JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ - JDIMENSION rows_in_mem; /* height of memory buffer */ - JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ - JDIMENSION cur_start_row; /* first logical row # in the buffer */ - JDIMENSION first_undef_row; /* row # of first uninitialized row */ - boolean pre_zero; /* pre-zero mode requested? */ - boolean dirty; /* do current buffer contents need written? */ - boolean b_s_open; /* is backing-store data valid? */ - jvirt_sarray_ptr next; /* link to next virtual sarray control block */ - backing_store_info b_s_info; /* System-dependent control info */ -}; - -struct jvirt_barray_control { - JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ - JDIMENSION rows_in_array; /* total virtual array height */ - JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ - JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ - JDIMENSION rows_in_mem; /* height of memory buffer */ - JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ - JDIMENSION cur_start_row; /* first logical row # in the buffer */ - JDIMENSION first_undef_row; /* row # of first uninitialized row */ - boolean pre_zero; /* pre-zero mode requested? */ - boolean dirty; /* do current buffer contents need written? */ - boolean b_s_open; /* is backing-store data valid? */ - jvirt_barray_ptr next; /* link to next virtual barray control block */ - backing_store_info b_s_info; /* System-dependent control info */ -}; - - -#ifdef MEM_STATS /* optional extra stuff for statistics */ - -LOCAL(void) -print_mem_stats (j_common_ptr cinfo, int pool_id) -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - small_pool_ptr shdr_ptr; - large_pool_ptr lhdr_ptr; - - /* Since this is only a debugging stub, we can cheat a little by using - * fprintf directly rather than going through the trace message code. - * This is helpful because message parm array can't handle longs. - */ - fprintf(stderr, "Freeing pool %d, total space = %ld\n", - pool_id, mem->total_space_allocated); - - for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; - lhdr_ptr = lhdr_ptr->hdr.next) { - fprintf(stderr, " Large chunk used %ld\n", - (long) lhdr_ptr->hdr.bytes_used); - } - - for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; - shdr_ptr = shdr_ptr->hdr.next) { - fprintf(stderr, " Small chunk used %ld free %ld\n", - (long) shdr_ptr->hdr.bytes_used, - (long) shdr_ptr->hdr.bytes_left); - } -} - -#endif /* MEM_STATS */ - - -LOCAL(void) -out_of_memory (j_common_ptr cinfo, int which) -/* Report an out-of-memory error and stop execution */ -/* If we compiled MEM_STATS support, report alloc requests before dying */ -{ -#ifdef MEM_STATS - cinfo->err->trace_level = 2; /* force self_destruct to report stats */ -#endif - ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); -} - - -/* - * Allocation of "small" objects. - * - * For these, we use pooled storage. When a new pool must be created, - * we try to get enough space for the current request plus a "slop" factor, - * where the slop will be the amount of leftover space in the new pool. - * The speed vs. space tradeoff is largely determined by the slop values. - * A different slop value is provided for each pool class (lifetime), - * and we also distinguish the first pool of a class from later ones. - * NOTE: the values given work fairly well on both 16- and 32-bit-int - * machines, but may be too small if longs are 64 bits or more. - */ - -static const size_t first_pool_slop[JPOOL_NUMPOOLS] = -{ - 1600, /* first PERMANENT pool */ - 16000 /* first IMAGE pool */ -}; - -static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = -{ - 0, /* additional PERMANENT pools */ - 5000 /* additional IMAGE pools */ -}; - -#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ - - -METHODDEF(void *) -alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) -/* Allocate a "small" object */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - small_pool_ptr hdr_ptr, prev_hdr_ptr; - char * data_ptr; - size_t odd_bytes, min_request, slop; - - /* Check for unsatisfiable request (do now to ensure no overflow below) */ - if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) - out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ - - /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ - odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); - if (odd_bytes > 0) - sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; - - /* See if space is available in any existing pool */ - if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - prev_hdr_ptr = NULL; - hdr_ptr = mem->small_list[pool_id]; - while (hdr_ptr != NULL) { - if (hdr_ptr->hdr.bytes_left >= sizeofobject) - break; /* found pool with enough space */ - prev_hdr_ptr = hdr_ptr; - hdr_ptr = hdr_ptr->hdr.next; - } - - /* Time to make a new pool? */ - if (hdr_ptr == NULL) { - /* min_request is what we need now, slop is what will be leftover */ - min_request = sizeofobject + SIZEOF(small_pool_hdr); - if (prev_hdr_ptr == NULL) /* first pool in class? */ - slop = first_pool_slop[pool_id]; - else - slop = extra_pool_slop[pool_id]; - /* Don't ask for more than MAX_ALLOC_CHUNK */ - if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) - slop = (size_t) (MAX_ALLOC_CHUNK-min_request); - /* Try to get space, if fail reduce slop and try again */ - for (;;) { - hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); - if (hdr_ptr != NULL) - break; - slop /= 2; - if (slop < MIN_SLOP) /* give up when it gets real small */ - out_of_memory(cinfo, 2); /* jpeg_get_small failed */ - } - mem->total_space_allocated += min_request + slop; - /* Success, initialize the new pool header and add to end of list */ - hdr_ptr->hdr.next = NULL; - hdr_ptr->hdr.bytes_used = 0; - hdr_ptr->hdr.bytes_left = sizeofobject + slop; - if (prev_hdr_ptr == NULL) /* first pool in class? */ - mem->small_list[pool_id] = hdr_ptr; - else - prev_hdr_ptr->hdr.next = hdr_ptr; - } - - /* OK, allocate the object from the current pool */ - data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ - data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ - hdr_ptr->hdr.bytes_used += sizeofobject; - hdr_ptr->hdr.bytes_left -= sizeofobject; - - return (void *) data_ptr; -} - - -/* - * Allocation of "large" objects. - * - * The external semantics of these are the same as "small" objects, - * except that FAR pointers are used on 80x86. However the pool - * management heuristics are quite different. We assume that each - * request is large enough that it may as well be passed directly to - * jpeg_get_large; the pool management just links everything together - * so that we can free it all on demand. - * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY - * structures. The routines that create these structures (see below) - * deliberately bunch rows together to ensure a large request size. - */ - -METHODDEF(void FAR *) -alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) -/* Allocate a "large" object */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - large_pool_ptr hdr_ptr; - size_t odd_bytes; - - /* Check for unsatisfiable request (do now to ensure no overflow below) */ - if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) - out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ - - /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ - odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); - if (odd_bytes > 0) - sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; - - /* Always make a new pool */ - if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - - hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + - SIZEOF(large_pool_hdr)); - if (hdr_ptr == NULL) - out_of_memory(cinfo, 4); /* jpeg_get_large failed */ - mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); - - /* Success, initialize the new pool header and add to list */ - hdr_ptr->hdr.next = mem->large_list[pool_id]; - /* We maintain space counts in each pool header for statistical purposes, - * even though they are not needed for allocation. - */ - hdr_ptr->hdr.bytes_used = sizeofobject; - hdr_ptr->hdr.bytes_left = 0; - mem->large_list[pool_id] = hdr_ptr; - - return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ -} - - -/* - * Creation of 2-D sample arrays. - * The pointers are in near heap, the samples themselves in FAR heap. - * - * To minimize allocation overhead and to allow I/O of large contiguous - * blocks, we allocate the sample rows in groups of as many rows as possible - * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. - * NB: the virtual array control routines, later in this file, know about - * this chunking of rows. The rowsperchunk value is left in the mem manager - * object so that it can be saved away if this sarray is the workspace for - * a virtual array. - */ - -METHODDEF(JSAMPARRAY) -alloc_sarray (j_common_ptr cinfo, int pool_id, - JDIMENSION samplesperrow, JDIMENSION numrows) -/* Allocate a 2-D sample array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - JSAMPARRAY result; - JSAMPROW workspace; - JDIMENSION rowsperchunk, currow, i; - long ltemp; - - /* Calculate max # of rows allowed in one allocation chunk */ - ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / - ((long) samplesperrow * SIZEOF(JSAMPLE)); - if (ltemp <= 0) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - if (ltemp < (long) numrows) - rowsperchunk = (JDIMENSION) ltemp; - else - rowsperchunk = numrows; - mem->last_rowsperchunk = rowsperchunk; - - /* Get space for row pointers (small object) */ - result = (JSAMPARRAY) alloc_small(cinfo, pool_id, - (size_t) (numrows * SIZEOF(JSAMPROW))); - - /* Get the rows themselves (large objects) */ - currow = 0; - while (currow < numrows) { - rowsperchunk = MIN(rowsperchunk, numrows - currow); - workspace = (JSAMPROW) alloc_large(cinfo, pool_id, - (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow - * SIZEOF(JSAMPLE))); - for (i = rowsperchunk; i > 0; i--) { - result[currow++] = workspace; - workspace += samplesperrow; - } - } - - return result; -} - - -/* - * Creation of 2-D coefficient-block arrays. - * This is essentially the same as the code for sample arrays, above. - */ - -METHODDEF(JBLOCKARRAY) -alloc_barray (j_common_ptr cinfo, int pool_id, - JDIMENSION blocksperrow, JDIMENSION numrows) -/* Allocate a 2-D coefficient-block array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - JBLOCKARRAY result; - JBLOCKROW workspace; - JDIMENSION rowsperchunk, currow, i; - long ltemp; - - /* Calculate max # of rows allowed in one allocation chunk */ - ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / - ((long) blocksperrow * SIZEOF(JBLOCK)); - if (ltemp <= 0) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - if (ltemp < (long) numrows) - rowsperchunk = (JDIMENSION) ltemp; - else - rowsperchunk = numrows; - mem->last_rowsperchunk = rowsperchunk; - - /* Get space for row pointers (small object) */ - result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, - (size_t) (numrows * SIZEOF(JBLOCKROW))); - - /* Get the rows themselves (large objects) */ - currow = 0; - while (currow < numrows) { - rowsperchunk = MIN(rowsperchunk, numrows - currow); - workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, - (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow - * SIZEOF(JBLOCK))); - for (i = rowsperchunk; i > 0; i--) { - result[currow++] = workspace; - workspace += blocksperrow; - } - } - - return result; -} - - -/* - * About virtual array management: - * - * The above "normal" array routines are only used to allocate strip buffers - * (as wide as the image, but just a few rows high). Full-image-sized buffers - * are handled as "virtual" arrays. The array is still accessed a strip at a - * time, but the memory manager must save the whole array for repeated - * accesses. The intended implementation is that there is a strip buffer in - * memory (as high as is possible given the desired memory limit), plus a - * backing file that holds the rest of the array. - * - * The request_virt_array routines are told the total size of the image and - * the maximum number of rows that will be accessed at once. The in-memory - * buffer must be at least as large as the maxaccess value. - * - * The request routines create control blocks but not the in-memory buffers. - * That is postponed until realize_virt_arrays is called. At that time the - * total amount of space needed is known (approximately, anyway), so free - * memory can be divided up fairly. - * - * The access_virt_array routines are responsible for making a specific strip - * area accessible (after reading or writing the backing file, if necessary). - * Note that the access routines are told whether the caller intends to modify - * the accessed strip; during a read-only pass this saves having to rewrite - * data to disk. The access routines are also responsible for pre-zeroing - * any newly accessed rows, if pre-zeroing was requested. - * - * In current usage, the access requests are usually for nonoverlapping - * strips; that is, successive access start_row numbers differ by exactly - * num_rows = maxaccess. This means we can get good performance with simple - * buffer dump/reload logic, by making the in-memory buffer be a multiple - * of the access height; then there will never be accesses across bufferload - * boundaries. The code will still work with overlapping access requests, - * but it doesn't handle bufferload overlaps very efficiently. - */ - - -METHODDEF(jvirt_sarray_ptr) -request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, - JDIMENSION samplesperrow, JDIMENSION numrows, - JDIMENSION maxaccess) -/* Request a virtual 2-D sample array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - jvirt_sarray_ptr result; - - /* Only IMAGE-lifetime virtual arrays are currently supported */ - if (pool_id != JPOOL_IMAGE) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - - /* get control block */ - result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, - SIZEOF(struct jvirt_sarray_control)); - - result->mem_buffer = NULL; /* marks array not yet realized */ - result->rows_in_array = numrows; - result->samplesperrow = samplesperrow; - result->maxaccess = maxaccess; - result->pre_zero = pre_zero; - result->b_s_open = FALSE; /* no associated backing-store object */ - result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ - mem->virt_sarray_list = result; - - return result; -} - - -METHODDEF(jvirt_barray_ptr) -request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, - JDIMENSION blocksperrow, JDIMENSION numrows, - JDIMENSION maxaccess) -/* Request a virtual 2-D coefficient-block array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - jvirt_barray_ptr result; - - /* Only IMAGE-lifetime virtual arrays are currently supported */ - if (pool_id != JPOOL_IMAGE) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - - /* get control block */ - result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, - SIZEOF(struct jvirt_barray_control)); - - result->mem_buffer = NULL; /* marks array not yet realized */ - result->rows_in_array = numrows; - result->blocksperrow = blocksperrow; - result->maxaccess = maxaccess; - result->pre_zero = pre_zero; - result->b_s_open = FALSE; /* no associated backing-store object */ - result->next = mem->virt_barray_list; /* add to list of virtual arrays */ - mem->virt_barray_list = result; - - return result; -} - - -METHODDEF(void) -realize_virt_arrays (j_common_ptr cinfo) -/* Allocate the in-memory buffers for any unrealized virtual arrays */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - long space_per_minheight, maximum_space, avail_mem; - long minheights, max_minheights; - jvirt_sarray_ptr sptr; - jvirt_barray_ptr bptr; - - /* Compute the minimum space needed (maxaccess rows in each buffer) - * and the maximum space needed (full image height in each buffer). - * These may be of use to the system-dependent jpeg_mem_available routine. - */ - space_per_minheight = 0; - maximum_space = 0; - for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { - if (sptr->mem_buffer == NULL) { /* if not realized yet */ - space_per_minheight += (long) sptr->maxaccess * - (long) sptr->samplesperrow * SIZEOF(JSAMPLE); - maximum_space += (long) sptr->rows_in_array * - (long) sptr->samplesperrow * SIZEOF(JSAMPLE); - } - } - for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { - if (bptr->mem_buffer == NULL) { /* if not realized yet */ - space_per_minheight += (long) bptr->maxaccess * - (long) bptr->blocksperrow * SIZEOF(JBLOCK); - maximum_space += (long) bptr->rows_in_array * - (long) bptr->blocksperrow * SIZEOF(JBLOCK); - } - } - - if (space_per_minheight <= 0) - return; /* no unrealized arrays, no work */ - - /* Determine amount of memory to actually use; this is system-dependent. */ - avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, - mem->total_space_allocated); - - /* If the maximum space needed is available, make all the buffers full - * height; otherwise parcel it out with the same number of minheights - * in each buffer. - */ - if (avail_mem >= maximum_space) - max_minheights = 1000000000L; - else { - max_minheights = avail_mem / space_per_minheight; - /* If there doesn't seem to be enough space, try to get the minimum - * anyway. This allows a "stub" implementation of jpeg_mem_available(). - */ - if (max_minheights <= 0) - max_minheights = 1; - } - - /* Allocate the in-memory buffers and initialize backing store as needed. */ - - for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { - if (sptr->mem_buffer == NULL) { /* if not realized yet */ - minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; - if (minheights <= max_minheights) { - /* This buffer fits in memory */ - sptr->rows_in_mem = sptr->rows_in_array; - } else { - /* It doesn't fit in memory, create backing store. */ - sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); - jpeg_open_backing_store(cinfo, & sptr->b_s_info, - (long) sptr->rows_in_array * - (long) sptr->samplesperrow * - (long) SIZEOF(JSAMPLE)); - sptr->b_s_open = TRUE; - } - sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, - sptr->samplesperrow, sptr->rows_in_mem); - sptr->rowsperchunk = mem->last_rowsperchunk; - sptr->cur_start_row = 0; - sptr->first_undef_row = 0; - sptr->dirty = FALSE; - } - } - - for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { - if (bptr->mem_buffer == NULL) { /* if not realized yet */ - minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; - if (minheights <= max_minheights) { - /* This buffer fits in memory */ - bptr->rows_in_mem = bptr->rows_in_array; - } else { - /* It doesn't fit in memory, create backing store. */ - bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); - jpeg_open_backing_store(cinfo, & bptr->b_s_info, - (long) bptr->rows_in_array * - (long) bptr->blocksperrow * - (long) SIZEOF(JBLOCK)); - bptr->b_s_open = TRUE; - } - bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, - bptr->blocksperrow, bptr->rows_in_mem); - bptr->rowsperchunk = mem->last_rowsperchunk; - bptr->cur_start_row = 0; - bptr->first_undef_row = 0; - bptr->dirty = FALSE; - } - } -} - - -LOCAL(void) -do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) -/* Do backing store read or write of a virtual sample array */ -{ - long bytesperrow, file_offset, byte_count, rows, thisrow, i; - - bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); - file_offset = ptr->cur_start_row * bytesperrow; - /* Loop to read or write each allocation chunk in mem_buffer */ - for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { - /* One chunk, but check for short chunk at end of buffer */ - rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); - /* Transfer no more than is currently defined */ - thisrow = (long) ptr->cur_start_row + i; - rows = MIN(rows, (long) ptr->first_undef_row - thisrow); - /* Transfer no more than fits in file */ - rows = MIN(rows, (long) ptr->rows_in_array - thisrow); - if (rows <= 0) /* this chunk might be past end of file! */ - break; - byte_count = rows * bytesperrow; - if (writing) - (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - else - (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - file_offset += byte_count; - } -} - - -LOCAL(void) -do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) -/* Do backing store read or write of a virtual coefficient-block array */ -{ - long bytesperrow, file_offset, byte_count, rows, thisrow, i; - - bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); - file_offset = ptr->cur_start_row * bytesperrow; - /* Loop to read or write each allocation chunk in mem_buffer */ - for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { - /* One chunk, but check for short chunk at end of buffer */ - rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); - /* Transfer no more than is currently defined */ - thisrow = (long) ptr->cur_start_row + i; - rows = MIN(rows, (long) ptr->first_undef_row - thisrow); - /* Transfer no more than fits in file */ - rows = MIN(rows, (long) ptr->rows_in_array - thisrow); - if (rows <= 0) /* this chunk might be past end of file! */ - break; - byte_count = rows * bytesperrow; - if (writing) - (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - else - (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - file_offset += byte_count; - } -} - - -METHODDEF(JSAMPARRAY) -access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, - JDIMENSION start_row, JDIMENSION num_rows, - boolean writable) -/* Access the part of a virtual sample array starting at start_row */ -/* and extending for num_rows rows. writable is true if */ -/* caller intends to modify the accessed area. */ -{ - JDIMENSION end_row = start_row + num_rows; - JDIMENSION undef_row; - - /* debugging check */ - if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || - ptr->mem_buffer == NULL) - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - - /* Make the desired part of the virtual array accessible */ - if (start_row < ptr->cur_start_row || - end_row > ptr->cur_start_row+ptr->rows_in_mem) { - if (! ptr->b_s_open) - ERREXIT(cinfo, JERR_VIRTUAL_BUG); - /* Flush old buffer contents if necessary */ - if (ptr->dirty) { - do_sarray_io(cinfo, ptr, TRUE); - ptr->dirty = FALSE; - } - /* Decide what part of virtual array to access. - * Algorithm: if target address > current window, assume forward scan, - * load starting at target address. If target address < current window, - * assume backward scan, load so that target area is top of window. - * Note that when switching from forward write to forward read, will have - * start_row = 0, so the limiting case applies and we load from 0 anyway. - */ - if (start_row > ptr->cur_start_row) { - ptr->cur_start_row = start_row; - } else { - /* use long arithmetic here to avoid overflow & unsigned problems */ - long ltemp; - - ltemp = (long) end_row - (long) ptr->rows_in_mem; - if (ltemp < 0) - ltemp = 0; /* don't fall off front end of file */ - ptr->cur_start_row = (JDIMENSION) ltemp; - } - /* Read in the selected part of the array. - * During the initial write pass, we will do no actual read - * because the selected part is all undefined. - */ - do_sarray_io(cinfo, ptr, FALSE); - } - /* Ensure the accessed part of the array is defined; prezero if needed. - * To improve locality of access, we only prezero the part of the array - * that the caller is about to access, not the entire in-memory array. - */ - if (ptr->first_undef_row < end_row) { - if (ptr->first_undef_row < start_row) { - if (writable) /* writer skipped over a section of array */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - undef_row = start_row; /* but reader is allowed to read ahead */ - } else { - undef_row = ptr->first_undef_row; - } - if (writable) - ptr->first_undef_row = end_row; - if (ptr->pre_zero) { - size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); - undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ - end_row -= ptr->cur_start_row; - while (undef_row < end_row) { - jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); - undef_row++; - } - } else { - if (! writable) /* reader looking at undefined data */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - } - } - /* Flag the buffer dirty if caller will write in it */ - if (writable) - ptr->dirty = TRUE; - /* Return address of proper part of the buffer */ - return ptr->mem_buffer + (start_row - ptr->cur_start_row); -} - - -METHODDEF(JBLOCKARRAY) -access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, - JDIMENSION start_row, JDIMENSION num_rows, - boolean writable) -/* Access the part of a virtual block array starting at start_row */ -/* and extending for num_rows rows. writable is true if */ -/* caller intends to modify the accessed area. */ -{ - JDIMENSION end_row = start_row + num_rows; - JDIMENSION undef_row; - - /* debugging check */ - if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || - ptr->mem_buffer == NULL) - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - - /* Make the desired part of the virtual array accessible */ - if (start_row < ptr->cur_start_row || - end_row > ptr->cur_start_row+ptr->rows_in_mem) { - if (! ptr->b_s_open) - ERREXIT(cinfo, JERR_VIRTUAL_BUG); - /* Flush