summaryrefslogtreecommitdiff
path: root/src/jpeg-8c
diff options
context:
space:
mode:
Diffstat (limited to 'src/jpeg-8c')
-rw-r--r--src/jpeg-8c/README326
-rw-r--r--src/jpeg-8c/ioquake3-changes.diff683
-rw-r--r--src/jpeg-8c/jaricom.c153
-rw-r--r--src/jpeg-8c/jcapimin.c288
-rw-r--r--src/jpeg-8c/jcapistd.c161
-rw-r--r--src/jpeg-8c/jcarith.c934
-rw-r--r--src/jpeg-8c/jccoefct.c453
-rw-r--r--src/jpeg-8c/jccolor.c459
-rw-r--r--src/jpeg-8c/jcdctmgr.c482
-rw-r--r--src/jpeg-8c/jchuff.c1576
-rw-r--r--src/jpeg-8c/jcinit.c65
-rw-r--r--src/jpeg-8c/jcmainct.c293
-rw-r--r--src/jpeg-8c/jcmarker.c682
-rw-r--r--src/jpeg-8c/jcmaster.c858
-rw-r--r--src/jpeg-8c/jcomapi.c106
-rw-r--r--src/jpeg-8c/jconfig.h60
-rw-r--r--src/jpeg-8c/jcparam.c632
-rw-r--r--src/jpeg-8c/jcprepct.c358
-rw-r--r--src/jpeg-8c/jcsample.c545
-rw-r--r--src/jpeg-8c/jctrans.c382
-rw-r--r--src/jpeg-8c/jdapimin.c396
-rw-r--r--src/jpeg-8c/jdapistd.c275
-rw-r--r--src/jpeg-8c/jdarith.c772
-rw-r--r--src/jpeg-8c/jdatadst.c267
-rw-r--r--src/jpeg-8c/jdatasrc.c274
-rw-r--r--src/jpeg-8c/jdcoefct.c736
-rw-r--r--src/jpeg-8c/jdcolor.c396
-rw-r--r--src/jpeg-8c/jdct.h393
-rw-r--r--src/jpeg-8c/jddctmgr.c384
-rw-r--r--src/jpeg-8c/jdhuff.c1541
-rw-r--r--src/jpeg-8c/jdinput.c661
-rw-r--r--src/jpeg-8c/jdmainct.c512
-rw-r--r--src/jpeg-8c/jdmarker.c1406
-rw-r--r--src/jpeg-8c/jdmaster.c533
-rw-r--r--src/jpeg-8c/jdmerge.c400
-rw-r--r--src/jpeg-8c/jdpostct.c290
-rw-r--r--src/jpeg-8c/jdsample.c361
-rw-r--r--src/jpeg-8c/jdtrans.c140
-rw-r--r--src/jpeg-8c/jerror.c254
-rw-r--r--src/jpeg-8c/jerror.h304
-rw-r--r--src/jpeg-8c/jfdctflt.c174
-rw-r--r--src/jpeg-8c/jfdctfst.c230
-rw-r--r--src/jpeg-8c/jfdctint.c4348
-rw-r--r--src/jpeg-8c/jidctflt.c235
-rw-r--r--src/jpeg-8c/jidctfst.c368
-rw-r--r--src/jpeg-8c/jidctint.c5137
-rw-r--r--src/jpeg-8c/jinclude.h91
-rw-r--r--src/jpeg-8c/jmemmgr.c1118
-rw-r--r--src/jpeg-8c/jmemnobs.c109
-rw-r--r--src/jpeg-8c/jmemsys.h198
-rw-r--r--src/jpeg-8c/jmorecfg.h371
-rw-r--r--src/jpeg-8c/jpegint.h407
-rw-r--r--src/jpeg-8c/jpeglib.h1160
-rw-r--r--src/jpeg-8c/jquant1.c856
-rw-r--r--src/jpeg-8c/jquant2.c1310
-rw-r--r--src/jpeg-8c/jutils.c231
-rw-r--r--src/jpeg-8c/jversion.h14
57 files changed, 0 insertions, 36148 deletions
diff --git a/src/jpeg-8c/README b/src/jpeg-8c/README
deleted file mode 100644
index 451265d7..00000000
--- a/src/jpeg-8c/README
+++ /dev/null
@@ -1,326 +0,0 @@
-The Independent JPEG Group's JPEG software
-==========================================
-
-README for release 8c of 16-Jan-2011
-====================================
-
-This distribution contains the eighth public release of the Independent JPEG
-Group's free JPEG software. You are welcome to redistribute this software and
-to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
-
-This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
-Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
-Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
-and other members of the Independent JPEG Group.
-
-IJG is not affiliated with the official ISO JPEG standards committee.
-
-
-DOCUMENTATION ROADMAP
-=====================
-
-This file contains the following sections:
-
-OVERVIEW General description of JPEG and the IJG software.
-LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
-REFERENCES Where to learn more about JPEG.
-ARCHIVE LOCATIONS Where to find newer versions of this software.
-ACKNOWLEDGMENTS Special thanks.
-FILE FORMAT WARS Software *not* to get.
-TO DO Plans for future IJG releases.
-
-Other documentation files in the distribution are:
-
-User documentation:
- install.txt How to configure and install the IJG software.
- usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
- rdjpgcom, and wrjpgcom.
- *.1 Unix-style man pages for programs (same info as usage.txt).
- wizard.txt Advanced usage instructions for JPEG wizards only.
- change.log Version-to-version change highlights.
-Programmer and internal documentation:
- libjpeg.txt How to use the JPEG library in your own programs.
- example.c Sample code for calling the JPEG library.
- structure.txt Overview of the JPEG library's internal structure.
- filelist.txt Road map of IJG files.
- coderules.txt Coding style rules --- please read if you contribute code.
-
-Please read at least the files install.txt and usage.txt. Some information
-can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
-ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
-
-If you want to understand how the JPEG code works, we suggest reading one or
-more of the REFERENCES, then looking at the documentation files (in roughly
-the order listed) before diving into the code.
-
-
-OVERVIEW
-========
-
-This package contains C software to implement JPEG image encoding, decoding,
-and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
-method for full-color and gray-scale images.
-
-This software implements JPEG baseline, extended-sequential, and progressive
-compression processes. Provision is made for supporting all variants of these
-processes, although some uncommon parameter settings aren't implemented yet.
-We have made no provision for supporting the hierarchical or lossless
-processes defined in the standard.
-
-We provide a set of library routines for reading and writing JPEG image files,
-plus two sample applications "cjpeg" and "djpeg", which use the library to
-perform conversion between JPEG and some other popular image file formats.
-The library is intended to be reused in other applications.
-
-In order to support file conversion and viewing software, we have included
-considerable functionality beyond the bare JPEG coding/decoding capability;
-for example, the color quantization modules are not strictly part of JPEG
-decoding, but they are essential for output to colormapped file formats or
-colormapped displays. These extra functions can be compiled out of the
-library if not required for a particular application.
-
-We have also included "jpegtran", a utility for lossless transcoding between
-different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
-applications for inserting and extracting textual comments in JFIF files.
-
-The emphasis in designing this software has been on achieving portability and
-flexibility, while also making it fast enough to be useful. In particular,
-the software is not intended to be read as a tutorial on JPEG. (See the
-REFERENCES section for introductory material.) Rather, it is intended to
-be reliable, portable, industrial-strength code. We do not claim to have
-achieved that goal in every aspect of the software, but we strive for it.
-
-We welcome the use of this software as a component of commercial products.
-No royalty is required, but we do ask for an acknowledgement in product
-documentation, as described under LEGAL ISSUES.
-
-
-LEGAL ISSUES
-============
-
-In plain English:
-
-1. We don't promise that this software works. (But if you find any bugs,
- please let us know!)
-2. You can use this software for whatever you want. You don't have to pay us.
-3. You may not pretend that you wrote this software. If you use it in a
- program, you must acknowledge somewhere in your documentation that
- you've used the IJG code.
-
-In legalese:
-
-The authors make NO WARRANTY or representation, either express or implied,
-with respect to this software, its quality, accuracy, merchantability, or
-fitness for a particular purpose. This software is provided "AS IS", and you,
-its user, assume the entire risk as to its quality and accuracy.
-
-This software is copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding.
-All Rights Reserved except as specified below.
-
-Permission is hereby granted to use, copy, modify, and distribute this
-software (or portions thereof) for any purpose, without fee, subject to these
-conditions:
-(1) If any part of the source code for this software is distributed, then this
-README file must be included, with this copyright and no-warranty notice
-unaltered; and any additions, deletions, or changes to the original files
-must be clearly indicated in accompanying documentation.
-(2) If only executable code is distributed, then the accompanying
-documentation must state that "this software is based in part on the work of
-the Independent JPEG Group".
-(3) Permission for use of this software is granted only if the user accepts
-full responsibility for any undesirable consequences; the authors accept
-NO LIABILITY for damages of any kind.
-
-These conditions apply to any software derived from or based on the IJG code,
-not just to the unmodified library. If you use our work, you ought to
-acknowledge us.
-
-Permission is NOT granted for the use of any IJG author's name or company name
-in advertising or publicity relating to this software or products derived from
-it. This software may be referred to only as "the Independent JPEG Group's
-software".
-
-We specifically permit and encourage the use of this software as the basis of
-commercial products, provided that all warranty or liability claims are
-assumed by the product vendor.
-
-
-ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
-sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
-ansi2knr.c is NOT covered by the above copyright and conditions, but instead
-by the usual distribution terms of the Free Software Foundation; principally,
-that you must include source code if you redistribute it. (See the file
-ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part
-of any program generated from the IJG code, this does not limit you more than
-the foregoing paragraphs do.
-
-The Unix configuration script "configure" was produced with GNU Autoconf.
-It is copyright by the Free Software Foundation but is freely distributable.
-The same holds for its supporting scripts (config.guess, config.sub,
-ltmain.sh). Another support script, install-sh, is copyright by X Consortium
-but is also freely distributable.
-
-The IJG distribution formerly included code to read and write GIF files.
-To avoid entanglement with the Unisys LZW patent, GIF reading support has
-been removed altogether, and the GIF writer has been simplified to produce
-"uncompressed GIFs". This technique does not use the LZW algorithm; the
-resulting GIF files are larger than usual, but are readable by all standard
-GIF decoders.
-
-We are required to state that
- "The Graphics Interchange Format(c) is the Copyright property of
- CompuServe Incorporated. GIF(sm) is a Service Mark property of
- CompuServe Incorporated."
-
-
-REFERENCES
-==========
-
-We recommend reading one or more of these references before trying to
-understand the innards of the JPEG software.
-
-The best short technical introduction to the JPEG compression algorithm is
- Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
- Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
-(Adjacent articles in that issue discuss MPEG motion picture compression,
-applications of JPEG, and related topics.) If you don't have the CACM issue
-handy, a PostScript file containing a revised version of Wallace's article is
-available at http://www.ijg.org/files/wallace.ps.gz. The file (actually
-a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
-omits the sample images that appeared in CACM, but it includes corrections
-and some added material. Note: the Wallace article is copyright ACM and IEEE,
-and it may not be used for commercial purposes.
-
-A somewhat less technical, more leisurely introduction to JPEG can be found in
-"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
-M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
-good explanations and example C code for a multitude of compression methods
-including JPEG. It is an excellent source if you are comfortable reading C
-code but don't know much about data compression in general. The book's JPEG
-sample code is far from industrial-strength, but when you are ready to look
-at a full implementation, you've got one here...
-
-The best currently available description of JPEG is the textbook "JPEG Still
-Image Data Compression Standard" by William B. Pennebaker and Joan L.
-Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
-Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
-standards (DIS 10918-1 and draft DIS 10918-2).
-Although this is by far the most detailed and comprehensive exposition of
-JPEG publicly available, we point out that it is still missing an explanation
-of the most essential properties and algorithms of the underlying DCT
-technology.
-If you think that you know about DCT-based JPEG after reading this book,
-then you are in delusion. The real fundamentals and corresponding potential
-of DCT-based JPEG are not publicly known so far, and that is the reason for
-all the mistaken developments taking place in the image coding domain.
-
-The original JPEG standard is divided into two parts, Part 1 being the actual
-specification, while Part 2 covers compliance testing methods. Part 1 is
-titled "Digital Compression and Coding of Continuous-tone Still Images,
-Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
-10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
-Continuous-tone Still Images, Part 2: Compliance testing" and has document
-numbers ISO/IEC IS 10918-2, ITU-T T.83.
-IJG JPEG 8 introduces an implementation of the JPEG SmartScale extension
-which is specified in a contributed document at ITU and ISO with title "ITU-T
-JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced Image Coding", April
-2006, Geneva, Switzerland. The latest version of the document is Revision 3.
-
-The JPEG standard does not specify all details of an interchangeable file
-format. For the omitted details we follow the "JFIF" conventions, revision
-1.02. JFIF 1.02 has been adopted as an Ecma International Technical Report
-and thus received a formal publication status. It is available as a free
-download in PDF format from
-http://www.ecma-international.org/publications/techreports/E-TR-098.htm.
-A PostScript version of the JFIF document is available at
-http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at
-http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures.
-
-The TIFF 6.0 file format specification can be obtained by FTP from
-ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
-found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
-IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
-Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
-(Compression tag 7). Copies of this Note can be obtained from
-http://www.ijg.org/files/. It is expected that the next revision
-of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
-Although IJG's own code does not support TIFF/JPEG, the free libtiff library
-uses our library to implement TIFF/JPEG per the Note.
-
-
-ARCHIVE LOCATIONS
-=================
-
-The "official" archive site for this software is www.ijg.org.
-The most recent released version can always be found there in
-directory "files". This particular version will be archived as
-http://www.ijg.org/files/jpegsrc.v8c.tar.gz, and in Windows-compatible
-"zip" archive format as http://www.ijg.org/files/jpegsr8c.zip.
-
-The JPEG FAQ (Frequently Asked Questions) article is a source of some
-general information about JPEG.
-It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
-and other news.answers archive sites, including the official news.answers
-archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
-If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
-with body
- send usenet/news.answers/jpeg-faq/part1
- send usenet/news.answers/jpeg-faq/part2
-
-
-ACKNOWLEDGMENTS
-===============
-
-Thank to Juergen Bruder for providing me with a copy of the common DCT
-algorithm article, only to find out that I had come to the same result
-in a more direct and comprehensible way with a more generative approach.
-
-Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the
-ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.
-
-Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
-Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
-
-Thank to John Korejwa and Massimo Ballerini for inviting me to
-fruitful consultations in Boston, MA and Milan, Italy.
-
-Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther
-Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel
-for corresponding business development.
-
-Thank to Nico Zschach and Dirk Stelling of the technical support team
-at the Digital Images company in Halle for providing me with extra
-equipment for configuration tests.
-
-Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful
-communication about JPEG configuration in Sigma Photo Pro software.
-
-Thank to Andrew Finkenstadt for hosting the ijg.org site.
-
-Last but not least special thank to Thomas G. Lane for the original
-design and development of this singular software package.
-
-
-FILE FORMAT WARS
-================
-
-The ISO JPEG standards committee actually promotes different formats like
-"JPEG 2000" or "JPEG XR" which are incompatible with original DCT-based
-JPEG and which are based on faulty technologies. IJG therefore does not
-and will not support such momentary mistakes (see REFERENCES).
-We have little or no sympathy for the promotion of these formats. Indeed,
-one of the original reasons for developing this free software was to help
-force convergence on common, interoperable format standards for JPEG files.
-Don't use an incompatible file format!
-(In any case, our decoder will remain capable of reading existing JPEG
-image files indefinitely.)
-
-
-TO DO
-=====
-
-Version 8 is the first release of a new generation JPEG standard
-to overcome the limitations of the original JPEG specification.
-More features are being prepared for coming releases...
-
-Please send bug reports, offers of help, etc. to jpeg-info@uc.ag.
diff --git a/src/jpeg-8c/ioquake3-changes.diff b/src/jpeg-8c/ioquake3-changes.diff
deleted file mode 100644
index f3a89f1f..00000000
--- a/src/jpeg-8c/ioquake3-changes.diff
+++ /dev/null
@@ -1,683 +0,0 @@
-As required by the libjpeg license, additions, deletions and changes to
-the original files are listed here. Files noted as "Only in jpeg-8c"
-were deleted; files noted as "Only in ioquake3/code/jpeg-8c" were added.
-
-To regenerate this file, replace everything after "------" with the output
-of this command: diff -ru jpeg-8c ioquake3/code/jpeg-8c
-
-------
-
-Only in jpeg-8c: aclocal.m4
-Only in jpeg-8c: ansi2knr.1
-Only in jpeg-8c: ansi2knr.c
-Only in jpeg-8c: cderror.h
-Only in jpeg-8c: cdjpeg.c
-Only in jpeg-8c: cdjpeg.h
-Only in jpeg-8c: change.log
-Only in jpeg-8c: cjpeg.1
-Only in jpeg-8c: cjpeg.c
-Only in jpeg-8c: ckconfig.c
-Only in jpeg-8c: coderules.txt
-Only in jpeg-8c: config.guess
-Only in jpeg-8c: config.sub
-Only in jpeg-8c: configure
-Only in jpeg-8c: configure.ac
-Only in jpeg-8c: depcomp
-Only in jpeg-8c: djpeg.1
-Only in jpeg-8c: djpeg.c
-Only in jpeg-8c: example.c
-Only in jpeg-8c: filelist.txt
-Only in jpeg-8c: install-sh
-Only in jpeg-8c: install.txt
-diff -ru jpeg-8c/jcmainct.c ioquake3/code/jpeg-8c/jcmainct.c
---- jpeg-8c/jcmainct.c 2003-10-19 18:55:34.000000000 +0100
-+++ ioquake3/code/jpeg-8c/jcmainct.c 2011-11-25 11:24:52.000000000 +0000
-@@ -68,32 +68,32 @@
- METHODDEF(void)
- start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- /* Do nothing in raw-data mode. */
- if (cinfo->raw_data_in)
- return;
-
-- main->cur_iMCU_row = 0; /* initialize counters */
-- main->rowgroup_ctr = 0;
-- main->suspended = FALSE;
-- main->pass_mode = pass_mode; /* save mode for use by process_data */
-+ main_ptr->cur_iMCU_row = 0; /* initialize counters */
-+ main_ptr->rowgroup_ctr = 0;
-+ main_ptr->suspended = FALSE;
-+ main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- #ifdef FULL_MAIN_BUFFER_SUPPORTED
-- if (main->whole_image[0] != NULL)
-+ if (main_ptr->whole_image[0] != NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- #endif
-- main->pub.process_data = process_data_simple_main;
-+ main_ptr->pub.process_data = process_data_simple_main;
- break;
- #ifdef FULL_MAIN_BUFFER_SUPPORTED
- case JBUF_SAVE_SOURCE:
- case JBUF_CRANK_DEST:
- case JBUF_SAVE_AND_PASS:
-- if (main->whole_image[0] == NULL)
-+ if (main_ptr->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-- main->pub.process_data = process_data_buffer_main;
-+ main_ptr->pub.process_data = process_data_buffer_main;
- break;
- #endif
- default:
-@@ -114,46 +114,46 @@
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail)
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
-- while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
-+ while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
- /* Read input data if we haven't filled the main buffer yet */
-- if (main->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
-+ if (main_ptr->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
- (*cinfo->prep->pre_process_data) (cinfo,
- input_buf, in_row_ctr, in_rows_avail,
-- main->buffer, &main->rowgroup_ctr,
-+ main_ptr->buffer, &main_ptr->rowgroup_ctr,
- (JDIMENSION) cinfo->min_DCT_v_scaled_size);
-
- /* If we don't have a full iMCU row buffered, return to application for
- * more data. Note that preprocessor will always pad to fill the iMCU row
- * at the bottom of the image.
- */
-- if (main->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
-+ if (main_ptr->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
- return;
-
- /* Send the completed row to the compressor */
-- if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
-+ if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
- /* If compressor did not consume the whole row, then we must need to
- * suspend processing and return to the application. In this situation
- * we pretend we didn't yet consume the last input row; otherwise, if
- * it happened to be the last row of the image, the application would
- * think we were done.
- */
-- if (! main->suspended) {
-+ if (! main_ptr->suspended) {
- (*in_row_ctr)--;
-- main->suspended = TRUE;
-+ main_ptr->suspended = TRUE;
- }
- return;
- }
- /* We did finish the row. Undo our little suspension hack if a previous
- * call suspended; then mark the main buffer empty.
- */
-- if (main->suspended) {
-+ if (main_ptr->suspended) {
- (*in_row_ctr)++;
-- main->suspended = FALSE;
-+ main_ptr->suspended = FALSE;
- }
-- main->rowgroup_ctr = 0;
-- main->cur_iMCU_row++;
-+ main_ptr->rowgroup_ctr = 0;
-+ main_ptr->cur_iMCU_row++;
- }
- }
-
-@@ -170,25 +170,25 @@
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail)
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci;
- jpeg_component_info *compptr;
-- boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
-+ boolean writing = (main_ptr->pass_mode != JBUF_CRANK_DEST);
-
-- while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
-+ while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
- /* Realign the virtual buffers if at the start of an iMCU row. */
-- if (main->rowgroup_ctr == 0) {
-+ if (main_ptr->rowgroup_ctr == 0) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
-- main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
-- ((j_common_ptr) cinfo, main->whole_image[ci],
-- main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
-+ main_ptr->buffer[ci] = (*cinfo->mem->access_virt_sarray)
-+ ((j_common_ptr) cinfo, main_ptr->whole_image[ci],
-+ main_ptr->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
- (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
- }
- /* In a read pass, pretend we just read some source data. */
- if (! writing) {
- *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
-- main->rowgroup_ctr = DCTSIZE;
-+ main_ptr->rowgroup_ctr = DCTSIZE;
- }
- }
-
-@@ -197,40 +197,40 @@
- if (writing) {
- (*cinfo->prep->pre_process_data) (cinfo,
- input_buf, in_row_ctr, in_rows_avail,
-- main->buffer, &main->rowgroup_ctr,
-+ main_ptr->buffer, &main_ptr->rowgroup_ctr,
- (JDIMENSION) DCTSIZE);
- /* Return to application if we need more data to fill the iMCU row. */
-- if (main->rowgroup_ctr < DCTSIZE)
-+ if (main_ptr->rowgroup_ctr < DCTSIZE)
- return;
- }
-
- /* Emit data, unless this is a sink-only pass. */
-- if (main->pass_mode != JBUF_SAVE_SOURCE) {
-- if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
-+ if (main_ptr->pass_mode != JBUF_SAVE_SOURCE) {
-+ if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
- /* If compressor did not consume the whole row, then we must need to
- * suspend processing and return to the application. In this situation
- * we pretend we didn't yet consume the last input row; otherwise, if
- * it happened to be the last row of the image, the application would
- * think we were done.
- */
-- if (! main->suspended) {
-+ if (! main_ptr->suspended) {
- (*in_row_ctr)--;
-- main->suspended = TRUE;
-+ main_ptr->suspended = TRUE;
- }
- return;
- }
- /* We did finish the row. Undo our little suspension hack if a previous
- * call suspended; then mark the main buffer empty.
- */
-- if (main->suspended) {
-+ if (main_ptr->suspended) {
- (*in_row_ctr)++;
-- main->suspended = FALSE;
-+ main_ptr->suspended = FALSE;
- }
- }
-
- /* If get here, we are done with this iMCU row. Mark buffer empty. */
-- main->rowgroup_ctr = 0;
-- main->cur_iMCU_row++;
-+ main_ptr->rowgroup_ctr = 0;
-+ main_ptr->cur_iMCU_row++;
- }
- }
-
-@@ -244,15 +244,15 @@
- GLOBAL(void)
- jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
- {
-- my_main_ptr main;
-+ my_main_ptr main_ptr;
- int ci;
- jpeg_component_info *compptr;
-
-- main = (my_main_ptr)
-+ main_ptr = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
-- cinfo->main = (struct jpeg_c_main_controller *) main;
-- main->pub.start_pass = start_pass_main;
-+ cinfo->main = (struct jpeg_c_main_controller *) main_ptr;
-+ main_ptr->pub.start_pass = start_pass_main;
-
- /* We don't need to create a buffer in raw-data mode. */
- if (cinfo->raw_data_in)
-@@ -267,7 +267,7 @@
- /* Note we pad the bottom to a multiple of the iMCU height */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
-- main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
-+ main_ptr->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
-@@ -279,12 +279,12 @@
- #endif
- } else {
- #ifdef FULL_MAIN_BUFFER_SUPPORTED
-- main->whole_image[0] = NULL; /* flag for no virtual arrays */
-+ main_ptr->whole_image[0] = NULL; /* flag for no virtual arrays */
- #endif
- /* Allocate a strip buffer for each component */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
-- main->buffer[ci] = (*cinfo->mem->alloc_sarray)
-+ main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
-Only in jpeg-8c: jconfig.bcc
-Only in jpeg-8c: jconfig.cfg
-Only in jpeg-8c: jconfig.dj
-Only in ioquake3/code/jpeg-8c: jconfig.h
-Only in jpeg-8c: jconfig.mac
-Only in jpeg-8c: jconfig.manx
-Only in jpeg-8c: jconfig.mc6
-Only in jpeg-8c: jconfig.sas
-Only in jpeg-8c: jconfig.st
-Only in jpeg-8c: jconfig.txt
-Only in jpeg-8c: jconfig.vc
-Only in jpeg-8c: jconfig.vms
-Only in jpeg-8c: jconfig.wat
-diff -ru jpeg-8c/jdmainct.c ioquake3/code/jpeg-8c/jdmainct.c
---- jpeg-8c/jdmainct.c 2002-02-24 19:07:28.000000000 +0000
-+++ ioquake3/code/jpeg-8c/jdmainct.c 2011-11-25 11:24:52.000000000 +0000
-@@ -159,7 +159,7 @@
- * This is done only once, not once per pass.
- */
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, rgroup;
- int M = cinfo->min_DCT_v_scaled_size;
- jpeg_component_info *compptr;
-@@ -168,10 +168,10 @@
- /* Get top-level space for component array pointers.
- * We alloc both arrays with one call to save a few cycles.
- */
-- main->xbuffer[0] = (JSAMPIMAGE)
-+ main_ptr->xbuffer[0] = (JSAMPIMAGE)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
-- main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
-+ main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
-@@ -184,9 +184,9 @@
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
- xbuf += rgroup; /* want one row group at negative offsets */
-- main->xbuffer[0][ci] = xbuf;
-+ main_ptr->xbuffer[0][ci] = xbuf;
- xbuf += rgroup * (M + 4);
-- main->xbuffer[1][ci] = xbuf;
-+ main_ptr->xbuffer[1][ci] = xbuf;
- }
- }
-
-@@ -194,13 +194,13 @@
- LOCAL(void)
- make_funny_pointers (j_decompress_ptr cinfo)
- /* Create the funny pointer lists discussed in the comments above.
-- * The actual workspace is already allocated (in main->buffer),
-+ * The actual workspace is already allocated (in main_ptr->buffer),
- * and the space for the pointer lists is allocated too.
- * This routine just fills in the curiously ordered lists.
- * This will be repeated at the beginning of each pass.
- */
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_v_scaled_size;
- jpeg_component_info *compptr;
-@@ -210,10 +210,10 @@
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
-- xbuf0 = main->xbuffer[0][ci];
-- xbuf1 = main->xbuffer[1][ci];
-+ xbuf0 = main_ptr->xbuffer[0][ci];
-+ xbuf1 = main_ptr->xbuffer[1][ci];
- /* First copy the workspace pointers as-is */
-- buf = main->buffer[ci];
-+ buf = main_ptr->buffer[ci];
- for (i = 0; i < rgroup * (M + 2); i++) {
- xbuf0[i] = xbuf1[i] = buf[i];
- }
-@@ -240,7 +240,7 @@
- * This changes the pointer list state from top-of-image to the normal state.
- */
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_v_scaled_size;
- jpeg_component_info *compptr;
-@@ -250,8 +250,8 @@
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
-- xbuf0 = main->xbuffer[0][ci];
-- xbuf1 = main->xbuffer[1][ci];
-+ xbuf0 = main_ptr->xbuffer[0][ci];
-+ xbuf1 = main_ptr->xbuffer[1][ci];
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
- xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
-@@ -269,7 +269,7 @@
- * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
- */
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, i, rgroup, iMCUheight, rows_left;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-@@ -286,12 +286,12 @@
- * so we need only do it once.
- */
- if (ci == 0) {
-- main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
-+ main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
- }
- /* Duplicate the last real sample row rgroup*2 times; this pads out the
- * last partial rowgroup and ensures at least one full rowgroup of context.
- */
-- xbuf = main->xbuffer[main->whichptr][ci];
-+ xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci];
- for (i = 0; i < rgroup * 2; i++) {
- xbuf[rows_left + i] = xbuf[rows_left-1];
- }
-@@ -306,27 +306,27 @@
- METHODDEF(void)
- start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->upsample->need_context_rows) {
-- main->pub.process_data = process_data_context_main;
-+ main_ptr->pub.process_data = process_data_context_main;
- make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
-- main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
-- main->context_state = CTX_PREPARE_FOR_IMCU;
-- main->iMCU_row_ctr = 0;
-+ main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
-+ main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
-+ main_ptr->iMCU_row_ctr = 0;
- } else {
- /* Simple case with no context needed */
-- main->pub.process_data = process_data_simple_main;
-+ main_ptr->pub.process_data = process_data_simple_main;
- }
-- main->buffer_full = FALSE; /* Mark buffer empty */
-- main->rowgroup_ctr = 0;
-+ main_ptr->buffer_full = FALSE; /* Mark buffer empty */
-+ main_ptr->rowgroup_ctr = 0;
- break;
- #ifdef QUANT_2PASS_SUPPORTED
- case JBUF_CRANK_DEST:
- /* For last pass of 2-pass quantization, just crank the postprocessor */
-- main->pub.process_data = process_data_crank_post;
-+ main_ptr->pub.process_data = process_data_crank_post;
- break;
- #endif
- default:
-@@ -346,14 +346,14 @@
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- JDIMENSION rowgroups_avail;
-
- /* Read input data if we haven't filled the main buffer yet */
-- if (! main->buffer_full) {
-- if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
-+ if (! main_ptr->buffer_full) {
-+ if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer))
- return; /* suspension forced, can do nothing more */
-- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
-+ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- }
-
- /* There are always min_DCT_scaled_size row groups in an iMCU row. */
-@@ -364,14 +364,14 @@
- */
-
- /* Feed the postprocessor */
-- (*cinfo->post->post_process_data) (cinfo, main->buffer,
-- &main->rowgroup_ctr, rowgroups_avail,
-+ (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer,
-+ &main_ptr->rowgroup_ctr, rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
-
- /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
-- if (main->rowgroup_ctr >= rowgroups_avail) {
-- main->buffer_full = FALSE;
-- main->rowgroup_ctr = 0;
-+ if (main_ptr->rowgroup_ctr >= rowgroups_avail) {
-+ main_ptr->buffer_full = FALSE;
-+ main_ptr->rowgroup_ctr = 0;
- }
- }
-
-@@ -386,15 +386,15 @@
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
- {
-- my_main_ptr main = (my_main_ptr) cinfo->main;
-+ my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- /* Read input data if we haven't filled the main buffer yet */
-- if (! main->buffer_full) {
-+ if (! main_ptr->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo,
-- main->xbuffer[main->whichptr]))
-+ main_ptr->xbuffer[main_ptr->whichptr]))
- return; /* suspension forced, can do nothing more */
-- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
-- main->iMCU_row_ctr++; /* count rows received */
-+ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
-+ main_ptr->iMCU_row_ctr++; /* count rows received */
- }
-
- /* Postprocessor typically will not swallow all the input data it is handed
-@@ -402,47 +402,47 @@
- * to exit and restart. This switch lets us keep track of how far we got.
- * Note that each case falls through to the next on successful completion.
- */
-- switch (main->context_state) {
-+ switch (main_ptr->context_state) {
- case CTX_POSTPONED_ROW:
- /* Call postprocessor using previously set pointers for postponed row */
-- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
-- &main->rowgroup_ctr, main->rowgroups_avail,
-+ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
-+ &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
-- if (main->rowgroup_ctr < main->rowgroups_avail)
-+ if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
- return; /* Need to suspend */
-- main->context_state = CTX_PREPARE_FOR_IMCU;
-+ main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
- if (*out_row_ctr >= out_rows_avail)
- return; /* Postprocessor exactly filled output buf */
- /*FALLTHROUGH*/
- case CTX_PREPARE_FOR_IMCU:
- /* Prepare to process first M-1 row groups of this iMCU row */
-- main->rowgroup_ctr = 0;
-- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
-+ main_ptr->rowgroup_ctr = 0;
-+ main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
- /* Check for bottom of image: if so, tweak pointers to "duplicate"
- * the last sample row, and adjust rowgroups_avail to ignore padding rows.
- */
-- if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
-+ if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows)
- set_bottom_pointers(cinfo);
-- main->context_state = CTX_PROCESS_IMCU;
-+ main_ptr->context_state = CTX_PROCESS_IMCU;
- /*FALLTHROUGH*/
- case CTX_PROCESS_IMCU:
- /* Call postprocessor using previously set pointers */
-- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
-- &main->rowgroup_ctr, main->rowgroups_avail,
-+ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
-+ &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
-- if (main->rowgroup_ctr < main->rowgroups_avail)
-+ if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
- return; /* Need to suspend */
- /* After the first iMCU, change wraparound pointers to normal state */
-- if (main->iMCU_row_ctr == 1)
-+ if (main_ptr->iMCU_row_ctr == 1)
- set_wraparound_pointers(cinfo);
- /* Prepare to load new iMCU row using other xbuffer list */
-- main->whichptr ^= 1; /* 0=>1 or 1=>0 */
-- main->buffer_full = FALSE;
-+ main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */
-+ main_ptr->buffer_full = FALSE;
- /* Still need to process last row group of this iMCU row, */
- /* which is saved at index M+1 of the other xbuffer */
-- main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
-- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
-- main->context_state = CTX_POSTPONED_ROW;
-+ main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
-+ main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
-+ main_ptr->context_state = CTX_POSTPONED_ROW;
- }
- }
-
-@@ -475,15 +475,15 @@
- GLOBAL(void)
- jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
- {
-- my_main_ptr main;
-+ my_main_ptr main_ptr;
- int ci, rgroup, ngroups;
- jpeg_component_info *compptr;
-
-- main = (my_main_ptr)
-+ main_ptr = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
-- cinfo->main = (struct jpeg_d_main_controller *) main;
-- main->pub.start_pass = start_pass_main;
-+ cinfo->main = (struct jpeg_d_main_controller *) main_ptr;
-+ main_ptr->pub.start_pass = start_pass_main;
-
- if (need_full_buffer) /* shouldn't happen */
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-@@ -504,7 +504,7 @@
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
-- main->buffer[ci] = (*cinfo->mem->alloc_sarray)
-+ main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (JDIMENSION) (rgroup * ngroups));
-diff -ru jpeg-8c/jerror.c ioquake3/code/jpeg-8c/jerror.c
---- jpeg-8c/jerror.c 1998-02-21 19:03:16.000000000 +0000
-+++ ioquake3/code/jpeg-8c/jerror.c 2011-11-25 11:24:52.000000000 +0000
-@@ -24,6 +24,8 @@
- #include "jversion.h"
- #include "jerror.h"
-
-+#include <stdlib.h>
-+
- #ifdef USE_WINDOWS_MESSAGEBOX
- #include <windows.h>
- #endif
-Only in jpeg-8c: jmemansi.c
-Only in jpeg-8c: jmemdosa.asm
-Only in jpeg-8c: jmemdos.c
-Only in jpeg-8c: jmemmac.c
-Only in jpeg-8c: jmemname.c
-Only in jpeg-8c: jpegtran.1
-Only in jpeg-8c: jpegtran.c
-Only in jpeg-8c: libjpeg.map
-Only in jpeg-8c: libjpeg.txt
-Only in jpeg-8c: ltmain.sh
-Only in jpeg-8c: makcjpeg.st
-Only in jpeg-8c: makdjpeg.st
-Only in jpeg-8c: makeadsw.vc6
-Only in jpeg-8c: makeasln.v10
-Only in jpeg-8c: makecdep.vc6
-Only in jpeg-8c: makecdsp.vc6
-Only in jpeg-8c: makecfil.v10
-Only in jpeg-8c: makecmak.vc6
-Only in jpeg-8c: makecvcx.v10
-Only in jpeg-8c: makeddep.vc6
-Only in jpeg-8c: makeddsp.vc6
-Only in jpeg-8c: makedfil.v10
-Only in jpeg-8c: makedmak.vc6
-Only in jpeg-8c: makedvcx.v10
-Only in jpeg-8c: Makefile.am
-Only in jpeg-8c: makefile.ansi
-Only in jpeg-8c: makefile.bcc
-Only in jpeg-8c: makefile.dj
-Only in jpeg-8c: Makefile.in
-Only in jpeg-8c: makefile.manx
-Only in jpeg-8c: makefile.mc6
-Only in jpeg-8c: makefile.mms
-Only in jpeg-8c: makefile.sas
-Only in jpeg-8c: makefile.unix
-Only in jpeg-8c: makefile.vc
-Only in jpeg-8c: makefile.vms
-Only in jpeg-8c: makefile.wat
-Only in jpeg-8c: makejdep.vc6
-Only in jpeg-8c: makejdsp.vc6
-Only in jpeg-8c: makejdsw.vc6
-Only in jpeg-8c: makejfil.v10
-Only in jpeg-8c: makejmak.vc6
-Only in jpeg-8c: makejsln.v10
-Only in jpeg-8c: makejvcx.v10
-Only in jpeg-8c: makeproj.mac
-Only in jpeg-8c: makerdep.vc6
-Only in jpeg-8c: makerdsp.vc6
-Only in jpeg-8c: makerfil.v10
-Only in jpeg-8c: makermak.vc6
-Only in jpeg-8c: makervcx.v10
-Only in jpeg-8c: maketdep.vc6
-Only in jpeg-8c: maketdsp.vc6
-Only in jpeg-8c: maketfil.v10
-Only in jpeg-8c: maketmak.vc6
-Only in jpeg-8c: maketvcx.v10
-Only in jpeg-8c: makewdep.vc6
-Only in jpeg-8c: makewdsp.vc6
-Only in jpeg-8c: makewfil.v10
-Only in jpeg-8c: makewmak.vc6
-Only in jpeg-8c: makewvcx.v10
-Only in jpeg-8c: makljpeg.st
-Only in jpeg-8c: maktjpeg.st
-Only in jpeg-8c: makvms.opt
-Only in jpeg-8c: missing
-Only in jpeg-8c: rdbmp.c
-Only in jpeg-8c: rdcolmap.c
-Only in jpeg-8c: rdgif.c
-Only in jpeg-8c: rdjpgcom.1
-Only in jpeg-8c: rdjpgcom.c
-Only in jpeg-8c: rdppm.c
-Only in jpeg-8c: rdrle.c
-Only in jpeg-8c: rdswitch.c
-Only in jpeg-8c: rdtarga.c
-Only in jpeg-8c: structure.txt
-Only in jpeg-8c: testimg.bmp
-Only in jpeg-8c: testimg.jpg
-Only in jpeg-8c: testimgp.jpg
-Only in jpeg-8c: testimg.ppm
-Only in jpeg-8c: testorig.jpg
-Only in jpeg-8c: testprog.jpg
-Only in jpeg-8c: transupp.c
-Only in jpeg-8c: transupp.h
-Only in jpeg-8c: usage.txt
-Only in jpeg-8c: wizard.txt
-Only in jpeg-8c: wrbmp.c
-Only in jpeg-8c: wrgif.c
-Only in jpeg-8c: wrjpgcom.1
-Only in jpeg-8c: wrjpgcom.c
-Only in jpeg-8c: wrppm.c
-Only in jpeg-8c: wrrle.c
-Only in jpeg-8c: wrtarga.c
diff --git a/src/jpeg-8c/jaricom.c b/src/jpeg-8c/jaricom.c
deleted file mode 100644
index f43e2ea7..00000000
--- a/src/jpeg-8c/jaricom.c
+++ /dev/null
@@ -1,153 +0,0 @@
-/*
- * jaricom.c
- *
- * Developed 1997-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains probability estimation tables for common use in
- * arithmetic entropy encoding and decoding routines.
- *
- * This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
- * and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
- * (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-/* The following #define specifies the packing of the four components
- * into the compact INT32 representation.
- * Note that this formula must match the actual arithmetic encoder
- * and decoder implementation. The implementation has to be changed
- * if this formula is changed.
- * The current organization is leaned on Markus Kuhn's JBIG
- * implementation (jbig_tab.c).
- */
-
-#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
-
-const INT32 jpeg_aritab[113+1] = {
-/*
- * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
- */
- V( 0, 0x5a1d, 1, 1, 1 ),
- V( 1, 0x2586, 14, 2, 0 ),
- V( 2, 0x1114, 16, 3, 0 ),
- V( 3, 0x080b, 18, 4, 0 ),
- V( 4, 0x03d8, 20, 5, 0 ),
- V( 5, 0x01da, 23, 6, 0 ),
- V( 6, 0x00e5, 25, 7, 0 ),
- V( 7, 0x006f, 28, 8, 0 ),
- V( 8, 0x0036, 30, 9, 0 ),
- V( 9, 0x001a, 33, 10, 0 ),
- V( 10, 0x000d, 35, 11, 0 ),
- V( 11, 0x0006, 9, 12, 0 ),
- V( 12, 0x0003, 10, 13, 0 ),
- V( 13, 0x0001, 12, 13, 0 ),
- V( 14, 0x5a7f, 15, 15, 1 ),
- V( 15, 0x3f25, 36, 16, 0 ),
- V( 16, 0x2cf2, 38, 17, 0 ),
- V( 17, 0x207c, 39, 18, 0 ),
- V( 18, 0x17b9, 40, 19, 0 ),
- V( 19, 0x1182, 42, 20, 0 ),
- V( 20, 0x0cef, 43, 21, 0 ),
- V( 21, 0x09a1, 45, 22, 0 ),
- V( 22, 0x072f, 46, 23, 0 ),
- V( 23, 0x055c, 48, 24, 0 ),
- V( 24, 0x0406, 49, 25, 0 ),
- V( 25, 0x0303, 51, 26, 0 ),
- V( 26, 0x0240, 52, 27, 0 ),
- V( 27, 0x01b1, 54, 28, 0 ),
- V( 28, 0x0144, 56, 29, 0 ),
- V( 29, 0x00f5, 57, 30, 0 ),
- V( 30, 0x00b7, 59, 31, 0 ),
- V( 31, 0x008a, 60, 32, 0 ),
- V( 32, 0x0068, 62, 33, 0 ),
- V( 33, 0x004e, 63, 34, 0 ),
- V( 34, 0x003b, 32, 35, 0 ),
- V( 35, 0x002c, 33, 9, 0 ),
- V( 36, 0x5ae1, 37, 37, 1 ),
- V( 37, 0x484c, 64, 38, 0 ),
- V( 38, 0x3a0d, 65, 39, 0 ),
- V( 39, 0x2ef1, 67, 40, 0 ),
- V( 40, 0x261f, 68, 41, 0 ),
- V( 41, 0x1f33, 69, 42, 0 ),
- V( 42, 0x19a8, 70, 43, 0 ),
- V( 43, 0x1518, 72, 44, 0 ),
- V( 44, 0x1177, 73, 45, 0 ),
- V( 45, 0x0e74, 74, 46, 0 ),
- V( 46, 0x0bfb, 75, 47, 0 ),
- V( 47, 0x09f8, 77, 48, 0 ),
- V( 48, 0x0861, 78, 49, 0 ),
- V( 49, 0x0706, 79, 50, 0 ),
- V( 50, 0x05cd, 48, 51, 0 ),
- V( 51, 0x04de, 50, 52, 0 ),
- V( 52, 0x040f, 50, 53, 0 ),
- V( 53, 0x0363, 51, 54, 0 ),
- V( 54, 0x02d4, 52, 55, 0 ),
- V( 55, 0x025c, 53, 56, 0 ),
- V( 56, 0x01f8, 54, 57, 0 ),
- V( 57, 0x01a4, 55, 58, 0 ),
- V( 58, 0x0160, 56, 59, 0 ),
- V( 59, 0x0125, 57, 60, 0 ),
- V( 60, 0x00f6, 58, 61, 0 ),
- V( 61, 0x00cb, 59, 62, 0 ),
- V( 62, 0x00ab, 61, 63, 0 ),
- V( 63, 0x008f, 61, 32, 0 ),
- V( 64, 0x5b12, 65, 65, 1 ),
- V( 65, 0x4d04, 80, 66, 0 ),
- V( 66, 0x412c, 81, 67, 0 ),
- V( 67, 0x37d8, 82, 68, 0 ),
- V( 68, 0x2fe8, 83, 69, 0 ),
- V( 69, 0x293c, 84, 70, 0 ),
- V( 70, 0x2379, 86, 71, 0 ),
- V( 71, 0x1edf, 87, 72, 0 ),
- V( 72, 0x1aa9, 87, 73, 0 ),
- V( 73, 0x174e, 72, 74, 0 ),
- V( 74, 0x1424, 72, 75, 0 ),
- V( 75, 0x119c, 74, 76, 0 ),
- V( 76, 0x0f6b, 74, 77, 0 ),
- V( 77, 0x0d51, 75, 78, 0 ),
- V( 78, 0x0bb6, 77, 79, 0 ),
- V( 79, 0x0a40, 77, 48, 0 ),
- V( 80, 0x5832, 80, 81, 1 ),
- V( 81, 0x4d1c, 88, 82, 0 ),
- V( 82, 0x438e, 89, 83, 0 ),
- V( 83, 0x3bdd, 90, 84, 0 ),
- V( 84, 0x34ee, 91, 85, 0 ),
- V( 85, 0x2eae, 92, 86, 0 ),
- V( 86, 0x299a, 93, 87, 0 ),
- V( 87, 0x2516, 86, 71, 0 ),
- V( 88, 0x5570, 88, 89, 1 ),
- V( 89, 0x4ca9, 95, 90, 0 ),
- V( 90, 0x44d9, 96, 91, 0 ),
- V( 91, 0x3e22, 97, 92, 0 ),
- V( 92, 0x3824, 99, 93, 0 ),
- V( 93, 0x32b4, 99, 94, 0 ),
- V( 94, 0x2e17, 93, 86, 0 ),
- V( 95, 0x56a8, 95, 96, 1 ),
- V( 96, 0x4f46, 101, 97, 0 ),
- V( 97, 0x47e5, 102, 98, 0 ),
- V( 98, 0x41cf, 103, 99, 0 ),
- V( 99, 0x3c3d, 104, 100, 0 ),
- V( 100, 0x375e, 99, 93, 0 ),
- V( 101, 0x5231, 105, 102, 0 ),
- V( 102, 0x4c0f, 106, 103, 0 ),
- V( 103, 0x4639, 107, 104, 0 ),
- V( 104, 0x415e, 103, 99, 0 ),
- V( 105, 0x5627, 105, 106, 1 ),
- V( 106, 0x50e7, 108, 107, 0 ),
- V( 107, 0x4b85, 109, 103, 0 ),
- V( 108, 0x5597, 110, 109, 0 ),
- V( 109, 0x504f, 111, 107, 0 ),
- V( 110, 0x5a10, 110, 111, 1 ),
- V( 111, 0x5522, 112, 109, 0 ),
- V( 112, 0x59eb, 112, 111, 1 ),
-/*
- * This last entry is used for fixed probability estimate of 0.5
- * as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851.
- */
- V( 113, 0x5a1d, 113, 113, 0 )
-};
diff --git a/src/jpeg-8c/jcapimin.c b/src/jpeg-8c/jcapimin.c
deleted file mode 100644
index 639ce86f..00000000
--- a/src/jpeg-8c/jcapimin.c
+++ /dev/null
@@ -1,288 +0,0 @@
-/*
- * jcapimin.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * Modified 2003-2010 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the compression half
- * of the JPEG library. These are the "minimum" API routines that may be
- * needed in either the normal full-compression case or the transcoding-only
- * case.
- *
- * Most of the routines intended to be called directly by an application
- * are in this file or in jcapistd.c. But also see jcparam.c for
- * parameter-setup helper routines, jcomapi.c for routines shared by
- * compression and decompression, and jctrans.c for the transcoding case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Initialization of a JPEG compression object.
- * The error manager must already be set up (in case memory manager fails).
- */
-
-GLOBAL(void)
-jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
-{
- int i;
-
- /* Guard against version mismatches between library and caller. */
- cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
- if (version != JPEG_LIB_VERSION)
- ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
- if (structsize != SIZEOF(struct jpeg_compress_struct))
- ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
- (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
-
- /* For debugging purposes, we zero the whole master structure.
- * But the application has already set the err pointer, and may have set
- * client_data, so we have to save and restore those fields.
- * Note: if application hasn't set client_data, tools like Purify may
- * complain here.
- */
- {
- struct jpeg_error_mgr * err = cinfo->err;
- void * client_data = cinfo->client_data; /* ignore Purify complaint here */
- MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
- cinfo->err = err;
- cinfo->client_data = client_data;
- }
- cinfo->is_decompressor = FALSE;
-
- /* Initialize a memory manager instance for this object */
- jinit_memory_mgr((j_common_ptr) cinfo);
-
- /* Zero out pointers to permanent structures. */
- cinfo->progress = NULL;
- cinfo->dest = NULL;
-
- cinfo->comp_info = NULL;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- cinfo->quant_tbl_ptrs[i] = NULL;
- cinfo->q_scale_factor[i] = 100;
- }
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- cinfo->dc_huff_tbl_ptrs[i] = NULL;
- cinfo->ac_huff_tbl_ptrs[i] = NULL;
- }
-
- /* Must do it here for emit_dqt in case jpeg_write_tables is used */
- cinfo->block_size = DCTSIZE;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
-
- cinfo->script_space = NULL;
-
- cinfo->input_gamma = 1.0; /* in case application forgets */
-
- /* OK, I'm ready */
- cinfo->global_state = CSTATE_START;
-}
-
-
-/*
- * Destruction of a JPEG compression object
- */
-
-GLOBAL(void)
-jpeg_destroy_compress (j_compress_ptr cinfo)
-{
- jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Abort processing of a JPEG compression operation,
- * but don't destroy the object itself.
- */
-
-GLOBAL(void)
-jpeg_abort_compress (j_compress_ptr cinfo)
-{
- jpeg_abort((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Forcibly suppress or un-suppress all quantization and Huffman tables.