old buffer contents if necessary */ - if (ptr->dirty) { - do_barray_io(cinfo, ptr, TRUE); - ptr->dirty = FALSE; - } - /* Decide what part of virtual array to access. - * Algorithm: if target address > current window, assume forward scan, - * load starting at target address. If target address < current window, - * assume backward scan, load so that target area is top of window. - * Note that when switching from forward write to forward read, will have - * start_row = 0, so the limiting case applies and we load from 0 anyway. - */ - if (start_row > ptr->cur_start_row) { - ptr->cur_start_row = start_row; - } else { - /* use long arithmetic here to avoid overflow & unsigned problems */ - long ltemp; - - ltemp = (long) end_row - (long) ptr->rows_in_mem; - if (ltemp < 0) - ltemp = 0; /* don't fall off front end of file */ - ptr->cur_start_row = (JDIMENSION) ltemp; - } - /* Read in the selected part of the array. - * During the initial write pass, we will do no actual read - * because the selected part is all undefined. - */ - do_barray_io(cinfo, ptr, FALSE); - } - /* Ensure the accessed part of the array is defined; prezero if needed. - * To improve locality of access, we only prezero the part of the array - * that the caller is about to access, not the entire in-memory array. - */ - if (ptr->first_undef_row < end_row) { - if (ptr->first_undef_row < start_row) { - if (writable) /* writer skipped over a section of array */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - undef_row = start_row; /* but reader is allowed to read ahead */ - } else { - undef_row = ptr->first_undef_row; - } - if (writable) - ptr->first_undef_row = end_row; - if (ptr->pre_zero) { - size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); - undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ - end_row -= ptr->cur_start_row; - while (undef_row < end_row) { - jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); - undef_row++; - } - } else { - if (! writable) /* reader looking at undefined data */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - } - } - /* Flag the buffer dirty if caller will write in it */ - if (writable) - ptr->dirty = TRUE; - /* Return address of proper part of the buffer */ - return ptr->mem_buffer + (start_row - ptr->cur_start_row); -} - - -/* - * Release all objects belonging to a specified pool. - */ - -METHODDEF(void) -free_pool (j_common_ptr cinfo, int pool_id) -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - small_pool_ptr shdr_ptr; - large_pool_ptr lhdr_ptr; - size_t space_freed; - - if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - -#ifdef MEM_STATS - if (cinfo->err->trace_level > 1) - print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ -#endif - - /* If freeing IMAGE pool, close any virtual arrays first */ - if (pool_id == JPOOL_IMAGE) { - jvirt_sarray_ptr sptr; - jvirt_barray_ptr bptr; - - for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { - if (sptr->b_s_open) { /* there may be no backing store */ - sptr->b_s_open = FALSE; /* prevent recursive close if error */ - (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); - } - } - mem->virt_sarray_list = NULL; - for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { - if (bptr->b_s_open) { /* there may be no backing store */ - bptr->b_s_open = FALSE; /* prevent recursive close if error */ - (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); - } - } - mem->virt_barray_list = NULL; - } - - /* Release large objects */ - lhdr_ptr = mem->large_list[pool_id]; - mem->large_list[pool_id] = NULL; - - while (lhdr_ptr != NULL) { - large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; - space_freed = lhdr_ptr->hdr.bytes_used + - lhdr_ptr->hdr.bytes_left + - SIZEOF(large_pool_hdr); - jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); - mem->total_space_allocated -= space_freed; - lhdr_ptr = next_lhdr_ptr; - } - - /* Release small objects */ - shdr_ptr = mem->small_list[pool_id]; - mem->small_list[pool_id] = NULL; - - while (shdr_ptr != NULL) { - small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; - space_freed = shdr_ptr->hdr.bytes_used + - shdr_ptr->hdr.bytes_left + - SIZEOF(small_pool_hdr); - jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); - mem->total_space_allocated -= space_freed; - shdr_ptr = next_shdr_ptr; - } -} - - -/* - * Close up shop entirely. - * Note that this cannot be called unless cinfo->mem is non-NULL. - */ - -METHODDEF(void) -self_destruct (j_common_ptr cinfo) -{ - int pool; - - /* Close all backing store, release all memory. - * Releasing pools in reverse order might help avoid fragmentation - * with some (brain-damaged) malloc libraries. - */ - for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { - free_pool(cinfo, pool); - } - - /* Release the memory manager control block too. */ - jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); - cinfo->mem = NULL; /* ensures I will be called only once */ - - jpeg_mem_term(cinfo); /* system-dependent cleanup */ -} - - -/* - * Memory manager initialization. - * When this is called, only the error manager pointer is valid in cinfo! - */ - -GLOBAL(void) -jinit_memory_mgr (j_common_ptr cinfo) -{ - my_mem_ptr mem; - long max_to_use; - int pool; - size_t test_mac; - - cinfo->mem = NULL; /* for safety if init fails */ - - /* Check for configuration errors. - * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably - * doesn't reflect any real hardware alignment requirement. - * The test is a little tricky: for X>0, X and X-1 have no one-bits - * in common if and only if X is a power of 2, ie has only one one-bit. - * Some compilers may give an "unreachable code" warning here; ignore it. - */ - if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) - ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); - /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be - * a multiple of SIZEOF(ALIGN_TYPE). - * Again, an "unreachable code" warning may be ignored here. - * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. - */ - test_mac = (size_t) MAX_ALLOC_CHUNK; - if ((long) test_mac != MAX_ALLOC_CHUNK || - (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) - ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); - - max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ - - /* Attempt to allocate memory manager's control block */ - mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); - - if (mem == NULL) { - jpeg_mem_term(cinfo); /* system-dependent cleanup */ - ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); - } - - /* OK, fill in the method pointers */ - mem->pub.alloc_small = alloc_small; - mem->pub.alloc_large = alloc_large; - mem->pub.alloc_sarray = alloc_sarray; - mem->pub.alloc_barray = alloc_barray; - mem->pub.request_virt_sarray = request_virt_sarray; - mem->pub.request_virt_barray = request_virt_barray; - mem->pub.realize_virt_arrays = realize_virt_arrays; - mem->pub.access_virt_sarray = access_virt_sarray; - mem->pub.access_virt_barray = access_virt_barray; - mem->pub.free_pool = free_pool; - mem->pub.self_destruct = self_destruct; - - /* Make MAX_ALLOC_CHUNK accessible to other modules */ - mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; - - /* Initialize working state */ - mem->pub.max_memory_to_use = max_to_use; - - for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { - mem->small_list[pool] = NULL; - mem->large_list[pool] = NULL; - } - mem->virt_sarray_list = NULL; - mem->virt_barray_list = NULL; - - mem->total_space_allocated = SIZEOF(my_memory_mgr); - - /* Declare ourselves open for business */ - cinfo->mem = & mem->pub; - - /* Check for an environment variable JPEGMEM; if found, override the - * default max_memory setting from jpeg_mem_init. Note that the - * surrounding application may again override this value. - * If your system doesn't support getenv(), define NO_GETENV to disable - * this feature. - */ -#ifndef NO_GETENV - { char * memenv; - - if ((memenv = getenv("JPEGMEM")) != NULL) { - char ch = 'x'; - - if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { - if (ch == 'm' || ch == 'M') - max_to_use *= 1000L; - mem->pub.max_memory_to_use = max_to_use * 1000L; - } - } - } -#endif - -} diff --git a/src/jpeg-8c/jmemnobs.c b/src/jpeg-8c/jmemnobs.c deleted file mode 100644 index eb8c3377..00000000 --- a/src/jpeg-8c/jmemnobs.c +++ /dev/null @@ -1,109 +0,0 @@ -/* - * jmemnobs.c - * - * Copyright (C) 1992-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file provides a really simple implementation of the system- - * dependent portion of the JPEG memory manager. This implementation - * assumes that no backing-store files are needed: all required space - * can be obtained from malloc(). - * This is very portable in the sense that it'll compile on almost anything, - * but you'd better have lots of main memory (or virtual memory) if you want - * to process big images. - * Note that the max_memory_to_use option is ignored by this implementation. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jmemsys.h" /* import the system-dependent declarations */ - -#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ -extern void * malloc JPP((size_t size)); -extern void free JPP((void *ptr)); -#endif - - -/* - * Memory allocation and freeing are controlled by the regular library - * routines malloc() and free(). - */ - -GLOBAL(void *) -jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) -{ - return (void *) malloc(sizeofobject); -} - -GLOBAL(void) -jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) -{ - free(object); -} - - -/* - * "Large" objects are treated the same as "small" ones. - * NB: although we include FAR keywords in the routine declarations, - * this file won't actually work in 80x86 small/medium model; at least, - * you probably won't be able to process useful-size images in only 64KB. - */ - -GLOBAL(void FAR *) -jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) -{ - return (void FAR *) malloc(sizeofobject); -} - -GLOBAL(void) -jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) -{ - free(object); -} - - -/* - * This routine computes the total memory space available for allocation. - * Here we always say, "we got all you want bud!" - */ - -GLOBAL(long) -jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, - long max_bytes_needed, long already_allocated) -{ - return max_bytes_needed; -} - - -/* - * Backing store (temporary file) management. - * Since jpeg_mem_available always promised the moon, - * this should never be called and we can just error out. - */ - -GLOBAL(void) -jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, - long total_bytes_needed) -{ - ERREXIT(cinfo, JERR_NO_BACKING_STORE); -} - - -/* - * These routines take care of any system-dependent initialization and - * cleanup required. Here, there isn't any. - */ - -GLOBAL(long) -jpeg_mem_init (j_common_ptr cinfo) -{ - return 0; /* just set max_memory_to_use to 0 */ -} - -GLOBAL(void) -jpeg_mem_term (j_common_ptr cinfo) -{ - /* no work */ -} diff --git a/src/jpeg-8c/jmemsys.h b/src/jpeg-8c/jmemsys.h deleted file mode 100644 index 6c3c6d34..00000000 --- a/src/jpeg-8c/jmemsys.h +++ /dev/null @@ -1,198 +0,0 @@ -/* - * jmemsys.h - * - * Copyright (C) 1992-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This include file defines the interface between the system-independent - * and system-dependent portions of the JPEG memory manager. No other - * modules need include it. (The system-independent portion is jmemmgr.c; - * there are several different versions of the system-dependent portion.) - * - * This file works as-is for the system-dependent memory managers supplied - * in the IJG distribution. You may need to modify it if you write a - * custom memory manager. If system-dependent changes are needed in - * this file, the best method is to #ifdef them based on a configuration - * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR - * and USE_MAC_MEMMGR. - */ - - -/* Short forms of external names for systems with brain-damaged linkers. */ - -#ifdef NEED_SHORT_EXTERNAL_NAMES -#define jpeg_get_small jGetSmall -#define jpeg_free_small jFreeSmall -#define jpeg_get_large jGetLarge -#define jpeg_free_large jFreeLarge -#define jpeg_mem_available jMemAvail -#define jpeg_open_backing_store jOpenBackStore -#define jpeg_mem_init jMemInit -#define jpeg_mem_term jMemTerm -#endif /* NEED_SHORT_EXTERNAL_NAMES */ - - -/* - * These two functions are used to allocate and release small chunks of - * memory. (Typically the total amount requested through jpeg_get_small is - * no more than 20K or so; this will be requested in chunks of a few K each.) - * Behavior should be the same as for the standard library functions malloc - * and free; in particular, jpeg_get_small must return NULL on failure. - * On most systems, these ARE malloc and free. jpeg_free_small is passed the - * size of the object being freed, just in case it's needed. - * On an 80x86 machine using small-data memory model, these manage near heap. - */ - -EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject)); -EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object, - size_t sizeofobject)); - -/* - * These two functions are used to allocate and release large chunks of - * memory (up to the total free space designated by jpeg_mem_available). - * The interface is the same as above, except that on an 80x86 machine, - * far pointers are used. On most other machines these are identical to - * the jpeg_get/free_small routines; but we keep them separate anyway, - * in case a different allocation strategy is desirable for large chunks. - */ - -EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo, - size_t sizeofobject)); -EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object, - size_t sizeofobject)); - -/* - * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may - * be requested in a single call to jpeg_get_large (and jpeg_get_small for that - * matter, but that case should never come into play). This macro is needed - * to model the 64Kb-segment-size limit of far addressing on 80x86 machines. - * On those machines, we expect that jconfig.h will provide a proper value. - * On machines with 32-bit flat address spaces, any large constant may be used. - * - * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type - * size_t and will be a multiple of sizeof(align_type). - */ - -#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ -#define MAX_ALLOC_CHUNK 1000000000L -#endif - -/* - * This routine computes the total space still available for allocation by - * jpeg_get_large. If more space than this is needed, backing store will be - * used. NOTE: any memory already allocated must not be counted. - * - * There is a minimum space requirement, corresponding to the minimum - * feasible buffer sizes; jmemmgr.c will request that much space even if - * jpeg_mem_available returns zero. The maximum space needed, enough to hold - * all working storage in memory, is also passed in case it is useful. - * Finally, the total space already allocated is passed. If no better - * method is available, cinfo->mem->max_memory_to_use - already_allocated - * is often a suitable calculation. - * - * It is OK for jpeg_mem_available to underestimate the space available - * (that'll just lead to more backing-store access than is really necessary). - * However, an overestimate will lead to failure. Hence it's wise to subtract - * a slop factor from the true available space. 5% should be enough. - * - * On machines with lots of virtual memory, any large constant may be returned. - * Conversely, zero may be returned to always use the minimum amount of memory. - */ - -EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo, - long min_bytes_needed, - long max_bytes_needed, - long already_allocated)); - - -/* - * This structure holds whatever state is needed to access a single - * backing-store object. The read/write/close method pointers are called - * by jmemmgr.c to manipulate the backing-store object; all other fields - * are private to the system-dependent backing store routines. - */ - -#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ - - -#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ - -typedef unsigned short XMSH; /* type of extended-memory handles */ -typedef unsigned short EMSH; /* type of expanded-memory handles */ - -typedef union { - short file_handle; /* DOS file handle if it's a temp file */ - XMSH xms_handle; /* handle if it's a chunk of XMS */ - EMSH ems_handle; /* handle if it's a chunk of EMS */ -} handle_union; - -#endif /* USE_MSDOS_MEMMGR */ - -#ifdef USE_MAC_MEMMGR /* Mac-specific junk */ -#include <Files.h> -#endif /* USE_MAC_MEMMGR */ - - -typedef struct backing_store_struct * backing_store_ptr; - -typedef struct backing_store_struct { - /* Methods for reading/writing/closing this backing-store object */ - JMETHOD(void, read_backing_store, (j_common_ptr cinfo, - backing_store_ptr info, - void FAR * buffer_address, - long file_offset, long byte_count)); - JMETHOD(void, write_backing_store, (j_common_ptr cinfo, - backing_store_ptr info, - void FAR * buffer_address, - long file_offset, long byte_count)); - JMETHOD(void, close_backing_store, (j_common_ptr cinfo, - backing_store_ptr info)); - - /* Private fields for system-dependent backing-store management */ -#ifdef USE_MSDOS_MEMMGR - /* For the MS-DOS manager (jmemdos.c), we need: */ - handle_union handle; /* reference to backing-store storage object */ - char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ -#else -#ifdef USE_MAC_MEMMGR - /* For the Mac manager (jmemmac.c), we need: */ - short temp_file; /* file reference number to temp file */ - FSSpec tempSpec; /* the FSSpec for the temp file */ - char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ -#else - /* For a typical implementation with temp files, we need: */ - FILE * temp_file; /* stdio reference to temp file */ - char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ -#endif -#endif -} backing_store_info; - - -/* - * Initial opening of a backing-store object. This must fill in the - * read/write/close pointers in the object. The read/write routines - * may take an error exit if the specified maximum file size is exceeded. - * (If jpeg_mem_available always returns a large value, this routine can - * just take an error exit.) - */ - -EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo, - backing_store_ptr info, - long total_bytes_needed)); - - -/* - * These routines take care of any system-dependent initialization and - * cleanup required. jpeg_mem_init will be called before anything is - * allocated (and, therefore, nothing in cinfo is of use except the error - * manager pointer). It should return a suitable default value for - * max_memory_to_use; this may subsequently be overridden by the surrounding - * application. (Note that max_memory_to_use is only important if - * jpeg_mem_available chooses to consult it ... no one else will.) - * jpeg_mem_term may assume that all requested memory has been freed and that - * all opened backing-store objects have been closed. - */ - -EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo)); -EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo)); diff --git a/src/jpeg-8c/jmorecfg.h b/src/jpeg-8c/jmorecfg.h deleted file mode 100644 index 928d052c..00000000 --- a/src/jpeg-8c/jmorecfg.h +++ /dev/null @@ -1,371 +0,0 @@ -/* - * jmorecfg.h - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 1997-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains additional configuration options that customize the - * JPEG software for special applications or support machine-dependent - * optimizations. Most users will not need to touch this file. - */ - - -/* - * Define BITS_IN_JSAMPLE as either - * 8 for 8-bit sample values (the usual setting) - * 12 for 12-bit sample values - * Only 8 and 12 are legal data precisions for lossy JPEG according to the - * JPEG standard, and the IJG code does not support anything else! - * We do not support run-time selection of data precision, sorry. - */ - -#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */ - - -/* - * Maximum number of components (color channels) allowed in JPEG image. - * To meet the letter of the JPEG spec, set this to 255. However, darn - * few applications need more than 4 channels (maybe 5 for CMYK + alpha - * mask). We recommend 10 as a reasonable compromise; use 4 if you are - * really short on memory. (Each allowed component costs a hundred or so - * bytes of storage, whether actually used in an image or not.) - */ - -#define MAX_COMPONENTS 10 /* maximum number of image components */ - - -/* - * Basic data types. - * You may need to change these if you have a machine with unusual data - * type sizes; for example, "char" not 8 bits, "short" not 16 bits, - * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, - * but it had better be at least 16. - */ - -/* Representation of a single sample (pixel element value). - * We frequently allocate large arrays of these, so it's important to keep - * them small. But if you have memory to burn and access to char or short - * arrays is very slow on your hardware, you might want to change these. - */ - -#if BITS_IN_JSAMPLE == 8 -/* JSAMPLE should be the smallest type that will hold the values 0..255. - * You can use a signed char by having GETJSAMPLE mask it with 0xFF. - */ - -#ifdef HAVE_UNSIGNED_CHAR - -typedef unsigned char JSAMPLE; -#define GETJSAMPLE(value) ((int) (value)) - -#else /* not HAVE_UNSIGNED_CHAR */ - -typedef char JSAMPLE; -#ifdef CHAR_IS_UNSIGNED -#define GETJSAMPLE(value) ((int) (value)) -#else -#define GETJSAMPLE(value) ((int) (value) & 0xFF) -#endif /* CHAR_IS_UNSIGNED */ - -#endif /* HAVE_UNSIGNED_CHAR */ - -#define MAXJSAMPLE 255 -#define CENTERJSAMPLE 128 - -#endif /* BITS_IN_JSAMPLE == 8 */ - - -#if BITS_IN_JSAMPLE == 12 -/* JSAMPLE should be the smallest type that will hold the values 0..4095. - * On nearly all machines "short" will do nicely. - */ - -typedef short JSAMPLE; -#define GETJSAMPLE(value) ((int) (value)) - -#define MAXJSAMPLE 4095 -#define CENTERJSAMPLE 2048 - -#endif /* BITS_IN_JSAMPLE == 12 */ - - -/* Representation of a DCT frequency coefficient. - * This should be a signed value of at least 16 bits; "short" is usually OK. - * Again, we allocate large arrays of these, but you can change to int - * if you have memory to burn and "short" is really slow. - */ - -typedef short JCOEF; - - -/* Compressed datastreams are represented as arrays of JOCTET. - * These must be EXACTLY 8 bits wide, at least once they are written to - * external storage. Note that when using the stdio data source/destination - * managers, this is also the data type passed to fread/fwrite. - */ - -#ifdef HAVE_UNSIGNED_CHAR - -typedef unsigned char JOCTET; -#define GETJOCTET(value) (value) - -#else /* not HAVE_UNSIGNED_CHAR */ - -typedef char JOCTET; -#ifdef CHAR_IS_UNSIGNED -#define GETJOCTET(value) (value) -#else -#define GETJOCTET(value) ((value) & 0xFF) -#endif /* CHAR_IS_UNSIGNED */ - -#endif /* HAVE_UNSIGNED_CHAR */ - - -/* These typedefs are used for various table entries and so forth. - * They must be at least as wide as specified; but making them too big - * won't cost a huge amount of memory, so we don't provide special - * extraction code like we did for JSAMPLE. (In other words, these - * typedefs live at a different point on the speed/space tradeoff curve.) - */ - -/* UINT8 must hold at least the values 0..255. */ - -#ifdef HAVE_UNSIGNED_CHAR -typedef unsigned char UINT8; -#else /* not HAVE_UNSIGNED_CHAR */ -#ifdef CHAR_IS_UNSIGNED -typedef char UINT8; -#else /* not CHAR_IS_UNSIGNED */ -typedef short UINT8; -#endif /* CHAR_IS_UNSIGNED */ -#endif /* HAVE_UNSIGNED_CHAR */ - -/* UINT16 must hold at least the values 0..65535. */ - -#ifdef HAVE_UNSIGNED_SHORT -typedef unsigned short UINT16; -#else /* not HAVE_UNSIGNED_SHORT */ -typedef unsigned int UINT16; -#endif /* HAVE_UNSIGNED_SHORT */ - -/* INT16 must hold at least the values -32768..32767. */ - -#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ -typedef short INT16; -#endif - -/* INT32 must hold at least signed 32-bit values. */ - -#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ -#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */ -#ifndef _BASETSD_H /* MinGW is slightly different */ -#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */ -typedef long INT32; -#endif -#endif -#endif -#endif - -/* Datatype used for image dimensions. The JPEG standard only supports - * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore - * "unsigned int" is sufficient on all machines. However, if you need to - * handle larger images and you don't mind deviating from the spec, you - * can change this datatype. - */ - -typedef unsigned int JDIMENSION; - -#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ - - -/* These macros are used in all function definitions and extern declarations. - * You could modify them if you need to change function linkage conventions; - * in particular, you'll need to do that to make the library a Windows DLL. - * Another application is to make all functions global for use with debuggers - * or code profilers that require it. - */ - -/* a function called through method pointers: */ -#define METHODDEF(type) static type -/* a function used only in its module: */ -#define LOCAL(type) static type -/* a function referenced thru EXTERNs: */ -#define GLOBAL(type) type -/* a reference to a GLOBAL function: */ -#define EXTERN(type) extern type - - -/* This macro is used to declare a "method", that is, a function pointer. - * We want to supply prototype parameters if the compiler can cope. - * Note that the arglist parameter must be parenthesized! - * Again, you can customize this if you need special linkage keywords. - */ - -#ifdef HAVE_PROTOTYPES -#define JMETHOD(type,methodname,arglist) type (*methodname) arglist -#else -#define JMETHOD(type,methodname,arglist) type (*methodname) () -#endif - - -/* Here is the pseudo-keyword for declaring pointers that must be "far" - * on 80x86 machines. Most of the specialized coding for 80x86 is handled - * by just saying "FAR *" where such a pointer is needed. In a few places - * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. - */ - -#ifndef FAR -#ifdef NEED_FAR_POINTERS -#define FAR far -#else -#define FAR -#endif -#endif - - -/* - * On a few systems, type boolean and/or its values FALSE, TRUE may appear - * in standard header files. Or you may have conflicts with application- - * specific header files that you want to include together with these files. - * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. - */ - -#ifndef HAVE_BOOLEAN -typedef int boolean; -#endif -#ifndef FALSE /* in case these macros already exist */ -#define FALSE 0 /* values of boolean */ -#endif -#ifndef TRUE -#define TRUE 1 -#endif - - -/* - * The remaining options affect code selection within the JPEG library, - * but they don't need to be visible to most applications using the library. - * To minimize application namespace pollution, the symbols won't be - * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. - */ - -#ifdef JPEG_INTERNALS -#define JPEG_INTERNAL_OPTIONS -#endif - -#ifdef JPEG_INTERNAL_OPTIONS - - -/* - * These defines indicate whether to include various optional functions. - * Undefining some of these symbols will produce a smaller but less capable - * library. Note that you can leave certain source files out of the - * compilation/linking process if you've #undef'd the corresponding symbols. - * (You may HAVE to do that if your compiler doesn't like null source files.) - */ - -/* Capability options common to encoder and decoder: */ - -#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ -#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ -#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ - -/* Encoder capability options: */ - -#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ -#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ -#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ -#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/ -#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ -/* Note: if you selected 12-bit data precision, it is dangerous to turn off - * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit - * precision, so jchuff.c normally uses entropy optimization to compute - * usable tables for higher precision. If you don't want to do optimization, - * you'll have to supply different default Huffman tables. - * The exact same statements apply for progressive JPEG: the default tables - * don't work for progressive mode. (This may get fixed, however.) - */ -#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ - -/* Decoder capability options: */ - -#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ -#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ -#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ -#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ -#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ -#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ -#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ -#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ -#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ -#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ - -/* more capability options later, no doubt */ - - -/* - * Ordering of RGB data in scanlines passed to or from the application. - * If your application wants to deal with data in the order B,G,R, just - * change these macros. You can also deal with formats such as R,G,B,X - * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing - * the offsets will also change the order in which colormap data is organized. - * RESTRICTIONS: - * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. - * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not - * useful if you are using JPEG color spaces other than YCbCr or grayscale. - * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE - * is not 3 (they don't understand about dummy color components!). So you - * can't use color quantization if you change that value. - */ - -#define RGB_RED 0 /* Offset of Red in an RGB scanline element */ -#define RGB_GREEN 1 /* Offset of Green */ -#define RGB_BLUE 2 /* Offset of Blue */ -#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ - - -/* Definitions for speed-related optimizations. */ - - -/* If your compiler supports inline functions, define INLINE - * as the inline keyword; otherwise define it as empty. - */ - -#ifndef INLINE -#ifdef __GNUC__ /* for instance, GNU C knows about inline */ -#define INLINE __inline__ -#endif -#ifndef INLINE -#define INLINE /* default is to define it as empty */ -#endif -#endif - - -/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying - * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER - * as short on such a machine. MULTIPLIER must be at least 16 bits wide. - */ - -#ifndef MULTIPLIER -#define MULTIPLIER int /* type for fastest integer multiply */ -#endif - - -/* FAST_FLOAT should be either float or double, whichever is done faster - * by your compiler. (Note that this type is only used in the floating point - * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) - * Typically, float is faster in ANSI C compilers, while double is faster in - * pre-ANSI compilers (because they insist on converting to double anyway). - * The code below therefore chooses float if we have ANSI-style prototypes. - */ - -#ifndef FAST_FLOAT -#ifdef HAVE_PROTOTYPES -#define FAST_FLOAT float -#else -#define FAST_FLOAT double -#endif -#endif - -#endif /* JPEG_INTERNAL_OPTIONS */ diff --git a/src/jpeg-8c/jpegint.h b/src/jpeg-8c/jpegint.h deleted file mode 100644 index 0c27a4e4..00000000 --- a/src/jpeg-8c/jpegint.h +++ /dev/null @@ -1,407 +0,0 @@ -/* - * jpegint.h - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 1997-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file provides common declarations for the various JPEG modules. - * These declarations are considered internal to the JPEG library; most - * applications using the library shouldn't need to include this file. - */ - - -/* Declarations for both compression & decompression */ - -typedef enum { /* Operating modes for buffer controllers */ - JBUF_PASS_THRU, /* Plain stripwise operation */ - /* Remaining modes require a full-image buffer to have been created */ - JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ - JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ - JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ -} J_BUF_MODE; - -/* Values of global_state field (jdapi.c has some dependencies on ordering!) */ -#define CSTATE_START 100 /* after create_compress */ -#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ -#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ -#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ -#define DSTATE_START 200 /* after create_decompress */ -#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ -#define DSTATE_READY 202 /* found SOS, ready for start_decompress */ -#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ -#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ -#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ -#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ -#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ -#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ -#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ -#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ - - -/* Declarations for compression modules */ - -/* Master control module */ -struct jpeg_comp_master { - JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo)); - JMETHOD(void, pass_startup, (j_compress_ptr cinfo)); - JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); - - /* State variables made visible to other modules */ - boolean call_pass_startup; /* True if pass_startup must be called */ - boolean is_last_pass; /* True during last pass */ -}; - -/* Main buffer control (downsampled-data buffer) */ -struct jpeg_c_main_controller { - JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); - JMETHOD(void, process_data, (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail)); -}; - -/* Compression preprocessing (downsampling input buffer control) */ -struct jpeg_c_prep_controller { - JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); - JMETHOD(void, pre_process_data, (j_compress_ptr cinfo, - JSAMPARRAY input_buf, - JDIMENSION *in_row_ctr, - JDIMENSION in_rows_avail, - JSAMPIMAGE output_buf, - JDIMENSION *out_row_group_ctr, - JDIMENSION out_row_groups_avail)); -}; - -/* Coefficient buffer control */ -struct jpeg_c_coef_controller { - JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); - JMETHOD(boolean, compress_data, (j_compress_ptr cinfo, - JSAMPIMAGE input_buf)); -}; - -/* Colorspace conversion */ -struct jpeg_color_converter { - JMETHOD(void, start_pass, (j_compress_ptr cinfo)); - JMETHOD(void, color_convert, (j_compress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPIMAGE output_buf, - JDIMENSION output_row, int num_rows)); -}; - -/* Downsampling */ -struct jpeg_downsampler { - JMETHOD(void, start_pass, (j_compress_ptr cinfo)); - JMETHOD(void, downsample, (j_compress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION in_row_index, - JSAMPIMAGE output_buf, - JDIMENSION out_row_group_index)); - - boolean need_context_rows; /* TRUE if need rows above & below */ -}; - -/* Forward DCT (also controls coefficient quantization) */ -typedef JMETHOD(void, forward_DCT_ptr, - (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY sample_data, JBLOCKROW coef_blocks, - JDIMENSION start_row, JDIMENSION start_col, - JDIMENSION num_blocks)); - -struct jpeg_forward_dct { - JMETHOD(void, start_pass, (j_compress_ptr cinfo)); - /* It is useful to allow each component to have a separate FDCT method. */ - forward_DCT_ptr forward_DCT[MAX_COMPONENTS]; -}; - -/* Entropy encoding */ -struct jpeg_entropy_encoder { - JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics)); - JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data)); - JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); -}; - -/* Marker writing */ -struct jpeg_marker_writer { - JMETHOD(void, write_file_header, (j_compress_ptr cinfo)); - JMETHOD(void, write_frame_header, (j_compress_ptr cinfo)); - JMETHOD(void, write_scan_header, (j_compress_ptr cinfo)); - JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo)); - JMETHOD(void, write_tables_only, (j_compress_ptr cinfo)); - /* These routines are exported to allow insertion of extra markers */ - /* Probably only COM and APPn markers should be written this way */ - JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker, - unsigned int datalen)); - JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val)); -}; - - -/* Declarations for decompression modules */ - -/* Master control module */ -struct jpeg_decomp_master { - JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo)); - JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo)); - - /* State variables made visible to other modules */ - boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ -}; - -/* Input control module */ -struct jpeg_input_controller { - JMETHOD(int, consume_input, (j_decompress_ptr cinfo)); - JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo)); - JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); - JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo)); - - /* State variables made visible to other modules */ - boolean has_multiple_scans; /* True if file has multiple scans */ - boolean eoi_reached; /* True when EOI has been consumed */ -}; - -/* Main buffer control (downsampled-data buffer) */ -struct jpeg_d_main_controller { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); - JMETHOD(void, process_data, (j_decompress_ptr cinfo, - JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail)); -}; - -/* Coefficient buffer control */ -struct jpeg_d_coef_controller { - JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); - JMETHOD(int, consume_data, (j_decompress_ptr cinfo)); - JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo)); - JMETHOD(int, decompress_data, (j_decompress_ptr cinfo, - JSAMPIMAGE output_buf)); - /* Pointer to array of coefficient virtual arrays, or NULL if none */ - jvirt_barray_ptr *coef_arrays; -}; - -/* Decompression postprocessing (color quantization buffer control) */ -struct jpeg_d_post_controller { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); - JMETHOD(void, post_process_data, (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, - JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, - JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail)); -}; - -/* Marker reading & parsing */ -struct jpeg_marker_reader { - JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo)); - /* Read markers until SOS or EOI. - * Returns same codes as are defined for jpeg_consume_input: - * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. - */ - JMETHOD(int, read_markers, (j_decompress_ptr cinfo)); - /* Read a restart marker --- exported for use by entropy decoder only */ - jpeg_marker_parser_method read_restart_marker; - - /* State of marker reader --- nominally internal, but applications - * supplying COM or APPn handlers might like to know the state. - */ - boolean saw_SOI; /* found SOI? */ - boolean saw_SOF; /* found SOF? */ - int next_restart_num; /* next restart number expected (0-7) */ - unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ -}; - -/* Entropy decoding */ -struct jpeg_entropy_decoder { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); - JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, - JBLOCKROW *MCU_data)); -}; - -/* Inverse DCT (also performs dequantization) */ -typedef JMETHOD(void, inverse_DCT_method_ptr, - (j_decompress_ptr cinfo, jpeg_component_info * compptr, - JCOEFPTR coef_block, - JSAMPARRAY output_buf, JDIMENSION output_col)); - -struct jpeg_inverse_dct { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); - /* It is useful to allow each component to have a separate IDCT method. */ - inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; -}; - -/* Upsampling (note that upsampler must also call color converter) */ -struct jpeg_upsampler { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); - JMETHOD(void, upsample, (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, - JDIMENSION *in_row_group_ctr, - JDIMENSION in_row_groups_avail, - JSAMPARRAY output_buf, - JDIMENSION *out_row_ctr, - JDIMENSION out_rows_avail)); - - boolean need_context_rows; /* TRUE if need rows above & below */ -}; - -/* Colorspace conversion */ -struct jpeg_color_deconverter { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); - JMETHOD(void, color_convert, (j_decompress_ptr cinfo, - JSAMPIMAGE input_buf, JDIMENSION input_row, - JSAMPARRAY output_buf, int num_rows)); -}; - -/* Color quantization or color precision reduction */ -struct jpeg_color_quantizer { - JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan)); - JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPARRAY output_buf, - int num_rows)); - JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); - JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); -}; - - -/* Miscellaneous useful macros */ - -#undef MAX -#define MAX(a,b) ((a) > (b) ? (a) : (b)) -#undef MIN -#define MIN(a,b) ((a) < (b) ? (a) : (b)) - - -/* We assume that right shift corresponds to signed division by 2 with - * rounding towards minus infinity. This is correct for typical "arithmetic - * shift" instructions that shift in copies of the sign bit. But some - * C compilers implement >> with an unsigned shift. For these machines you - * must define RIGHT_SHIFT_IS_UNSIGNED. - * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. - * It is only applied with constant shift counts. SHIFT_TEMPS must be - * included in the variables of any routine using RIGHT_SHIFT. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define SHIFT_TEMPS INT32 shift_temp; -#define RIGHT_SHIFT(x,shft) \ - ((shift_temp = (x)) < 0 ? \ - (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ - (shift_temp >> (shft))) -#else -#define SHIFT_TEMPS -#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) -#endif - - -/* Short forms of external names for systems with brain-damaged linkers. */ - -#ifdef NEED_SHORT_EXTERNAL_NAMES -#define jinit_compress_master jICompress -#define jinit_c_master_control jICMaster -#define jinit_c_main_controller jICMainC -#define jinit_c_prep_controller jICPrepC -#define jinit_c_coef_controller jICCoefC -#define jinit_color_converter jICColor -#define jinit_downsampler jIDownsampler -#define jinit_forward_dct jIFDCT -#define jinit_huff_encoder jIHEncoder -#define jinit_arith_encoder jIAEncoder -#define jinit_marker_writer jIMWriter -#define jinit_master_decompress jIDMaster -#define jinit_d_main_controller jIDMainC -#define jinit_d_coef_controller jIDCoefC -#define jinit_d_post_controller jIDPostC -#define jinit_input_controller jIInCtlr -#define jinit_marker_reader jIMReader -#define jinit_huff_decoder jIHDecoder -#define jinit_arith_decoder jIADecoder -#define jinit_inverse_dct jIIDCT -#define jinit_upsampler jIUpsampler -#define jinit_color_deconverter jIDColor -#define jinit_1pass_quantizer jI1Quant -#define jinit_2pass_quantizer jI2Quant -#define jinit_merged_upsampler jIMUpsampler -#define jinit_memory_mgr jIMemMgr -#define jdiv_round_up jDivRound -#define jround_up jRound -#define jcopy_sample_rows jCopySamples -#define jcopy_block_row jCopyBlocks -#define jzero_far jZeroFar -#define jpeg_zigzag_order jZIGTable -#define jpeg_natural_order jZAGTable -#define jpeg_natural_order7 jZAGTable7 -#define jpeg_natural_order6 jZAGTable6 -#define jpeg_natural_order5 jZAGTable5 -#define jpeg_natural_order4 jZAGTable4 -#define jpeg_natural_order3 jZAGTable3 -#define jpeg_natural_order2 jZAGTable2 -#define jpeg_aritab jAriTab -#endif /* NEED_SHORT_EXTERNAL_NAMES */ - - -/* Compression module initialization routines */ -EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo)); -EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo, - boolean transcode_only)); -EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo, - boolean need_full_buffer)); -EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo, - boolean need_full_buffer)); -EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo, - boolean need_full_buffer)); -EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo)); -EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo)); -EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo)); -EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo)); -EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo)); -EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo)); -/* Decompression module initialization routines */ -EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo, - boolean need_full_buffer)); -EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo, - boolean need_full_buffer)); -EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo, - boolean need_full_buffer)); -EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo)); -EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo)); -/* Memory manager initialization */ -EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo)); - -/* Utility routines in jutils.c */ -EXTERN(long) jdiv_round_up JPP((long a, long b)); -EXTERN(long) jround_up JPP((long a, long b)); -EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row, - JSAMPARRAY output_array, int dest_row, - int num_rows, JDIMENSION num_cols)); -EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row, - JDIMENSION num_blocks)); -EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero)); -/* Constant tables in jutils.c */ -#if 0 /* This table is not actually needed in v6a */ -extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ -#endif -extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ -extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */ -extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */ -extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */ -extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */ -extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */ -extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */ - -/* Arithmetic coding probability estimation tables in jaricom.c */ -extern const INT32 jpeg_aritab[]; - -/* Suppress undefined-structure complaints if necessary. */ - -#ifdef INCOMPLETE_TYPES_BROKEN -#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */ -struct jvirt_sarray_control { long dummy; }; -struct jvirt_barray_control { long dummy; }; -#endif -#endif /* INCOMPLETE_TYPES_BROKEN */ diff --git a/src/jpeg-8c/jpeglib.h b/src/jpeg-8c/jpeglib.h deleted file mode 100644 index 1eb1fac0..00000000 --- a/src/jpeg-8c/jpeglib.h +++ /dev/null @@ -1,1160 +0,0 @@ -/* - * jpeglib.h - * - * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2002-2010 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file defines the application interface for the JPEG library. - * Most applications using the library need only include this file, - * and perhaps jerror.h if they want to know the exact error codes. - */ - -#ifndef JPEGLIB_H -#define JPEGLIB_H - -/* - * First we include the configuration files that record how this - * installation of the JPEG library is set up. jconfig.h can be - * generated automatically for many systems. jmorecfg.h contains - * manual configuration options that most people need not worry about. - */ - -#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */ -#include "jconfig.h" /* widely used configuration options */ -#endif -#include "jmorecfg.h" /* seldom changed options */ - - -#ifdef __cplusplus -#ifndef DONT_USE_EXTERN_C -extern "C" { -#endif -#endif - -/* Version IDs for the JPEG library. - * Might be useful for tests like "#if JPEG_LIB_VERSION >= 80". - */ - -#define JPEG_LIB_VERSION 80 /* Compatibility version 8.0 */ -#define JPEG_LIB_VERSION_MAJOR 8 -#define JPEG_LIB_VERSION_MINOR 3 - - -/* Various constants determining the sizes of things. - * All of these are specified by the JPEG standard, so don't change them - * if you want to be compatible. - */ - -#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ -#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ -#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */ -#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */ -#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */ -#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */ -#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */ -/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard; - * the PostScript DCT filter can emit files with many more than 10 blocks/MCU. - * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU - * to handle it. We even let you do this from the jconfig.h file. However, - * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe - * sometimes emits noncompliant files doesn't mean you should too. - */ -#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */ -#ifndef D_MAX_BLOCKS_IN_MCU -#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */ -#endif - - -/* Data structures for images (arrays of samples and of DCT coefficients). - * On 80x86 machines, the image arrays are too big for near pointers, - * but the pointer arrays can fit in near memory. - */ - -typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */ -typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */ -typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */ - -typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */ -typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */ -typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */ -typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */ - -typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */ - - -/* Types for JPEG compression parameters and working tables. */ - - -/* DCT coefficient quantization tables. */ - -typedef struct { - /* This array gives the coefficient quantizers in natural array order - * (not the zigzag order in which they are stored in a JPEG DQT marker). - * CAUTION: IJG versions prior to v6a kept this array in zigzag order. - */ - UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */ - /* This field is used only during compression. It's initialized FALSE when - * the table is created, and set TRUE when it's been output to the file. - * You could suppress output of a table by setting this to TRUE. - * (See jpeg_suppress_tables for an example.) - */ - boolean sent_table; /* TRUE when table has been output */ -} JQUANT_TBL; - - -/* Huffman coding tables. */ - -typedef struct { - /* These two fields directly represent the contents of a JPEG DHT marker */ - UINT8 bits[17]; /* bits[k] = # of symbols with codes of */ - /* length k bits; bits[0] is unused */ - UINT8 huffval[256]; /* The symbols, in order of incr code length */ - /* This field is used only during compression. It's initialized FALSE when - * the table is created, and set TRUE when it's been output to the file. - * You could suppress output of a table by setting this to TRUE. - * (See jpeg_suppress_tables for an example.) - */ - boolean sent_table; /* TRUE when table has been output */ -} JHUFF_TBL; - - -/* Basic info about one component (color channel). */ - -typedef struct { - /* These values are fixed over the whole image. */ - /* For compression, they must be supplied by parameter setup; */ - /* for decompression, they are read from the SOF marker. */ - int component_id; /* identifier for this component (0..255) */ - int component_index; /* its index in SOF or cinfo->comp_info[] */ - int h_samp_factor; /* horizontal sampling factor (1..4) */ - int v_samp_factor; /* vertical sampling factor (1..4) */ - int quant_tbl_no; /* quantization table selector (0..3) */ - /* These values may vary between scans. */ - /* For compression, they must be supplied by parameter setup; */ - /* for decompression, they are read from the SOS marker. */ - /* The decompressor output side may not use these variables. */ - int dc_tbl_no; /* DC entropy table selector (0..3) */ - int ac_tbl_no; /* AC entropy table selector (0..3) */ - - /* Remaining fields should be treated as private by applications. */ - - /* These values are computed during compression or decompression startup: */ - /* Component's size in DCT blocks. - * Any dummy blocks added to complete an MCU are not counted; therefore - * these values do not depend on whether a scan is interleaved or not. - */ - JDIMENSION width_in_blocks; - JDIMENSION height_in_blocks; - /* Size of a DCT block in samples, - * reflecting any scaling we choose to apply during the DCT step. - * Values from 1 to 16 are supported. - * Note that different components may receive different DCT scalings. - */ - int DCT_h_scaled_size; - int DCT_v_scaled_size; - /* The downsampled dimensions are the component's actual, unpadded number - * of samples at the main buffer (preprocessing/compression interface); - * DCT scaling is included, so - * downsampled_width = ceil(image_width * Hi/Hmax * DCT_h_scaled_size/DCTSIZE) - * and similarly for height. - */ - JDIMENSION downsampled_width; /* actual width in samples */ - JDIMENSION downsampled_height; /* actual height in samples */ - /* This flag is used only for decompression. In cases where some of the - * components will be ignored (eg grayscale output from YCbCr image), - * we can skip most computations for the unused components. - */ - boolean component_needed; /* do we need the value of this component? */ - - /* These values are computed before starting a scan of the component. */ - /* The decompressor output side may not use these variables. */ - int MCU_width; /* number of blocks per MCU, horizontally */ - int MCU_height; /* number of blocks per MCU, vertically */ - int MCU_blocks; /* MCU_width * MCU_height */ - int MCU_sample_width; /* MCU width in samples: MCU_width * DCT_h_scaled_size */ - int last_col_width; /* # of non-dummy blocks across in last MCU */ - int last_row_height; /* # of non-dummy blocks down in last MCU */ - - /* Saved quantization table for component; NULL if none yet saved. - * See jdinput.c comments about the need for this information. - * This field is currently used only for decompression. - */ - JQUANT_TBL * quant_table; - - /* Private per-component storage for DCT or IDCT subsystem. */ - void * dct_table; -} jpeg_component_info; - - -/* The script for encoding a multiple-scan file is an array of these: */ - -typedef struct { - int comps_in_scan; /* number of components encoded in this scan */ - int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */ - int Ss, Se; /* progressive JPEG spectral selection parms */ - int Ah, Al; /* progressive JPEG successive approx. parms */ -} jpeg_scan_info; - -/* The decompressor can save APPn and COM markers in a list of these: */ - -typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr; - -struct jpeg_marker_struct { - jpeg_saved_marker_ptr next; /* next in list, or NULL */ - UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */ - unsigned int original_length; /* # bytes of data in the file */ - unsigned int data_length; /* # bytes of data saved at data[] */ - JOCTET FAR * data; /* the data contained in the marker */ - /* the marker length word is not counted in data_length or original_length */ -}; - -/* Known color spaces. */ - -typedef enum { - JCS_UNKNOWN, /* error/unspecified */ - JCS_GRAYSCALE, /* monochrome */ - JCS_RGB, /* red/green/blue */ - JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */ - JCS_CMYK, /* C/M/Y/K */ - JCS_YCCK /* Y/Cb/Cr/K */ -} J_COLOR_SPACE; - -/* DCT/IDCT algorithm options. */ - -typedef enum { - JDCT_ISLOW, /* slow but accurate integer algorithm */ - JDCT_IFAST, /* faster, less accurate integer method */ - JDCT_FLOAT /* floating-point: accurate, fast on fast HW */ -} J_DCT_METHOD; - -#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */ -#define JDCT_DEFAULT JDCT_ISLOW -#endif -#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */ -#define JDCT_FASTEST JDCT_IFAST -#endif - -/* Dithering options for decompression. */ - -typedef enum { - JDITHER_NONE, /* no dithering */ - JDITHER_ORDERED, /* simple ordered dither */ - JDITHER_FS /* Floyd-Steinberg error diffusion dither */ -} J_DITHER_MODE; - - -/* Common fields between JPEG compression and decompression master structs. */ - -#define jpeg_common_fields \ - struct jpeg_error_mgr * err; /* Error handler module */\ - struct jpeg_memory_mgr * mem; /* Memory manager module */\ - struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\ - void * client_data; /* Available for use by application */\ - boolean is_decompressor; /* So common code can tell which is which */\ - int global_state /* For checking call sequence validity */ - -/* Routines that are to be used by both halves of the library are declared - * to receive a pointer to this structure. There are no actual instances of - * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct. - */ -struct jpeg_common_struct { - jpeg_common_fields; /* Fields common to both master struct types */ - /* Additional fields follow in an actual jpeg_compress_struct or - * jpeg_decompress_struct. All three structs must agree on these - * initial fields! (This would be a lot cleaner in C++.) - */ -}; - -typedef struct jpeg_common_struct * j_common_ptr; -typedef struct jpeg_compress_struct * j_compress_ptr; -typedef struct jpeg_decompress_struct * j_decompress_ptr; - - -/* Master record for a compression instance */ - -struct jpeg_compress_struct { - jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */ - - /* Destination for compressed data */ - struct jpeg_destination_mgr * dest; - - /* Description of source image --- these fields must be filled in by - * outer application before starting compression. in_color_space must - * be correct before you can even call jpeg_set_defaults(). - */ - - JDIMENSION image_width; /* input image width */ - JDIMENSION image_height; /* input image height */ - int input_components; /* # of color components in input image */ - J_COLOR_SPACE in_color_space; /* colorspace of input image */ - - double input_gamma; /* image gamma of input image */ - - /* Compression parameters --- these fields must be set before calling - * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to - * initialize everything to reasonable defaults, then changing anything - * the application specifically wants to change. That way you won't get - * burnt when new parameters are added. Also note that there are several - * helper routines to simplify changing parameters. - */ - - unsigned int scale_num, scale_denom; /* fraction by which to scale image */ - - JDIMENSION jpeg_width; /* scaled JPEG image width */ - JDIMENSION jpeg_height; /* scaled JPEG image height */ - /* Dimensions of actual JPEG image that will be written to file, - * derived from input dimensions by scaling factors above. - * These fields are computed by jpeg_start_compress(). - * You can also use jpeg_calc_jpeg_dimensions() to determine these values - * in advance of calling jpeg_start_compress(). - */ - - int data_precision; /* bits of precision in image data */ - - int num_components; /* # of color components in JPEG image */ - J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ - - jpeg_component_info * comp_info; - /* comp_info[i] describes component that appears i'th in SOF */ - - JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; - int q_scale_factor[NUM_QUANT_TBLS]; - /* ptrs to coefficient quantization tables, or NULL if not defined, - * and corresponding scale factors (percentage, initialized 100). - */ - - JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; - JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; - /* ptrs to Huffman coding tables, or NULL if not defined */ - - UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ - UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ - UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ - - int num_scans; /* # of entries in scan_info array */ - const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */ - /* The default value of scan_info is NULL, which causes a single-scan - * sequential JPEG file to be emitted. To create a multi-scan file, - * set num_scans and scan_info to point to an array of scan definitions. - */ - - boolean raw_data_in; /* TRUE=caller supplies downsampled data */ - boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ - boolean optimize_coding; /* TRUE=optimize entropy encoding parms */ - boolean CCIR601_sampling; /* TRUE=first samples are cosited */ - boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */ - int smoothing_factor; /* 1..100, or 0 for no input smoothing */ - J_DCT_METHOD dct_method; /* DCT algorithm selector */ - - /* The restart interval can be specified in absolute MCUs by setting - * restart_interval, or in MCU rows by setting restart_in_rows - * (in which case the correct restart_interval will be figured - * for each scan). - */ - unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */ - int restart_in_rows; /* if > 0, MCU rows per restart interval */ - - /* Parameters controlling emission of special markers. */ - - boolean write_JFIF_header; /* should a JFIF marker be written? */ - UINT8 JFIF_major_version; /* What to write for the JFIF version number */ - UINT8 JFIF_minor_version; - /* These three values are not used by the JPEG code, merely copied */ - /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */ - /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */ - /* ratio is defined by X_density/Y_density even when density_unit=0. */ - UINT8 density_unit; /* JFIF code for pixel size units */ - UINT16 X_density; /* Horizontal pixel density */ - UINT16 Y_density; /* Vertical pixel density */ - boolean write_Adobe_marker; /* should an Adobe marker be written? */ - - /* State variable: index of next scanline to be written to - * jpeg_write_scanlines(). Application may use this to control its - * processing loop, e.g., "while (next_scanline < image_height)". - */ - - JDIMENSION next_scanline; /* 0 .. image_height-1 */ - - /* Remaining fields are known throughout compressor, but generally - * should not be touched by a surrounding application. - */ - - /* - * These fields are computed during compression startup - */ - boolean progressive_mode; /* TRUE if scan script uses progressive mode */ - int max_h_samp_factor; /* largest h_samp_factor */ - int max_v_samp_factor; /* largest v_samp_factor */ - - int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */ - int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */ - - JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */ - /* The coefficient controller receives data in units of MCU rows as defined - * for fully interleaved scans (whether the JPEG file is interleaved or not). - * There are v_samp_factor * DCTSIZE sample rows of each component in an - * "iMCU" (interleaved MCU) row. - */ - - /* - * These fields are valid during any one scan. - * They describe the components and MCUs actually appearing in the scan. - */ - int comps_in_scan; /* # of JPEG components in this scan */ - jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; - /* *cur_comp_info[i] describes component that appears i'th in SOS */ - - JDIMENSION MCUs_per_row; /* # of MCUs across the image */ - JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ - - int blocks_in_MCU; /* # of DCT blocks per MCU */ - int MCU_membership[C_MAX_BLOCKS_IN_MCU]; - /* MCU_membership[i] is index in cur_comp_info of component owning */ - /* i'th block in an MCU */ - - int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ - - int block_size; /* the basic DCT block size: 1..16 */ - const int * natural_order; /* natural-order position array */ - int lim_Se; /* min( Se, DCTSIZE2-1 ) */ - - /* - * Links to compression subobjects (methods and private variables of modules) - */ - struct jpeg_comp_master * master; - struct jpeg_c_main_controller * main; - struct jpeg_c_prep_controller * prep; - struct jpeg_c_coef_controller * coef; - struct jpeg_marker_writer * marker; - struct jpeg_color_converter * cconvert; - struct jpeg_downsampler * downsample; - struct jpeg_forward_dct * fdct; - struct jpeg_entropy_encoder * entropy; - jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */ - int script_space_size; -}; - - -/* Master record for a decompression instance */ - -struct jpeg_decompress_struct { - jpeg_common_fields; /* Fields shared with jpeg_compress_struct */ - - /* Source of compressed data */ - struct jpeg_source_mgr * src; - - /* Basic description of image --- filled in by jpeg_read_header(). */ - /* Application may inspect these values to decide how to process image. */ - - JDIMENSION image_width; /* nominal image width (from SOF marker) */ - JDIMENSION image_height; /* nominal image height */ - int num_components; /* # of color components in JPEG image */ - J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ - - /* Decompression processing parameters --- these fields must be set before - * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes - * them to default values. - */ - - J_COLOR_SPACE out_color_space; /* colorspace for output */ - - unsigned int scale_num, scale_denom; /* fraction by which to scale image */ - - double output_gamma; /* image gamma wanted in output */ - - boolean buffered_image; /* TRUE=multiple output passes */ - boolean raw_data_out; /* TRUE=downsampled data wanted */ - - J_DCT_METHOD dct_method; /* IDCT algorithm selector */ - boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */ - boolean do_block_smoothing; /* TRUE=apply interblock smoothing */ - - boolean quantize_colors; /* TRUE=colormapped output wanted */ - /* the following are ignored if not quantize_colors: */ - J_DITHER_MODE dither_mode; /* type of color dithering to use */ - boolean two_pass_quantize; /* TRUE=use two-pass color quantization */ - int desired_number_of_colors; /* max # colors to use in created colormap */ - /* these are significant only in buffered-image mode: */ - boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */ - boolean enable_external_quant;/* enable future use of external colormap */ - boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */ - - /* Description of actual output image that will be returned to application. - * These fields are computed by jpeg_start_decompress(). - * You can also use jpeg_calc_output_dimensions() to determine these values - * in advance of calling jpeg_start_decompress(). - */ - - JDIMENSION output_width; /* scaled image width */ - JDIMENSION output_height; /* scaled image height */ - int out_color_components; /* # of color components in out_color_space */ - int output_components; /* # of color components returned */ - /* output_components is 1 (a colormap index) when quantizing colors; - * otherwise it equals out_color_components. - */ - int rec_outbuf_height; /* min recommended height of scanline buffer */ - /* If the buffer passed to jpeg_read_scanlines() is less than this many rows - * high, space and time will be wasted due to unnecessary data copying. - * Usually rec_outbuf_height will be 1 or 2, at most 4. - */ - - /* When quantizing colors, the output colormap is described by these fields. - * The application can supply a colormap by setting colormap non-NULL before - * calling jpeg_start_decompress; otherwise a colormap is created during - * jpeg_start_decompress or jpeg_start_output. - * The map has out_color_components rows and actual_number_of_colors columns. - */ - int actual_number_of_colors; /* number of entries in use */ - JSAMPARRAY colormap; /* The color map as a 2-D pixel array */ - - /* State variables: these variables indicate the progress of decompression. - * The application may examine these but must not modify them. - */ - - /* Row index of next scanline to be read from jpeg_read_scanlines(). - * Application may use this to control its processing loop, e.g., - * "while (output_scanline < output_height)". - */ - JDIMENSION output_scanline; /* 0 .. output_height-1 */ - - /* Current input scan number and number of iMCU rows completed in scan. - * These indicate the progress of the decompressor input side. - */ - int input_scan_number; /* Number of SOS markers seen so far */ - JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */ - - /* The "output scan number" is the notional scan being displayed by the - * output side. The decompressor will not allow output scan/row number - * to get ahead of input scan/row, but it can fall arbitrarily far behind. - */ - int output_scan_number; /* Nominal scan number being displayed */ - JDIMENSION output_iMCU_row; /* Number of iMCU rows read */ - - /* Current progression status. coef_bits[c][i] indicates the precision - * with which component c's DCT coefficient i (in zigzag order) is known. - * It is -1 when no data has yet been received, otherwise it is the point - * transform (shift) value for the most recent scan of the coefficient - * (thus, 0 at completion of the progression). - * This pointer is NULL when reading a non-progressive file. - */ - int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */ - - /* Internal JPEG parameters --- the application usually need not look at - * these fields. Note that the decompressor output side may not use - * any parameters that can change between scans. - */ - - /* Quantization and Huffman tables are carried forward across input - * datastreams when processing abbreviated JPEG datastreams. - */ - - JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; - /* ptrs to coefficient quantization tables, or NULL if not defined */ - - JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; - JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; - /* ptrs to Huffman coding tables, or NULL if not defined */ - - /* These parameters are never carried across datastreams, since they - * are given in SOF/SOS markers or defined to be reset by SOI. - */ - - int data_precision; /* bits of precision in image data */ - - jpeg_component_info * comp_info; - /* comp_info[i] describes component that appears i'th in SOF */ - - boolean is_baseline; /* TRUE if Baseline SOF0 encountered */ - boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */ - boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ - - UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ - UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ - UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ - - unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */ - - /* These fields record data obtained from optional markers recognized by - * the JPEG library. - */ - boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */ - /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */ - UINT8 JFIF_major_version; /* JFIF version number */ - UINT8 JFIF_minor_version; - UINT8 density_unit; /* JFIF code for pixel size units */ - UINT16 X_density; /* Horizontal pixel density */ - UINT16 Y_density; /* Vertical pixel density */ - boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */ - UINT8 Adobe_transform; /* Color transform code from Adobe marker */ - - boolean CCIR601_sampling; /* TRUE=first samples are cosited */ - - /* Aside from the specific data retained from APPn markers known to the - * library, the uninterpreted contents of any or all APPn and COM markers - * can be saved in a list for examination by the application. - */ - jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */ - - /* Remaining fields are known throughout decompressor, but generally - * should not be touched by a surrounding application. - */ - - /* - * These fields are computed during decompression startup - */ - int max_h_samp_factor; /* largest h_samp_factor */ - int max_v_samp_factor; /* largest v_samp_factor */ - - int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */ - int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */ - - JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */ - /* The coefficient controller's input and output progress is measured in - * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows - * in fully interleaved JPEG scans, but are used whether the scan is - * interleaved or not. We define an iMCU row as v_samp_factor DCT block - * rows of each component. Therefore, the IDCT output contains - * v_samp_factor*DCT_v_scaled_size sample rows of a component per iMCU row. - */ - - JSAMPLE * sample_range_limit; /* table for fast range-limiting */ - - /* - * These fields are valid during any one scan. - * They describe the components and MCUs actually appearing in the scan. - * Note that the decompressor output side must not use these fields. - */ - int comps_in_scan; /* # of JPEG components in this scan */ - jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; - /* *cur_comp_info[i] describes component that appears i'th in SOS */ - - JDIMENSION MCUs_per_row; /* # of MCUs across the image */ - JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ - - int blocks_in_MCU; /* # of DCT blocks per MCU */ - int MCU_membership[D_MAX_BLOCKS_IN_MCU]; - /* MCU_membership[i] is index in cur_comp_info of component owning */ - /* i'th block in an MCU */ - - int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ - - /* These fields are derived from Se of first SOS marker. - */ - int block_size; /* the basic DCT block size: 1..16 */ - const int * natural_order; /* natural-order position array for entropy decode */ - int lim_Se; /* min( Se, DCTSIZE2-1 ) for entropy decode */ - - /* This field is shared between entropy decoder and marker parser. - * It is either zero or the code of a JPEG marker that has been - * read from the data source, but has not yet been processed. - */ - int unread_marker; - - /* - * Links to decompression subobjects (methods, private variables of modules) - */ - struct jpeg_decomp_master * master; - struct jpeg_d_main_controller * main; - struct jpeg_d_coef_controller * coef; - struct jpeg_d_post_controller * post; - struct jpeg_input_controller * inputctl; - struct jpeg_marker_reader * marker; - struct jpeg_entropy_decoder * entropy; - struct jpeg_inverse_dct * idct; - struct jpeg_upsampler * upsample; - struct jpeg_color_deconverter * cconvert; - struct jpeg_color_quantizer * cquantize; -}; - - -/* "Object" declarations for JPEG modules that may be supplied or called - * directly by the surrounding application. - * As with all objects in the JPEG library, these structs only define the - * publicly visible methods and state variables of a module. Additional - * private fields may exist after the public ones. - */ - - -/* Error handler object */ - -struct jpeg_error_mgr { - /* Error exit handler: does not return to caller */ - JMETHOD(void, error_exit, (j_common_ptr cinfo)); - /* Conditionally emit a trace or warning message */ - JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level)); - /* Routine that actually outputs a trace or error message */ - JMETHOD(void, output_message, (j_common_ptr cinfo)); - /* Format a message string for the most recent JPEG error or message */ - JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer)); -#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */ - /* Reset error state variables at start of a new image */ - JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo)); - - /* The message ID code