- * Marks all currently defined tables as already written (if suppress)
- * or not written (if !suppress). This will control whether they get emitted
- * by a subsequent jpeg_start_compress call.
- *
- * This routine is exported for use by applications that want to produce
- * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
- * since it is called by jpeg_start_compress, we put it here --- otherwise
- * jcparam.o would be linked whether the application used it or not.
- */
-
-GLOBAL(void)
-jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
-{
- int i;
- JQUANT_TBL * qtbl;
- JHUFF_TBL * htbl;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
- qtbl->sent_table = suppress;
- }
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
- htbl->sent_table = suppress;
- if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
- htbl->sent_table = suppress;
- }
-}
-
-
-/*
- * Finish JPEG compression.
- *
- * If a multipass operating mode was selected, this may do a great deal of
- * work including most of the actual output.
- */
-
-GLOBAL(void)
-jpeg_finish_compress (j_compress_ptr cinfo)
-{
- JDIMENSION iMCU_row;
-
- if (cinfo->global_state == CSTATE_SCANNING ||
- cinfo->global_state == CSTATE_RAW_OK) {
- /* Terminate first pass */
- if (cinfo->next_scanline < cinfo->image_height)
- ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
- (*cinfo->master->finish_pass) (cinfo);
- } else if (cinfo->global_state != CSTATE_WRCOEFS)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Perform any remaining passes */
- while (! cinfo->master->is_last_pass) {
- (*cinfo->master->prepare_for_pass) (cinfo);
- for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) iMCU_row;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
- /* We bypass the main controller and invoke coef controller directly;
- * all work is being done from the coefficient buffer.
- */
- if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
- }
- (*cinfo->master->finish_pass) (cinfo);
- }
- /* Write EOI, do final cleanup */
- (*cinfo->marker->write_file_trailer) (cinfo);
- (*cinfo->dest->term_destination) (cinfo);
- /* We can use jpeg_abort to release memory and reset global_state */
- jpeg_abort((j_common_ptr) cinfo);
-}
-
-
-/*
- * Write a special marker.
- * This is only recommended for writing COM or APPn markers.
- * Must be called after jpeg_start_compress() and before
- * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
- */
-
-GLOBAL(void)
-jpeg_write_marker (j_compress_ptr cinfo, int marker,
- const JOCTET *dataptr, unsigned int datalen)
-{
- JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
-
- if (cinfo->next_scanline != 0 ||
- (cinfo->global_state != CSTATE_SCANNING &&
- cinfo->global_state != CSTATE_RAW_OK &&
- cinfo->global_state != CSTATE_WRCOEFS))
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
- write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
- while (datalen--) {
- (*write_marker_byte) (cinfo, *dataptr);
- dataptr++;
- }
-}
-
-/* Same, but piecemeal. */
-
-GLOBAL(void)
-jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
-{
- if (cinfo->next_scanline != 0 ||
- (cinfo->global_state != CSTATE_SCANNING &&
- cinfo->global_state != CSTATE_RAW_OK &&
- cinfo->global_state != CSTATE_WRCOEFS))
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
-}
-
-GLOBAL(void)
-jpeg_write_m_byte (j_compress_ptr cinfo, int val)
-{
- (*cinfo->marker->write_marker_byte) (cinfo, val);
-}
-
-
-/*
- * Alternate compression function: just write an abbreviated table file.
- * Before calling this, all parameters and a data destination must be set up.
- *
- * To produce a pair of files containing abbreviated tables and abbreviated
- * image data, one would proceed as follows:
- *
- * initialize JPEG object
- * set JPEG parameters
- * set destination to table file
- * jpeg_write_tables(cinfo);
- * set destination to image file
- * jpeg_start_compress(cinfo, FALSE);
- * write data...
- * jpeg_finish_compress(cinfo);
- *
- * jpeg_write_tables has the side effect of marking all tables written
- * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
- * will not re-emit the tables unless it is passed write_all_tables=TRUE.
- */
-
-GLOBAL(void)
-jpeg_write_tables (j_compress_ptr cinfo)
-{
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* (Re)initialize error mgr and destination modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->dest->init_destination) (cinfo);
- /* Initialize the marker writer ... bit of a crock to do it here. */
- jinit_marker_writer(cinfo);
- /* Write them tables! */
- (*cinfo->marker->write_tables_only) (cinfo);
- /* And clean up. */
- (*cinfo->dest->term_destination) (cinfo);
- /*
- * In library releases up through v6a, we called jpeg_abort() here to free
- * any working memory allocated by the destination manager and marker
- * writer. Some applications had a problem with that: they allocated space
- * of their own from the library memory manager, and didn't want it to go
- * away during write_tables. So now we do nothing. This will cause a
- * memory leak if an app calls write_tables repeatedly without doing a full
- * compression cycle or otherwise resetting the JPEG object. However, that
- * seems less bad than unexpectedly freeing memory in the normal case.
- * An app that prefers the old behavior can call jpeg_abort for itself after
- * each call to jpeg_write_tables().
- */
-}
diff --git a/src/jpeg-8c/jcapistd.c b/src/jpeg-8c/jcapistd.c
deleted file mode 100644
index c0320b1b..00000000
--- a/src/jpeg-8c/jcapistd.c
+++ /dev/null
@@ -1,161 +0,0 @@
-/*
- * jcapistd.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the compression half
- * of the JPEG library. These are the "standard" API routines that are
- * used in the normal full-compression case. They are not used by a
- * transcoding-only application. Note that if an application links in
- * jpeg_start_compress, it will end up linking in the entire compressor.
- * We thus must separate this file from jcapimin.c to avoid linking the
- * whole compression library into a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Compression initialization.
- * Before calling this, all parameters and a data destination must be set up.
- *
- * We require a write_all_tables parameter as a failsafe check when writing
- * multiple datastreams from the same compression object. Since prior runs
- * will have left all the tables marked sent_table=TRUE, a subsequent run
- * would emit an abbreviated stream (no tables) by default. This may be what
- * is wanted, but for safety's sake it should not be the default behavior:
- * programmers should have to make a deliberate choice to emit abbreviated
- * images. Therefore the documentation and examples should encourage people
- * to pass write_all_tables=TRUE; then it will take active thought to do the
- * wrong thing.
- */
-
-GLOBAL(void)
-jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
-{
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (write_all_tables)
- jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
-
- /* (Re)initialize error mgr and destination modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->dest->init_destination) (cinfo);
- /* Perform master selection of active modules */
- jinit_compress_master(cinfo);
- /* Set up for the first pass */
- (*cinfo->master->prepare_for_pass) (cinfo);
- /* Ready for application to drive first pass through jpeg_write_scanlines
- * or jpeg_write_raw_data.
- */
- cinfo->next_scanline = 0;
- cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
-}
-
-
-/*
- * Write some scanlines of data to the JPEG compressor.
- *
- * The return value will be the number of lines actually written.
- * This should be less than the supplied num_lines only in case that
- * the data destination module has requested suspension of the compressor,
- * or if more than image_height scanlines are passed in.
- *
- * Note: we warn about excess calls to jpeg_write_scanlines() since
- * this likely signals an application programmer error. However,
- * excess scanlines passed in the last valid call are *silently* ignored,
- * so that the application need not adjust num_lines for end-of-image
- * when using a multiple-scanline buffer.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
- JDIMENSION num_lines)
-{
- JDIMENSION row_ctr, rows_left;
-
- if (cinfo->global_state != CSTATE_SCANNING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->next_scanline >= cinfo->image_height)
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->next_scanline;
- cinfo->progress->pass_limit = (long) cinfo->image_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Give master control module another chance if this is first call to
- * jpeg_write_scanlines. This lets output of the frame/scan headers be
- * delayed so that application can write COM, etc, markers between
- * jpeg_start_compress and jpeg_write_scanlines.
- */
- if (cinfo->master->call_pass_startup)
- (*cinfo->master->pass_startup) (cinfo);
-
- /* Ignore any extra scanlines at bottom of image. */
- rows_left = cinfo->image_height - cinfo->next_scanline;
- if (num_lines > rows_left)
- num_lines = rows_left;
-
- row_ctr = 0;
- (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
- cinfo->next_scanline += row_ctr;
- return row_ctr;
-}
-
-
-/*
- * Alternate entry point to write raw data.
- * Processes exactly one iMCU row per call, unless suspended.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
- JDIMENSION num_lines)
-{
- JDIMENSION lines_per_iMCU_row;
-
- if (cinfo->global_state != CSTATE_RAW_OK)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->next_scanline >= cinfo->image_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->next_scanline;
- cinfo->progress->pass_limit = (long) cinfo->image_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Give master control module another chance if this is first call to
- * jpeg_write_raw_data. This lets output of the frame/scan headers be
- * delayed so that application can write COM, etc, markers between
- * jpeg_start_compress and jpeg_write_raw_data.
- */
- if (cinfo->master->call_pass_startup)
- (*cinfo->master->pass_startup) (cinfo);
-
- /* Verify that at least one iMCU row has been passed. */
- lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
- if (num_lines < lines_per_iMCU_row)
- ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
- /* Directly compress the row. */
- if (! (*cinfo->coef->compress_data) (cinfo, data)) {
- /* If compressor did not consume the whole row, suspend processing. */
- return 0;
- }
-
- /* OK, we processed one iMCU row. */
- cinfo->next_scanline += lines_per_iMCU_row;
- return lines_per_iMCU_row;
-}
diff --git a/src/jpeg-8c/jcarith.c b/src/jpeg-8c/jcarith.c
deleted file mode 100644
index 0b7ea55d..00000000
--- a/src/jpeg-8c/jcarith.c
+++ /dev/null
@@ -1,934 +0,0 @@
-/*
- * jcarith.c
- *
- * Developed 1997-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains portable arithmetic entropy encoding routines for JPEG
- * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
- *
- * Both sequential and progressive modes are supported in this single module.
- *
- * Suspension is not currently supported in this module.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Expanded entropy encoder object for arithmetic encoding. */
-
-typedef struct {
- struct jpeg_entropy_encoder pub; /* public fields */
-
- INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
- INT32 a; /* A register, normalized size of coding interval */
- INT32 sc; /* counter for stacked 0xFF values which might overflow */
- INT32 zc; /* counter for pending 0x00 output values which might *
- * be discarded at the end ("Pacman" termination) */
- int ct; /* bit shift counter, determines when next byte will be written */
- int buffer; /* buffer for most recent output byte != 0xFF */
-
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
- int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
-
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- int next_restart_num; /* next restart number to write (0-7) */
-
- /* Pointers to statistics areas (these workspaces have image lifespan) */
- unsigned char * dc_stats[NUM_ARITH_TBLS];
- unsigned char * ac_stats[NUM_ARITH_TBLS];
-
- /* Statistics bin for coding with fixed probability 0.5 */
- unsigned char fixed_bin[4];
-} arith_entropy_encoder;
-
-typedef arith_entropy_encoder * arith_entropy_ptr;
-
-/* The following two definitions specify the allocation chunk size
- * for the statistics area.
- * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
- * 49 statistics bins for DC, and 245 statistics bins for AC coding.
- *
- * We use a compact representation with 1 byte per statistics bin,
- * thus the numbers directly represent byte sizes.
- * This 1 byte per statistics bin contains the meaning of the MPS
- * (more probable symbol) in the highest bit (mask 0x80), and the
- * index into the probability estimation state machine table
- * in the lower bits (mask 0x7F).
- */
-
-#define DC_STAT_BINS 64
-#define AC_STAT_BINS 256
-
-/* NOTE: Uncomment the following #define if you want to use the
- * given formula for calculating the AC conditioning parameter Kx
- * for spectral selection progressive coding in section G.1.3.2
- * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
- * Although the spec and P&M authors claim that this "has proven
- * to give good results for 8 bit precision samples", I'm not
- * convinced yet that this is really beneficial.
- * Early tests gave only very marginal compression enhancements
- * (a few - around 5 or so - bytes even for very large files),
- * which would turn out rather negative if we'd suppress the
- * DAC (Define Arithmetic Conditioning) marker segments for
- * the default parameters in the future.
- * Note that currently the marker writing module emits 12-byte
- * DAC segments for a full-component scan in a color image.
- * This is not worth worrying about IMHO. However, since the
- * spec defines the default values to be used if the tables
- * are omitted (unlike Huffman tables, which are required
- * anyway), one might optimize this behaviour in the future,
- * and then it would be disadvantageous to use custom tables if
- * they don't provide sufficient gain to exceed the DAC size.
- *
- * On the other hand, I'd consider it as a reasonable result
- * that the conditioning has no significant influence on the
- * compression performance. This means that the basic
- * statistical model is already rather stable.
- *
- * Thus, at the moment, we use the default conditioning values
- * anyway, and do not use the custom formula.
- *
-#define CALCULATE_SPECTRAL_CONDITIONING
- */
-
-/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
- * We assume that int right shift is unsigned if INT32 right shift is,
- * which should be safe.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS int ishift_temp;
-#define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
- (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-LOCAL(void)
-emit_byte (int val, j_compress_ptr cinfo)
-/* Write next output byte; we do not support suspension in this module. */
-{
- struct jpeg_destination_mgr * dest = cinfo->dest;
-
- *dest->next_output_byte++ = (JOCTET) val;
- if (--dest->free_in_buffer == 0)
- if (! (*dest->empty_output_buffer) (cinfo))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
-}
-
-
-/*
- * Finish up at the end of an arithmetic-compressed scan.
- */
-
-METHODDEF(void)
-finish_pass (j_compress_ptr cinfo)
-{
- arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
- INT32 temp;
-
- /* Section D.1.8: Termination of encoding */
-
- /* Find the e->c in the coding interval with the largest
- * number of trailing zero bits */
- if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
- e->c = temp + 0x8000L;
- else
- e->c = temp;
- /* Send remaining bytes to output */
- e->c <<= e->ct;
- if (e->c & 0xF8000000L) {
- /* One final overflow has to be handled */
- if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer + 1, cinfo);
- if (e->buffer + 1 == 0xFF)
- emit_byte(0x00, cinfo);
- }
- e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
- e->sc = 0;
- } else {
- if (e->buffer == 0)
- ++e->zc;
- else if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer, cinfo);
- }
- if (e->sc) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- do {
- emit_byte(0xFF, cinfo);
- emit_byte(0x00, cinfo);
- } while (--e->sc);
- }
- }
- /* Output final bytes only if they are not 0x00 */
- if (e->c & 0x7FFF800L) {
- if (e->zc) /* output final pending zero bytes */
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte((e->c >> 19) & 0xFF, cinfo);
- if (((e->c >> 19) & 0xFF) == 0xFF)
- emit_byte(0x00, cinfo);
- if (e->c & 0x7F800L) {
- emit_byte((e->c >> 11) & 0xFF, cinfo);
- if (((e->c >> 11) & 0xFF) == 0xFF)
- emit_byte(0x00, cinfo);
- }
- }
-}
-
-
-/*
- * The core arithmetic encoding routine (common in JPEG and JBIG).
- * This needs to go as fast as possible.
- * Machine-dependent optimization facilities
- * are not utilized in this portable implementation.
- * However, this code should be fairly efficient and
- * may be a good base for further optimizations anyway.
- *
- * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
- *
- * Note: I've added full "Pacman" termination support to the
- * byte output routines, which is equivalent to the optional
- * Discard_final_zeros procedure (Figure D.15) in the spec.
- * Thus, we always produce the shortest possible output
- * stream compliant to the spec (no trailing zero bytes,
- * except for FF stuffing).
- *
- * I've also introduced a new scheme for accessing
- * the probability estimation state machine table,
- * derived from Markus Kuhn's JBIG implementation.
- */
-
-LOCAL(void)
-arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
-{
- register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
- register unsigned char nl, nm;
- register INT32 qe, temp;
- register int sv;
-
- /* Fetch values from our compact representation of Table D.2:
- * Qe values and probability estimation state machine
- */
- sv = *st;
- qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
- nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
- nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
-
- /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
- e->a -= qe;
- if (val != (sv >> 7)) {
- /* Encode the less probable symbol */
- if (e->a >= qe) {
- /* If the interval size (qe) for the less probable symbol (LPS)
- * is larger than the interval size for the MPS, then exchange
- * the two symbols for coding efficiency, otherwise code the LPS
- * as usual: */
- e->c += e->a;
- e->a = qe;
- }
- *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
- } else {
- /* Encode the more probable symbol */
- if (e->a >= 0x8000L)
- return; /* A >= 0x8000 -> ready, no renormalization required */
- if (e->a < qe) {
- /* If the interval size (qe) for the less probable symbol (LPS)
- * is larger than the interval size for the MPS, then exchange
- * the two symbols for coding efficiency: */
- e->c += e->a;
- e->a = qe;
- }
- *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
- }
-
- /* Renormalization & data output per section D.1.6 */
- do {
- e->a <<= 1;
- e->c <<= 1;
- if (--e->ct == 0) {
- /* Another byte is ready for output */
- temp = e->c >> 19;
- if (temp > 0xFF) {
- /* Handle overflow over all stacked 0xFF bytes */
- if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer + 1, cinfo);
- if (e->buffer + 1 == 0xFF)
- emit_byte(0x00, cinfo);
- }
- e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
- e->sc = 0;
- /* Note: The 3 spacer bits in the C register guarantee
- * that the new buffer byte can't be 0xFF here
- * (see page 160 in the P&M JPEG book). */
- e->buffer = temp & 0xFF; /* new output byte, might overflow later */
- } else if (temp == 0xFF) {
- ++e->sc; /* stack 0xFF byte (which might overflow later) */
- } else {
- /* Output all stacked 0xFF bytes, they will not overflow any more */
- if (e->buffer == 0)
- ++e->zc;
- else if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer, cinfo);
- }
- if (e->sc) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- do {
- emit_byte(0xFF, cinfo);
- emit_byte(0x00, cinfo);
- } while (--e->sc);
- }
- e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
- }
- e->c &= 0x7FFFFL;
- e->ct += 8;
- }
- } while (e->a < 0x8000L);
-}
-
-
-/*
- * Emit a restart marker & resynchronize predictions.
- */
-
-LOCAL(void)
-emit_restart (j_compress_ptr cinfo, int restart_num)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- int ci;
- jpeg_component_info * compptr;
-
- finish_pass(cinfo);
-
- emit_byte(0xFF, cinfo);
- emit_byte(JPEG_RST0 + restart_num, cinfo);
-
- /* Re-initialize statistics areas */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
- /* Reset DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- entropy->dc_context[ci] = 0;
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
- }
- }
-
- /* Reset arithmetic encoding variables */
- entropy->c = 0;
- entropy->a = 0x10000L;
- entropy->sc = 0;
- entropy->zc = 0;
- entropy->ct = 11;
- entropy->buffer = -1; /* empty */
-}
-
-
-/*
- * MCU encoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int blkn, ci, tbl;
- int v, v2, m;
- ISHIFT_TEMPS
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
-
- /* Compute the DC value after the required point transform by Al.
- * This is simply an arithmetic right shift.
- */
- m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
-
- /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
-
- /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
- st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
-
- /* Figure F.4: Encode_DC_DIFF */
- if ((v = m - entropy->last_dc_val[ci]) == 0) {
- arith_encode(cinfo, st, 0);
- entropy->dc_context[ci] = 0; /* zero diff category */
- } else {
- entropy->last_dc_val[ci] = m;
- arith_encode(cinfo, st, 1);
- /* Figure F.6: Encoding nonzero value v */
- /* Figure F.7: Encoding the sign of v */
- if (v > 0) {
- arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
- st += 2; /* Table F.4: SP = S0 + 2 */
- entropy->dc_context[ci] = 4; /* small positive diff category */
- } else {
- v = -v;
- arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
- st += 3; /* Table F.4: SN = S0 + 3 */
- entropy->dc_context[ci] = 8; /* small negative diff category */
- }
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- arith_encode(cinfo, st, 0);
- /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
- if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
- entropy->dc_context[ci] = 0; /* zero diff category */
- else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
- entropy->dc_context[ci] += 8; /* large diff category */
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int tbl, k, ke;
- int v, v2, m;
- const int * natural_order;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data block */
- block = MCU_data[0];
- tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
-
- /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
-
- /* Establish EOB (end-of-block) index */
- for (ke = cinfo->Se; ke > 0; ke--)
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if ((v = (*block)[natural_order[ke]]) >= 0) {
- if (v >>= cinfo->Al) break;
- } else {
- v = -v;
- if (v >>= cinfo->Al) break;
- }
-
- /* Figure F.5: Encode_AC_Coefficients */
- for (k = cinfo->Ss; k <= ke; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 0); /* EOB decision */
- for (;;) {
- if ((v = (*block)[natural_order[k]]) >= 0) {
- if (v >>= cinfo->Al) {
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 0);
- break;
- }
- } else {
- v = -v;
- if (v >>= cinfo->Al) {
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 1);
- break;
- }
- }
- arith_encode(cinfo, st + 1, 0); st += 3; k++;
- }
- st += 2;
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- if (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st = entropy->ac_stats[tbl] +
- (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- }
- arith_encode(cinfo, st, 0);
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
- /* Encode EOB decision only if k <= cinfo->Se */
- if (k <= cinfo->Se) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 1);
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for DC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- unsigned char *st;
- int Al, blkn;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- st = entropy->fixed_bin; /* use fixed probability estimation */
- Al = cinfo->Al;
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- /* We simply emit the Al'th bit of the DC coefficient value. */
- arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int tbl, k, ke, kex;
- int v;
- const int * natural_order;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data block */
- block = MCU_data[0];
- tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
-
- /* Section G.1.3.3: Encoding of AC coefficients */
-
- /* Establish EOB (end-of-block) index */
- for (ke = cinfo->Se; ke > 0; ke--)
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if ((v = (*block)[natural_order[ke]]) >= 0) {
- if (v >>= cinfo->Al) break;
- } else {
- v = -v;
- if (v >>= cinfo->Al) break;
- }
-
- /* Establish EOBx (previous stage end-of-block) index */
- for (kex = ke; kex > 0; kex--)
- if ((v = (*block)[natural_order[kex]]) >= 0) {
- if (v >>= cinfo->Ah) break;
- } else {
- v = -v;
- if (v >>= cinfo->Ah) break;
- }
-
- /* Figure G.10: Encode_AC_Coefficients_SA */
- for (k = cinfo->Ss; k <= ke; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- if (k > kex)
- arith_encode(cinfo, st, 0); /* EOB decision */
- for (;;) {
- if ((v = (*block)[natural_order[k]]) >= 0) {
- if (v >>= cinfo->Al) {
- if (v >> 1) /* previously nonzero coef */
- arith_encode(cinfo, st + 2, (v & 1));
- else { /* newly nonzero coef */
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 0);
- }
- break;
- }
- } else {
- v = -v;
- if (v >>= cinfo->Al) {
- if (v >> 1) /* previously nonzero coef */
- arith_encode(cinfo, st + 2, (v & 1));
- else { /* newly nonzero coef */
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 1);
- }
- break;
- }
- }
- arith_encode(cinfo, st + 1, 0); st += 3; k++;
- }
- }
- /* Encode EOB decision only if k <= cinfo->Se */
- if (k <= cinfo->Se) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 1);
- }
-
- return TRUE;
-}
-
-
-/*
- * Encode and output one MCU's worth of arithmetic-compressed coefficients.
- */
-
-METHODDEF(boolean)
-encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- jpeg_component_info * compptr;
- JBLOCKROW block;
- unsigned char *st;
- int blkn, ci, tbl, k, ke;
- int v, v2, m;
- const int * natural_order;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
-
- /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
-
- tbl = compptr->dc_tbl_no;
-
- /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
- st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
-
- /* Figure F.4: Encode_DC_DIFF */
- if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
- arith_encode(cinfo, st, 0);
- entropy->dc_context[ci] = 0; /* zero diff category */
- } else {
- entropy->last_dc_val[ci] = (*block)[0];
- arith_encode(cinfo, st, 1);
- /* Figure F.6: Encoding nonzero value v */
- /* Figure F.7: Encoding the sign of v */
- if (v > 0) {
- arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
- st += 2; /* Table F.4: SP = S0 + 2 */
- entropy->dc_context[ci] = 4; /* small positive diff category */
- } else {
- v = -v;
- arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
- st += 3; /* Table F.4: SN = S0 + 3 */
- entropy->dc_context[ci] = 8; /* small negative diff category */
- }
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- arith_encode(cinfo, st, 0);
- /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
- if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
- entropy->dc_context[ci] = 0; /* zero diff category */
- else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
- entropy->dc_context[ci] += 8; /* large diff category */
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
-
- /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
-
- tbl = compptr->ac_tbl_no;
-
- /* Establish EOB (end-of-block) index */
- for (ke = cinfo->lim_Se; ke > 0; ke--)
- if ((*block)[natural_order[ke]]) break;
-
- /* Figure F.5: Encode_AC_Coefficients */
- for (k = 1; k <= ke; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 0); /* EOB decision */
- while ((v = (*block)[natural_order[k]]) == 0) {
- arith_encode(cinfo, st + 1, 0); st += 3; k++;
- }
- arith_encode(cinfo, st + 1, 1);
- /* Figure F.6: Encoding nonzero value v */
- /* Figure F.7: Encoding the sign of v */
- if (v > 0) {
- arith_encode(cinfo, entropy->fixed_bin, 0);
- } else {
- v = -v;
- arith_encode(cinfo, entropy->fixed_bin, 1);
- }
- st += 2;
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- if (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st = entropy->ac_stats[tbl] +
- (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- }
- arith_encode(cinfo, st, 0);
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
- /* Encode EOB decision only if k <= cinfo->lim_Se */
- if (k <= cinfo->lim_Se) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 1);
- }
- }
-
- return TRUE;
-}
-
-
-/*
- * Initialize for an arithmetic-compressed scan.
- */
-
-METHODDEF(void)
-start_pass (j_compress_ptr cinfo, boolean gather_statistics)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
-
- if (gather_statistics)
- /* Make sure to avoid that in the master control logic!
- * We are fully adaptive here and need no extra
- * statistics gathering pass!
- */
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-
- /* We assume jcmaster.c already validated the progressive scan parameters. */
-
- /* Select execution routines */
- if (cinfo->progressive_mode) {
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_first;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_refine;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_refine;
- }
- } else
- entropy->pub.encode_mcu = encode_mcu;
-
- /* Allocate & initialize requested statistics areas */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- tbl = compptr->dc_tbl_no;
- if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
- ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
- if (entropy->dc_stats[tbl] == NULL)
- entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
- MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
- /* Initialize DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- entropy->dc_context[ci] = 0;
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- tbl = compptr->ac_tbl_no;
- if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
- ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
- if (entropy->ac_stats[tbl] == NULL)
- entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
- MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
-#ifdef CALCULATE_SPECTRAL_CONDITIONING
- if (cinfo->progressive_mode)
- /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
- cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
-#endif
- }
- }
-
- /* Initialize arithmetic encoding variables */
- entropy->c = 0;
- entropy->a = 0x10000L;
- entropy->sc = 0;
- entropy->zc = 0;
- entropy->ct = 11;
- entropy->buffer = -1; /* empty */
-
- /* Initialize restart stuff */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num = 0;
-}
-
-
-/*
- * Module initialization routine for arithmetic entropy encoding.
- */
-
-GLOBAL(void)
-jinit_arith_encoder (j_compress_ptr cinfo)
-{
- arith_entropy_ptr entropy;
- int i;
-
- entropy = (arith_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(arith_entropy_encoder));
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
- entropy->pub.start_pass = start_pass;
- entropy->pub.finish_pass = finish_pass;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- entropy->dc_stats[i] = NULL;
- entropy->ac_stats[i] = NULL;
- }
-
- /* Initialize index for fixed probability estimation */
- entropy->fixed_bin[0] = 113;
-}
diff --git a/src/jpeg-8c/jccoefct.c b/src/jpeg-8c/jccoefct.c
deleted file mode 100644
index d775313b..00000000
--- a/src/jpeg-8c/jccoefct.c
+++ /dev/null
@@ -1,453 +0,0 @@
-/*
- * jccoefct.c
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the coefficient buffer controller for compression.
- * This controller is the top level of the JPEG compressor proper.
- * The coefficient buffer lies between forward-DCT and entropy encoding steps.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* We use a full-image coefficient buffer when doing Huffman optimization,
- * and also for writing multiple-scan JPEG files. In all cases, the DCT
- * step is run during the first pass, and subsequent passes need only read
- * the buffered coefficients.
- */
-#ifdef ENTROPY_OPT_SUPPORTED
-#define FULL_COEF_BUFFER_SUPPORTED
-#else
-#ifdef C_MULTISCAN_FILES_SUPPORTED
-#define FULL_COEF_BUFFER_SUPPORTED
-#endif
-#endif
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_coef_controller pub; /* public fields */
-
- JDIMENSION iMCU_row_num; /* iMCU row # within image */
- JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* For single-pass compression, it's sufficient to buffer just one MCU
- * (although this may prove a bit slow in practice). We allocate a
- * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
- * MCU constructed and sent. (On 80x86, the workspace is FAR even though
- * it's not really very big; this is to keep the module interfaces unchanged
- * when a large coefficient buffer is necessary.)
- * In multi-pass modes, this array points to the current MCU's blocks
- * within the virtual arrays.
- */
- JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
-
- /* In multi-pass modes, we need a virtual block array for each component. */
- jvirt_barray_ptr whole_image[MAX_COMPONENTS];
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-
-/* Forward declarations */
-METHODDEF(boolean) compress_data
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
-#ifdef FULL_COEF_BUFFER_SUPPORTED
-METHODDEF(boolean) compress_first_pass
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
-METHODDEF(boolean) compress_output
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
-#endif
-
-
-LOCAL(void)
-start_iMCU_row (j_compress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->mcu_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- coef->iMCU_row_num = 0;
- start_iMCU_row(cinfo);
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (coef->whole_image[0] != NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- coef->pub.compress_data = compress_data;
- break;
-#ifdef FULL_COEF_BUFFER_SUPPORTED
- case JBUF_SAVE_AND_PASS:
- if (coef->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- coef->pub.compress_data = compress_first_pass;
- break;
- case JBUF_CRANK_DEST:
- if (coef->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- coef->pub.compress_data = compress_output;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data in the single-pass case.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the image.
- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
- *
- * NB: input_buf contains a plane for each component in image,
- * which we index according to the component's SOF position.
- */
-
-METHODDEF(boolean)
-compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, bi, ci, yindex, yoffset, blockcnt;
- JDIMENSION ypos, xpos;
- jpeg_component_info *compptr;
- forward_DCT_ptr forward_DCT;
-
- /* Loop to write as much as one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
- MCU_col_num++) {
- /* Determine where data comes from in input_buf and do the DCT thing.
- * Each call on forward_DCT processes a horizontal row of DCT blocks
- * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
- * sequentially. Dummy blocks at the right or bottom edge are filled in
- * specially. The data in them does not matter for image reconstruction,
- * so we fill them with values that will encode to the smallest amount of
- * data, viz: all zeroes in the AC entries, DC entries equal to previous
- * block's DC value. (Thanks to Thomas Kinsman for this idea.)
- */
- blkn = 0;
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
- blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- xpos = MCU_col_num * compptr->MCU_sample_width;
- ypos = yoffset * compptr->DCT_v_scaled_size;
- /* ypos == (yoffset+yindex) * DCTSIZE */
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (coef->iMCU_row_num < last_iMCU_row ||
- yoffset+yindex < compptr->last_row_height) {
- (*forward_DCT) (cinfo, compptr,
- input_buf[compptr->component_index],
- coef->MCU_buffer[blkn],
- ypos, xpos, (JDIMENSION) blockcnt);
- if (blockcnt < compptr->MCU_width) {
- /* Create some dummy blocks at the right edge of the image. */
- jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
- (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
- for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
- coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
- }
- }
- } else {
- /* Create a row of dummy blocks at the bottom of the image. */
- jzero_far((void FAR *) coef->MCU_buffer[blkn],
- compptr->MCU_width * SIZEOF(JBLOCK));
- for (bi = 0; bi < compptr->MCU_width; bi++) {
- coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
- }
- }
- blkn += compptr->MCU_width;
- ypos += compptr->DCT_v_scaled_size;
- }
- }
- /* Try to write the MCU. In event of a suspension failure, we will
- * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
- */
- if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->mcu_ctr = MCU_col_num;
- return FALSE;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->mcu_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- coef->iMCU_row_num++;
- start_iMCU_row(cinfo);
- return TRUE;
-}
-
-
-#ifdef FULL_COEF_BUFFER_SUPPORTED
-
-/*
- * Process some data in the first pass of a multi-pass case.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the image.
- * This amount of data is read from the source buffer, DCT'd and quantized,
- * and saved into the virtual arrays. We also generate suitable dummy blocks
- * as needed at the right and lower edges. (The dummy blocks are constructed
- * in the virtual arrays, which have been padded appropriately.) This makes
- * it possible for subsequent passes not to worry about real vs. dummy blocks.
- *
- * We must also emit the data to the entropy encoder. This is conveniently
- * done by calling compress_output() after we've loaded the current strip
- * of the virtual arrays.
- *
- * NB: input_buf contains a plane for each component in image. All
- * components are DCT'd and loaded into the virtual arrays in this pass.
- * However, it may be that only a subset of the components are emitted to
- * the entropy encoder during this first pass; be careful about looking
- * at the scan-dependent variables (MCU dimensions, etc).
- */
-
-METHODDEF(boolean)
-compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION blocks_across, MCUs_across, MCUindex;
- int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
- JCOEF lastDC;
- jpeg_component_info *compptr;
- JBLOCKARRAY buffer;
- JBLOCKROW thisblockrow, lastblockrow;
- forward_DCT_ptr forward_DCT;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Align the virtual buffer for this component. */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- coef->iMCU_row_num * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, TRUE);
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (coef->iMCU_row_num < last_iMCU_row)
- block_rows = compptr->v_samp_factor;
- else {
- /* NB: can't use last_row_height here, since may not be set! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- }
- blocks_across = compptr->width_in_blocks;
- h_samp_factor = compptr->h_samp_factor;
- /* Count number of dummy blocks to be added at the right margin. */
- ndummy = (int) (blocks_across % h_samp_factor);
- if (ndummy > 0)
- ndummy = h_samp_factor - ndummy;
- forward_DCT = cinfo->fdct->forward_DCT[ci];
- /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
- * on forward_DCT processes a complete horizontal row of DCT blocks.
- */
- for (block_row = 0; block_row < block_rows; block_row++) {
- thisblockrow = buffer[block_row];
- (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
- (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
- (JDIMENSION) 0, blocks_across);
- if (ndummy > 0) {
- /* Create dummy blocks at the right edge of the image. */
- thisblockrow += blocks_across; /* => first dummy block */
- jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
- lastDC = thisblockrow[-1][0];
- for (bi = 0; bi < ndummy; bi++) {
- thisblockrow[bi][0] = lastDC;
- }
- }
- }
- /* If at end of image, create dummy block rows as needed.
- * The tricky part here is that within each MCU, we want the DC values
- * of the dummy blocks to match the last real block's DC value.
- * This squeezes a few more bytes out of the resulting file...
- */
- if (coef->iMCU_row_num == last_iMCU_row) {
- blocks_across += ndummy; /* include lower right corner */
- MCUs_across = blocks_across / h_samp_factor;
- for (block_row = block_rows; block_row < compptr->v_samp_factor;
- block_row++) {
- thisblockrow = buffer[block_row];
- lastblockrow = buffer[block_row-1];
- jzero_far((void FAR *) thisblockrow,
- (size_t) (blocks_across * SIZEOF(JBLOCK)));
- for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
- lastDC = lastblockrow[h_samp_factor-1][0];
- for (bi = 0; bi < h_samp_factor; bi++) {
- thisblockrow[bi][0] = lastDC;
- }
- thisblockrow += h_samp_factor; /* advance to next MCU in row */
- lastblockrow += h_samp_factor;
- }
- }
- }
- }
- /* NB: compress_output will increment iMCU_row_num if successful.
- * A suspension return will result in redoing all the work above next time.
- */
-
- /* Emit data to the entropy encoder, sharing code with subsequent passes */
- return compress_output(cinfo, input_buf);
-}
-
-
-/*
- * Process some data in subsequent passes of a multi-pass case.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the scan.
- * The data is obtained from the virtual arrays and fed to the entropy coder.
- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
- *
- * NB: input_buf is ignored; it is likely to be a NULL pointer.
- */
-
-METHODDEF(boolean)
-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- int blkn, ci, xindex, yindex, yoffset;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan.
- * NB: during first pass, this is safe only because the buffers will
- * already be aligned properly, so jmemmgr.c won't need to do any I/O.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- coef->iMCU_row_num * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
- coef->MCU_buffer[blkn++] = buffer_ptr++;
- }
- }
- }
- /* Try to write the MCU. */
- if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->mcu_ctr = MCU_col_num;
- return FALSE;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->mcu_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- coef->iMCU_row_num++;
- start_iMCU_row(cinfo);
- return TRUE;
-}
-
-#endif /* FULL_COEF_BUFFER_SUPPORTED */
-
-
-/*
- * Initialize coefficient buffer controller.
- */
-
-GLOBAL(void)
-jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
-{
- my_coef_ptr coef;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_c_coef_controller *) coef;
- coef->pub.start_pass = start_pass_coef;
-
- /* Create the coefficient buffer. */
- if (need_full_buffer) {
-#ifdef FULL_COEF_BUFFER_SUPPORTED
- /* Allocate a full-image virtual array for each component, */
- /* padded to a multiple of samp_factor DCT blocks in each direction. */
- int ci;
- jpeg_component_info *compptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- (JDIMENSION) jround_up((long) compptr->width_in_blocks,
- (long) compptr->h_samp_factor),
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor),
- (JDIMENSION) compptr->v_samp_factor);
- }
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
- } else {
- /* We only need a single-MCU buffer. */
- JBLOCKROW buffer;
- int i;
-
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
- coef->MCU_buffer[i] = buffer + i;
- }
- coef->whole_image[0] = NULL; /* flag for no virtual arrays */
- }
-}
diff --git a/src/jpeg-8c/jccolor.c b/src/jpeg-8c/jccolor.c
deleted file mode 100644
index 0a8a4b5d..00000000
--- a/src/jpeg-8c/jccolor.c
+++ /dev/null
@@ -1,459 +0,0 @@
-/*
- * jccolor.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains input colorspace conversion routines.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_color_converter pub; /* public fields */
-
- /* Private state for RGB->YCC conversion */
- INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
-} my_color_converter;
-
-typedef my_color_converter * my_cconvert_ptr;
-
-
-/**************** RGB -> YCbCr conversion: most common case **************/
-
-/*
- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
- * The conversion equations to be implemented are therefore
- * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
- * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
- * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
- * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
- * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
- * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
- * were not represented exactly. Now we sacrifice exact representation of
- * maximum red and maximum blue in order to get exact grayscales.
- *
- * To avoid floating-point arithmetic, we represent the fractional constants
- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
- * the products by 2^16, with appropriate rounding, to get the correct answer.
- *
- * For even more speed, we avoid doing any multiplications in the inner loop
- * by precalculating the constants times R,G,B for all possible values.
- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
- * for 12-bit samples it is still acceptable. It's not very reasonable for
- * 16-bit samples, but if you want lossless storage you shouldn't be changing
- * colorspace anyway.
- * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
- * in the tables to save adding them separately in the inner loop.
- */
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-/* We allocate one big table and divide it up into eight parts, instead of
- * doing eight alloc_small requests. This lets us use a single table base
- * address, which can be held in a register in the inner loops on many
- * machines (more than can hold all eight addresses, anyway).
- */
-
-#define R_Y_OFF 0 /* offset to R => Y section */
-#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
-#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
-#define R_CB_OFF (3*(MAXJSAMPLE+1))
-#define G_CB_OFF (4*(MAXJSAMPLE+1))
-#define B_CB_OFF (5*(MAXJSAMPLE+1))
-#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
-#define G_CR_OFF (6*(MAXJSAMPLE+1))
-#define B_CR_OFF (7*(MAXJSAMPLE+1))
-#define TABLE_SIZE (8*(MAXJSAMPLE+1))
-
-
-/*
- * Initialize for RGB->YCC colorspace conversion.
- */
-
-METHODDEF(void)
-rgb_ycc_start (j_compress_ptr cinfo)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- INT32 * rgb_ycc_tab;
- INT32 i;
-
- /* Allocate and fill in the conversion tables. */
- cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (TABLE_SIZE * SIZEOF(INT32)));
-
- for (i = 0; i <= MAXJSAMPLE; i++) {
- rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
- rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
- rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
- rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
- rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
- /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
- * This ensures that the maximum output will round to MAXJSAMPLE
- * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
- */
- rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
-/* B=>Cb and R=>Cr tables are the same
- rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
-*/
- rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
- rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- *
- * Note that we change from the application's interleaved-pixel format
- * to our internal noninterleaved, one-plane-per-component format.
- * The input buffer is therefore three times as wide as the output buffer.
- *
- * A starting row offset is provided only for the output buffer. The caller
- * can easily adjust the passed input_buf value to accommodate any row
- * offset required on that side.
- */
-
-METHODDEF(void)
-rgb_ycc_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int r, g, b;
- register INT32 * ctab = cconvert->rgb_ycc_tab;
- register JSAMPROW inptr;
- register JSAMPROW outptr0, outptr1, outptr2;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr0 = output_buf[0][output_row];
- outptr1 = output_buf[1][output_row];
- outptr2 = output_buf[2][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- r = GETJSAMPLE(inptr[RGB_RED]);
- g = GETJSAMPLE(inptr[RGB_GREEN]);
- b = GETJSAMPLE(inptr[RGB_BLUE]);
- inptr += RGB_PIXELSIZE;
- /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
- * must be too; we do not need an explicit range-limiting operation.
- * Hence the value being shifted is never negative, and we don't
- * need the general RIGHT_SHIFT macro.
- */
- /* Y */
- outptr0[col] = (JSAMPLE)
- ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
- >> SCALEBITS);
- /* Cb */
- outptr1[col] = (JSAMPLE)
- ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
- >> SCALEBITS);
- /* Cr */
- outptr2[col] = (JSAMPLE)
- ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
- >> SCALEBITS);
- }
- }
-}
-
-
-/**************** Cases other than RGB -> YCbCr **************/
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles RGB->grayscale conversion, which is the same
- * as the RGB->Y portion of RGB->YCbCr.
- * We assume rgb_ycc_start has been called (we only use the Y tables).
- */
-
-METHODDEF(void)
-rgb_gray_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int r, g, b;
- register INT32 * ctab = cconvert->rgb_ycc_tab;
- register JSAMPROW inptr;
- register JSAMPROW outptr;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr = output_buf[0][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- r = GETJSAMPLE(inptr[RGB_RED]);
- g = GETJSAMPLE(inptr[RGB_GREEN]);
- b = GETJSAMPLE(inptr[RGB_BLUE]);
- inptr += RGB_PIXELSIZE;
- /* Y */
- outptr[col] = (JSAMPLE)
- ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
- >> SCALEBITS);
- }
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles Adobe-style CMYK->YCCK conversion,
- * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
- * conversion as above, while passing K (black) unchanged.
- * We assume rgb_ycc_start has been called.
- */
-
-METHODDEF(void)
-cmyk_ycck_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int r, g, b;
- register INT32 * ctab = cconvert->rgb_ycc_tab;
- register JSAMPROW inptr;
- register JSAMPROW outptr0, outptr1, outptr2, outptr3;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr0 = output_buf[0][output_row];
- outptr1 = output_buf[1][output_row];
- outptr2 = output_buf[2][output_row];
- outptr3 = output_buf[3][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
- g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
- b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
- /* K passes through as-is */
- outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
- inptr += 4;
- /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
- * must be too; we do not need an explicit range-limiting operation.
- * Hence the value being shifted is never negative, and we don't
- * need the general RIGHT_SHIFT macro.
- */
- /* Y */
- outptr0[col] = (JSAMPLE)
- ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
- >> SCALEBITS);
- /* Cb */
- outptr1[col] = (JSAMPLE)
- ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
- >> SCALEBITS);
- /* Cr */
- outptr2[col] = (JSAMPLE)
- ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
- >> SCALEBITS);
- }
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles grayscale output with no conversion.
- * The source can be either plain grayscale or YCbCr (since Y == gray).
- */
-
-METHODDEF(void)
-grayscale_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- register JSAMPROW inptr;
- register JSAMPROW outptr;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
- int instride = cinfo->input_components;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr = output_buf[0][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
- inptr += instride;
- }
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles multi-component colorspaces without conversion.
- * We assume input_components == num_components.
- */
-
-METHODDEF(void)
-null_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- register JSAMPROW inptr;
- register JSAMPROW outptr;
- register JDIMENSION col;
- register int ci;
- int nc = cinfo->num_components;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- /* It seems fastest to make a separate pass for each component. */
- for (ci = 0; ci < nc; ci++) {
- inptr = *input_buf;
- outptr = output_buf[ci][output_row];
- for (col = 0; col < num_cols; col++) {
- outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
- inptr += nc;
- }
- }
- input_buf++;
- output_row++;
- }
-}
-
-
-/*
- * Empty method for start_pass.
- */
-
-METHODDEF(void)
-null_method (j_compress_ptr cinfo)
-{
- /* no work needed */
-}
-
-
-/*
- * Module initialization routine for input colorspace conversion.
- */
-
-GLOBAL(void)
-jinit_color_converter (j_compress_ptr cinfo)
-{
- my_cconvert_ptr cconvert;
-
- cconvert = (my_cconvert_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_color_converter));
- cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
- /* set start_pass to null method until we find out differently */
- cconvert->pub.start_pass = null_method;
-
- /* Make sure input_components agrees with in_color_space */
- switch (cinfo->in_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->input_components != 1)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-
- case JCS_RGB:
-#if RGB_PIXELSIZE != 3
- if (cinfo->input_components != RGB_PIXELSIZE)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-#endif /* else share code with YCbCr */
-
- case JCS_YCbCr:
- if (cinfo->input_components != 3)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-
- case JCS_CMYK:
- case JCS_YCCK:
- if (cinfo->input_components != 4)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-
- default: /* JCS_UNKNOWN can be anything */
- if (cinfo->input_components < 1)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
- }
-
- /* Check num_components, set conversion method based on requested space */
- switch (cinfo->jpeg_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->num_components != 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_GRAYSCALE)
- cconvert->pub.color_convert = grayscale_convert;
- else if (cinfo->in_color_space == JCS_RGB) {
- cconvert->pub.start_pass = rgb_ycc_start;
- cconvert->pub.color_convert = rgb_gray_convert;
- } else if (cinfo->in_color_space == JCS_YCbCr)
- cconvert->pub.color_convert = grayscale_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_RGB:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_YCbCr:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_RGB) {
- cconvert->pub.start_pass = rgb_ycc_start;
- cconvert->pub.color_convert = rgb_ycc_convert;
- } else if (cinfo->in_color_space == JCS_YCbCr)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_CMYK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_CMYK)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_YCCK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_CMYK) {
- cconvert->pub.start_pass = rgb_ycc_start;
- cconvert->pub.color_convert = cmyk_ycck_convert;
- } else if (cinfo->in_color_space == JCS_YCCK)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- default: /* allow null conversion of JCS_UNKNOWN */
- if (cinfo->jpeg_color_space != cinfo->in_color_space ||
- cinfo->num_components != cinfo->input_components)
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- cconvert->pub.color_convert = null_convert;
- break;
- }
-}
diff --git a/src/jpeg-8c/jcdctmgr.c b/src/jpeg-8c/jcdctmgr.c
deleted file mode 100644
index 0bbdbb68..00000000
--- a/src/jpeg-8c/jcdctmgr.c
+++ /dev/null
@@ -1,482 +0,0 @@
-/*
- * jcdctmgr.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the forward-DCT management logic.
- * This code selects a particular DCT implementation to be used,
- * and it performs related housekeeping chores including coefficient
- * quantization.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-
-/* Private subobject for this module */
-
-typedef struct {
- struct jpeg_forward_dct pub; /* public fields */
-
- /* Pointer to the DCT routine actually in use */
- forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
-
- /* The actual post-DCT divisors --- not identical to the quant table
- * entries, because of scaling (especially for an unnormalized DCT).
- * Each table is given in normal array order.
- */
- DCTELEM * divisors[NUM_QUANT_TBLS];
-
-#ifdef DCT_FLOAT_SUPPORTED
- /* Same as above for the floating-point case. */
- float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
- FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
-#endif
-} my_fdct_controller;
-
-typedef my_fdct_controller * my_fdct_ptr;
-
-
-/* The current scaled-DCT routines require ISLOW-style divisor tables,
- * so be sure to compile that code if either ISLOW or SCALING is requested.
- */
-#ifdef DCT_ISLOW_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#else
-#ifdef DCT_SCALING_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#endif
-#endif
-
-
-/*
- * Perform forward DCT on one or more blocks of a component.
- *
- * The input samples are taken from the sample_data[] array starting at
- * position start_row/start_col, and moving to the right for any additional
- * blocks. The quantized coefficients are returned in coef_blocks[].
- */
-
-METHODDEF(void)
-forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks)
-/* This version is used for integer DCT implementations. */
-{
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
- DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
- DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
- JDIMENSION bi;
-
- sample_data += start_row; /* fold in the vertical offset once */
-
- for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
- /* Perform the DCT */
- (*do_dct) (workspace, sample_data, start_col);
-
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- { register DCTELEM temp, qval;
- register int i;
- register JCOEFPTR output_ptr = coef_blocks[bi];
-
- for (i = 0; i < DCTSIZE2; i++) {
- qval = divisors[i];
- temp = workspace[i];
- /* Divide the coefficient value by qval, ensuring proper rounding.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- *
- * In most files, at least half of the output values will be zero
- * (at default quantization settings, more like three-quarters...)
- * so we should ensure that this case is fast. On many machines,
- * a comparison is enough cheaper than a divide to make a special test
- * a win. Since both inputs will be nonnegative, we need only test
- * for a < b to discover whether a/b is 0.
- * If your machine's division is fast enough, define FAST_DIVIDE.