and any parameters are saved here. - * A message can have one string parameter or up to 8 int parameters. - */ - int msg_code; -#define JMSG_STR_PARM_MAX 80 - union { - int i[8]; - char s[JMSG_STR_PARM_MAX]; - } msg_parm; - - /* Standard state variables for error facility */ - - int trace_level; /* max msg_level that will be displayed */ - - /* For recoverable corrupt-data errors, we emit a warning message, - * but keep going unless emit_message chooses to abort. emit_message - * should count warnings in num_warnings. The surrounding application - * can check for bad data by seeing if num_warnings is nonzero at the - * end of processing. - */ - long num_warnings; /* number of corrupt-data warnings */ - - /* These fields point to the table(s) of error message strings. - * An application can change the table pointer to switch to a different - * message list (typically, to change the language in which errors are - * reported). Some applications may wish to add additional error codes - * that will be handled by the JPEG library error mechanism; the second - * table pointer is used for this purpose. - * - * First table includes all errors generated by JPEG library itself. - * Error code 0 is reserved for a "no such error string" message. - */ - const char * const * jpeg_message_table; /* Library errors */ - int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */ - /* Second table can be added by application (see cjpeg/djpeg for example). - * It contains strings numbered first_addon_message..last_addon_message. - */ - const char * const * addon_message_table; /* Non-library errors */ - int first_addon_message; /* code for first string in addon table */ - int last_addon_message; /* code for last string in addon table */ -}; - - -/* Progress monitor object */ - -struct jpeg_progress_mgr { - JMETHOD(void, progress_monitor, (j_common_ptr cinfo)); - - long pass_counter; /* work units completed in this pass */ - long pass_limit; /* total number of work units in this pass */ - int completed_passes; /* passes completed so far */ - int total_passes; /* total number of passes expected */ -}; - - -/* Data destination object for compression */ - -struct jpeg_destination_mgr { - JOCTET * next_output_byte; /* => next byte to write in buffer */ - size_t free_in_buffer; /* # of byte spaces remaining in buffer */ - - JMETHOD(void, init_destination, (j_compress_ptr cinfo)); - JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo)); - JMETHOD(void, term_destination, (j_compress_ptr cinfo)); -}; - - -/* Data source object for decompression */ - -struct jpeg_source_mgr { - const JOCTET * next_input_byte; /* => next byte to read from buffer */ - size_t bytes_in_buffer; /* # of bytes remaining in buffer */ - - JMETHOD(void, init_source, (j_decompress_ptr cinfo)); - JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo)); - JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes)); - JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired)); - JMETHOD(void, term_source, (j_decompress_ptr cinfo)); -}; - - -/* Memory manager object. - * Allocates "small" objects (a few K total), "large" objects (tens of K), - * and "really big" objects (virtual arrays with backing store if needed). - * The memory manager does not allow individual objects to be freed; rather, - * each created object is assigned to a pool, and whole pools can be freed - * at once. This is faster and more convenient than remembering exactly what - * to free, especially where malloc()/free() are not too speedy. - * NB: alloc routines never return NULL. They exit to error_exit if not - * successful. - */ - -#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */ -#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */ -#define JPOOL_NUMPOOLS 2 - -typedef struct jvirt_sarray_control * jvirt_sarray_ptr; -typedef struct jvirt_barray_control * jvirt_barray_ptr; - - -struct jpeg_memory_mgr { - /* Method pointers */ - JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id, - size_t sizeofobject)); - JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id, - size_t sizeofobject)); - JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id, - JDIMENSION samplesperrow, - JDIMENSION numrows)); - JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id, - JDIMENSION blocksperrow, - JDIMENSION numrows)); - JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo, - int pool_id, - boolean pre_zero, - JDIMENSION samplesperrow, - JDIMENSION numrows, - JDIMENSION maxaccess)); - JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo, - int pool_id, - boolean pre_zero, - JDIMENSION blocksperrow, - JDIMENSION numrows, - JDIMENSION maxaccess)); - JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo)); - JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo, - jvirt_sarray_ptr ptr, - JDIMENSION start_row, - JDIMENSION num_rows, - boolean writable)); - JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo, - jvirt_barray_ptr ptr, - JDIMENSION start_row, - JDIMENSION num_rows, - boolean writable)); - JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id)); - JMETHOD(void, self_destruct, (j_common_ptr cinfo)); - - /* Limit on memory allocation for this JPEG object. (Note that this is - * merely advisory, not a guaranteed maximum; it only affects the space - * used for virtual-array buffers.) May be changed by outer application - * after creating the JPEG object. - */ - long max_memory_to_use; - - /* Maximum allocation request accepted by alloc_large. */ - long max_alloc_chunk; -}; - - -/* Routine signature for application-supplied marker processing methods. - * Need not pass marker code since it is stored in cinfo->unread_marker. - */ -typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo)); - - -/* Declarations for routines called by application. - * The JPP macro hides prototype parameters from compilers that can't cope. - * Note JPP requires double parentheses. - */ - -#ifdef HAVE_PROTOTYPES -#define JPP(arglist) arglist -#else -#define JPP(arglist) () -#endif - - -/* Short forms of external names for systems with brain-damaged linkers. - * We shorten external names to be unique in the first six letters, which - * is good enough for all known systems. - * (If your compiler itself needs names to be unique in less than 15 - * characters, you are out of luck. Get a better compiler.) - */ - -#ifdef NEED_SHORT_EXTERNAL_NAMES -#define jpeg_std_error jStdError -#define jpeg_CreateCompress jCreaCompress -#define jpeg_CreateDecompress jCreaDecompress -#define jpeg_destroy_compress jDestCompress -#define jpeg_destroy_decompress jDestDecompress -#define jpeg_stdio_dest jStdDest -#define jpeg_stdio_src jStdSrc -#define jpeg_mem_dest jMemDest -#define jpeg_mem_src jMemSrc -#define jpeg_set_defaults jSetDefaults -#define jpeg_set_colorspace jSetColorspace -#define jpeg_default_colorspace jDefColorspace -#define jpeg_set_quality jSetQuality -#define jpeg_set_linear_quality jSetLQuality -#define jpeg_default_qtables jDefQTables -#define jpeg_add_quant_table jAddQuantTable -#define jpeg_quality_scaling jQualityScaling -#define jpeg_simple_progression jSimProgress -#define jpeg_suppress_tables jSuppressTables -#define jpeg_alloc_quant_table jAlcQTable -#define jpeg_alloc_huff_table jAlcHTable -#define jpeg_start_compress jStrtCompress -#define jpeg_write_scanlines jWrtScanlines -#define jpeg_finish_compress jFinCompress -#define jpeg_calc_jpeg_dimensions jCjpegDimensions -#define jpeg_write_raw_data jWrtRawData -#define jpeg_write_marker jWrtMarker -#define jpeg_write_m_header jWrtMHeader -#define jpeg_write_m_byte jWrtMByte -#define jpeg_write_tables jWrtTables -#define jpeg_read_header jReadHeader -#define jpeg_start_decompress jStrtDecompress -#define jpeg_read_scanlines jReadScanlines -#define jpeg_finish_decompress jFinDecompress -#define jpeg_read_raw_data jReadRawData -#define jpeg_has_multiple_scans jHasMultScn -#define jpeg_start_output jStrtOutput -#define jpeg_finish_output jFinOutput -#define jpeg_input_complete jInComplete -#define jpeg_new_colormap jNewCMap -#define jpeg_consume_input jConsumeInput -#define jpeg_core_output_dimensions jCoreDimensions -#define jpeg_calc_output_dimensions jCalcDimensions -#define jpeg_save_markers jSaveMarkers -#define jpeg_set_marker_processor jSetMarker -#define jpeg_read_coefficients jReadCoefs -#define jpeg_write_coefficients jWrtCoefs -#define jpeg_copy_critical_parameters jCopyCrit -#define jpeg_abort_compress jAbrtCompress -#define jpeg_abort_decompress jAbrtDecompress -#define jpeg_abort jAbort -#define jpeg_destroy jDestroy -#define jpeg_resync_to_restart jResyncRestart -#endif /* NEED_SHORT_EXTERNAL_NAMES */ - - -/* Default error-management setup */ -EXTERN(struct jpeg_error_mgr *) jpeg_std_error - JPP((struct jpeg_error_mgr * err)); - -/* Initialization of JPEG compression objects. - * jpeg_create_compress() and jpeg_create_decompress() are the exported - * names that applications should call. These expand to calls on - * jpeg_CreateCompress and jpeg_CreateDecompress with additional information - * passed for version mismatch checking. - * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx. - */ -#define jpeg_create_compress(cinfo) \ - jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \ - (size_t) sizeof(struct jpeg_compress_struct)) -#define jpeg_create_decompress(cinfo) \ - jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \ - (size_t) sizeof(struct jpeg_decompress_struct)) -EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo, - int version, size_t structsize)); -EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo, - int version, size_t structsize)); -/* Destruction of JPEG compression objects */ -EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo)); -EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo)); - -/* Standard data source and destination managers: stdio streams. */ -/* Caller is responsible for opening the file before and closing after. */ -EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile)); -EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile)); - -/* Data source and destination managers: memory buffers. */ -EXTERN(void) jpeg_mem_dest JPP((j_compress_ptr cinfo, - unsigned char ** outbuffer, - unsigned long * outsize)); -EXTERN(void) jpeg_mem_src JPP((j_decompress_ptr cinfo, - unsigned char * inbuffer, - unsigned long insize)); - -/* Default parameter setup for compression */ -EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo)); -/* Compression parameter setup aids */ -EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo, - J_COLOR_SPACE colorspace)); -EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo)); -EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality, - boolean force_baseline)); -EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo, - int scale_factor, - boolean force_baseline)); -EXTERN(void) jpeg_default_qtables JPP((j_compress_ptr cinfo, - boolean force_baseline)); -EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl, - const unsigned int *basic_table, - int scale_factor, - boolean force_baseline)); -EXTERN(int) jpeg_quality_scaling JPP((int quality)); -EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo)); -EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo, - boolean suppress)); -EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo)); -EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo)); - -/* Main entry points for compression */ -EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo, - boolean write_all_tables)); -EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo, - JSAMPARRAY scanlines, - JDIMENSION num_lines)); -EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo)); - -/* Precalculate JPEG dimensions for current compression parameters. */ -EXTERN(void) jpeg_calc_jpeg_dimensions JPP((j_compress_ptr cinfo)); - -/* Replaces jpeg_write_scanlines when writing raw downsampled data. */ -EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo, - JSAMPIMAGE data, - JDIMENSION num_lines)); - -/* Write a special marker. See libjpeg.txt concerning safe usage. */ -EXTERN(void) jpeg_write_marker - JPP((j_compress_ptr cinfo, int marker, - const JOCTET * dataptr, unsigned int datalen)); -/* Same, but piecemeal. */ -EXTERN(void) jpeg_write_m_header - JPP((j_compress_ptr cinfo, int marker, unsigned int datalen)); -EXTERN(void) jpeg_write_m_byte - JPP((j_compress_ptr cinfo, int val)); - -/* Alternate compression function: just write an abbreviated table file */ -EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo)); - -/* Decompression startup: read start of JPEG datastream to see what's there */ -EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo, - boolean require_image)); -/* Return value is one of: */ -#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */ -#define JPEG_HEADER_OK 1 /* Found valid image datastream */ -#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */ -/* If you pass require_image = TRUE (normal case), you need not check for - * a TABLES_ONLY return code; an abbreviated file will cause an error exit. - * JPEG_SUSPENDED is only possible if you use a data source module that can - * give a suspension return (the stdio source module doesn't). - */ - -/* Main entry points for decompression */ -EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo)); -EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo, - JSAMPARRAY scanlines, - JDIMENSION max_lines)); -EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo)); - -/* Replaces jpeg_read_scanlines when reading raw downsampled data. */ -EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo, - JSAMPIMAGE data, - JDIMENSION max_lines)); - -/* Additional entry points for buffered-image mode. */ -EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo)); -EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo, - int scan_number)); -EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo)); -EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo)); -EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo)); -EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo)); -/* Return value is one of: */ -/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */ -#define JPEG_REACHED_SOS 1 /* Reached start of new scan */ -#define JPEG_REACHED_EOI 2 /* Reached end of image */ -#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */ -#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */ - -/* Precalculate output dimensions for current decompression parameters. */ -EXTERN(void) jpeg_core_output_dimensions JPP((j_decompress_ptr cinfo)); -EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo)); - -/* Control saving of COM and APPn markers into marker_list. */ -EXTERN(void) jpeg_save_markers - JPP((j_decompress_ptr cinfo, int marker_code, - unsigned int length_limit)); - -/* Install a special processing method for COM or APPn markers. */ -EXTERN(void) jpeg_set_marker_processor - JPP((j_decompress_ptr cinfo, int marker_code, - jpeg_marker_parser_method routine)); - -/* Read or write raw DCT coefficients --- useful for lossless transcoding. */ -EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo)); -EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo, - jvirt_barray_ptr * coef_arrays)); -EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo, - j_compress_ptr dstinfo)); - -/* If you choose to abort compression or decompression before completing - * jpeg_finish_(de)compress, then you need to clean up to release memory, - * temporary files, etc. You can just call jpeg_destroy_(de)compress - * if you're done with the JPEG object, but if you want to clean it up and - * reuse it, call this: - */ -EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo)); -EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo)); - -/* Generic versions of jpeg_abort and jpeg_destroy that work on either - * flavor of JPEG object. These may be more convenient in some places. - */ -EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo)); -EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo)); - -/* Default restart-marker-resync procedure for use by data source modules */ -EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo, - int desired)); - - -/* These marker codes are exported since applications and data source modules - * are likely to want to use them. - */ - -#define JPEG_RST0 0xD0 /* RST0 marker code */ -#define JPEG_EOI 0xD9 /* EOI marker code */ -#define JPEG_APP0 0xE0 /* APP0 marker code */ -#define JPEG_COM 0xFE /* COM marker code */ - - -/* If we have a brain-damaged compiler that emits warnings (or worse, errors) - * for structure definitions that are never filled in, keep it quiet by - * supplying dummy definitions for the various substructures. - */ - -#ifdef INCOMPLETE_TYPES_BROKEN -#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */ -struct jvirt_sarray_control { long dummy; }; -struct jvirt_barray_control { long dummy; }; -struct jpeg_comp_master { long dummy; }; -struct jpeg_c_main_controller { long dummy; }; -struct jpeg_c_prep_controller { long dummy; }; -struct jpeg_c_coef_controller { long dummy; }; -struct jpeg_marker_writer { long dummy; }; -struct jpeg_color_converter { long dummy; }; -struct jpeg_downsampler { long dummy; }; -struct jpeg_forward_dct { long dummy; }; -struct jpeg_entropy_encoder { long dummy; }; -struct jpeg_decomp_master { long dummy; }; -struct jpeg_d_main_controller { long dummy; }; -struct jpeg_d_coef_controller { long dummy; }; -struct jpeg_d_post_controller { long dummy; }; -struct jpeg_input_controller { long dummy; }; -struct jpeg_marker_reader { long dummy; }; -struct jpeg_entropy_decoder { long dummy; }; -struct jpeg_inverse_dct { long dummy; }; -struct jpeg_upsampler { long dummy; }; -struct jpeg_color_deconverter { long dummy; }; -struct jpeg_color_quantizer { long dummy; }; -#endif /* JPEG_INTERNALS */ -#endif /* INCOMPLETE_TYPES_BROKEN */ - - -/* - * The JPEG library modules define JPEG_INTERNALS before including this file. - * The internal structure declarations are read only when that is true. - * Applications using the library should not include jpegint.h, but may wish - * to include jerror.h. - */ - -#ifdef JPEG_INTERNALS -#include "jpegint.h" /* fetch private declarations */ -#include "jerror.h" /* fetch error codes too */ -#endif - -#ifdef __cplusplus -#ifndef DONT_USE_EXTERN_C -} -#endif -#endif - -#endif /* JPEGLIB_H */ diff --git a/src/jpeg-8c/jquant1.c b/src/jpeg-8c/jquant1.c deleted file mode 100644 index b2f96aa1..00000000 --- a/src/jpeg-8c/jquant1.c +++ /dev/null @@ -1,856 +0,0 @@ -/* - * jquant1.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains 1-pass color quantization (color mapping) routines. - * These routines provide mapping to a fixed color map using equally spaced - * color values. Optional Floyd-Steinberg or ordered dithering is available. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -#ifdef QUANT_1PASS_SUPPORTED - - -/* - * The main purpose of 1-pass quantization is to provide a fast, if not very - * high quality, colormapped output capability. A 2-pass quantizer usually - * gives better visual quality; however, for quantized grayscale output this - * quantizer is perfectly adequate. Dithering is highly recommended with this - * quantizer, though you can turn it off if you really want to. - * - * In 1-pass quantization the colormap must be chosen in advance of seeing the - * image. We use a map consisting of all combinations of Ncolors[i] color - * values for the i'th component. The Ncolors[] values are chosen so that - * their product, the total number of colors, is no more than that requested. - * (In most cases, the product will be somewhat less.) - * - * Since the colormap is orthogonal, the representative value for each color - * component can be determined without considering the other components; - * then these indexes can be combined into a colormap index by a standard - * N-dimensional-array-subscript calculation. Most of the arithmetic involved - * can be precalculated and stored in the lookup table colorindex[]. - * colorindex[i][j] maps pixel value j in component i to the nearest - * representative value (grid plane) for that component; this index is - * multiplied by the array stride for component i, so that the - * index of the colormap entry closest to a given pixel value is just - * sum( colorindex[component-number][pixel-component-value] ) - * Aside from being fast, this scheme allows for variable spacing between - * representative values with no additional lookup cost. - * - * If gamma correction has been applied in color conversion, it might be wise - * to adjust the color grid spacing so that the representative colors are - * equidistant in linear space. At this writing, gamma correction is not - * implemented by jdcolor, so nothing is done here. - */ - - -/* Declarations for ordered dithering. - * - * We use a standard 16x16 ordered dither array. The basic concept of ordered - * dithering is described in many references, for instance Dale Schumacher's - * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). - * In place of Schumacher's comparisons against a "threshold" value, we add a - * "dither" value to the input pixel and then round the result to the nearest - * output value. The dither value is equivalent to (0.5 - threshold) times - * the distance between output values. For ordered dithering, we assume that - * the output colors are equally spaced; if not, results will probably be - * worse, since the dither may be too much or too little at a given point. - * - * The normal calculation would be to form pixel value + dither, range-limit - * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. - * We can skip the separate range-limiting step by extending the colorindex - * table in both directions. - */ - -#define ODITHER_SIZE 16 /* dimension of dither matrix */ -/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ -#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ -#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ - -typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; -typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; - -static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { - /* Bayer's order-4 dither array. Generated by the code given in - * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. - * The values in this array must range from 0 to ODITHER_CELLS-1. - */ - { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, - { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, - { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, - { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, - { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, - { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, - { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, - { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, - { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, - { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, - { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, - { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, - { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, - { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, - { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, - { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } -}; - - -/* Declarations for Floyd-Steinberg dithering. - * - * Errors are accumulated into the array fserrors[], at a resolution of - * 1/16th of a pixel count. The error at a given pixel is propagated - * to its not-yet-processed neighbors using the standard F-S fractions, - * ... (here) 7/16 - * 3/16 5/16 1/16 - * We work left-to-right on even rows, right-to-left on odd rows. - * - * We can get away with a single array (holding one row's worth of errors) - * by using it to store the current row's errors at pixel columns not yet - * processed, but the next row's errors at columns already processed. We - * need only a few extra variables to hold the errors immediately around the - * current column. (If we are lucky, those variables are in registers, but - * even if not, they're probably cheaper to access than array elements are.) - * - * The fserrors[] array is indexed [component#][position]. - * We provide (#columns + 2) entries per component; the extra entry at each - * end saves us from special-casing the first and last pixels. - * - * Note: on a wide image, we might not have enough room in a PC's near data - * segment to hold the error array; so it is allocated with alloc_large. - */ - -#if BITS_IN_JSAMPLE == 8 -typedef INT16 FSERROR; /* 16 bits should be enough */ -typedef int LOCFSERROR; /* use 'int' for calculation temps */ -#else -typedef INT32 FSERROR; /* may need more than 16 bits */ -typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ -#endif - -typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ - - -/* Private subobject */ - -#define MAX_Q_COMPS 4 /* max components I can handle */ - -typedef struct { - struct jpeg_color_quantizer pub; /* public fields */ - - /* Initially allocated colormap is saved here */ - JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ - int sv_actual; /* number of entries in use */ - - JSAMPARRAY colorindex; /* Precomputed mapping for speed */ - /* colorindex[i][j] = index of color closest to pixel value j in component i, - * premultiplied as described above. Since colormap indexes must fit into - * JSAMPLEs, the entries of this array will too. - */ - boolean is_padded; /* is the colorindex padded for odither? */ - - int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ - - /* Variables for ordered dithering */ - int row_index; /* cur row's vertical index in dither matrix */ - ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ - - /* Variables for Floyd-Steinberg dithering */ - FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ - boolean on_odd_row; /* flag to remember which row we are on */ -} my_cquantizer; - -typedef my_cquantizer * my_cquantize_ptr; - - -/* - * Policy-making subroutines for create_colormap and create_colorindex. - * These routines determine the colormap to be used. The rest of the module - * only assumes that the colormap is orthogonal. - * - * * select_ncolors decides how to divvy up the available colors - * among the components. - * * output_value defines the set of representative values for a component. - * * largest_input_value defines the mapping from input values to - * representative values for a component. - * Note that the latter two routines may impose different policies for - * different components, though this is not currently done. - */ - - -LOCAL(int) -select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) -/* Determine allocation of desired colors to components, */ -/* and fill in Ncolors[] array to indicate choice. */ -/* Return value is total number of colors (product of Ncolors[] values). */ -{ - int nc = cinfo->out_color_components; /* number of color components */ - int max_colors = cinfo->desired_number_of_colors; - int total_colors, iroot, i, j; - boolean changed; - long temp; - static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; - - /* We can allocate at least the nc'th root of max_colors per component. */ - /* Compute floor(nc'th root of max_colors). */ - iroot = 1; - do { - iroot++; - temp = iroot; /* set temp = iroot ** nc */ - for (i = 1; i < nc; i++) - temp *= iroot; - } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ - iroot--; /* now iroot = floor(root) */ - - /* Must have at least 2 color values per component */ - if (iroot < 2) - ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); - - /* Initialize to iroot color values for each component */ - total_colors = 1; - for (i = 0; i < nc; i++) { - Ncolors[i] = iroot; - total_colors *= iroot; - } - /* We may be able to increment the count for one or more components without - * exceeding max_colors, though we know not all can be incremented. - * Sometimes, the first component can be incremented more than once! - * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) - * In RGB colorspace, try to increment G first, then R, then B. - */ - do { - changed = FALSE; - for (i = 0; i < nc; i++) { - j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); - /* calculate new total_colors if Ncolors[j] is incremented */ - temp = total_colors / Ncolors[j]; - temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ - if (temp > (long) max_colors) - break; /* won't fit, done with this pass */ - Ncolors[j]++; /* OK, apply the increment */ - total_colors = (int) temp; - changed = TRUE; - } - } while (changed); - - return total_colors; -} - - -LOCAL(int) -output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) -/* Return j'th output value, where j will range from 0 to maxj */ -/* The output values must fall in 0..MAXJSAMPLE in increasing order */ -{ - /* We always provide values 0 and MAXJSAMPLE for each component; - * any additional values are equally spaced between these limits. - * (Forcing the upper and lower values to the limits ensures that - * dithering can't produce a color outside the selected gamut.) - */ - return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); -} - - -LOCAL(int) -largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) -/* Return largest input value that should map to j'th output value */ -/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ -{ - /* Breakpoints are halfway between values returned by output_value */ - return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); -} - - -/* - * Create the colormap. - */ - -LOCAL(void) -create_colormap (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - JSAMPARRAY colormap; /* Created colormap */ - int total_colors; /* Number of distinct output colors */ - int i,j,k, nci, blksize, blkdist, ptr, val; - - /* Select number of colors for each component */ - total_colors = select_ncolors(cinfo, cquantize->Ncolors); - - /* Report selected color counts */ - if (cinfo->out_color_components == 3) - TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, - total_colors, cquantize->Ncolors[0], - cquantize->Ncolors[1], cquantize->Ncolors[2]); - else - TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); - - /* Allocate and fill in the colormap. */ - /* The colors are ordered in the map in standard row-major order, */ - /* i.e. rightmost (highest-indexed) color changes most rapidly. */ - - colormap = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); - - /* blksize is number of adjacent repeated entries for a component */ - /* blkdist is distance between groups of identical entries for a component */ - blkdist = total_colors; - - for (i = 0; i < cinfo->out_color_components; i++) { - /* fill in colormap entries for i'th color component */ - nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ - blksize = blkdist / nci; - for (j = 0; j < nci; j++) { - /* Compute j'th output value (out of nci) for component */ - val = output_value(cinfo, i, j, nci-1); - /* Fill in all colormap entries that have this value of this component */ - for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { - /* fill in blksize entries beginning at ptr */ - for (k = 0; k < blksize; k++) - colormap[i][ptr+k] = (JSAMPLE) val; - } - } - blkdist = blksize; /* blksize of this color is blkdist of next */ - } - - /* Save the colormap in private storage, - * where it will survive color quantization mode changes. - */ - cquantize->sv_colormap = colormap; - cquantize->sv_actual = total_colors; -} - - -/* - * Create the color index table. - */ - -LOCAL(void) -create_colorindex (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - JSAMPROW indexptr; - int i,j,k, nci, blksize, val, pad; - - /* For ordered dither, we pad the color index tables by MAXJSAMPLE in - * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). - * This is not necessary in the other dithering modes. However, we - * flag whether it was done in case user changes dithering mode. - */ - if (cinfo->dither_mode == JDITHER_ORDERED) { - pad = MAXJSAMPLE*2; - cquantize->is_padded = TRUE; - } else { - pad = 0; - cquantize->is_padded = FALSE; - } - - cquantize->colorindex = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - (JDIMENSION) (MAXJSAMPLE+1 + pad), - (JDIMENSION) cinfo->out_color_components); - - /* blksize is number of adjacent repeated entries for a component */ - blksize = cquantize->sv_actual; - - for (i = 0; i < cinfo->out_color_components; i++) { - /* fill in colorindex entries for i'th color component */ - nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ - blksize = blksize / nci; - - /* adjust colorindex pointers to provide padding at negative indexes. */ - if (pad) - cquantize->colorindex[i] += MAXJSAMPLE; - - /* in loop, val = index of current output value, */ - /* and k = largest j that maps to current val */ - indexptr = cquantize->colorindex[i]; - val = 0; - k = largest_input_value(cinfo, i, 0, nci-1); - for (j = 0; j <= MAXJSAMPLE; j++) { - while (j > k) /* advance val if past boundary */ - k = largest_input_value(cinfo, i, ++val, nci-1); - /* premultiply so that no multiplication needed in main processing */ - indexptr[j] = (JSAMPLE) (val * blksize); - } - /* Pad at both ends if necessary */ - if (pad) - for (j = 1; j <= MAXJSAMPLE; j++) { - indexptr[-j] = indexptr[0]; - indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; - } - } -} - - -/* - * Create an ordered-dither array for a component having ncolors - * distinct output values. - */ - -LOCAL(ODITHER_MATRIX_PTR) -make_odither_array (j_decompress_ptr cinfo, int ncolors) -{ - ODITHER_MATRIX_PTR odither; - int j,k; - INT32 num,den; - - odither = (ODITHER_MATRIX_PTR) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(ODITHER_MATRIX)); - /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). - * Hence the dither value for the matrix cell with fill order f - * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). - * On 16-bit-int machine, be careful to avoid overflow. - */ - den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); - for (j = 0; j < ODITHER_SIZE; j++) { - for (k = 0; k < ODITHER_SIZE; k++) { - num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) - * MAXJSAMPLE; - /* Ensure round towards zero despite C's lack of consistency - * about rounding negative values in integer division... - */ - odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); - } - } - return odither; -} - - -/* - * Create the ordered-dither tables. - * Components having the same number of representative colors may - * share a dither table. - */ - -LOCAL(void) -create_odither_tables (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - ODITHER_MATRIX_PTR odither; - int i, j, nci; - - for (i = 0; i < cinfo->out_color_components; i++) { - nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ - odither = NULL; /* search for matching prior component */ - for (j = 0; j < i; j++) { - if (nci == cquantize->Ncolors[j]) { - odither = cquantize->odither[j]; - break; - } - } - if (odither == NULL) /* need a new table? */ - odither = make_odither_array(cinfo, nci); - cquantize->odither[i] = odither; - } -} - - -/* - * Map some rows of pixels to the output colormapped representation. - */ - -METHODDEF(void) -color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) -/* General case, no dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - JSAMPARRAY colorindex = cquantize->colorindex; - register int pixcode, ci; - register JSAMPROW ptrin, ptrout; - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - register int nc = cinfo->out_color_components; - - for (row = 0; row < num_rows; row++) { - ptrin = input_buf[row]; - ptrout = output_buf[row]; - for (col = width; col > 0; col--) { - pixcode = 0; - for (ci = 0; ci < nc; ci++) { - pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); - } - *ptrout++ = (JSAMPLE) pixcode; - } - } -} - - -METHODDEF(void) -color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) -/* Fast path for out_color_components==3, no dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - register int pixcode; - register JSAMPROW ptrin, ptrout; - JSAMPROW colorindex0 = cquantize->colorindex[0]; - JSAMPROW colorindex1 = cquantize->colorindex[1]; - JSAMPROW colorindex2 = cquantize->colorindex[2]; - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - - for (row = 0; row < num_rows; row++) { - ptrin = input_buf[row]; - ptrout = output_buf[row]; - for (col = width; col > 0; col--) { - pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); - pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); - pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); - *ptrout++ = (JSAMPLE) pixcode; - } - } -} - - -METHODDEF(void) -quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) -/* General case, with ordered dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - register JSAMPROW input_ptr; - register JSAMPROW output_ptr; - JSAMPROW colorindex_ci; - int * dither; /* points to active row of dither matrix */ - int row_index, col_index; /* current indexes into dither matrix */ - int nc = cinfo->out_color_components; - int ci; - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - - for (row = 0; row < num_rows; row++) { - /* Initialize output values to 0 so can process components separately */ - jzero_far((void FAR *) output_buf[row], - (size_t) (width * SIZEOF(JSAMPLE))); - row_index = cquantize->row_index; - for (ci = 0; ci < nc; ci++) { - input_ptr = input_buf[row] + ci; - output_ptr = output_buf[row]; - colorindex_ci = cquantize->colorindex[ci]; - dither = cquantize->odither[ci][row_index]; - col_index = 0; - - for (col = width; col > 0; col--) { - /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, - * select output value, accumulate into output code for this pixel. - * Range-limiting need not be done explicitly, as we have extended - * the colorindex table to produce the right answers for out-of-range - * inputs. The maximum dither is +- MAXJSAMPLE; this sets the - * required amount of padding. - */ - *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; - input_ptr += nc; - output_ptr++; - col_index = (col_index + 1) & ODITHER_MASK; - } - } - /* Advance row index for next row */ - row_index = (row_index + 1) & ODITHER_MASK; - cquantize->row_index = row_index; - } -} - - -METHODDEF(void) -quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) -/* Fast path for out_color_components==3, with ordered dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - register int pixcode; - register JSAMPROW input_ptr; - register JSAMPROW output_ptr; - JSAMPROW colorindex0 = cquantize->colorindex[0]; - JSAMPROW colorindex1 = cquantize->colorindex[1]; - JSAMPROW colorindex2 = cquantize->colorindex[2]; - int * dither0; /* points to active row of dither matrix */ - int * dither1; - int * dither2; - int row_index, col_index; /* current indexes into dither matrix */ - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - - for (row = 0; row < num_rows; row++) { - row_index = cquantize->row_index; - input_ptr = input_buf[row]; - output_ptr = output_buf[row]; - dither0 = cquantize->odither[0][row_index]; - dither1 = cquantize->odither[1][row_index]; - dither2 = cquantize->odither[2][row_index]; - col_index = 0; - - for (col = width; col > 0; col--) { - pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + - dither0[col_index]]); - pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + - dither1[col_index]]); - pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + - dither2[col_index]]); - *output_ptr++ = (JSAMPLE) pixcode; - col_index = (col_index + 1) & ODITHER_MASK; - } - row_index = (row_index + 1) & ODITHER_MASK; - cquantize->row_index = row_index; - } -} - - -METHODDEF(void) -quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) -/* General case, with Floyd-Steinberg dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - register LOCFSERROR cur; /* current error or pixel value */ - LOCFSERROR belowerr; /* error for pixel below cur */ - LOCFSERROR bpreverr; /* error for below/prev col */ - LOCFSERROR bnexterr; /* error for below/next col */ - LOCFSERROR delta; - register FSERRPTR errorptr; /* => fserrors[] at column before current */ - register JSAMPROW input_ptr; - register JSAMPROW output_ptr; - JSAMPROW colorindex_ci; - JSAMPROW colormap_ci; - int pixcode; - int nc = cinfo->out_color_components; - int dir; /* 1 for left-to-right, -1 for right-to-left */ - int dirnc; /* dir * nc */ - int ci; - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - JSAMPLE *range_limit = cinfo->sample_range_limit; - SHIFT_TEMPS - - for (row = 0; row < num_rows; row++) { - /* Initialize output values to 0 so can process components separately */ - jzero_far((void FAR *) output_buf[row], - (size_t) (width * SIZEOF(JSAMPLE))); - for (ci = 0; ci < nc; ci++) { - input_ptr = input_buf[row] + ci; - output_ptr = output_buf[row]; - if (cquantize->on_odd_row) { - /* work right to left in this row */ - input_ptr += (width-1) * nc; /* so point to rightmost pixel */ - output_ptr += width-1; - dir = -1; - dirnc = -nc; - errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ - } else { - /* work left to right in this row */ - dir = 1; - dirnc = nc; - errorptr = cquantize->fserrors[ci]; /* => entry before first column */ - } - colorindex_ci = cquantize->colorindex[ci]; - colormap_ci = cquantize->sv_colormap[ci]; - /* Preset error values: no error propagated to first pixel from left */ - cur = 0; - /* and no error propagated to row below yet */ - belowerr = bpreverr = 0; - - for (col = width; col > 0; col--) { - /* cur holds the error propagated from the previous pixel on the - * current line. Add the error propagated from the previous line - * to form the complete error correction term for this pixel, and - * round the error term (which is expressed * 16) to an integer. - * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct - * for either sign of the error value. - * Note: errorptr points to *previous* column's array entry. - */ - cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); - /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. - * The maximum error is +- MAXJSAMPLE; this sets the required size - * of the range_limit array. - */ - cur += GETJSAMPLE(*input_ptr); - cur = GETJSAMPLE(range_limit[cur]); - /* Select output value, accumulate into output code for this pixel */ - pixcode = GETJSAMPLE(colorindex_ci[cur]); - *output_ptr += (JSAMPLE) pixcode; - /* Compute actual representation error at this pixel */ - /* Note: we can do this even though we don't have the final */ - /* pixel code, because the colormap is orthogonal. */ - cur -= GETJSAMPLE(colormap_ci[pixcode]); - /* Compute error fractions to be propagated to adjacent pixels. - * Add these into the running sums, and simultaneously shift the - * next-line error sums left by 1 column. - */ - bnexterr = cur; - delta = cur * 2; - cur += delta; /* form error * 3 */ - errorptr[0] = (FSERROR) (bpreverr + cur); - cur += delta; /* form error * 5 */ - bpreverr = belowerr + cur; - belowerr = bnexterr; - cur += delta; /* form error * 7 */ - /* At this point cur contains the 7/16 error value to be propagated - * to the next pixel on the current line, and all the errors for the - * next line have been shifted over. We are therefore ready to move on. - */ - input_ptr += dirnc; /* advance input ptr to next column */ - output_ptr += dir; /* advance output ptr to next column */ - errorptr += dir; /* advance errorptr to current column */ - } - /* Post-loop cleanup: we must unload the final error value into the - * final fserrors[] entry. Note we need not unload belowerr because - * it is for the dummy column before or after the actual array. - */ - errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ - } - cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); - } -} - - -/* - * Allocate workspace for Floyd-Steinberg errors. - */ - -LOCAL(void) -alloc_fs_workspace (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - size_t arraysize; - int i; - - arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); - for (i = 0; i < cinfo->out_color_components; i++) { - cquantize->fserrors[i] = (FSERRPTR) - (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); - } -} - - -/* - * Initialize for one-pass color quantization. - */ - -METHODDEF(void) -start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - size_t arraysize; - int i; - - /* Install my colormap. */ - cinfo->colormap = cquantize->sv_colormap; - cinfo->actual_number_of_colors = cquantize->sv_actual; - - /* Initialize for desired dithering mode. */ - switch (cinfo->dither_mode) { - case JDITHER_NONE: - if (cinfo->out_color_components == 3) - cquantize->pub.color_quantize = color_quantize3; - else - cquantize->pub.color_quantize = color_quantize; - break; - case JDITHER_ORDERED: - if (cinfo->out_color_components == 3) - cquantize->pub.color_quantize = quantize3_ord_dither; - else - cquantize->pub.color_quantize = quantize_ord_dither; - cquantize->row_index = 0; /* initialize state for ordered dither */ - /* If user changed to ordered dither from another mode, - * we must recreate the color index table with padding. - * This will cost extra space, but probably isn't very likely. - */ - if (! cquantize->is_padded) - create_colorindex(cinfo); - /* Create ordered-dither tables if we didn't already. */ - if (cquantize->odither[0] == NULL) - create_odither_tables(cinfo); - break; - case JDITHER_FS: - cquantize->pub.color_quantize = quantize_fs_dither; - cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ - /* Allocate Floyd-Steinberg workspace if didn't already. */ - if (cquantize->fserrors[0] == NULL) - alloc_fs_workspace(cinfo); - /* Initialize the propagated errors to zero. */ - arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); - for (i = 0; i < cinfo->out_color_components; i++) - jzero_far((void FAR *) cquantize->fserrors[i], arraysize); - break; - default: - ERREXIT(cinfo, JERR_NOT_COMPILED); - break; - } -} - - -/* - * Finish up at the end of the pass. - */ - -METHODDEF(void) -finish_pass_1_quant (j_decompress_ptr cinfo) -{ - /* no work in 1-pass case */ -} - - -/* - * Switch to a new external colormap between output passes. - * Shouldn't get to this module! - */ - -METHODDEF(void) -new_color_map_1_quant (j_decompress_ptr cinfo) -{ - ERREXIT(cinfo, JERR_MODE_CHANGE); -} - - -/* - * Module initialization routine for 1-pass color quantization. - */ - -GLOBAL(void) -jinit_1pass_quantizer (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize; - - cquantize = (my_cquantize_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_cquantizer)); - cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; - cquantize->pub.start_pass = start_pass_1_quant; - cquantize->pub.finish_pass = finish_pass_1_quant; - cquantize->pub.new_color_map = new_color_map_1_quant; - cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ - cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ - - /* Make sure my internal arrays won't overflow */ - if (cinfo->out_color_components > MAX_Q_COMPS) - ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); - /* Make sure colormap indexes can be represented by JSAMPLEs */ - if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) - ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); - - /* Create the colormap and color index table. */ - create_colormap(cinfo); - create_colorindex(cinfo); - - /* Allocate Floyd-Steinberg workspace now if requested. - * We do this now since it is FAR storage and may affect the memory - * manager's space calculations. If the user changes to FS dither - * mode in a later pass, we will allocate the space then, and will - * possibly overrun the max_memory_to_use setting. - */ - if (cinfo->dither_mode == JDITHER_FS) - alloc_fs_workspace(cinfo); -} - -#endif /* QUANT_1PASS_SUPPORTED */ diff --git a/src/jpeg-8c/jquant2.c b/src/jpeg-8c/jquant2.c deleted file mode 100644 index af601e33..00000000 --- a/src/jpeg-8c/jquant2.c +++ /dev/null @@ -1,1310 +0,0 @@ -/* - * jquant2.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains 2-pass color quantization (color mapping) routines. - * These routines provide selection of a custom color map for an image, - * followed by mapping of the image to that color map, with optional - * Floyd-Steinberg dithering. - * It is also possible to use just the second pass to map to an arbitrary - * externally-given color map. - * - * Note: ordered dithering is not supported, since there isn't any fast - * way to compute intercolor distances; it's unclear that ordered dither's - * fundamental assumptions even hold with an irregularly spaced color map. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -#ifdef QUANT_2PASS_SUPPORTED - - -/* - * This module implements the well-known Heckbert paradigm for color - * quantization. Most of the ideas used here can be traced back to - * Heckbert's seminal paper - * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", - * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. - * - * In the first pass over the image, we accumulate a histogram showing the - * usage count of each possible color. To keep the histogram to a reasonable - * size, we reduce the precision of the input; typical practice is to retain - * 5 or 6 bits per color, so that 8 or 4 different input values are counted - * in the same histogram cell. - * - * Next, the color-selection step begins with a box representing the whole - * color space, and repeatedly splits the "largest" remaining box until we - * have as many boxes as desired colors. Then the mean color in each - * remaining box becomes one of the possible output colors. - * - * The second pass over the image maps each input pixel to the closest output - * color (optionally after applying a Floyd-Steinberg dithering correction). - * This mapping is logically trivial, but making it go fast enough requires - * considerable care. - * - * Heckbert-style quantizers vary a good deal in their policies for choosing - * the "largest" box and deciding where to cut it. The particular policies - * used here have proved out well in experimental comparisons, but better ones - * may yet be found. - * - * In earlier versions of the IJG code, this module quantized in YCbCr color - * space, processing the raw upsampled data without a color conversion step. - * This allowed the color conversion math to be done only once per colormap - * entry, not once per pixel. However, that optimization precluded other - * useful optimizations (such as merging color conversion with upsampling) - * and it also interfered with desired capabilities such as quantizing to an - * externally-supplied colormap. We have therefore abandoned that approach. - * The present code works in the post-conversion color space, typically RGB. - * - * To improve the visual quality of the results, we actually work in scaled - * RGB space, giving G distances more weight than R, and R in turn more than - * B. To do everything in integer math, we must use integer scale factors. - * The 2/3/1 scale factors used here correspond loosely to the relative - * weights of the colors in the NTSC grayscale equation. - * If you want to use this code to quantize a non-RGB color space, you'll - * probably need to change these scale factors. - */ - -#define R_SCALE 2 /* scale R distances by this much */ -#define G_SCALE 3 /* scale G distances by this much */ -#define B_SCALE 1 /* and B by this much */ - -/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined - * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B - * and B,G,R orders. If you define some other weird order in jmorecfg.h, - * you'll get compile errors until you extend this logic. In that case - * you'll probably want to tweak the histogram sizes too. - */ - -#if RGB_RED == 0 -#define C0_SCALE R_SCALE -#endif -#if RGB_BLUE == 0 -#define C0_SCALE B_SCALE -#endif -#if RGB_GREEN == 1 -#define C1_SCALE G_SCALE -#endif -#if RGB_RED == 2 -#define C2_SCALE R_SCALE -#endif -#if RGB_BLUE == 2 -#define C2_SCALE B_SCALE -#endif - - -/* - * First we have the histogram data structure and routines for creating it. - * - * The number of bits of precision can be adjusted by changing these symbols. - * We recommend keeping 6 bits for G and 5 each for R and B. - * If you have plenty of memory and cycles, 6 bits all around gives marginally - * better results; if you are short of memory, 5 bits all around will save - * some space but degrade the results. - * To maintain a fully accurate histogram, we'd need to allocate a "long" - * (preferably unsigned long) for each cell. In practice this is overkill; - * we can get by with 16 bits per cell. Few of the cell counts will overflow, - * and clamping those that do overflow to the maximum value will give close- - * enough results. This reduces the recommended histogram size from 256Kb - * to 128Kb, which is a useful savings on PC-class machines. - * (In the second pass the histogram space is re-used for pixel mapping data; - * in that capacity, each cell must be able to store zero to the number of - * desired colors. 16 bits/cell is plenty for that too.) - * Since the JPEG code is intended to run in small memory model on 80x86 - * machines, we can't just allocate the histogram in one chunk. Instead - * of a true 3-D array, we use a row of pointers to 2-D arrays. Each - * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and - * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that - * on 80x86 machines, the pointer row is in near memory but the actual - * arrays are in far memory (same arrangement as we use for image arrays). - */ - -#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ - -/* These will do the right thing for either R,G,B or B,G,R color order, - * but you may not like the results for other color orders. - */ -#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ -#define HIST_C1_BITS 6 /* bits of precision in G histogram */ -#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ - -/* Number of elements along histogram axes. */ -#define HIST_C0_ELEMS (1<<HIST_C0_BITS) -#define HIST_C1_ELEMS (1<<HIST_C1_BITS) -#define HIST_C2_ELEMS (1<<HIST_C2_BITS) - -/* These are the amounts to shift an input value to get a histogram index. */ -#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) -#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) -#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) - - -typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ - -typedef histcell FAR * histptr; /* for pointers to histogram cells */ - -typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ -typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ -typedef hist2d * hist3d; /* type for top-level pointer */ - - -/* Declarations for Floyd-Steinberg dithering. - * - * Errors are accumulated into the array fserrors[], at a resolution of - * 1/16th of a pixel count. The error at a given pixel is propagated - * to its not-yet-processed neighbors using the standard F-S fractions, - * ... (here) 7/16 - * 3/16 5/16 1/16 - * We work left-to-right on even rows, right-to-left on odd rows. - * - * We can get away with a single array (holding one row's worth of errors) - * by using it to store the current row's errors at pixel columns not yet - * processed, but the next row's errors at columns already processed. We - * need only a few extra variables to hold the errors immediately around the - * current column. (If we are lucky, those variables are in registers, but - * even if not, they're probably cheaper to access than array elements are.) - * - * The fserrors[] array has (#columns + 2) entries; the extra entry at - * each end saves us from special-casing the first and last pixels. - * Each entry is three values long, one value for each color component. - * - * Note: on a wide image, we might not have enough room in a PC's near data - * segment to hold the error array; so it is allocated with alloc_large. - */ - -#if BITS_IN_JSAMPLE == 8 -typedef INT16 FSERROR; /* 16 bits should be enough */ -typedef int LOCFSERROR; /* use 'int' for calculation temps */ -#else -typedef INT32 FSERROR; /* may need more than 16 bits */ -typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ -#endif - -typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ - - -/* Private subobject */ - -typedef struct { - struct jpeg_color_quantizer pub; /* public fields */ - - /* Space for the eventually created colormap is stashed here */ - JSAMPARRAY sv_colormap; /* colormap allocated at init time */ - int desired; /* desired # of colors = size of colormap */ - - /* Variables for accumulating image statistics */ - hist3d histogram; /* pointer to the histogram */ - - boolean needs_zeroed; /* TRUE if next pass must zero histogram */ - - /* Variables for Floyd-Steinberg dithering */ - FSERRPTR fserrors; /* accumulated errors */ - boolean on_odd_row; /* flag to remember which row we are on */ - int * error_limiter; /* table for clamping the applied error */ -} my_cquantizer; - -typedef my_cquantizer * my_cquantize_ptr; - - -/* - * Prescan some rows of pixels. - * In this module the prescan simply updates the histogram, which has been - * initialized to zeroes by start_pass. - * An output_buf parameter is required by the method signature, but no data - * is actually output (in fact the buffer controller is probably passing a - * NULL pointer). - */ - -METHODDEF(void) -prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - register JSAMPROW ptr; - register histptr histp; - register hist3d histogram = cquantize->histogram; - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - - for (row = 0; row < num_rows; row++) { - ptr = input_buf[row]; - for (col = width; col > 0; col--) { - /* get pixel value and index into the histogram */ - histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] - [GETJSAMPLE(ptr[1]) >> C1_SHIFT] - [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; - /* increment, check for overflow and undo increment if so. */ - if (++(*histp) <= 0) - (*histp)--; - ptr += 3; - } - } -} - - -/* - * Next we have the really interesting routines: selection of a colormap - * given the completed histogram. - * These routines work with a list of "boxes", each representing a rectangular - * subset of the input color space (to histogram precision). - */ - -typedef struct { - /* The bounds of the box (inclusive); expressed as histogram indexes */ - int c0min, c0max; - int c1min, c1max; - int c2min, c2max; - /* The volume (actually 2-norm) of the box */ - INT32 volume; - /* The number of nonzero histogram cells within this box */ - long colorcount; -} box; - -typedef box * boxptr; - - -LOCAL(boxptr) -find_biggest_color_pop (boxptr boxlist, int numboxes) -/* Find the splittable box with the largest color population */ -/* Returns NULL if no splittable boxes remain */ -{ - register boxptr boxp; - register int i; - register long maxc = 0; - boxptr which = NULL; - - for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { - if (boxp->colorcount > maxc && boxp->volume > 0) { - which = boxp; - maxc = boxp->colorcount; - } - } - return which; -} - - -LOCAL(boxptr) -find_biggest_volume (boxptr boxlist, int numboxes) -/* Find the splittable box with the largest (scaled) volume */ -/* Returns NULL if no splittable boxes remain */ -{ - register boxptr boxp; - register int i; - register INT32 maxv = 0; - boxptr which = NULL; - - for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { - if (boxp->volume > maxv) { - which = boxp; - maxv = boxp->volume; - } - } - return which; -} - - -LOCAL(void) -update_box (j_decompress_ptr cinfo, boxptr boxp) -/* Shrink the min/max bounds of a box to enclose only nonzero elements, */ -/* and recompute its volume and population */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - hist3d histogram = cquantize->histogram; - histptr histp; - int c0,c1,c2; - int c0min,c0max,c1min,c1max,c2min,c2max; - INT32 dist0,dist1,dist2; - long ccount; - - c0min = boxp->c0min; c0max = boxp->c0max; - c1min = boxp->c1min; c1max = boxp->c1max; - c2min = boxp->c2min; c2max = boxp->c2max; - - if (c0max > c0min) - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c0min = c0min = c0; - goto have_c0min; - } - } - have_c0min: - if (c0max > c0min) - for (c0 = c0max; c0 >= c0min; c0--) - for (c1 = c1min; c1 <= c1max; c1++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c0max = c0max = c0; - goto have_c0max; - } - } - have_c0max: - if (c1max > c1min) - for (c1 = c1min; c1 <= c1max; c1++) - for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c1min = c1min = c1; - goto have_c1min; - } - } - have_c1min: - if (c1max > c1min) - for (c1 = c1max; c1 >= c1min; c1--) - for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c1max = c1max = c1; - goto have_c1max; - } - } - have_c1max: - if (c2max > c2min) - for (c2 = c2min; c2 <= c2max; c2++) - for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1min][c2]; - for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) - if (*histp != 0) { - boxp->c2min = c2min = c2; - goto have_c2min; - } - } - have_c2min: - if (c2max > c2min) - for (c2 = c2max; c2 >= c2min; c2--) - for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1min][c2]; - for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) - if (*histp != 0) { - boxp->c2max = c2max = c2; - goto have_c2max; - } - } - have_c2max: - - /* Update box volume. - * We use 2-norm rather than real volume here; this biases the method - * against making long narrow boxes, and it has the side benefit that - * a box is splittable iff norm > 0. - * Since the differences are expressed in histogram-cell units, - * we have to shift back to JSAMPLE units to get consistent distances; - * after which, we scale according to the selected distance scale factors. - */ - dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; - dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; - dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; - boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; - - /* Now scan remaining volume of box and compute population */ - ccount = 0; - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++, histp++) - if (*histp != 0) { - ccount++; - } - } - boxp->colorcount = ccount; -} - - -LOCAL(int) -median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, - int desired_colors) -/* Repeatedly select and split the largest box until we have enough boxes */ -{ - int n,lb; - int c0,c1,c2,cmax; - register boxptr b1,b2; - - while (numboxes < desired_colors) { - /* Select box to split. - * Current algorithm: by population for first half, then by volume. - */ - if (numboxes*2 <= desired_colors) { - b1 = find_biggest_color_pop(boxlist, numboxes); - } else { - b1 = find_biggest_volume(boxlist, numboxes); - } - if (b1 == NULL) /* no splittable boxes left! */ - break; - b2 = &boxlist[numboxes]; /* where new box will go */ - /* Copy the color bounds to the new box. */ - b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; - b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; - /* Choose which axis to split the box on. - * Current algorithm: longest scaled axis. - * See notes in update_box about scaling distances. - */ - c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; - c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; - c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; - /* We want to break any ties in favor of green, then red, blue last. - * This code does the right thing for R,G,B or B,G,R color orders only. - */ -#if RGB_RED == 0 - cmax = c1; n = 1; - if (c0 > cmax) { cmax = c0; n = 0; } - if (c2 > cmax) { n = 2; } -#else - cmax = c1; n = 1; - if (c2 > cmax) { cmax = c2; n = 2; } - if (c0 > cmax) { n = 0; } -#endif - /* Choose split point along selected axis, and update box bounds. - * Current algorithm: split at halfway point. - * (Since the box has been shrunk to minimum volume, - * any split will produce two nonempty subboxes.) - * Note that lb value is max for lower box, so must be < old max. - */ - switch (n) { - case 0: - lb = (b1->c0max + b1->c0min) / 2; - b1->c0max = lb; - b2->c0min = lb+1; - break; - case 1: - lb = (b1->c1max + b1->c1min) / 2; - b1->c1max = lb; - b2->c1min = lb+1; - break; - case 2: - lb = (b1->c2max + b1->c2min) / 2; - b1->c2max = lb; - b2->c2min = lb+1; - break; - } - /* Update stats for boxes */ - update_box(cinfo, b1); - update_box(cinfo, b2); - numboxes++; - } - return numboxes; -} - - -LOCAL(void) -compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) -/* Compute representative color for a box, put it in colormap[icolor] */ -{ - /* Current algorithm: mean weighted by pixels (not colors) */ - /* Note it is important to get the rounding correct! */ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - hist3d histogram = cquantize->histogram; - histptr histp; - int c0,c1,c2; - int c0min,c0max,c1min,c1max,c2min,c2max; - long count; - long total = 0; - long c0total = 0; - long c1total = 0; - long c2total = 0; - - c0min = boxp->c0min; c0max = boxp->c0max; - c1min = boxp->c1min; c1max = boxp->c1max; - c2min = boxp->c2min; c2max = boxp->c2max; - - for (c0 = c0min; c0 <= c0max; c0++) - for (c1 = c1min; c1 <= c1max; c1++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) { - if ((count = *histp++) != 0) { - total += count; - c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; - c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; - c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; - } - } - } - - cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); - cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); - cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); -} - - -LOCAL(void) -select_colors (j_decompress_ptr cinfo, int desired_colors) -/* Master routine for color selection */ -{ - boxptr boxlist; - int numboxes; - int i; - - /* Allocate workspace for box list */ - boxlist = (boxptr) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); - /* Initialize one box containing whole space */ - numboxes = 1; - boxlist[0].c0min = 0; - boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; - boxlist[0].c1min = 0; - boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; - boxlist[0].c2min = 0; - boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; - /* Shrink it to actually-used volume and set its statistics */ - update_box(cinfo, & boxlist[0]); - /* Perform median-cut to produce final box list */ - numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); - /* Compute the representative color for each box, fill colormap */ - for (i = 0; i < numboxes; i++) - compute_color(cinfo, & boxlist[i], i); - cinfo->actual_number_of_colors = numboxes; - TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); -} - - -/* - * These routines are concerned with the time-critical task of mapping input - * colors to the nearest color in the selected colormap. - * - * We re-use the histogram space as an "inverse color map", essentially a - * cache for the results of nearest-color searches. All colors within a - * histogram cell will be mapped to the same colormap entry, namely the one - * closest to the cell's center. This may not be quite the closest entry to - * the actual input color, but it's almost as good. A zero in the cache - * indicates we haven't found the nearest color for that cell yet; the array - * is cleared to zeroes before starting the mapping pass. When we find the - * nearest color for a cell, its colormap index plus one is recorded in the - * cache for future use. The pass2 scanning routines call fill_inverse_cmap - * when they need to use an unfilled entry in the cache. - * - * Our method of efficiently finding nearest colors is based on the "locally - * sorted search" idea described by Heckbert and on the incremental distance - * calculation described by Spencer W. Thomas in chapter III.1 of Graphics - * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that - * the distances from a given colormap entry to each cell of the histogram can - * be computed quickly using an incremental method: the differences between - * distances to adjacent cells themselves differ by a constant. This allows a - * fairly fast implementation of the "brute force" approach of computing the - * distance from every colormap entry to every histogram cell. Unfortunately, - * it needs a work array to hold the best-distance-so-far for each histogram - * cell (because the inner loop has to be over cells, not colormap entries). - * The work array elements have to be INT32s, so the work array would need - * 256Kb at our recommended precision. This is not feasible in DOS machines. - * - * To get around these problems, we apply Thomas' method to compute the - * nearest colors for only the cells within a small subbox of the histogram. - * The work array need be only as big as the subbox, so the memory usage - * problem is solved. Furthermore, we need not fill subboxes that are never - * referenced in pass2; many images use only part of the color gamut, so a - * fair amount of work is saved. An additional advantage of this - * approach is that we can apply Heckbert's locality criterion to quickly - * eliminate colormap entries that are far away from the subbox; typically - * three-fourths of the colormap entries are rejected by Heckbert's criterion, - * and we need not compute their distances to individual cells in the subbox. - * The speed of this approach is heavily influenced by the subbox size: too - * small means too much overhead, too big loses because Heckbert's criterion - * can't eliminate as many colormap entries. Empirically the best subbox - * size seems to be about 1/512th of the histogram (1/8th in each direction). - * - * Thomas' article also describes a refined method which is asymptotically - * faster than the brute-force method, but it is also far more complex and - * cannot efficiently be applied to small subboxes. It is therefore not - * useful for programs intended to be portable to DOS machines. On machines - * with plenty of memory, filling the whole histogram in one shot with Thomas' - * refined method might be faster than the present code --- but then again, - * it might not be any faster, and it's certainly more complicated. - */ - - -/* log2(histogram cells in update box) for each axis; this can be adjusted */ -#define BOX_C0_LOG (HIST_C0_BITS-3) -#define BOX_C1_LOG (HIST_C1_BITS-3) -#define BOX_C2_LOG (HIST_C2_BITS-3) - -#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ -#define BOX_C1_ELEMS (1<<BOX_C1_LOG) -#define BOX_C2_ELEMS (1<<BOX_C2_LOG) - -#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) -#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) -#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) - - -/* - * The next three routines implement inverse colormap filling. They could - * all be folded into one big routine, but splitting them up this way saves - * some stack space (the mindist[] and bestdist[] arrays need not coexist) - * and may allow some compilers to produce better code by registerizing more - * inner-loop variables. - */ - -LOCAL(int) -find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, - JSAMPLE colorlist[]) -/* Locate the colormap entries close enough to an update box to be candidates - * for the nearest entry to some cell(s) in the update box. The update box - * is specified by the center coordinates of its first cell. The number of - * candidate colormap entries is returned, and their colormap indexes are - * placed in colorlist[]. - * This routine uses Heckbert's "locally sorted search" criterion to select - * the colors that need further consideration. - */ -{ - int numcolors = cinfo->actual_number_of_colors; - int maxc0, maxc1, maxc2; - int centerc0, centerc1, centerc2; - int i, x, ncolors; - INT32 minmaxdist, min_dist, max_dist, tdist; - INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ - - /* Compute true coordinates of update box's upper corner and center. - * Actually we compute the coordinates of the center of the upper-corner - * histogram cell, which are the upper bounds of the volume we care about. - * Note that since ">>" rounds down, the "center" values may be closer to - * min than to max; hence comparisons to them must be "<=", not "<". - */ - maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); - centerc0 = (minc0 + maxc0) >> 1; - maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); - centerc1 = (minc1 + maxc1) >> 1; - maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); - centerc2 = (minc2 + maxc2) >> 1; - - /* For each color in colormap, find: - * 1. its minimum squared-distance to any point in the update box - * (zero if color is within update box); - * 2. its maximum squared-distance to any point in the update box. - * Both of these can be found by considering only the corners of the box. - * We save the minimum distance for each color in mindist[]; - * only the smallest maximum distance is of interest. - */ - minmaxdist = 0x7FFFFFFFL; - - for (i = 0; i < numcolors; i++) { - /* We compute the squared-c0-distance term, then add in the other two. */ - x = GETJSAMPLE(cinfo->colormap[0][i]); - if (x < minc0) { - tdist = (x - minc0) * C0_SCALE; - min_dist = tdist*tdist; - tdist = (x - maxc0) * C0_SCALE; - max_dist = tdist*tdist; - } else if (x > maxc0) { - tdist = (x - maxc0) * C0_SCALE; - min_dist = tdist*tdist; - tdist = (x - minc0) * C0_SCALE; - max_dist = tdist*tdist; - } else { - /* within cell range so no contribution to min_dist */ - min_dist = 0; - if (x <= centerc0) { - tdist = (x - maxc0) * C0_SCALE; - max_dist = tdist*tdist; - } else { - tdist = (x - minc0) * C0_SCALE; - max_dist = tdist*tdist; - } - } - - x = GETJSAMPLE(cinfo->colormap[1][i]); - if (x < minc1) { - tdist = (x - minc1) * C1_SCALE; - min_dist += tdist*tdist; - tdist = (x - maxc1) * C1_SCALE; - max_dist += tdist*tdist; - } else if (x > maxc1) { - tdist = (x - maxc1) * C1_SCALE; - min_dist += tdist*tdist; - tdist = (x - minc1) * C1_SCALE; - max_dist += tdist*tdist; - } else { - /* within cell range so no contribution to min_dist */ - if (x <= centerc1) { - tdist = (x - maxc1) * C1_SCALE; - max_dist += tdist*tdist; - } else { - tdist = (x - minc1) * C1_SCALE; - max_dist += tdist*tdist; - } - } - - x = GETJSAMPLE(cinfo->colormap[2][i]); - if (x < minc2) { - tdist = (x - minc2) * C2_SCALE; - min_dist += tdist*tdist; - tdist = (x - maxc2) * C2_SCALE; - max_dist += tdist*tdist; - } else if (x > maxc2) { - tdist = (x - maxc2) * C2_SCALE; - min_dist += tdist*tdist; - tdist = (x - minc2) * C2_SCALE; - max_dist += tdist*tdist; - } else { - /* within cell range so no contribution to min_dist */ - if (x <= centerc2) { - tdist = (x - maxc2) * C2_SCALE; - max_dist += tdist*tdist; - } else { - tdist = (x - minc2) * C2_SCALE; - max_dist += tdist*tdist; - } - } - - mindist[i] = min_dist; /* save away the results */ - if (max_dist < minmaxdist) - minmaxdist = max_dist; - } - - /* Now we know that no cell in the update box is more than minmaxdist - * away from some colormap entry. Therefore, only colors that are - * within minmaxdist of some part of the box need be considered. - */ - ncolors = 0; - for (i = 0; i < numcolors; i++) { - if (mindist[i] <= minmaxdist) - colorlist[ncolors++] = (JSAMPLE) i; - } - return ncolors; -} - - -LOCAL(void) -find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, - int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) -/* Find the closest colormap entry for each cell in the update box, - * given the list of candidate colors prepared by