- */
-#ifdef FAST_DIVIDE
-#define DIVIDE_BY(a,b) a /= b
-#else
-#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
-#endif
- if (temp < 0) {
- temp = -temp;
- temp += qval>>1; /* for rounding */
- DIVIDE_BY(temp, qval);
- temp = -temp;
- } else {
- temp += qval>>1; /* for rounding */
- DIVIDE_BY(temp, qval);
- }
- output_ptr[i] = (JCOEF) temp;
- }
- }
- }
-}
-
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-METHODDEF(void)
-forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks)
-/* This version is used for floating-point DCT implementations. */
-{
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
- FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
- FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
- JDIMENSION bi;
-
- sample_data += start_row; /* fold in the vertical offset once */
-
- for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
- /* Perform the DCT */
- (*do_dct) (workspace, sample_data, start_col);
-
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- { register FAST_FLOAT temp;
- register int i;
- register JCOEFPTR output_ptr = coef_blocks[bi];
-
- for (i = 0; i < DCTSIZE2; i++) {
- /* Apply the quantization and scaling factor */
- temp = workspace[i] * divisors[i];
- /* Round to nearest integer.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- * The maximum coefficient size is +-16K (for 12-bit data), so this
- * code should work for either 16-bit or 32-bit ints.
- */
- output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
- }
- }
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
-
-
-/*
- * Initialize for a processing pass.
- * Verify that all referenced Q-tables are present, and set up
- * the divisor table for each one.
- * In the current implementation, DCT of all components is done during
- * the first pass, even if only some components will be output in the
- * first scan. Hence all components should be examined here.
- */
-
-METHODDEF(void)
-start_pass_fdctmgr (j_compress_ptr cinfo)
-{
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- int ci, qtblno, i;
- jpeg_component_info *compptr;
- int method = 0;
- JQUANT_TBL * qtbl;
- DCTELEM * dtbl;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Select the proper DCT routine for this component's scaling */
- switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
-#ifdef DCT_SCALING_SUPPORTED
- case ((1 << 8) + 1):
- fdct->do_dct[ci] = jpeg_fdct_1x1;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((2 << 8) + 2):
- fdct->do_dct[ci] = jpeg_fdct_2x2;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((3 << 8) + 3):
- fdct->do_dct[ci] = jpeg_fdct_3x3;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((4 << 8) + 4):
- fdct->do_dct[ci] = jpeg_fdct_4x4;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((5 << 8) + 5):
- fdct->do_dct[ci] = jpeg_fdct_5x5;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((6 << 8) + 6):
- fdct->do_dct[ci] = jpeg_fdct_6x6;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((7 << 8) + 7):
- fdct->do_dct[ci] = jpeg_fdct_7x7;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((9 << 8) + 9):
- fdct->do_dct[ci] = jpeg_fdct_9x9;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((10 << 8) + 10):
- fdct->do_dct[ci] = jpeg_fdct_10x10;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((11 << 8) + 11):
- fdct->do_dct[ci] = jpeg_fdct_11x11;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((12 << 8) + 12):
- fdct->do_dct[ci] = jpeg_fdct_12x12;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((13 << 8) + 13):
- fdct->do_dct[ci] = jpeg_fdct_13x13;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((14 << 8) + 14):
- fdct->do_dct[ci] = jpeg_fdct_14x14;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((15 << 8) + 15):
- fdct->do_dct[ci] = jpeg_fdct_15x15;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((16 << 8) + 16):
- fdct->do_dct[ci] = jpeg_fdct_16x16;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((16 << 8) + 8):
- fdct->do_dct[ci] = jpeg_fdct_16x8;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((14 << 8) + 7):
- fdct->do_dct[ci] = jpeg_fdct_14x7;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((12 << 8) + 6):
- fdct->do_dct[ci] = jpeg_fdct_12x6;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((10 << 8) + 5):
- fdct->do_dct[ci] = jpeg_fdct_10x5;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((8 << 8) + 4):
- fdct->do_dct[ci] = jpeg_fdct_8x4;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((6 << 8) + 3):
- fdct->do_dct[ci] = jpeg_fdct_6x3;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((4 << 8) + 2):
- fdct->do_dct[ci] = jpeg_fdct_4x2;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((2 << 8) + 1):
- fdct->do_dct[ci] = jpeg_fdct_2x1;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((8 << 8) + 16):
- fdct->do_dct[ci] = jpeg_fdct_8x16;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((7 << 8) + 14):
- fdct->do_dct[ci] = jpeg_fdct_7x14;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((6 << 8) + 12):
- fdct->do_dct[ci] = jpeg_fdct_6x12;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((5 << 8) + 10):
- fdct->do_dct[ci] = jpeg_fdct_5x10;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((4 << 8) + 8):
- fdct->do_dct[ci] = jpeg_fdct_4x8;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((3 << 8) + 6):
- fdct->do_dct[ci] = jpeg_fdct_3x6;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((2 << 8) + 4):
- fdct->do_dct[ci] = jpeg_fdct_2x4;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
- case ((1 << 8) + 2):
- fdct->do_dct[ci] = jpeg_fdct_1x2;
- method = JDCT_ISLOW; /* jfdctint uses islow-style table */
- break;
-#endif
- case ((DCTSIZE << 8) + DCTSIZE):
- switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- fdct->do_dct[ci] = jpeg_fdct_islow;
- method = JDCT_ISLOW;
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- fdct->do_dct[ci] = jpeg_fdct_ifast;
- method = JDCT_IFAST;
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- fdct->do_float_dct[ci] = jpeg_fdct_float;
- method = JDCT_FLOAT;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- break;
- default:
- ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
- compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
- break;
- }
- qtblno = compptr->quant_tbl_no;
- /* Make sure specified quantization table is present */
- if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
- cinfo->quant_tbl_ptrs[qtblno] == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
- qtbl = cinfo->quant_tbl_ptrs[qtblno];
- /* Compute divisors for this quant table */
- /* We may do this more than once for same table, but it's not a big deal */
- switch (method) {
-#ifdef PROVIDE_ISLOW_TABLES
- case JDCT_ISLOW:
- /* For LL&M IDCT method, divisors are equal to raw quantization
- * coefficients multiplied by 8 (to counteract scaling).
- */
- if (fdct->divisors[qtblno] == NULL) {
- fdct->divisors[qtblno] = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF(DCTELEM));
- }
- dtbl = fdct->divisors[qtblno];
- for (i = 0; i < DCTSIZE2; i++) {
- dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
- }
- fdct->pub.forward_DCT[ci] = forward_DCT;
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- */
-#define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
-
- if (fdct->divisors[qtblno] == NULL) {
- fdct->divisors[qtblno] = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF(DCTELEM));
- }
- dtbl = fdct->divisors[qtblno];
- for (i = 0; i < DCTSIZE2; i++) {
- dtbl[i] = (DCTELEM)
- DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
- (INT32) aanscales[i]),
- CONST_BITS-3);
- }
- }
- fdct->pub.forward_DCT[ci] = forward_DCT;
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- * What's actually stored is 1/divisor so that the inner loop can
- * use a multiplication rather than a division.
- */
- FAST_FLOAT * fdtbl;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
-
- if (fdct->float_divisors[qtblno] == NULL) {
- fdct->float_divisors[qtblno] = (FAST_FLOAT *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF(FAST_FLOAT));
- }
- fdtbl = fdct->float_divisors[qtblno];
- i = 0;
- for (row = 0; row < DCTSIZE; row++) {
- for (col = 0; col < DCTSIZE; col++) {
- fdtbl[i] = (FAST_FLOAT)
- (1.0 / (((double) qtbl->quantval[i] *
- aanscalefactor[row] * aanscalefactor[col] * 8.0)));
- i++;
- }
- }
- }
- fdct->pub.forward_DCT[ci] = forward_DCT_float;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- }
-}
-
-
-/*
- * Initialize FDCT manager.
- */
-
-GLOBAL(void)
-jinit_forward_dct (j_compress_ptr cinfo)
-{
- my_fdct_ptr fdct;
- int i;
-
- fdct = (my_fdct_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_fdct_controller));
- cinfo->fdct = (struct jpeg_forward_dct *) fdct;
- fdct->pub.start_pass = start_pass_fdctmgr;
-
- /* Mark divisor tables unallocated */
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- fdct->divisors[i] = NULL;
-#ifdef DCT_FLOAT_SUPPORTED
- fdct->float_divisors[i] = NULL;
-#endif
- }
-}
diff --git a/src/jpeg-8c/jchuff.c b/src/jpeg-8c/jchuff.c
deleted file mode 100644
index 257d7aa1..00000000
--- a/src/jpeg-8c/jchuff.c
+++ /dev/null
@@ -1,1576 +0,0 @@
-/*
- * jchuff.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2006-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy encoding routines.
- * Both sequential and progressive modes are supported in this single module.
- *
- * Much of the complexity here has to do with supporting output suspension.
- * If the data destination module demands suspension, we want to be able to
- * back up to the start of the current MCU. To do this, we copy state
- * variables into local working storage, and update them back to the
- * permanent JPEG objects only upon successful completion of an MCU.
- *
- * We do not support output suspension for the progressive JPEG mode, since
- * the library currently does not allow multiple-scan files to be written
- * with output suspension.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* The legal range of a DCT coefficient is
- * -1024 .. +1023 for 8-bit data;
- * -16384 .. +16383 for 12-bit data.
- * Hence the magnitude should always fit in 10 or 14 bits respectively.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MAX_COEF_BITS 10
-#else
-#define MAX_COEF_BITS 14
-#endif
-
-/* Derived data constructed for each Huffman table */
-
-typedef struct {
- unsigned int ehufco[256]; /* code for each symbol */
- char ehufsi[256]; /* length of code for each symbol */
- /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
-} c_derived_tbl;
-
-
-/* Expanded entropy encoder object for Huffman encoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
- INT32 put_buffer; /* current bit-accumulation buffer */
- int put_bits; /* # of bits now in it */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src) ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src) \
- ((dest).put_buffer = (src).put_buffer, \
- (dest).put_bits = (src).put_bits, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
- struct jpeg_entropy_encoder pub; /* public fields */
-
- savable_state saved; /* Bit buffer & DC state at start of MCU */
-
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- int next_restart_num; /* next restart number to write (0-7) */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
-
- /* Statistics tables for optimization */
- long * dc_count_ptrs[NUM_HUFF_TBLS];
- long * ac_count_ptrs[NUM_HUFF_TBLS];
-
- /* Following fields used only in progressive mode */
-
- /* Mode flag: TRUE for optimization, FALSE for actual data output */
- boolean gather_statistics;
-
- /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
- */
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
- j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
-
- /* Coding status for AC components */
- int ac_tbl_no; /* the table number of the single component */
- unsigned int EOBRUN; /* run length of EOBs */
- unsigned int BE; /* # of buffered correction bits before MCU */
- char * bit_buffer; /* buffer for correction bits (1 per char) */
- /* packing correction bits tightly would save some space but cost time... */
-} huff_entropy_encoder;
-
-typedef huff_entropy_encoder * huff_entropy_ptr;
-
-/* Working state while writing an MCU (sequential mode).
- * This struct contains all the fields that are needed by subroutines.
- */
-
-typedef struct {
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
- savable_state cur; /* Current bit buffer & DC state */
- j_compress_ptr cinfo; /* dump_buffer needs access to this */
-} working_state;
-
-/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
- * buffer can hold. Larger sizes may slightly improve compression, but
- * 1000 is already well into the realm of overkill.
- * The minimum safe size is 64 bits.
- */
-
-#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
-
-/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
- * We assume that int right shift is unsigned if INT32 right shift is,
- * which should be safe.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS int ishift_temp;
-#define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
- (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-/*
- * Compute the derived values for a Huffman table.
- * This routine also performs some validation checks on the table.
- */
-
-LOCAL(void)
-jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
- c_derived_tbl ** pdtbl)
-{
- JHUFF_TBL *htbl;
- c_derived_tbl *dtbl;
- int p, i, l, lastp, si, maxsymbol;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
-
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
-
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
-
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (c_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(c_derived_tbl));
- dtbl = *pdtbl;
-
- /* Figure C.1: make table of Huffman code length for each symbol */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- lastp = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
-
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- si++;
- }
-
- /* Figure C.3: generate encoding tables */
- /* These are code and size indexed by symbol value */
-
- /* Set all codeless symbols to have code length 0;
- * this lets us detect duplicate VAL entries here, and later
- * allows emit_bits to detect any attempt to emit such symbols.
- */
- MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
-
- /* This is also a convenient place to check for out-of-range
- * and duplicated VAL entries. We allow 0..255 for AC symbols
- * but only 0..15 for DC. (We could constrain them further
- * based on data depth and mode, but this seems enough.)
- */
- maxsymbol = isDC ? 15 : 255;
-
- for (p = 0; p < lastp; p++) {
- i = htbl->huffval[p];
- if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- dtbl->ehufco[i] = huffcode[p];
- dtbl->ehufsi[i] = huffsize[p];
- }
-}
-
-
-/* Outputting bytes to the file.
- * NB: these must be called only when actually outputting,
- * that is, entropy->gather_statistics == FALSE.
- */
-
-/* Emit a byte, taking 'action' if must suspend. */
-#define emit_byte_s(state,val,action) \
- { *(state)->next_output_byte++ = (JOCTET) (val); \
- if (--(state)->free_in_buffer == 0) \
- if (! dump_buffer_s(state)) \
- { action; } }
-
-/* Emit a byte */
-#define emit_byte_e(entropy,val) \
- { *(entropy)->next_output_byte++ = (JOCTET) (val); \
- if (--(entropy)->free_in_buffer == 0) \
- dump_buffer_e(entropy); }
-
-
-LOCAL(boolean)
-dump_buffer_s (working_state * state)
-/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
-{
- struct jpeg_destination_mgr * dest = state->cinfo->dest;
-
- if (! (*dest->empty_output_buffer) (state->cinfo))
- return FALSE;
- /* After a successful buffer dump, must reset buffer pointers */
- state->next_output_byte = dest->next_output_byte;
- state->free_in_buffer = dest->free_in_buffer;
- return TRUE;
-}
-
-
-LOCAL(void)
-dump_buffer_e (huff_entropy_ptr entropy)
-/* Empty the output buffer; we do not support suspension in this case. */
-{
- struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
-
- if (! (*dest->empty_output_buffer) (entropy->cinfo))
- ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
- /* After a successful buffer dump, must reset buffer pointers */
- entropy->next_output_byte = dest->next_output_byte;
- entropy->free_in_buffer = dest->free_in_buffer;
-}
-
-
-/* Outputting bits to the file */
-
-/* Only the right 24 bits of put_buffer are used; the valid bits are
- * left-justified in this part. At most 16 bits can be passed to emit_bits
- * in one call, and we never retain more than 7 bits in put_buffer
- * between calls, so 24 bits are sufficient.
- */
-
-INLINE
-LOCAL(boolean)
-emit_bits_s (working_state * state, unsigned int code, int size)
-/* Emit some bits; return TRUE if successful, FALSE if must suspend */
-{
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer = (INT32) code;
- register int put_bits = state->cur.put_bits;
-
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
-
- put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
-
- put_bits += size; /* new number of bits in buffer */
-
- put_buffer <<= 24 - put_bits; /* align incoming bits */
-
- put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
-
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
-
- emit_byte_s(state, c, return FALSE);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte_s(state, 0, return FALSE);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
-
- state->cur.put_buffer = put_buffer; /* update state variables */
- state->cur.put_bits = put_bits;
-
- return TRUE;
-}
-
-
-INLINE
-LOCAL(void)
-emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
-/* Emit some bits, unless we are in gather mode */
-{
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer = (INT32) code;
- register int put_bits = entropy->saved.put_bits;
-
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
-
- if (entropy->gather_statistics)
- return; /* do nothing if we're only getting stats */
-
- put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
-
- put_bits += size; /* new number of bits in buffer */
-
- put_buffer <<= 24 - put_bits; /* align incoming bits */
-
- /* and merge with old buffer contents */
- put_buffer |= entropy->saved.put_buffer;
-
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
-
- emit_byte_e(entropy, c);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte_e(entropy, 0);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
-
- entropy->saved.put_buffer = put_buffer; /* update variables */
- entropy->saved.put_bits = put_bits;
-}
-
-
-LOCAL(boolean)
-flush_bits_s (working_state * state)
-{
- if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
- return FALSE;
- state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
- state->cur.put_bits = 0;
- return TRUE;
-}
-
-
-LOCAL(void)
-flush_bits_e (huff_entropy_ptr entropy)
-{
- emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
- entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
- entropy->saved.put_bits = 0;
-}
-
-
-/*
- * Emit (or just count) a Huffman symbol.
- */
-
-INLINE
-LOCAL(void)
-emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
-{
- if (entropy->gather_statistics)
- entropy->dc_count_ptrs[tbl_no][symbol]++;
- else {
- c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
- emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
- }
-}
-
-
-INLINE
-LOCAL(void)
-emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
-{
- if (entropy->gather_statistics)
- entropy->ac_count_ptrs[tbl_no][symbol]++;
- else {
- c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
- emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
- }
-}
-
-
-/*
- * Emit bits from a correction bit buffer.
- */
-
-LOCAL(void)
-emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
- unsigned int nbits)
-{
- if (entropy->gather_statistics)
- return; /* no real work */
-
- while (nbits > 0) {
- emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
- bufstart++;
- nbits--;
- }
-}
-
-
-/*
- * Emit any pending EOBRUN symbol.
- */
-
-LOCAL(void)
-emit_eobrun (huff_entropy_ptr entropy)
-{
- register int temp, nbits;
-
- if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
- temp = entropy->EOBRUN;
- nbits = 0;
- while ((temp >>= 1))
- nbits++;
- /* safety check: shouldn't happen given limited correction-bit buffer */
- if (nbits > 14)
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
-
- emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
- if (nbits)
- emit_bits_e(entropy, entropy->EOBRUN, nbits);
-
- entropy->EOBRUN = 0;
-
- /* Emit any buffered correction bits */
- emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
- entropy->BE = 0;
- }
-}
-
-
-/*
- * Emit a restart marker & resynchronize predictions.
- */
-
-LOCAL(boolean)
-emit_restart_s (working_state * state, int restart_num)
-{
- int ci;
-
- if (! flush_bits_s(state))
- return FALSE;
-
- emit_byte_s(state, 0xFF, return FALSE);
- emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
- state->cur.last_dc_val[ci] = 0;
-
- /* The restart counter is not updated until we successfully write the MCU. */
-
- return TRUE;
-}
-
-
-LOCAL(void)
-emit_restart_e (huff_entropy_ptr entropy, int restart_num)
-{
- int ci;
-
- emit_eobrun(entropy);
-
- if (! entropy->gather_statistics) {
- flush_bits_e(entropy);
- emit_byte_e(entropy, 0xFF);
- emit_byte_e(entropy, JPEG_RST0 + restart_num);
- }
-
- if (entropy->cinfo->Ss == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- } else {
- /* Re-initialize all AC-related fields to 0 */
- entropy->EOBRUN = 0;
- entropy->BE = 0;
- }
-}
-
-
-/*
- * MCU encoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int temp, temp2;
- register int nbits;
- int blkn, ci;
- int Al = cinfo->Al;
- JBLOCKROW block;
- jpeg_component_info * compptr;
- ISHIFT_TEMPS
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
-
- /* Compute the DC value after the required point transform by Al.
- * This is simply an arithmetic right shift.
- */
- temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
-
- /* DC differences are figured on the point-transformed values. */
- temp = temp2 - entropy->saved.last_dc_val[ci];
- entropy->saved.last_dc_val[ci] = temp2;
-
- /* Encode the DC coefficient difference per section G.1.2.1 */
- temp2 = temp;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count/emit the Huffman-coded symbol for the number of bits */
- emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- emit_bits_e(entropy, (unsigned int) temp2, nbits);
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int temp, temp2;
- register int nbits;
- register int r, k;
- int Se, Al;
- const int * natural_order;
- JBLOCKROW block;
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
-
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data block */
- block = MCU_data[0];
-
- /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = cinfo->Ss; k <= Se; k++) {
- if ((temp = (*block)[natural_order[k]]) == 0) {
- r++;
- continue;
- }
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value; so the code is
- * interwoven with finding the abs value (temp) and output bits (temp2).
- */
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- temp >>= Al; /* apply the point transform */
- /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
- temp2 = ~temp;
- } else {
- temp >>= Al; /* apply the point transform */
- temp2 = temp;
- }
- /* Watch out for case that nonzero coef is zero after point transform */
- if (temp == 0) {
- r++;
- continue;
- }
-
- /* Emit any pending EOBRUN */
- if (entropy->EOBRUN > 0)
- emit_eobrun(entropy);
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
- r -= 16;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count/emit Huffman symbol for run length / number of bits */
- emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- emit_bits_e(entropy, (unsigned int) temp2, nbits);
-
- r = 0; /* reset zero run length */
- }
-
- if (r > 0) { /* If there are trailing zeroes, */
- entropy->EOBRUN++; /* count an EOB */
- if (entropy->EOBRUN == 0x7FFF)
- emit_eobrun(entropy); /* force it out to avoid overflow */
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component, although the spec
- * is not very clear on the point.
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int temp;
- int blkn;
- int Al = cinfo->Al;
- JBLOCKROW block;
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
-
- /* We simply emit the Al'th bit of the DC coefficient value. */
- temp = (*block)[0];
- emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int temp;
- register int r, k;
- int EOB;
- char *BR_buffer;
- unsigned int BR;
- int Se, Al;
- const int * natural_order;
- JBLOCKROW block;
- int absvalues[DCTSIZE2];
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
-
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data block */
- block = MCU_data[0];
-
- /* It is convenient to make a pre-pass to determine the transformed
- * coefficients' absolute values and the EOB position.
- */
- EOB = 0;
- for (k = cinfo->Ss; k <= Se; k++) {
- temp = (*block)[natural_order[k]];
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if (temp < 0)
- temp = -temp; /* temp is abs value of input */
- temp >>= Al; /* apply the point transform */
- absvalues[k] = temp; /* save abs value for main pass */
- if (temp == 1)
- EOB = k; /* EOB = index of last newly-nonzero coef */
- }
-
- /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
-
- r = 0; /* r = run length of zeros */
- BR = 0; /* BR = count of buffered bits added now */
- BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
-
- for (k = cinfo->Ss; k <= Se; k++) {
- if ((temp = absvalues[k]) == 0) {
- r++;
- continue;
- }
-
- /* Emit any required ZRLs, but not if they can be folded into EOB */
- while (r > 15 && k <= EOB) {
- /* emit any pending EOBRUN and the BE correction bits */
- emit_eobrun(entropy);
- /* Emit ZRL */
- emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
- r -= 16;
- /* Emit buffered correction bits that must be associated with ZRL */
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
- BR = 0;
- }
-
- /* If the coef was previously nonzero, it only needs a correction bit.
- * NOTE: a straight translation of the spec's figure G.7 would suggest
- * that we also need to test r > 15. But if r > 15, we can only get here
- * if k > EOB, which implies that this coefficient is not 1.
- */
- if (temp > 1) {
- /* The correction bit is the next bit of the absolute value. */
- BR_buffer[BR++] = (char) (temp & 1);
- continue;
- }
-
- /* Emit any pending EOBRUN and the BE correction bits */
- emit_eobrun(entropy);
-
- /* Count/emit Huffman symbol for run length / number of bits */
- emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
-
- /* Emit output bit for newly-nonzero coef */
- temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
- emit_bits_e(entropy, (unsigned int) temp, 1);
-
- /* Emit buffered correction bits that must be associated with this code */
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
- BR = 0;
- r = 0; /* reset zero run length */
- }
-
- if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
- entropy->EOBRUN++; /* count an EOB */
- entropy->BE += BR; /* concat my correction bits to older ones */
- /* We force out the EOB if we risk either:
- * 1. overflow of the EOB counter;
- * 2. overflow of the correction bit buffer during the next MCU.
- */
- if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
- emit_eobrun(entropy);
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/* Encode a single block's worth of coefficients */
-
-LOCAL(boolean)
-encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
- c_derived_tbl *dctbl, c_derived_tbl *actbl)
-{
- register int temp, temp2;
- register int nbits;
- register int k, r, i;
- int Se = state->cinfo->lim_Se;
- const int * natural_order = state->cinfo->natural_order;
-
- /* Encode the DC coefficient difference per section F.1.2.1 */
-
- temp = temp2 = block[0] - last_dc_val;
-
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
-
- /* Emit the Huffman-coded symbol for the number of bits */
- if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
- return FALSE;
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- if (! emit_bits_s(state, (unsigned int) temp2, nbits))
- return FALSE;
-
- /* Encode the AC coefficients per section F.1.2.2 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = 1; k <= Se; k++) {
- if ((temp = block[natural_order[k]]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
- return FALSE;
- r -= 16;
- }
-
- temp2 = temp;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
-
- /* Emit Huffman symbol for run length / number of bits */
- i = (r << 4) + nbits;
- if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
- return FALSE;
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (! emit_bits_s(state, (unsigned int) temp2, nbits))
- return FALSE;
-
- r = 0;
- }
- }
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
- return FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Encode and output one MCU's worth of Huffman-compressed coefficients.
- */
-
-METHODDEF(boolean)
-encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- working_state state;
- int blkn, ci;
- jpeg_component_info * compptr;
-
- /* Load up working state */
- state.next_output_byte = cinfo->dest->next_output_byte;
- state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! emit_restart_s(&state, entropy->next_restart_num))
- return FALSE;
- }
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- if (! encode_one_block(&state,
- MCU_data[blkn][0], state.cur.last_dc_val[ci],
- entropy->dc_derived_tbls[compptr->dc_tbl_no],
- entropy->ac_derived_tbls[compptr->ac_tbl_no]))
- return FALSE;
- /* Update last_dc_val */
- state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
- }
-
- /* Completed MCU, so update state */
- cinfo->dest->next_output_byte = state.next_output_byte;
- cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * Finish up at the end of a Huffman-compressed scan.
- */
-
-METHODDEF(void)
-finish_pass_huff (j_compress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- working_state state;
-
- if (cinfo->progressive_mode) {
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Flush out any buffered data */
- emit_eobrun(entropy);
- flush_bits_e(entropy);
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
- } else {
- /* Load up working state ... flush_bits needs it */
- state.next_output_byte = cinfo->dest->next_output_byte;
- state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
-
- /* Flush out the last data */
- if (! flush_bits_s(&state))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
-
- /* Update state */
- cinfo->dest->next_output_byte = state.next_output_byte;
- cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
- }
-}
-
-
-/*
- * Huffman coding optimization.
- *
- * We first scan the supplied data and count the number of uses of each symbol
- * that is to be Huffman-coded. (This process MUST agree with the code above.)
- * Then we build a Huffman coding tree for the observed counts.
- * Symbols which are not needed at all for the particular image are not
- * assigned any code, which saves space in the DHT marker as well as in
- * the compressed data.
- */
-
-
-/* Process a single block's worth of coefficients */
-
-LOCAL(void)
-htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
- long dc_counts[], long ac_counts[])
-{
- register int temp;
- register int nbits;
- register int k, r;
- int Se = cinfo->lim_Se;
- const int * natural_order = cinfo->natural_order;
-
- /* Encode the DC coefficient difference per section F.1.2.1 */
-
- temp = block[0] - last_dc_val;
- if (temp < 0)
- temp = -temp;
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count the Huffman symbol for the number of bits */
- dc_counts[nbits]++;
-
- /* Encode the AC coefficients per section F.1.2.2 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = 1; k <= Se; k++) {
- if ((temp = block[natural_order[k]]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- ac_counts[0xF0]++;
- r -= 16;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- if (temp < 0)
- temp = -temp;
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count Huffman symbol for run length / number of bits */
- ac_counts[(r << 4) + nbits]++;
-
- r = 0;
- }
- }
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- ac_counts[0]++;
-}
-
-
-/*
- * Trial-encode one MCU's worth of Huffman-compressed coefficients.
- * No data is actually output, so no suspension return is possible.
- */
-
-METHODDEF(boolean)
-encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn, ci;
- jpeg_component_info * compptr;
-
- /* Take care of restart intervals if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Update restart state */
- entropy->restarts_to_go = cinfo->restart_interval;
- }
- entropy->restarts_to_go--;
- }
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
- entropy->dc_count_ptrs[compptr->dc_tbl_no],
- entropy->ac_count_ptrs[compptr->ac_tbl_no]);
- entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
- }
-
- return TRUE;
-}
-
-
-/*
- * Generate the best Huffman code table for the given counts, fill htbl.
- *
- * The JPEG standard requires that no symbol be assigned a codeword of all
- * one bits (so that padding bits added at the end of a compressed segment
- * can't look like a valid code). Because of the canonical ordering of
- * codewords, this just means that there must be an unused slot in the
- * longest codeword length category. Section K.2 of the JPEG spec suggests
- * reserving such a slot by pretending that symbol 256 is a valid symbol
- * with count 1. In theory that's not optimal; giving it count zero but
- * including it in the symbol set anyway should give a better Huffman code.
- * But the theoretically better code actually seems to come out worse in
- * practice, because it produces more all-ones bytes (which incur stuffed
- * zero bytes in the final file). In any case the difference is tiny.
- *
- * The JPEG standard requires Huffman codes to be no more than 16 bits long.
- * If some symbols have a very small but nonzero probability, the Huffman tree
- * must be adjusted to meet the code length restriction. We currently use
- * the adjustment method suggested in JPEG section K.2. This method is *not*
- * optimal; it may not choose the best possible limited-length code. But
- * typically only very-low-frequency symbols will be given less-than-optimal
- * lengths, so the code is almost optimal. Experimental comparisons against
- * an optimal limited-length-code algorithm indicate that the difference is
- * microscopic --- usually less than a hundredth of a percent of total size.
- * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
- */
-
-LOCAL(void)
-jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
-{
-#define MAX_CLEN 32 /* assumed maximum initial code length */
- UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
- int codesize[257]; /* codesize[k] = code length of symbol k */
- int others[257]; /* next symbol in current branch of tree */
- int c1, c2;
- int p, i, j;
- long v;
-
- /* This algorithm is explained in section K.2 of the JPEG standard */
-
- MEMZERO(bits, SIZEOF(bits));
- MEMZERO(codesize, SIZEOF(codesize));
- for (i = 0; i < 257; i++)
- others[i] = -1; /* init links to empty */
-
- freq[256] = 1; /* make sure 256 has a nonzero count */
- /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
- * that no real symbol is given code-value of all ones, because 256
- * will be placed last in the largest codeword category.
- */
-
- /* Huffman's basic algorithm to assign optimal code lengths to symbols */
-
- for (;;) {
- /* Find the smallest nonzero frequency, set c1 = its symbol */
- /* In case of ties, take the larger symbol number */
- c1 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v) {
- v = freq[i];
- c1 = i;
- }
- }
-
- /* Find the next smallest nonzero frequency, set c2 = its symbol */
- /* In case of ties, take the larger symbol number */
- c2 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v && i != c1) {
- v = freq[i];
- c2 = i;
- }
- }
-
- /* Done if we've merged everything into one frequency */
- if (c2 < 0)
- break;
-
- /* Else merge the two counts/trees */
- freq[c1] += freq[c2];
- freq[c2] = 0;
-
- /* Increment the codesize of everything in c1's tree branch */
- codesize[c1]++;
- while (others[c1] >= 0) {
- c1 = others[c1];
- codesize[c1]++;
- }
-
- others[c1] = c2; /* chain c2 onto c1's tree branch */
-
- /* Increment the codesize of everything in c2's tree branch */
- codesize[c2]++;
- while (others[c2] >= 0) {
- c2 = others[c2];
- codesize[c2]++;
- }
- }
-
- /* Now count the number of symbols of each code length */
- for (i = 0; i <= 256; i++) {
- if (codesize[i]) {
- /* The JPEG standard seems to think that this can't happen, */
- /* but I'm paranoid... */
- if (codesize[i] > MAX_CLEN)
- ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
-
- bits[codesize[i]]++;
- }
- }
-
- /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
- * Huffman procedure assigned any such lengths, we must adjust the coding.
- * Here is what the JPEG spec says about how this next bit works:
- * Since symbols are paired for the longest Huffman code, the symbols are
- * removed from this length category two at a time. The prefix for the pair
- * (which is one bit shorter) is allocated to one of the pair; then,
- * skipping the BITS entry for that prefix length, a code word from the next
- * shortest nonzero BITS entry is converted into a prefix for two code words
- * one bit longer.
- */
-
- for (i = MAX_CLEN; i > 16; i--) {
- while (bits[i] > 0) {
- j = i - 2; /* find length of new prefix to be used */
- while (bits[j] == 0)
- j--;
-
- bits[i] -= 2; /* remove two symbols */
- bits[i-1]++; /* one goes in this length */
- bits[j+1] += 2; /* two new symbols in this length */
- bits[j]--; /* symbol of this length is now a prefix */
- }
- }
-
- /* Remove the count for the pseudo-symbol 256 from the largest codelength */
- while (bits[i] == 0) /* find largest codelength still in use */
- i--;
- bits[i]--;
-
- /* Return final symbol counts (only for lengths 0..16) */
- MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
-
- /* Return a list of the symbols sorted by code length */
- /* It's not real clear to me why we don't need to consider the codelength
- * changes made above, but the JPEG spec seems to think this works.
- */
- p = 0;
- for (i = 1; i <= MAX_CLEN; i++) {
- for (j = 0; j <= 255; j++) {
- if (codesize[j] == i) {
- htbl->huffval[p] = (UINT8) j;
- p++;
- }
- }
- }
-
- /* Set sent_table FALSE so updated table will be written to JPEG file. */
- htbl->sent_table = FALSE;
-}
-
-
-/*
- * Finish up a statistics-gathering pass and create the new Huffman tables.
- */
-
-METHODDEF(void)
-finish_pass_gather (j_compress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
- JHUFF_TBL **htblptr;
- boolean did_dc[NUM_HUFF_TBLS];
- boolean did_ac[NUM_HUFF_TBLS];
-
- /* It's important not to apply jpeg_gen_optimal_table more than once
- * per table, because it clobbers the input frequency counts!
- */
- if (cinfo->progressive_mode)
- /* Flush out buffered data (all we care about is counting the EOB symbol) */
- emit_eobrun(entropy);
-
- MEMZERO(did_dc, SIZEOF(did_dc));
- MEMZERO(did_ac, SIZEOF(did_ac));
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- tbl = compptr->dc_tbl_no;
- if (! did_dc[tbl]) {
- htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
- did_dc[tbl] = TRUE;
- }
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- tbl = compptr->ac_tbl_no;
- if (! did_ac[tbl]) {
- htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
- did_ac[tbl] = TRUE;
- }
- }
- }
-}
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- * If gather_statistics is TRUE, we do not output anything during the scan,
- * just count the Huffman symbols used and generate Huffman code tables.
- */
-
-METHODDEF(void)
-start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
-
- if (gather_statistics)
- entropy->pub.finish_pass = finish_pass_gather;
- else
- entropy->pub.finish_pass = finish_pass_huff;
-
- if (cinfo->progressive_mode) {
- entropy->cinfo = cinfo;
- entropy->gather_statistics = gather_statistics;
-
- /* We assume jcmaster.c already validated the scan parameters. */
-
- /* Select execution routine */
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_first;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_refine;
- else {
- entropy->pub.encode_mcu = encode_mcu_AC_refine;
- /* AC refinement needs a correction bit buffer */
- if (entropy->bit_buffer == NULL)
- entropy->bit_buffer = (char *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- MAX_CORR_BITS * SIZEOF(char));
- }
- }
-
- /* Initialize AC stuff */
- entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
- entropy->EOBRUN = 0;
- entropy->BE = 0;
- } else {
- if (gather_statistics)
- entropy->pub.encode_mcu = encode_mcu_gather;
- else
- entropy->pub.encode_mcu = encode_mcu_huff;
- }
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- tbl = compptr->dc_tbl_no;
- if (gather_statistics) {
- /* Check for invalid table index */
- /* (make_c_derived_tbl does this in the other path) */
- if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
- /* Allocate and zero the statistics tables */
- /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
- if (entropy->dc_count_ptrs[tbl] == NULL)
- entropy->dc_count_ptrs[tbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
- } else {
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
- & entropy->dc_derived_tbls[tbl]);
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- tbl = compptr->ac_tbl_no;
- if (gather_statistics) {
- if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
- if (entropy->ac_count_ptrs[tbl] == NULL)
- entropy->ac_count_ptrs[tbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
- } else {
- jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
- & entropy->ac_derived_tbls[tbl]);
- }
- }
- }
-
- /* Initialize bit buffer to empty */
- entropy->saved.put_buffer = 0;
- entropy->saved.put_bits = 0;
-
- /* Initialize restart stuff */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num = 0;
-}
-
-
-/*
- * Module initialization routine for Huffman entropy encoding.
- */
-
-GLOBAL(void)
-jinit_huff_encoder (j_compress_ptr cinfo)
-{
- huff_entropy_ptr entropy;
- int i;
-
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_encoder));
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
- entropy->pub.start_pass = start_pass_huff;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
- }
-
- if (cinfo->progressive_mode)
- entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
-}
diff --git a/src/jpeg-8c/jcinit.c b/src/jpeg-8c/jcinit.c
deleted file mode 100644
index 0ba310f2..00000000
--- a/src/jpeg-8c/jcinit.c
+++ /dev/null
@@ -1,65 +0,0 @@
-/*
- * jcinit.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains initialization logic for the JPEG compressor.
- * This routine is in charge of selecting the modules to be executed and
- * making an initialization call to each one.
- *
- * Logically, this code belongs in jcmaster.c. It's split out because
- * linking this routine implies linking the entire compression library.
- * For a transcoding-only application, we want to be able to use jcmaster.c
- * without linking in the whole library.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Master selection of compression modules.
- * This is done once at the start of processing an image. We determine
- * which modules will be used and give them appropriate initialization calls.
- */
-
-GLOBAL(void)
-jinit_compress_master (j_compress_ptr cinfo)
-{
- /* Initialize master control (includes parameter checking/processing) */
- jinit_c_master_control(cinfo, FALSE /* full compression */);
-
- /* Preprocessing */
- if (! cinfo->raw_data_in) {
- jinit_color_converter(cinfo);
- jinit_downsampler(cinfo);
- jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
- }
- /* Forward DCT */
- jinit_forward_dct(cinfo);
- /* Entropy encoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code)
- jinit_arith_encoder(cinfo);
- else {
- jinit_huff_encoder(cinfo);
- }
-
- /* Need a full-image coefficient buffer in any multi-pass mode. */
- jinit_c_coef_controller(cinfo,
- (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
- jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
-
- jinit_marker_writer(cinfo);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Write the datastream header (SOI) immediately.
- * Frame and scan headers are postponed till later.
- * This lets application insert special markers after the SOI.
- */
- (*cinfo->marker->write_file_header) (cinfo);
-}
diff --git a/src/jpeg-8c/jcmainct.c b/src/jpeg-8c/jcmainct.c
deleted file mode 100644
index b9f525b2..00000000
--- a/src/jpeg-8c/jcmainct.c
+++ /dev/null
@@ -1,293 +0,0 @@
-/*
- * jcmainct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the main buffer controller for compression.
- * The main buffer lies between the pre-processor and the JPEG
- * compressor proper; it holds downsampled data in the JPEG colorspace.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Note: currently, there is no operating mode in which a full-image buffer
- * is needed at this step. If there were, that mode could not be used with
- * "raw data" input, since this module is bypassed in that case. However,
- * we've left the code here for possible use in special applications.
- */
-#undef FULL_MAIN_BUFFER_SUPPORTED
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_main_controller pub; /* public fields */
-
- JDIMENSION cur_iMCU_row; /* number of current iMCU row */
- JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
- boolean suspended; /* remember if we suspended output */
- J_BUF_MODE pass_mode; /* current operating mode */
-
- /* If using just a strip buffer, this points to the entire set of buffers
- * (we allocate one for each component). In the full-image case, this
- * points to the currently accessible strips of the virtual arrays.
- */
- JSAMPARRAY buffer[MAX_COMPONENTS];
-
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- /* If using full-image storage, this array holds pointers to virtual-array
- * control blocks for each component. Unused if not full-image storage.
- */
- jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
-#endif
-} my_main_controller;
-
-typedef my_main_controller * my_main_ptr;
-
-
-/* Forward declarations */
-METHODDEF(void) process_data_simple_main
- JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
-METHODDEF(void) process_data_buffer_main
- JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- /* Do nothing in raw-data mode. */
- if (cinfo->raw_data_in)
- return;
-
- main_ptr->cur_iMCU_row = 0; /* initialize counters */
- main_ptr->rowgroup_ctr = 0;
- main_ptr->suspended = FALSE;
- main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- if (main_ptr->whole_image[0] != NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
- main_ptr->pub.process_data = process_data_simple_main;
- break;
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- case JBUF_SAVE_SOURCE:
- case JBUF_CRANK_DEST:
- case JBUF_SAVE_AND_PASS:
- if (main_ptr->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- main_ptr->pub.process_data = process_data_buffer_main;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data.
- * This routine handles the simple pass-through mode,
- * where we have only a strip buffer.
- */
-
-METHODDEF(void)
-process_data_simple_main (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail)
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
- /* Read input data if we haven't filled the main buffer yet */
- if (main_ptr->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
- (*cinfo->prep->pre_process_data) (cinfo,
- input_buf, in_row_ctr, in_rows_avail,
- main_ptr->buffer, &main_ptr->rowgroup_ctr,
- (JDIMENSION) cinfo->min_DCT_v_scaled_size);
-
- /* If we don't have a full iMCU row buffered, return to application for
- * more data. Note that preprocessor will always pad to fill the iMCU row
- * at the bottom of the image.
- */
- if (main_ptr->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
- return;
-
- /* Send the completed row to the compressor */
- if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
- /* If compressor did not consume the whole row, then we must need to
- * suspend processing and return to the application. In this situation
- * we pretend we didn't yet consume the last input row; otherwise, if
- * it happened to be the last row of the image, the application would
- * think we were done.
- */
- if (! main_ptr->suspended) {
- (*in_row_ctr)--;
- main_ptr->suspended = TRUE;
- }
- return;
- }
- /* We did finish the row. Undo our little suspension hack if a previous
- * call suspended; then mark the main buffer empty.
- */
- if (main_ptr->suspended) {
- (*in_row_ctr)++;
- main_ptr->suspended = FALSE;
- }
- main_ptr->rowgroup_ctr = 0;
- main_ptr->cur_iMCU_row++;
- }
-}
-
-
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
-
-/*
- * Process some data.
- * This routine handles all of the modes that use a full-size buffer.
- */
-
-METHODDEF(void)
-process_data_buffer_main (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail)
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci;
- jpeg_component_info *compptr;
- boolean writing = (main_ptr->pass_mode != JBUF_CRANK_DEST);
-
- while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
- /* Realign the virtual buffers if at the start of an iMCU row. */
- if (main_ptr->rowgroup_ctr == 0) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- main_ptr->buffer[ci] = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, main_ptr->whole_image[ci],
- main_ptr->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
- (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
- }
- /* In a read pass, pretend we just read some source data. */
- if (! writing) {
- *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
- main_ptr->rowgroup_ctr = DCTSIZE;
- }
- }
-
- /* If a write pass, read input data until the current iMCU row is full. */
- /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
- if (writing) {
- (*cinfo->prep->pre_process_data) (cinfo,
- input_buf, in_row_ctr, in_rows_avail,
- main_ptr->buffer, &main_ptr->rowgroup_ctr,
- (JDIMENSION) DCTSIZE);
- /* Return to application if we need more data to fill the iMCU row. */
- if (main_ptr->rowgroup_ctr < DCTSIZE)
- return;
- }
-
- /* Emit data, unless this is a sink-only pass. */
- if (main_ptr->pass_mode != JBUF_SAVE_SOURCE) {
- if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
- /* If compressor did not consume the whole row, then we must need to
- * suspend processing and return to the application. In this situation
- * we pretend we didn't yet consume the last input row; otherwise, if
- * it happened to be the last row of the image, the application would
- * think we were done.
- */
- if (! main_ptr->suspended) {
- (*in_row_ctr)--;
- main_ptr->suspended = TRUE;
- }
- return;
- }
- /* We did finish the row. Undo our little suspension hack if a previous
- * call suspended; then mark the main buffer empty.
- */
- if (main_ptr->suspended) {
- (*in_row_ctr)++;
- main_ptr->suspended = FALSE;
- }
- }
-
- /* If get here, we are done with this iMCU row. Mark buffer empty. */
- main_ptr->rowgroup_ctr = 0;
- main_ptr->cur_iMCU_row++;
- }
-}
-
-#endif /* FULL_MAIN_BUFFER_SUPPORTED */
-
-
-/*
- * Initialize main buffer controller.
- */
-
-GLOBAL(void)
-jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
-{
- my_main_ptr main_ptr;
- int ci;
- jpeg_component_info *compptr;
-
- main_ptr = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
- cinfo->main = (struct jpeg_c_main_controller *) main_ptr;
- main_ptr->pub.start_pass = start_pass_main;
-
- /* We don't need to create a buffer in raw-data mode. */
- if (cinfo->raw_data_in)
- return;
-
- /* Create the buffer. It holds downsampled data, so each component
- * may be of a different size.
- */
- if (need_full_buffer) {
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- /* Allocate a full-image virtual array for each component */
- /* Note we pad the bottom to a multiple of the iMCU height */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- main_ptr->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor) * DCTSIZE,
- (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
- }
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
- } else {
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- main_ptr->whole_image[0] = NULL; /* flag for no virtual arrays */
-#endif
- /* Allocate a strip buffer for each component */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
- }
- }
-}
diff --git a/src/jpeg-8c/jcmarker.c b/src/jpeg-8c/jcmarker.c
deleted file mode 100644
index 606c19af..00000000
--- a/src/jpeg-8c/jcmarker.c
+++ /dev/null
@@ -1,682 +0,0 @@
-/*
- * jcmarker.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * Modified 2003-2010 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains routines to write JPEG datastream markers.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-typedef enum { /* JPEG marker codes */
- M_SOF0 = 0xc0,
- M_SOF1 = 0xc1,
- M_SOF2 = 0xc2,
- M_SOF3 = 0xc3,
-
- M_SOF5 = 0xc5,
- M_SOF6 = 0xc6,
- M_SOF7 = 0xc7,
-
- M_JPG = 0xc8,
- M_SOF9 = 0xc9,
- M_SOF10 = 0xca,
- M_SOF11 = 0xcb,
-
- M_SOF13 = 0xcd,
- M_SOF14 = 0xce,
- M_SOF15 = 0xcf,
-
- M_DHT = 0xc4,
-
- M_DAC = 0xcc,
-
- M_RST0 = 0xd0,
- M_RST1 = 0xd1,
- M_RST2 = 0xd2,
- M_RST3 = 0xd3,
- M_RST4 = 0xd4,
- M_RST5 = 0xd5,
- M_RST6 = 0xd6,
- M_RST7 = 0xd7,
-
- M_SOI = 0xd8,
- M_EOI = 0xd9,
- M_SOS = 0xda,
- M_DQT = 0xdb,
- M_DNL = 0xdc,
- M_DRI = 0xdd,
- M_DHP = 0xde,
- M_EXP = 0xdf,
-
- M_APP0 = 0xe0,
- M_APP1 = 0xe1,
- M_APP2 = 0xe2,
- M_APP3 = 0xe3,
- M_APP4 = 0xe4,
- M_APP5 = 0xe5,
- M_APP6 = 0xe6,
- M_APP7 = 0xe7,
- M_APP8 = 0xe8,
- M_APP9 = 0xe9,
- M_APP10 = 0xea,
- M_APP11 = 0xeb,
- M_APP12 = 0xec,
- M_APP13 = 0xed,
- M_APP14 = 0xee,
- M_APP15 = 0xef,
-
- M_JPG0 = 0xf0,
- M_JPG13 = 0xfd,
- M_COM = 0xfe,
-
- M_TEM = 0x01,
-
- M_ERROR = 0x100
-} JPEG_MARKER;
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_marker_writer pub; /* public fields */
-
- unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
-} my_marker_writer;
-
-typedef my_marker_writer * my_marker_ptr;
-
-
-/*
- * Basic output routines.
- *
- * Note that we do not support suspension while writing a marker.
- * Therefore, an application using suspension must ensure that there is
- * enough buffer space for the initial markers (typ. 600-700 bytes) before
- * calling jpeg_start_compress, and enough space to write the trailing EOI
- * (a few bytes) before calling jpeg_finish_compress. Multipass compression
- * modes are not supported at all with suspension, so those two are the only
- * points where markers will be written.
- */
-
-LOCAL(void)
-emit_byte (j_compress_ptr cinfo, int val)
-/* Emit a byte */
-{
- struct jpeg_destination_mgr * dest = cinfo->dest;
-
- *(dest->next_output_byte)++ = (JOCTET) val;
- if (--dest->free_in_buffer == 0) {
- if (! (*dest->empty_output_buffer) (cinfo))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
- }
-}
-
-
-LOCAL(void)
-emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
-/* Emit a marker code */
-{
- emit_byte(cinfo, 0xFF);
- emit_byte(cinfo, (int) mark);
-}
-
-
-LOCAL(void)
-emit_2bytes (j_compress_ptr cinfo, int value)
-/* Emit a 2-byte integer; these are always MSB first in JPEG files */
-{
- emit_byte(cinfo, (value >> 8) & 0xFF);
- emit_byte(cinfo, value & 0xFF);
-}
-
-
-/*
- * Routines to write specific marker types.