find_nearby_colors. - * Return the indexes of the closest entries in the bestcolor[] array. - * This routine uses Thomas' incremental distance calculation method to - * find the distance from a colormap entry to successive cells in the box. - */ -{ - int ic0, ic1, ic2; - int i, icolor; - register INT32 * bptr; /* pointer into bestdist[] array */ - JSAMPLE * cptr; /* pointer into bestcolor[] array */ - INT32 dist0, dist1; /* initial distance values */ - register INT32 dist2; /* current distance in inner loop */ - INT32 xx0, xx1; /* distance increments */ - register INT32 xx2; - INT32 inc0, inc1, inc2; /* initial values for increments */ - /* This array holds the distance to the nearest-so-far color for each cell */ - INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; - - /* Initialize best-distance for each cell of the update box */ - bptr = bestdist; - for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) - *bptr++ = 0x7FFFFFFFL; - - /* For each color selected by find_nearby_colors, - * compute its distance to the center of each cell in the box. - * If that's less than best-so-far, update best distance and color number. - */ - - /* Nominal steps between cell centers ("x" in Thomas article) */ -#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) -#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) -#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) - - for (i = 0; i < numcolors; i++) { - icolor = GETJSAMPLE(colorlist[i]); - /* Compute (square of) distance from minc0/c1/c2 to this color */ - inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; - dist0 = inc0*inc0; - inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; - dist0 += inc1*inc1; - inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; - dist0 += inc2*inc2; - /* Form the initial difference increments */ - inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; - inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; - inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; - /* Now loop over all cells in box, updating distance per Thomas method */ - bptr = bestdist; - cptr = bestcolor; - xx0 = inc0; - for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { - dist1 = dist0; - xx1 = inc1; - for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { - dist2 = dist1; - xx2 = inc2; - for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { - if (dist2 < *bptr) { - *bptr = dist2; - *cptr = (JSAMPLE) icolor; - } - dist2 += xx2; - xx2 += 2 * STEP_C2 * STEP_C2; - bptr++; - cptr++; - } - dist1 += xx1; - xx1 += 2 * STEP_C1 * STEP_C1; - } - dist0 += xx0; - xx0 += 2 * STEP_C0 * STEP_C0; - } - } -} - - -LOCAL(void) -fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) -/* Fill the inverse-colormap entries in the update box that contains */ -/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ -/* we can fill as many others as we wish.) */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - hist3d histogram = cquantize->histogram; - int minc0, minc1, minc2; /* lower left corner of update box */ - int ic0, ic1, ic2; - register JSAMPLE * cptr; /* pointer into bestcolor[] array */ - register histptr cachep; /* pointer into main cache array */ - /* This array lists the candidate colormap indexes. */ - JSAMPLE colorlist[MAXNUMCOLORS]; - int numcolors; /* number of candidate colors */ - /* This array holds the actually closest colormap index for each cell. */ - JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; - - /* Convert cell coordinates to update box ID */ - c0 >>= BOX_C0_LOG; - c1 >>= BOX_C1_LOG; - c2 >>= BOX_C2_LOG; - - /* Compute true coordinates of update box's origin corner. - * Actually we compute the coordinates of the center of the corner - * histogram cell, which are the lower bounds of the volume we care about. - */ - minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); - minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); - minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); - - /* Determine which colormap entries are close enough to be candidates - * for the nearest entry to some cell in the update box. - */ - numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); - - /* Determine the actually nearest colors. */ - find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, - bestcolor); - - /* Save the best color numbers (plus 1) in the main cache array */ - c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ - c1 <<= BOX_C1_LOG; - c2 <<= BOX_C2_LOG; - cptr = bestcolor; - for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { - for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { - cachep = & histogram[c0+ic0][c1+ic1][c2]; - for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { - *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); - } - } - } -} - - -/* - * Map some rows of pixels to the output colormapped representation. - */ - -METHODDEF(void) -pass2_no_dither (j_decompress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) -/* This version performs no dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - hist3d histogram = cquantize->histogram; - register JSAMPROW inptr, outptr; - register histptr cachep; - register int c0, c1, c2; - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - - for (row = 0; row < num_rows; row++) { - inptr = input_buf[row]; - outptr = output_buf[row]; - for (col = width; col > 0; col--) { - /* get pixel value and index into the cache */ - c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; - c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; - c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; - cachep = & histogram[c0][c1][c2]; - /* If we have not seen this color before, find nearest colormap entry */ - /* and update the cache */ - if (*cachep == 0) - fill_inverse_cmap(cinfo, c0,c1,c2); - /* Now emit the colormap index for this cell */ - *outptr++ = (JSAMPLE) (*cachep - 1); - } - } -} - - -METHODDEF(void) -pass2_fs_dither (j_decompress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) -/* This version performs Floyd-Steinberg dithering */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - hist3d histogram = cquantize->histogram; - register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ - LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ - LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ - register FSERRPTR errorptr; /* => fserrors[] at column before current */ - JSAMPROW inptr; /* => current input pixel */ - JSAMPROW outptr; /* => current output pixel */ - histptr cachep; - int dir; /* +1 or -1 depending on direction */ - int dir3; /* 3*dir, for advancing inptr & errorptr */ - int row; - JDIMENSION col; - JDIMENSION width = cinfo->output_width; - JSAMPLE *range_limit = cinfo->sample_range_limit; - int *error_limit = cquantize->error_limiter; - JSAMPROW colormap0 = cinfo->colormap[0]; - JSAMPROW colormap1 = cinfo->colormap[1]; - JSAMPROW colormap2 = cinfo->colormap[2]; - SHIFT_TEMPS - - for (row = 0; row < num_rows; row++) { - inptr = input_buf[row]; - outptr = output_buf[row]; - if (cquantize->on_odd_row) { - /* work right to left in this row */ - inptr += (width-1) * 3; /* so point to rightmost pixel */ - outptr += width-1; - dir = -1; - dir3 = -3; - errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ - cquantize->on_odd_row = FALSE; /* flip for next time */ - } else { - /* work left to right in this row */ - dir = 1; - dir3 = 3; - errorptr = cquantize->fserrors; /* => entry before first real column */ - cquantize->on_odd_row = TRUE; /* flip for next time */ - } - /* Preset error values: no error propagated to first pixel from left */ - cur0 = cur1 = cur2 = 0; - /* and no error propagated to row below yet */ - belowerr0 = belowerr1 = belowerr2 = 0; - bpreverr0 = bpreverr1 = bpreverr2 = 0; - - for (col = width; col > 0; col--) { - /* curN holds the error propagated from the previous pixel on the - * current line. Add the error propagated from the previous line - * to form the complete error correction term for this pixel, and - * round the error term (which is expressed * 16) to an integer. - * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct - * for either sign of the error value. - * Note: errorptr points to *previous* column's array entry. - */ - cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); - cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); - cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); - /* Limit the error using transfer function set by init_error_limit. - * See comments with init_error_limit for rationale. - */ - cur0 = error_limit[cur0]; - cur1 = error_limit[cur1]; - cur2 = error_limit[cur2]; - /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. - * The maximum error is +- MAXJSAMPLE (or less with error limiting); - * this sets the required size of the range_limit array. - */ - cur0 += GETJSAMPLE(inptr[0]); - cur1 += GETJSAMPLE(inptr[1]); - cur2 += GETJSAMPLE(inptr[2]); - cur0 = GETJSAMPLE(range_limit[cur0]); - cur1 = GETJSAMPLE(range_limit[cur1]); - cur2 = GETJSAMPLE(range_limit[cur2]); - /* Index into the cache with adjusted pixel value */ - cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; - /* If we have not seen this color before, find nearest colormap */ - /* entry and update the cache */ - if (*cachep == 0) - fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); - /* Now emit the colormap index for this cell */ - { register int pixcode = *cachep - 1; - *outptr = (JSAMPLE) pixcode; - /* Compute representation error for this pixel */ - cur0 -= GETJSAMPLE(colormap0[pixcode]); - cur1 -= GETJSAMPLE(colormap1[pixcode]); - cur2 -= GETJSAMPLE(colormap2[pixcode]); - } - /* Compute error fractions to be propagated to adjacent pixels. - * Add these into the running sums, and simultaneously shift the - * next-line error sums left by 1 column. - */ - { register LOCFSERROR bnexterr, delta; - - bnexterr = cur0; /* Process component 0 */ - delta = cur0 * 2; - cur0 += delta; /* form error * 3 */ - errorptr[0] = (FSERROR) (bpreverr0 + cur0); - cur0 += delta; /* form error * 5 */ - bpreverr0 = belowerr0 + cur0; - belowerr0 = bnexterr; - cur0 += delta; /* form error * 7 */ - bnexterr = cur1; /* Process component 1 */ - delta = cur1 * 2; - cur1 += delta; /* form error * 3 */ - errorptr[1] = (FSERROR) (bpreverr1 + cur1); - cur1 += delta; /* form error * 5 */ - bpreverr1 = belowerr1 + cur1; - belowerr1 = bnexterr; - cur1 += delta; /* form error * 7 */ - bnexterr = cur2; /* Process component 2 */ - delta = cur2 * 2; - cur2 += delta; /* form error * 3 */ - errorptr[2] = (FSERROR) (bpreverr2 + cur2); - cur2 += delta; /* form error * 5 */ - bpreverr2 = belowerr2 + cur2; - belowerr2 = bnexterr; - cur2 += delta; /* form error * 7 */ - } - /* At this point curN contains the 7/16 error value to be propagated - * to the next pixel on the current line, and all the errors for the - * next line have been shifted over. We are therefore ready to move on. - */ - inptr += dir3; /* Advance pixel pointers to next column */ - outptr += dir; - errorptr += dir3; /* advance errorptr to current column */ - } - /* Post-loop cleanup: we must unload the final error values into the - * final fserrors[] entry. Note we need not unload belowerrN because - * it is for the dummy column before or after the actual array. - */ - errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ - errorptr[1] = (FSERROR) bpreverr1; - errorptr[2] = (FSERROR) bpreverr2; - } -} - - -/* - * Initialize the error-limiting transfer function (lookup table). - * The raw F-S error computation can potentially compute error values of up to - * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be - * much less, otherwise obviously wrong pixels will be created. (Typical - * effects include weird fringes at color-area boundaries, isolated bright - * pixels in a dark area, etc.) The standard advice for avoiding this problem - * is to ensure that the "corners" of the color cube are allocated as output - * colors; then repeated errors in the same direction cannot cause cascading - * error buildup. However, that only prevents the error from getting - * completely out of hand; Aaron Giles reports that error limiting improves - * the results even with corner colors allocated. - * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty - * well, but the smoother transfer function used below is even better. Thanks - * to Aaron Giles for this idea. - */ - -LOCAL(void) -init_error_limit (j_decompress_ptr cinfo) -/* Allocate and fill in the error_limiter table */ -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - int * table; - int in, out; - - table = (int *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); - table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ - cquantize->error_limiter = table; - -#define STEPSIZE ((MAXJSAMPLE+1)/16) - /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ - out = 0; - for (in = 0; in < STEPSIZE; in++, out++) { - table[in] = out; table[-in] = -out; - } - /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ - for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { - table[in] = out; table[-in] = -out; - } - /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ - for (; in <= MAXJSAMPLE; in++) { - table[in] = out; table[-in] = -out; - } -#undef STEPSIZE -} - - -/* - * Finish up at the end of each pass. - */ - -METHODDEF(void) -finish_pass1 (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - - /* Select the representative colors and fill in cinfo->colormap */ - cinfo->colormap = cquantize->sv_colormap; - select_colors(cinfo, cquantize->desired); - /* Force next pass to zero the color index table */ - cquantize->needs_zeroed = TRUE; -} - - -METHODDEF(void) -finish_pass2 (j_decompress_ptr cinfo) -{ - /* no work */ -} - - -/* - * Initialize for each processing pass. - */ - -METHODDEF(void) -start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - hist3d histogram = cquantize->histogram; - int i; - - /* Only F-S dithering or no dithering is supported. */ - /* If user asks for ordered dither, give him F-S. */ - if (cinfo->dither_mode != JDITHER_NONE) - cinfo->dither_mode = JDITHER_FS; - - if (is_pre_scan) { - /* Set up method pointers */ - cquantize->pub.color_quantize = prescan_quantize; - cquantize->pub.finish_pass = finish_pass1; - cquantize->needs_zeroed = TRUE; /* Always zero histogram */ - } else { - /* Set up method pointers */ - if (cinfo->dither_mode == JDITHER_FS) - cquantize->pub.color_quantize = pass2_fs_dither; - else - cquantize->pub.color_quantize = pass2_no_dither; - cquantize->pub.finish_pass = finish_pass2; - - /* Make sure color count is acceptable */ - i = cinfo->actual_number_of_colors; - if (i < 1) - ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); - if (i > MAXNUMCOLORS) - ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); - - if (cinfo->dither_mode == JDITHER_FS) { - size_t arraysize = (size_t) ((cinfo->output_width + 2) * - (3 * SIZEOF(FSERROR))); - /* Allocate Floyd-Steinberg workspace if we didn't already. */ - if (cquantize->fserrors == NULL) - cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) - ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); - /* Initialize the propagated errors to zero. */ - jzero_far((void FAR *) cquantize->fserrors, arraysize); - /* Make the error-limit table if we didn't already. */ - if (cquantize->error_limiter == NULL) - init_error_limit(cinfo); - cquantize->on_odd_row = FALSE; - } - - } - /* Zero the histogram or inverse color map, if necessary */ - if (cquantize->needs_zeroed) { - for (i = 0; i < HIST_C0_ELEMS; i++) { - jzero_far((void FAR *) histogram[i], - HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); - } - cquantize->needs_zeroed = FALSE; - } -} - - -/* - * Switch to a new external colormap between output passes. - */ - -METHODDEF(void) -new_color_map_2_quant (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - - /* Reset the inverse color map */ - cquantize->needs_zeroed = TRUE; -} - - -/* - * Module initialization routine for 2-pass color quantization. - */ - -GLOBAL(void) -jinit_2pass_quantizer (j_decompress_ptr cinfo) -{ - my_cquantize_ptr cquantize; - int i; - - cquantize = (my_cquantize_ptr) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_cquantizer)); - cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; - cquantize->pub.start_pass = start_pass_2_quant; - cquantize->pub.new_color_map = new_color_map_2_quant; - cquantize->fserrors = NULL; /* flag optional arrays not allocated */ - cquantize->error_limiter = NULL; - - /* Make sure jdmaster didn't give me a case I can't handle */ - if (cinfo->out_color_components != 3) - ERREXIT(cinfo, JERR_NOTIMPL); - - /* Allocate the histogram/inverse colormap storage */ - cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); - for (i = 0; i < HIST_C0_ELEMS; i++) { - cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); - } - cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ - - /* Allocate storage for the completed colormap, if required. - * We do this now since it is FAR storage and may affect - * the memory manager's space calculations. - */ - if (cinfo->enable_2pass_quant) { - /* Make sure color count is acceptable */ - int desired = cinfo->desired_number_of_colors; - /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ - if (desired < 8) - ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); - /* Make sure colormap indexes can be represented by JSAMPLEs */ - if (desired > MAXNUMCOLORS) - ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); - cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) - ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); - cquantize->desired = desired; - } else - cquantize->sv_colormap = NULL; - - /* Only F-S dithering or no dithering is supported. */ - /* If user asks for ordered dither, give him F-S. */ - if (cinfo->dither_mode != JDITHER_NONE) - cinfo->dither_mode = JDITHER_FS; - - /* Allocate Floyd-Steinberg workspace if necessary. - * This isn't really needed until pass 2, but again it is FAR storage. - * Although we will cope with a later change in dither_mode, - * we do not promise to honor max_memory_to_use if dither_mode changes. - */ - if (cinfo->dither_mode == JDITHER_FS) { - cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) - ((j_common_ptr) cinfo, JPOOL_IMAGE, - (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); - /* Might as well create the error-limiting table too. */ - init_error_limit(cinfo); - } -} - -#endif /* QUANT_2PASS_SUPPORTED */ diff --git a/src/jpeg-8c/jutils.c b/src/jpeg-8c/jutils.c deleted file mode 100644 index 04351797..00000000 --- a/src/jpeg-8c/jutils.c +++ /dev/null @@ -1,231 +0,0 @@ -/* - * jutils.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * Modified 2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains tables and miscellaneous utility routines needed - * for both compression and decompression. - * Note we prefix all global names with "j" to minimize conflicts with - * a surrounding application. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* - * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element - * of a DCT block read in natural order (left to right, top to bottom). - */ - -#if 0 /* This table is not actually needed in v6a */ - -const int jpeg_zigzag_order[DCTSIZE2] = { - 0, 1, 5, 6, 14, 15, 27, 28, - 2, 4, 7, 13, 16, 26, 29, 42, - 3, 8, 12, 17, 25, 30, 41, 43, - 9, 11, 18, 24, 31, 40, 44, 53, - 10, 19, 23, 32, 39, 45, 52, 54, - 20, 22, 33, 38, 46, 51, 55, 60, - 21, 34, 37, 47, 50, 56, 59, 61, - 35, 36, 48, 49, 57, 58, 62, 63 -}; - -#endif - -/* - * jpeg_natural_order[i] is the natural-order position of the i'th element - * of zigzag order. - * - * When reading corrupted data, the Huffman decoders could attempt - * to reference an entry beyond the end of this array (if the decoded - * zero run length reaches past the end of the block). To prevent - * wild stores without adding an inner-loop test, we put some extra - * "63"s after the real entries. This will cause the extra coefficient - * to be stored in location 63 of the block, not somewhere random. - * The worst case would be a run-length of 15, which means we need 16 - * fake entries. - */ - -const int jpeg_natural_order[DCTSIZE2+16] = { - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 48, 41, 34, - 27, 20, 13, 6, 7, 14, 21, 28, - 35, 42, 49, 56, 57, 50, 43, 36, - 29, 22, 15, 23, 30, 37, 44, 51, - 58, 59, 52, 45, 38, 31, 39, 46, - 53, 60, 61, 54, 47, 55, 62, 63, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - -const int jpeg_natural_order7[7*7+16] = { - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 48, 41, 34, - 27, 20, 13, 6, 14, 21, 28, 35, - 42, 49, 50, 43, 36, 29, 22, 30, - 37, 44, 51, 52, 45, 38, 46, 53, - 54, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - -const int jpeg_natural_order6[6*6+16] = { - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 41, 34, 27, - 20, 13, 21, 28, 35, 42, 43, 36, - 29, 37, 44, 45, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - -const int jpeg_natural_order5[5*5+16] = { - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 12, - 19, 26, 33, 34, 27, 20, 28, 35, - 36, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - -const int jpeg_natural_order4[4*4+16] = { - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 25, 18, 11, 19, 26, 27, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - -const int jpeg_natural_order3[3*3+16] = { - 0, 1, 8, 16, 9, 2, 10, 17, - 18, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - -const int jpeg_natural_order2[2*2+16] = { - 0, 1, 8, 9, - 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ - 63, 63, 63, 63, 63, 63, 63, 63 -}; - - -/* - * Arithmetic utilities - */ - -GLOBAL(long) -jdiv_round_up (long a, long b) -/* Compute a/b rounded up to next integer, ie, ceil(a/b) */ -/* Assumes a >= 0, b > 0 */ -{ - return (a + b - 1L) / b; -} - - -GLOBAL(long) -jround_up (long a, long b) -/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ -/* Assumes a >= 0, b > 0 */ -{ - a += b - 1L; - return a - (a % b); -} - - -/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays - * and coefficient-block arrays. This won't work on 80x86 because the arrays - * are FAR and we're assuming a small-pointer memory model. However, some - * DOS compilers provide far-pointer versions of memcpy() and memset() even - * in the small-model libraries. These will be used if USE_FMEM is defined. - * Otherwise, the routines below do it the hard way. (The performance cost - * is not all that great, because these routines aren't very heavily used.) - */ - -#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */ -#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size) -#define FMEMZERO(target,size) MEMZERO(target,size) -#else /* 80x86 case, define if we can */ -#ifdef USE_FMEM -#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) -#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size)) -#endif -#endif - - -GLOBAL(void) -jcopy_sample_rows (JSAMPARRAY input_array, int source_row, - JSAMPARRAY output_array, int dest_row, - int num_rows, JDIMENSION num_cols) -/* Copy some rows of samples from one place to another. - * num_rows rows are copied from input_array[source_row++] - * to output_array[dest_row++]; these areas may overlap for duplication. - * The source and destination arrays must be at least as wide as num_cols. - */ -{ - register JSAMPROW inptr, outptr; -#ifdef FMEMCOPY - register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE)); -#else - register JDIMENSION count; -#endif - register int row; - - input_array += source_row; - output_array += dest_row; - - for (row = num_rows; row > 0; row--) { - inptr = *input_array++; - outptr = *output_array++; -#ifdef FMEMCOPY - FMEMCOPY(outptr, inptr, count); -#else - for (count = num_cols; count > 0; count--) - *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */ -#endif - } -} - - -GLOBAL(void) -jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, - JDIMENSION num_blocks) -/* Copy a row of coefficient blocks from one place to another. */ -{ -#ifdef FMEMCOPY - FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); -#else - register JCOEFPTR inptr, outptr; - register long count; - - inptr = (JCOEFPTR) input_row; - outptr = (JCOEFPTR) output_row; - for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { - *outptr++ = *inptr++; - } -#endif -} - - -GLOBAL(void) -jzero_far (void FAR * target, size_t bytestozero) -/* Zero out a chunk of FAR memory. */ -/* This might be sample-array data, block-array data, or alloc_large data. */ -{ -#ifdef FMEMZERO - FMEMZERO(target, bytestozero); -#else - register char FAR * ptr = (char FAR *) target; - register size_t count; - - for (count = bytestozero; count > 0; count--) { - *ptr++ = 0; - } -#endif -} diff --git a/src/jpeg-8c/jversion.h b/src/jpeg-8c/jversion.h deleted file mode 100644 index e868538c..00000000 --- a/src/jpeg-8c/jversion.h +++ /dev/null @@ -1,14 +0,0 @@ -/* - * jversion.h - * - * Copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains software version identification. - */ - - -#define JVERSION "8c 16-Jan-2011" - -#define JCOPYRIGHT "Copyright (C) 2011, Thomas G. Lane, Guido Vollbeding" |