- */
-
-LOCAL(int)
-emit_dqt (j_compress_ptr cinfo, int index)
-/* Emit a DQT marker */
-/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
-{
- JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
- int prec;
- int i;
-
- if (qtbl == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
-
- prec = 0;
- for (i = 0; i <= cinfo->lim_Se; i++) {
- if (qtbl->quantval[cinfo->natural_order[i]] > 255)
- prec = 1;
- }
-
- if (! qtbl->sent_table) {
- emit_marker(cinfo, M_DQT);
-
- emit_2bytes(cinfo,
- prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2);
-
- emit_byte(cinfo, index + (prec<<4));
-
- for (i = 0; i <= cinfo->lim_Se; i++) {
- /* The table entries must be emitted in zigzag order. */
- unsigned int qval = qtbl->quantval[cinfo->natural_order[i]];
- if (prec)
- emit_byte(cinfo, (int) (qval >> 8));
- emit_byte(cinfo, (int) (qval & 0xFF));
- }
-
- qtbl->sent_table = TRUE;
- }
-
- return prec;
-}
-
-
-LOCAL(void)
-emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
-/* Emit a DHT marker */
-{
- JHUFF_TBL * htbl;
- int length, i;
-
- if (is_ac) {
- htbl = cinfo->ac_huff_tbl_ptrs[index];
- index += 0x10; /* output index has AC bit set */
- } else {
- htbl = cinfo->dc_huff_tbl_ptrs[index];
- }
-
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
-
- if (! htbl->sent_table) {
- emit_marker(cinfo, M_DHT);
-
- length = 0;
- for (i = 1; i <= 16; i++)
- length += htbl->bits[i];
-
- emit_2bytes(cinfo, length + 2 + 1 + 16);
- emit_byte(cinfo, index);
-
- for (i = 1; i <= 16; i++)
- emit_byte(cinfo, htbl->bits[i]);
-
- for (i = 0; i < length; i++)
- emit_byte(cinfo, htbl->huffval[i]);
-
- htbl->sent_table = TRUE;
- }
-}
-
-
-LOCAL(void)
-emit_dac (j_compress_ptr cinfo)
-/* Emit a DAC marker */
-/* Since the useful info is so small, we want to emit all the tables in */
-/* one DAC marker. Therefore this routine does its own scan of the table. */
-{
-#ifdef C_ARITH_CODING_SUPPORTED
- char dc_in_use[NUM_ARITH_TBLS];
- char ac_in_use[NUM_ARITH_TBLS];
- int length, i;
- jpeg_component_info *compptr;
-
- for (i = 0; i < NUM_ARITH_TBLS; i++)
- dc_in_use[i] = ac_in_use[i] = 0;
-
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- compptr = cinfo->cur_comp_info[i];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0)
- dc_in_use[compptr->dc_tbl_no] = 1;
- /* AC needs no table when not present */
- if (cinfo->Se)
- ac_in_use[compptr->ac_tbl_no] = 1;
- }
-
- length = 0;
- for (i = 0; i < NUM_ARITH_TBLS; i++)
- length += dc_in_use[i] + ac_in_use[i];
-
- if (length) {
- emit_marker(cinfo, M_DAC);
-
- emit_2bytes(cinfo, length*2 + 2);
-
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- if (dc_in_use[i]) {
- emit_byte(cinfo, i);
- emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
- }
- if (ac_in_use[i]) {
- emit_byte(cinfo, i + 0x10);
- emit_byte(cinfo, cinfo->arith_ac_K[i]);
- }
- }
- }
-#endif /* C_ARITH_CODING_SUPPORTED */
-}
-
-
-LOCAL(void)
-emit_dri (j_compress_ptr cinfo)
-/* Emit a DRI marker */
-{
- emit_marker(cinfo, M_DRI);
-
- emit_2bytes(cinfo, 4); /* fixed length */
-
- emit_2bytes(cinfo, (int) cinfo->restart_interval);
-}
-
-
-LOCAL(void)
-emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
-/* Emit a SOF marker */
-{
- int ci;
- jpeg_component_info *compptr;
-
- emit_marker(cinfo, code);
-
- emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
-
- /* Make sure image isn't bigger than SOF field can handle */
- if ((long) cinfo->jpeg_height > 65535L ||
- (long) cinfo->jpeg_width > 65535L)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
-
- emit_byte(cinfo, cinfo->data_precision);
- emit_2bytes(cinfo, (int) cinfo->jpeg_height);
- emit_2bytes(cinfo, (int) cinfo->jpeg_width);
-
- emit_byte(cinfo, cinfo->num_components);
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- emit_byte(cinfo, compptr->component_id);
- emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
- emit_byte(cinfo, compptr->quant_tbl_no);
- }
-}
-
-
-LOCAL(void)
-emit_sos (j_compress_ptr cinfo)
-/* Emit a SOS marker */
-{
- int i, td, ta;
- jpeg_component_info *compptr;
-
- emit_marker(cinfo, M_SOS);
-
- emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
-
- emit_byte(cinfo, cinfo->comps_in_scan);
-
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- compptr = cinfo->cur_comp_info[i];
- emit_byte(cinfo, compptr->component_id);
-
- /* We emit 0 for unused field(s); this is recommended by the P&M text
- * but does not seem to be specified in the standard.
- */
-
- /* DC needs no table for refinement scan */
- td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0;
- /* AC needs no table when not present */
- ta = cinfo->Se ? compptr->ac_tbl_no : 0;
-
- emit_byte(cinfo, (td << 4) + ta);
- }
-
- emit_byte(cinfo, cinfo->Ss);
- emit_byte(cinfo, cinfo->Se);
- emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
-}
-
-
-LOCAL(void)
-emit_pseudo_sos (j_compress_ptr cinfo)
-/* Emit a pseudo SOS marker */
-{
- emit_marker(cinfo, M_SOS);
-
- emit_2bytes(cinfo, 2 + 1 + 3); /* length */
-
- emit_byte(cinfo, 0); /* Ns */
-
- emit_byte(cinfo, 0); /* Ss */
- emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */
- emit_byte(cinfo, 0); /* Ah/Al */
-}
-
-
-LOCAL(void)
-emit_jfif_app0 (j_compress_ptr cinfo)
-/* Emit a JFIF-compliant APP0 marker */
-{
- /*
- * Length of APP0 block (2 bytes)
- * Block ID (4 bytes - ASCII "JFIF")
- * Zero byte (1 byte to terminate the ID string)
- * Version Major, Minor (2 bytes - major first)
- * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
- * Xdpu (2 bytes - dots per unit horizontal)
- * Ydpu (2 bytes - dots per unit vertical)
- * Thumbnail X size (1 byte)
- * Thumbnail Y size (1 byte)
- */
-
- emit_marker(cinfo, M_APP0);
-
- emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
-
- emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
- emit_byte(cinfo, 0x46);
- emit_byte(cinfo, 0x49);
- emit_byte(cinfo, 0x46);
- emit_byte(cinfo, 0);
- emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
- emit_byte(cinfo, cinfo->JFIF_minor_version);
- emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
- emit_2bytes(cinfo, (int) cinfo->X_density);
- emit_2bytes(cinfo, (int) cinfo->Y_density);
- emit_byte(cinfo, 0); /* No thumbnail image */
- emit_byte(cinfo, 0);
-}
-
-
-LOCAL(void)
-emit_adobe_app14 (j_compress_ptr cinfo)
-/* Emit an Adobe APP14 marker */
-{
- /*
- * Length of APP14 block (2 bytes)
- * Block ID (5 bytes - ASCII "Adobe")
- * Version Number (2 bytes - currently 100)
- * Flags0 (2 bytes - currently 0)
- * Flags1 (2 bytes - currently 0)
- * Color transform (1 byte)
- *
- * Although Adobe TN 5116 mentions Version = 101, all the Adobe files
- * now in circulation seem to use Version = 100, so that's what we write.
- *
- * We write the color transform byte as 1 if the JPEG color space is
- * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
- * whether the encoder performed a transformation, which is pretty useless.
- */
-
- emit_marker(cinfo, M_APP14);
-
- emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
-
- emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
- emit_byte(cinfo, 0x64);
- emit_byte(cinfo, 0x6F);
- emit_byte(cinfo, 0x62);
- emit_byte(cinfo, 0x65);
- emit_2bytes(cinfo, 100); /* Version */
- emit_2bytes(cinfo, 0); /* Flags0 */
- emit_2bytes(cinfo, 0); /* Flags1 */
- switch (cinfo->jpeg_color_space) {
- case JCS_YCbCr:
- emit_byte(cinfo, 1); /* Color transform = 1 */
- break;
- case JCS_YCCK:
- emit_byte(cinfo, 2); /* Color transform = 2 */
- break;
- default:
- emit_byte(cinfo, 0); /* Color transform = 0 */
- break;
- }
-}
-
-
-/*
- * These routines allow writing an arbitrary marker with parameters.
- * The only intended use is to emit COM or APPn markers after calling
- * write_file_header and before calling write_frame_header.
- * Other uses are not guaranteed to produce desirable results.
- * Counting the parameter bytes properly is the caller's responsibility.
- */
-
-METHODDEF(void)
-write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
-/* Emit an arbitrary marker header */
-{
- if (datalen > (unsigned int) 65533) /* safety check */
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- emit_marker(cinfo, (JPEG_MARKER) marker);
-
- emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
-}
-
-METHODDEF(void)
-write_marker_byte (j_compress_ptr cinfo, int val)
-/* Emit one byte of marker parameters following write_marker_header */
-{
- emit_byte(cinfo, val);
-}
-
-
-/*
- * Write datastream header.
- * This consists of an SOI and optional APPn markers.
- * We recommend use of the JFIF marker, but not the Adobe marker,
- * when using YCbCr or grayscale data. The JFIF marker should NOT
- * be used for any other JPEG colorspace. The Adobe marker is helpful
- * to distinguish RGB, CMYK, and YCCK colorspaces.
- * Note that an application can write additional header markers after
- * jpeg_start_compress returns.
- */
-
-METHODDEF(void)
-write_file_header (j_compress_ptr cinfo)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
-
- emit_marker(cinfo, M_SOI); /* first the SOI */
-
- /* SOI is defined to reset restart interval to 0 */
- marker->last_restart_interval = 0;
-
- if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
- emit_jfif_app0(cinfo);
- if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
- emit_adobe_app14(cinfo);
-}
-
-
-/*
- * Write frame header.
- * This consists of DQT and SOFn markers, and a conditional pseudo SOS marker.
- * Note that we do not emit the SOF until we have emitted the DQT(s).
- * This avoids compatibility problems with incorrect implementations that
- * try to error-check the quant table numbers as soon as they see the SOF.
- */
-
-METHODDEF(void)
-write_frame_header (j_compress_ptr cinfo)
-{
- int ci, prec;
- boolean is_baseline;
- jpeg_component_info *compptr;
-
- /* Emit DQT for each quantization table.
- * Note that emit_dqt() suppresses any duplicate tables.
- */
- prec = 0;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- prec += emit_dqt(cinfo, compptr->quant_tbl_no);
- }
- /* now prec is nonzero iff there are any 16-bit quant tables. */
-
- /* Check for a non-baseline specification.
- * Note we assume that Huffman table numbers won't be changed later.
- */
- if (cinfo->arith_code || cinfo->progressive_mode ||
- cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) {
- is_baseline = FALSE;
- } else {
- is_baseline = TRUE;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
- is_baseline = FALSE;
- }
- if (prec && is_baseline) {
- is_baseline = FALSE;
- /* If it's baseline except for quantizer size, warn the user */
- TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
- }
- }
-
- /* Emit the proper SOF marker */
- if (cinfo->arith_code) {
- if (cinfo->progressive_mode)
- emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
- else
- emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
- } else {
- if (cinfo->progressive_mode)
- emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
- else if (is_baseline)
- emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
- else
- emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
- }
-
- /* Check to emit pseudo SOS marker */
- if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE)
- emit_pseudo_sos(cinfo);
-}
-
-
-/*
- * Write scan header.
- * This consists of DHT or DAC markers, optional DRI, and SOS.
- * Compressed data will be written following the SOS.
- */
-
-METHODDEF(void)
-write_scan_header (j_compress_ptr cinfo)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
- int i;
- jpeg_component_info *compptr;
-
- if (cinfo->arith_code) {
- /* Emit arith conditioning info. We may have some duplication
- * if the file has multiple scans, but it's so small it's hardly
- * worth worrying about.
- */
- emit_dac(cinfo);
- } else {
- /* Emit Huffman tables.
- * Note that emit_dht() suppresses any duplicate tables.
- */
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- compptr = cinfo->cur_comp_info[i];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0)
- emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
- /* AC needs no table when not present */
- if (cinfo->Se)
- emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
- }
- }
-
- /* Emit DRI if required --- note that DRI value could change for each scan.
- * We avoid wasting space with unnecessary DRIs, however.
- */
- if (cinfo->restart_interval != marker->last_restart_interval) {
- emit_dri(cinfo);
- marker->last_restart_interval = cinfo->restart_interval;
- }
-
- emit_sos(cinfo);
-}
-
-
-/*
- * Write datastream trailer.
- */
-
-METHODDEF(void)
-write_file_trailer (j_compress_ptr cinfo)
-{
- emit_marker(cinfo, M_EOI);
-}
-
-
-/*
- * Write an abbreviated table-specification datastream.
- * This consists of SOI, DQT and DHT tables, and EOI.
- * Any table that is defined and not marked sent_table = TRUE will be
- * emitted. Note that all tables will be marked sent_table = TRUE at exit.
- */
-
-METHODDEF(void)
-write_tables_only (j_compress_ptr cinfo)
-{
- int i;
-
- emit_marker(cinfo, M_SOI);
-
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- if (cinfo->quant_tbl_ptrs[i] != NULL)
- (void) emit_dqt(cinfo, i);
- }
-
- if (! cinfo->arith_code) {
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
- emit_dht(cinfo, i, FALSE);
- if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
- emit_dht(cinfo, i, TRUE);
- }
- }
-
- emit_marker(cinfo, M_EOI);
-}
-
-
-/*
- * Initialize the marker writer module.
- */
-
-GLOBAL(void)
-jinit_marker_writer (j_compress_ptr cinfo)
-{
- my_marker_ptr marker;
-
- /* Create the subobject */
- marker = (my_marker_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_marker_writer));
- cinfo->marker = (struct jpeg_marker_writer *) marker;
- /* Initialize method pointers */
- marker->pub.write_file_header = write_file_header;
- marker->pub.write_frame_header = write_frame_header;
- marker->pub.write_scan_header = write_scan_header;
- marker->pub.write_file_trailer = write_file_trailer;
- marker->pub.write_tables_only = write_tables_only;
- marker->pub.write_marker_header = write_marker_header;
- marker->pub.write_marker_byte = write_marker_byte;
- /* Initialize private state */
- marker->last_restart_interval = 0;
-}
diff --git a/src/jpeg-8c/jcmaster.c b/src/jpeg-8c/jcmaster.c
deleted file mode 100644
index caf80a53..00000000
--- a/src/jpeg-8c/jcmaster.c
+++ /dev/null
@@ -1,858 +0,0 @@
-/*
- * jcmaster.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2003-2011 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains master control logic for the JPEG compressor.
- * These routines are concerned with parameter validation, initial setup,
- * and inter-pass control (determining the number of passes and the work
- * to be done in each pass).
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef enum {
- main_pass, /* input data, also do first output step */
- huff_opt_pass, /* Huffman code optimization pass */
- output_pass /* data output pass */
-} c_pass_type;
-
-typedef struct {
- struct jpeg_comp_master pub; /* public fields */
-
- c_pass_type pass_type; /* the type of the current pass */
-
- int pass_number; /* # of passes completed */
- int total_passes; /* total # of passes needed */
-
- int scan_number; /* current index in scan_info[] */
-} my_comp_master;
-
-typedef my_comp_master * my_master_ptr;
-
-
-/*
- * Support routines that do various essential calculations.
- */
-
-/*
- * Compute JPEG image dimensions and related values.
- * NOTE: this is exported for possible use by application.
- * Hence it mustn't do anything that can't be done twice.
- */
-
-GLOBAL(void)
-jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
-/* Do computations that are needed before master selection phase */
-{
-#ifdef DCT_SCALING_SUPPORTED
-
- /* Sanity check on input image dimensions to prevent overflow in
- * following calculation.
- * We do check jpeg_width and jpeg_height in initial_setup below,
- * but image_width and image_height can come from arbitrary data,
- * and we need some space for multiplication by block_size.
- */
- if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24))
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
- /* Compute actual JPEG image dimensions and DCT scaling choices. */
- if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/1 scaling */
- cinfo->jpeg_width = cinfo->image_width * cinfo->block_size;
- cinfo->jpeg_height = cinfo->image_height * cinfo->block_size;
- cinfo->min_DCT_h_scaled_size = 1;
- cinfo->min_DCT_v_scaled_size = 1;
- } else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/2 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L);
- cinfo->min_DCT_h_scaled_size = 2;
- cinfo->min_DCT_v_scaled_size = 2;
- } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/3 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L);
- cinfo->min_DCT_h_scaled_size = 3;
- cinfo->min_DCT_v_scaled_size = 3;
- } else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/4 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L);
- cinfo->min_DCT_h_scaled_size = 4;
- cinfo->min_DCT_v_scaled_size = 4;
- } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/5 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L);
- cinfo->min_DCT_h_scaled_size = 5;
- cinfo->min_DCT_v_scaled_size = 5;
- } else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/6 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L);
- cinfo->min_DCT_h_scaled_size = 6;
- cinfo->min_DCT_v_scaled_size = 6;
- } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/7 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L);
- cinfo->min_DCT_h_scaled_size = 7;
- cinfo->min_DCT_v_scaled_size = 7;
- } else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/8 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L);
- cinfo->min_DCT_h_scaled_size = 8;
- cinfo->min_DCT_v_scaled_size = 8;
- } else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/9 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L);
- cinfo->min_DCT_h_scaled_size = 9;
- cinfo->min_DCT_v_scaled_size = 9;
- } else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/10 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L);
- cinfo->min_DCT_h_scaled_size = 10;
- cinfo->min_DCT_v_scaled_size = 10;
- } else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/11 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L);
- cinfo->min_DCT_h_scaled_size = 11;
- cinfo->min_DCT_v_scaled_size = 11;
- } else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/12 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L);
- cinfo->min_DCT_h_scaled_size = 12;
- cinfo->min_DCT_v_scaled_size = 12;
- } else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/13 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L);
- cinfo->min_DCT_h_scaled_size = 13;
- cinfo->min_DCT_v_scaled_size = 13;
- } else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/14 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L);
- cinfo->min_DCT_h_scaled_size = 14;
- cinfo->min_DCT_v_scaled_size = 14;
- } else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) {
- /* Provide block_size/15 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L);
- cinfo->min_DCT_h_scaled_size = 15;
- cinfo->min_DCT_v_scaled_size = 15;
- } else {
- /* Provide block_size/16 scaling */
- cinfo->jpeg_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L);
- cinfo->jpeg_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L);
- cinfo->min_DCT_h_scaled_size = 16;
- cinfo->min_DCT_v_scaled_size = 16;
- }
-
-#else /* !DCT_SCALING_SUPPORTED */
-
- /* Hardwire it to "no scaling" */
- cinfo->jpeg_width = cinfo->image_width;
- cinfo->jpeg_height = cinfo->image_height;
- cinfo->min_DCT_h_scaled_size = DCTSIZE;
- cinfo->min_DCT_v_scaled_size = DCTSIZE;
-
-#endif /* DCT_SCALING_SUPPORTED */
-}
-
-
-LOCAL(void)
-jpeg_calc_trans_dimensions (j_compress_ptr cinfo)
-{
- if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size)
- ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
- cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size);
-
- cinfo->block_size = cinfo->min_DCT_h_scaled_size;
-}
-
-
-LOCAL(void)
-initial_setup (j_compress_ptr cinfo, boolean transcode_only)
-/* Do computations that are needed before master selection phase */
-{
- int ci, ssize;
- jpeg_component_info *compptr;
- long samplesperrow;
- JDIMENSION jd_samplesperrow;
-
- if (transcode_only)
- jpeg_calc_trans_dimensions(cinfo);
- else
- jpeg_calc_jpeg_dimensions(cinfo);
-
- /* Sanity check on block_size */
- if (cinfo->block_size < 1 || cinfo->block_size > 16)
- ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size);
-
- /* Derive natural_order from block_size */
- switch (cinfo->block_size) {
- case 2: cinfo->natural_order = jpeg_natural_order2; break;
- case 3: cinfo->natural_order = jpeg_natural_order3; break;
- case 4: cinfo->natural_order = jpeg_natural_order4; break;
- case 5: cinfo->natural_order = jpeg_natural_order5; break;
- case 6: cinfo->natural_order = jpeg_natural_order6; break;
- case 7: cinfo->natural_order = jpeg_natural_order7; break;
- default: cinfo->natural_order = jpeg_natural_order; break;
- }
-
- /* Derive lim_Se from block_size */
- cinfo->lim_Se = cinfo->block_size < DCTSIZE ?
- cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1;
-
- /* Sanity check on image dimensions */
- if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 ||
- cinfo->num_components <= 0 || cinfo->input_components <= 0)
- ERREXIT(cinfo, JERR_EMPTY_IMAGE);
-
- /* Make sure image isn't bigger than I can handle */
- if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
- (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
- /* Width of an input scanline must be representable as JDIMENSION. */
- samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
- jd_samplesperrow = (JDIMENSION) samplesperrow;
- if ((long) jd_samplesperrow != samplesperrow)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
-
- /* For now, precision must match compiled-in value... */
- if (cinfo->data_precision != BITS_IN_JSAMPLE)
- ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
-
- /* Check that number of components won't exceed internal array sizes */
- if (cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
-
- /* Compute maximum sampling factors; check factor validity */
- cinfo->max_h_samp_factor = 1;
- cinfo->max_v_samp_factor = 1;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
- compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
- ERREXIT(cinfo, JERR_BAD_SAMPLING);
- cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
- compptr->h_samp_factor);
- cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
- compptr->v_samp_factor);
- }
-
- /* Compute dimensions of components */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Fill in the correct component_index value; don't rely on application */
- compptr->component_index = ci;
- /* In selecting the actual DCT scaling for each component, we try to
- * scale down the chroma components via DCT scaling rather than downsampling.
- * This saves time if the downsampler gets to use 1:1 scaling.
- * Note this code adapts subsampling ratios which are powers of 2.
- */
- ssize = 1;
-#ifdef DCT_SCALING_SUPPORTED
- while (cinfo->min_DCT_h_scaled_size * ssize <=
- (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
- (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
- ssize = ssize * 2;
- }
-#endif
- compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
- ssize = 1;
-#ifdef DCT_SCALING_SUPPORTED
- while (cinfo->min_DCT_v_scaled_size * ssize <=
- (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
- (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
- ssize = ssize * 2;
- }
-#endif
- compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
-
- /* We don't support DCT ratios larger than 2. */
- if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
- compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
- else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
- compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
-
- /* Size in DCT blocks */
- compptr->width_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
- (long) (cinfo->max_h_samp_factor * cinfo->block_size));
- compptr->height_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
- /* Size in samples */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_width *
- (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
- (long) (cinfo->max_h_samp_factor * cinfo->block_size));
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_height *
- (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
- /* Mark component needed (this flag isn't actually used for compression) */
- compptr->component_needed = TRUE;
- }
-
- /* Compute number of fully interleaved MCU rows (number of times that
- * main controller will call coefficient controller).
- */
- cinfo->total_iMCU_rows = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_height,
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
-}
-
-
-#ifdef C_MULTISCAN_FILES_SUPPORTED
-
-LOCAL(void)
-validate_script (j_compress_ptr cinfo)
-/* Verify that the scan script in cinfo->scan_info[] is valid; also
- * determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
- */
-{
- const jpeg_scan_info * scanptr;
- int scanno, ncomps, ci, coefi, thisi;
- int Ss, Se, Ah, Al;
- boolean component_sent[MAX_COMPONENTS];
-#ifdef C_PROGRESSIVE_SUPPORTED
- int * last_bitpos_ptr;
- int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
- /* -1 until that coefficient has been seen; then last Al for it */
-#endif
-
- if (cinfo->num_scans <= 0)
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
-
- /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
- * for progressive JPEG, no scan can have this.
- */
- scanptr = cinfo->scan_info;
- if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- cinfo->progressive_mode = TRUE;
- last_bitpos_ptr = & last_bitpos[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (coefi = 0; coefi < DCTSIZE2; coefi++)
- *last_bitpos_ptr++ = -1;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- cinfo->progressive_mode = FALSE;
- for (ci = 0; ci < cinfo->num_components; ci++)
- component_sent[ci] = FALSE;
- }
-
- for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
- /* Validate component indexes */
- ncomps = scanptr->comps_in_scan;
- if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
- for (ci = 0; ci < ncomps; ci++) {
- thisi = scanptr->component_index[ci];
- if (thisi < 0 || thisi >= cinfo->num_components)
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
- /* Components must appear in SOF order within each scan */
- if (ci > 0 && thisi <= scanptr->component_index[ci-1])
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
- }
- /* Validate progression parameters */
- Ss = scanptr->Ss;
- Se = scanptr->Se;
- Ah = scanptr->Ah;
- Al = scanptr->Al;
- if (cinfo->progressive_mode) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
- * seems wrong: the upper bound ought to depend on data precision.
- * Perhaps they really meant 0..N+1 for N-bit precision.
- * Here we allow 0..10 for 8-bit data; Al larger than 10 results in
- * out-of-range reconstructed DC values during the first DC scan,
- * which might cause problems for some decoders.
- */
-#if BITS_IN_JSAMPLE == 8
-#define MAX_AH_AL 10
-#else
-#define MAX_AH_AL 13
-#endif
- if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
- Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- if (Ss == 0) {
- if (Se != 0) /* DC and AC together not OK */
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- } else {
- if (ncomps != 1) /* AC scans must be for only one component */
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- }
- for (ci = 0; ci < ncomps; ci++) {
- last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
- if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- for (coefi = Ss; coefi <= Se; coefi++) {
- if (last_bitpos_ptr[coefi] < 0) {
- /* first scan of this coefficient */
- if (Ah != 0)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- } else {
- /* not first scan */
- if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- }
- last_bitpos_ptr[coefi] = Al;
- }
- }
-#endif
- } else {
- /* For sequential JPEG, all progression parameters must be these: */
- if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- /* Make sure components are not sent twice */
- for (ci = 0; ci < ncomps; ci++) {
- thisi = scanptr->component_index[ci];
- if (component_sent[thisi])
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
- component_sent[thisi] = TRUE;
- }
- }
- }
-
- /* Now verify that everything got sent. */
- if (cinfo->progressive_mode) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- /* For progressive mode, we only check that at least some DC data
- * got sent for each component; the spec does not require that all bits
- * of all coefficients be transmitted. Would it be wiser to enforce
- * transmission of all coefficient bits??
- */
- for (ci = 0; ci < cinfo->num_components; ci++) {
- if (last_bitpos[ci][0] < 0)
- ERREXIT(cinfo, JERR_MISSING_DATA);
- }
-#endif
- } else {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- if (! component_sent[ci])
- ERREXIT(cinfo, JERR_MISSING_DATA);
- }
- }
-}
-
-
-LOCAL(void)
-reduce_script (j_compress_ptr cinfo)
-/* Adapt scan script for use with reduced block size;
- * assume that script has been validated before.
- */
-{
- jpeg_scan_info * scanptr;
- int idxout, idxin;
-
- /* Circumvent const declaration for this function */
- scanptr = (jpeg_scan_info *) cinfo->scan_info;
- idxout = 0;
-
- for (idxin = 0; idxin < cinfo->num_scans; idxin++) {
- /* After skipping, idxout becomes smaller than idxin */
- if (idxin != idxout)
- /* Copy rest of data;
- * note we stay in given chunk of allocated memory.
- */
- scanptr[idxout] = scanptr[idxin];
- if (scanptr[idxout].Ss > cinfo->lim_Se)
- /* Entire scan out of range - skip this entry */
- continue;
- if (scanptr[idxout].Se > cinfo->lim_Se)
- /* Limit scan to end of block */
- scanptr[idxout].Se = cinfo->lim_Se;
- idxout++;
- }
-
- cinfo->num_scans = idxout;
-}
-
-#endif /* C_MULTISCAN_FILES_SUPPORTED */
-
-
-LOCAL(void)
-select_scan_parameters (j_compress_ptr cinfo)
-/* Set up the scan parameters for the current scan */
-{
- int ci;
-
-#ifdef C_MULTISCAN_FILES_SUPPORTED
- if (cinfo->scan_info != NULL) {
- /* Prepare for current scan --- the script is already validated */
- my_master_ptr master = (my_master_ptr) cinfo->master;
- const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
-
- cinfo->comps_in_scan = scanptr->comps_in_scan;
- for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
- cinfo->cur_comp_info[ci] =
- &cinfo->comp_info[scanptr->component_index[ci]];
- }
- if (cinfo->progressive_mode) {
- cinfo->Ss = scanptr->Ss;
- cinfo->Se = scanptr->Se;
- cinfo->Ah = scanptr->Ah;
- cinfo->Al = scanptr->Al;
- return;
- }
- }
- else
-#endif
- {
- /* Prepare for single sequential-JPEG scan containing all components */
- if (cinfo->num_components > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPS_IN_SCAN);
- cinfo->comps_in_scan = cinfo->num_components;
- for (ci = 0; ci < cinfo->num_components; ci++) {
- cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
- }
- }
- cinfo->Ss = 0;
- cinfo->Se = cinfo->block_size * cinfo->block_size - 1;
- cinfo->Ah = 0;
- cinfo->Al = 0;
-}
-
-
-LOCAL(void)
-per_scan_setup (j_compress_ptr cinfo)
-/* Do computations that are needed before processing a JPEG scan */
-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
-{
- int ci, mcublks, tmp;
- jpeg_component_info *compptr;
-
- if (cinfo->comps_in_scan == 1) {
-
- /* Noninterleaved (single-component) scan */
- compptr = cinfo->cur_comp_info[0];
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = compptr->width_in_blocks;
- cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
-
- /* For noninterleaved scan, always one block per MCU */
- compptr->MCU_width = 1;
- compptr->MCU_height = 1;
- compptr->MCU_blocks = 1;
- compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
- compptr->last_col_width = 1;
- /* For noninterleaved scans, it is convenient to define last_row_height
- * as the number of block rows present in the last iMCU row.
- */
- tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (tmp == 0) tmp = compptr->v_samp_factor;
- compptr->last_row_height = tmp;
-
- /* Prepare array describing MCU composition */
- cinfo->blocks_in_MCU = 1;
- cinfo->MCU_membership[0] = 0;
-
- } else {
-
- /* Interleaved (multi-component) scan */
- if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
- MAX_COMPS_IN_SCAN);
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_width,
- (long) (cinfo->max_h_samp_factor * cinfo->block_size));
- cinfo->MCU_rows_in_scan = (JDIMENSION)
- jdiv_round_up((long) cinfo->jpeg_height,
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
-
- cinfo->blocks_in_MCU = 0;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Sampling factors give # of blocks of component in each MCU */
- compptr->MCU_width = compptr->h_samp_factor;
- compptr->MCU_height = compptr->v_samp_factor;
- compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
- compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
- /* Figure number of non-dummy blocks in last MCU column & row */
- tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
- if (tmp == 0) tmp = compptr->MCU_width;
- compptr->last_col_width = tmp;
- tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
- if (tmp == 0) tmp = compptr->MCU_height;
- compptr->last_row_height = tmp;
- /* Prepare array describing MCU composition */
- mcublks = compptr->MCU_blocks;
- if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
- ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
- while (mcublks-- > 0) {
- cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
- }
- }
-
- }
-
- /* Convert restart specified in rows to actual MCU count. */
- /* Note that count must fit in 16 bits, so we provide limiting. */
- if (cinfo->restart_in_rows > 0) {
- long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
- cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
- }
-}
-
-
-/*
- * Per-pass setup.
- * This is called at the beginning of each pass. We determine which modules
- * will be active during this pass and give them appropriate start_pass calls.
- * We also set is_last_pass to indicate whether any more passes will be
- * required.
- */
-
-METHODDEF(void)
-prepare_for_pass (j_compress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- switch (master->pass_type) {
- case main_pass:
- /* Initial pass: will collect input data, and do either Huffman
- * optimization or data output for the first scan.
- */
- select_scan_parameters(cinfo);
- per_scan_setup(cinfo);
- if (! cinfo->raw_data_in) {
- (*cinfo->cconvert->start_pass) (cinfo);
- (*cinfo->downsample->start_pass) (cinfo);
- (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
- }
- (*cinfo->fdct->start_pass) (cinfo);
- (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
- (*cinfo->coef->start_pass) (cinfo,
- (master->total_passes > 1 ?
- JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
- (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
- if (cinfo->optimize_coding) {
- /* No immediate data output; postpone writing frame/scan headers */
- master->pub.call_pass_startup = FALSE;
- } else {
- /* Will write frame/scan headers at first jpeg_write_scanlines call */
- master->pub.call_pass_startup = TRUE;
- }
- break;
-#ifdef ENTROPY_OPT_SUPPORTED
- case huff_opt_pass:
- /* Do Huffman optimization for a scan after the first one. */
- select_scan_parameters(cinfo);
- per_scan_setup(cinfo);
- if (cinfo->Ss != 0 || cinfo->Ah == 0) {
- (*cinfo->entropy->start_pass) (cinfo, TRUE);
- (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
- master->pub.call_pass_startup = FALSE;
- break;
- }
- /* Special case: Huffman DC refinement scans need no Huffman table
- * and therefore we can skip the optimization pass for them.
- */
- master->pass_type = output_pass;
- master->pass_number++;
- /*FALLTHROUGH*/
-#endif
- case output_pass:
- /* Do a data-output pass. */
- /* We need not repeat per-scan setup if prior optimization pass did it. */
- if (! cinfo->optimize_coding) {
- select_scan_parameters(cinfo);
- per_scan_setup(cinfo);
- }
- (*cinfo->entropy->start_pass) (cinfo, FALSE);
- (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
- /* We emit frame/scan headers now */
- if (master->scan_number == 0)
- (*cinfo->marker->write_frame_header) (cinfo);
- (*cinfo->marker->write_scan_header) (cinfo);
- master->pub.call_pass_startup = FALSE;
- break;
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- }
-
- master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
-
- /* Set up progress monitor's pass info if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->completed_passes = master->pass_number;
- cinfo->progress->total_passes = master->total_passes;
- }
-}
-
-
-/*
- * Special start-of-pass hook.
- * This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
- * In single-pass processing, we need this hook because we don't want to
- * write frame/scan headers during jpeg_start_compress; we want to let the
- * application write COM markers etc. between jpeg_start_compress and the
- * jpeg_write_scanlines loop.
- * In multi-pass processing, this routine is not used.
- */
-
-METHODDEF(void)
-pass_startup (j_compress_ptr cinfo)
-{
- cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
-
- (*cinfo->marker->write_frame_header) (cinfo);
- (*cinfo->marker->write_scan_header) (cinfo);
-}
-
-
-/*
- * Finish up at end of pass.
- */
-
-METHODDEF(void)
-finish_pass_master (j_compress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- /* The entropy coder always needs an end-of-pass call,
- * either to analyze statistics or to flush its output buffer.
- */
- (*cinfo->entropy->finish_pass) (cinfo);
-
- /* Update state for next pass */
- switch (master->pass_type) {
- case main_pass:
- /* next pass is either output of scan 0 (after optimization)
- * or output of scan 1 (if no optimization).
- */
- master->pass_type = output_pass;
- if (! cinfo->optimize_coding)
- master->scan_number++;
- break;
- case huff_opt_pass:
- /* next pass is always output of current scan */
- master->pass_type = output_pass;
- break;
- case output_pass:
- /* next pass is either optimization or output of next scan */
- if (cinfo->optimize_coding)
- master->pass_type = huff_opt_pass;
- master->scan_number++;
- break;
- }
-
- master->pass_number++;
-}
-
-
-/*
- * Initialize master compression control.
- */
-
-GLOBAL(void)
-jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
-{
- my_master_ptr master;
-
- master = (my_master_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_comp_master));
- cinfo->master = (struct jpeg_comp_master *) master;
- master->pub.prepare_for_pass = prepare_for_pass;
- master->pub.pass_startup = pass_startup;
- master->pub.finish_pass = finish_pass_master;
- master->pub.is_last_pass = FALSE;
-
- /* Validate parameters, determine derived values */
- initial_setup(cinfo, transcode_only);
-
- if (cinfo->scan_info != NULL) {
-#ifdef C_MULTISCAN_FILES_SUPPORTED
- validate_script(cinfo);
- if (cinfo->block_size < DCTSIZE)
- reduce_script(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- cinfo->progressive_mode = FALSE;
- cinfo->num_scans = 1;
- }
-
- if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) &&
- !cinfo->arith_code) /* TEMPORARY HACK ??? */
- /* assume default tables no good for progressive or downscale mode */
- cinfo->optimize_coding = TRUE;
-
- /* Initialize my private state */
- if (transcode_only) {
- /* no main pass in transcoding */
- if (cinfo->optimize_coding)
- master->pass_type = huff_opt_pass;
- else
- master->pass_type = output_pass;
- } else {
- /* for normal compression, first pass is always this type: */
- master->pass_type = main_pass;
- }
- master->scan_number = 0;
- master->pass_number = 0;
- if (cinfo->optimize_coding)
- master->total_passes = cinfo->num_scans * 2;
- else
- master->total_passes = cinfo->num_scans;
-}
diff --git a/src/jpeg-8c/jcomapi.c b/src/jpeg-8c/jcomapi.c
deleted file mode 100644
index 9b1fa756..00000000
--- a/src/jpeg-8c/jcomapi.c
+++ /dev/null
@@ -1,106 +0,0 @@
-/*
- * jcomapi.c
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface routines that are used for both
- * compression and decompression.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Abort processing of a JPEG compression or decompression operation,
- * but don't destroy the object itself.
- *
- * For this, we merely clean up all the nonpermanent memory pools.
- * Note that temp files (virtual arrays) are not allowed to belong to
- * the permanent pool, so we will be able to close all temp files here.
- * Closing a data source or destination, if necessary, is the application's
- * responsibility.
- */
-
-GLOBAL(void)
-jpeg_abort (j_common_ptr cinfo)
-{
- int pool;
-
- /* Do nothing if called on a not-initialized or destroyed JPEG object. */
- if (cinfo->mem == NULL)
- return;
-
- /* Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
- (*cinfo->mem->free_pool) (cinfo, pool);
- }
-
- /* Reset overall state for possible reuse of object */
- if (cinfo->is_decompressor) {
- cinfo->global_state = DSTATE_START;
- /* Try to keep application from accessing now-deleted marker list.
- * A bit kludgy to do it here, but this is the most central place.
- */
- ((j_decompress_ptr) cinfo)->marker_list = NULL;
- } else {
- cinfo->global_state = CSTATE_START;
- }
-}
-
-
-/*
- * Destruction of a JPEG object.
- *
- * Everything gets deallocated except the master jpeg_compress_struct itself
- * and the error manager struct. Both of these are supplied by the application
- * and must be freed, if necessary, by the application. (Often they are on
- * the stack and so don't need to be freed anyway.)
- * Closing a data source or destination, if necessary, is the application's
- * responsibility.
- */
-
-GLOBAL(void)
-jpeg_destroy (j_common_ptr cinfo)
-{
- /* We need only tell the memory manager to release everything. */
- /* NB: mem pointer is NULL if memory mgr failed to initialize. */
- if (cinfo->mem != NULL)
- (*cinfo->mem->self_destruct) (cinfo);
- cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
- cinfo->global_state = 0; /* mark it destroyed */
-}
-
-
-/*
- * Convenience routines for allocating quantization and Huffman tables.
- * (Would jutils.c be a more reasonable place to put these?)
- */
-
-GLOBAL(JQUANT_TBL *)
-jpeg_alloc_quant_table (j_common_ptr cinfo)
-{
- JQUANT_TBL *tbl;
-
- tbl = (JQUANT_TBL *)
- (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
- tbl->sent_table = FALSE; /* make sure this is false in any new table */
- return tbl;
-}
-
-
-GLOBAL(JHUFF_TBL *)
-jpeg_alloc_huff_table (j_common_ptr cinfo)
-{
- JHUFF_TBL *tbl;
-
- tbl = (JHUFF_TBL *)
- (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
- tbl->sent_table = FALSE; /* make sure this is false in any new table */
- return tbl;
-}
diff --git a/src/jpeg-8c/jconfig.h b/src/jpeg-8c/jconfig.h
deleted file mode 100644
index 248d6d0f..00000000
--- a/src/jpeg-8c/jconfig.h
+++ /dev/null
@@ -1,60 +0,0 @@
-/* jconfig.h. Generated from jconfig.cfg by configure. */
-/* jconfig.cfg --- source file edited by configure script */
-/* see jconfig.txt for explanations */
-
-/* Define this if you get warnings about undefined structures. */
-/* #undef INCOMPLETE_TYPES_BROKEN */
-
-#define HAVE_PROTOTYPES 1
-#define HAVE_UNSIGNED_CHAR 1
-#define HAVE_UNSIGNED_SHORT 1
-/* #undef void */
-/* #undef const */
-/* #undef CHAR_IS_UNSIGNED */
-
-#ifdef JPEG_INTERNALS
-
-#define HAVE_STDDEF_H 1
-#define HAVE_STDLIB_H 1
-#define HAVE_LOCALE_H 1
-/* #undef NEED_BSD_STRINGS */
-/* #undef NEED_SYS_TYPES_H */
-/* #undef NEED_FAR_POINTERS */
-/* #undef NEED_SHORT_EXTERNAL_NAMES */
-
-/* Define "boolean" as unsigned char, not int, on Windows systems. */
-#ifdef _WIN32
-#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
-typedef unsigned char boolean;
-#endif
-#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
-#endif
-
-/* #undef RIGHT_SHIFT_IS_UNSIGNED */
-#ifdef _MSC_VER
-#define INLINE __inline
-#else
-#define INLINE __inline__
-#endif
-/* These are for configuring the JPEG memory manager. */
-/* #undef DEFAULT_MAX_MEM */
-/* #undef NO_MKTEMP */
-
-#endif /* JPEG_INTERNALS */
-
-#ifdef JPEG_CJPEG_DJPEG
-
-#define BMP_SUPPORTED /* BMP image file format */
-#define GIF_SUPPORTED /* GIF image file format */
-#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
-/* #undef RLE_SUPPORTED */
-#define TARGA_SUPPORTED /* Targa image file format */
-
-/* #undef TWO_FILE_COMMANDLINE */
-/* #undef NEED_SIGNAL_CATCHER */
-/* #undef DONT_USE_B_MODE */
-
-/* Define this if you want percent-done progress reports from cjpeg/djpeg. */
-/* #undef PROGRESS_REPORT */
-
-#endif /* JPEG_CJPEG_DJPEG */
diff --git a/src/jpeg-8c/jcparam.c b/src/jpeg-8c/jcparam.c
deleted file mode 100644
index c5e85dda..00000000
--- a/src/jpeg-8c/jcparam.c
+++ /dev/null
@@ -1,632 +0,0 @@
-/*
- * jcparam.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * Modified 2003-2008 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains optional default-setting code for the JPEG compressor.
- * Applications do not have to use this file, but those that don't use it
- * must know a lot more about the innards of the JPEG code.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Quantization table setup routines
- */
-
-GLOBAL(void)
-jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
- const unsigned int *basic_table,
- int scale_factor, boolean force_baseline)
-/* Define a quantization table equal to the basic_table times
- * a scale factor (given as a percentage).
- * If force_baseline is TRUE, the computed quantization table entries
- * are limited to 1..255 for JPEG baseline compatibility.
- */
-{
- JQUANT_TBL ** qtblptr;
- int i;
- long temp;
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
- ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
-
- qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
-
- if (*qtblptr == NULL)
- *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
-
- for (i = 0; i < DCTSIZE2; i++) {
- temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
- /* limit the values to the valid range */
- if (temp <= 0L) temp = 1L;
- if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
- if (force_baseline && temp > 255L)
- temp = 255L; /* limit to baseline range if requested */
- (*qtblptr)->quantval[i] = (UINT16) temp;
- }
-
- /* Initialize sent_table FALSE so table will be written to JPEG file. */
- (*qtblptr)->sent_table = FALSE;
-}
-
-
-/* These are the sample quantization tables given in JPEG spec section K.1.
- * The spec says that the values given produce "good" quality, and
- * when divided by 2, "very good" quality.
- */
-static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
- 16, 11, 10, 16, 24, 40, 51, 61,
- 12, 12, 14, 19, 26, 58, 60, 55,
- 14, 13, 16, 24, 40, 57, 69, 56,
- 14, 17, 22, 29, 51, 87, 80, 62,
- 18, 22, 37, 56, 68, 109, 103, 77,
- 24, 35, 55, 64, 81, 104, 113, 92,
- 49, 64, 78, 87, 103, 121, 120, 101,
- 72, 92, 95, 98, 112, 100, 103, 99
-};
-static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
- 17, 18, 24, 47, 99, 99, 99, 99,
- 18, 21, 26, 66, 99, 99, 99, 99,
- 24, 26, 56, 99, 99, 99, 99, 99,
- 47, 66, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99
-};
-
-
-GLOBAL(void)
-jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
-/* Set or change the 'quality' (quantization) setting, using default tables
- * and straight percentage-scaling quality scales.
- * This entry point allows different scalings for luminance and chrominance.
- */
-{
- /* Set up two quantization tables using the specified scaling */
- jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
- cinfo->q_scale_factor[0], force_baseline);
- jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
- cinfo->q_scale_factor[1], force_baseline);
-}
-
-
-GLOBAL(void)
-jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
- boolean force_baseline)
-/* Set or change the 'quality' (quantization) setting, using default tables
- * and a straight percentage-scaling quality scale. In most cases it's better
- * to use jpeg_set_quality (below); this entry point is provided for
- * applications that insist on a linear percentage scaling.
- */
-{
- /* Set up two quantization tables using the specified scaling */
- jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
- scale_factor, force_baseline);
- jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
- scale_factor, force_baseline);
-}
-
-
-GLOBAL(int)
-jpeg_quality_scaling (int quality)
-/* Convert a user-specified quality rating to a percentage scaling factor
- * for an underlying quantization table, using our recommended scaling curve.
- * The input 'quality' factor should be 0 (terrible) to 100 (very good).
- */
-{
- /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
- if (quality <= 0) quality = 1;
- if (quality > 100) quality = 100;
-
- /* The basic table is used as-is (scaling 100) for a quality of 50.
- * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
- * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
- * to make all the table entries 1 (hence, minimum quantization loss).
- * Qualities 1..50 are converted to scaling percentage 5000/Q.
- */
- if (quality < 50)
- quality = 5000 / quality;
- else
- quality = 200 - quality*2;
-
- return quality;
-}
-
-
-GLOBAL(void)
-jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
-/* Set or change the 'quality' (quantization) setting, using default tables.
- * This is the standard quality-adjusting entry point for typical user
- * interfaces; only those who want detailed control over quantization tables
- * would use the preceding three routines directly.
- */
-{
- /* Convert user 0-100 rating to percentage scaling */
- quality = jpeg_quality_scaling(quality);
-
- /* Set up standard quality tables */
- jpeg_set_linear_quality(cinfo, quality, force_baseline);
-}
-
-
-/*
- * Huffman table setup routines
- */
-
-LOCAL(void)
-add_huff_table (j_compress_ptr cinfo,
- JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
-/* Define a Huffman table */
-{
- int nsymbols, len;
-
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
-
- /* Copy the number-of-symbols-of-each-code-length counts */
- MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
-
- /* Validate the counts. We do this here mainly so we can copy the right
- * number of symbols from the val[] array, without risking marching off
- * the end of memory. jchuff.c will do a more thorough test later.
- */
- nsymbols = 0;
- for (len = 1; len <= 16; len++)
- nsymbols += bits[len];
- if (nsymbols < 1 || nsymbols > 256)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
-
- MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
-
- /* Initialize sent_table FALSE so table will be written to JPEG file. */
- (*htblptr)->sent_table = FALSE;
-}
-
-
-LOCAL(void)
-std_huff_tables (j_compress_ptr cinfo)
-/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
-/* IMPORTANT: these are only valid for 8-bit data precision! */
-{
- static const UINT8 bits_dc_luminance[17] =
- { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
- static const UINT8 val_dc_luminance[] =
- { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
-
- static const UINT8 bits_dc_chrominance[17] =
- { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
- static const UINT8 val_dc_chrominance[] =
- { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
-
- static const UINT8 bits_ac_luminance[17] =
- { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
- static const UINT8 val_ac_luminance[] =
- { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
- 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
- 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
- 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
- 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
- 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
- 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
- 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
- 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
- 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
- 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
- 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
- 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
- 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
- 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
- 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
- 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
- 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
- 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
- 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
- 0xf9, 0xfa };
-
- static const UINT8 bits_ac_chrominance[17] =
- { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
- static const UINT8 val_ac_chrominance[] =
- { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
- 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
- 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
- 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
- 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
- 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
- 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
- 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
- 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
- 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
- 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
- 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
- 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
- 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
- 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
- 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
- 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
- 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
- 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
- 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
- 0xf9, 0xfa };
-
- add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
- bits_dc_luminance, val_dc_luminance);
- add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
- bits_ac_luminance, val_ac_luminance);
- add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
- bits_dc_chrominance, val_dc_chrominance);
- add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
- bits_ac_chrominance, val_ac_chrominance);
-}
-
-
-/*
- * Default parameter setup for compression.
- *
- * Applications that don't choose to use this routine must do their
- * own setup of all these parameters. Alternately, you can call this
- * to establish defaults and then alter parameters selectively. This
- * is the recommended approach since, if we add any new parameters,
- * your code will still work (they'll be set to reasonable defaults).
- */
-
-GLOBAL(void)
-jpeg_set_defaults (j_compress_ptr cinfo)
-{
- int i;
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* Allocate comp_info array large enough for maximum component count.
- * Array is made permanent in case application wants to compress
- * multiple images at same param settings.
- */
- if (cinfo->comp_info == NULL)
- cinfo->comp_info = (jpeg_component_info *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- MAX_COMPONENTS * SIZEOF(jpeg_component_info));
-
- /* Initialize everything not dependent on the color space */
-
- cinfo->scale_num = 1; /* 1:1 scaling */
- cinfo->scale_denom = 1;
- cinfo->data_precision = BITS_IN_JSAMPLE;
- /* Set up two quantization tables using default quality of 75 */
- jpeg_set_quality(cinfo, 75, TRUE);
- /* Set up two Huffman tables */
- std_huff_tables(cinfo);
-
- /* Initialize default arithmetic coding conditioning */
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- cinfo->arith_dc_L[i] = 0;
- cinfo->arith_dc_U[i] = 1;
- cinfo->arith_ac_K[i] = 5;
- }
-
- /* Default is no multiple-scan output */
- cinfo->scan_info = NULL;
- cinfo->num_scans = 0;
-
- /* Expect normal source image, not raw downsampled data */
- cinfo->raw_data_in = FALSE;
-
- /* Use Huffman coding, not arithmetic coding, by default */
- cinfo->arith_code = FALSE;
-
- /* By default, don't do extra passes to optimize entropy coding */
- cinfo->optimize_coding = FALSE;
- /* The standard Huffman tables are only valid for 8-bit data precision.
- * If the precision is higher, force optimization on so that usable
- * tables will be computed. This test can be removed if default tables
- * are supplied that are valid for the desired precision.
- */
- if (cinfo->data_precision > 8)
- cinfo->optimize_coding = TRUE;
-
- /* By default, use the simpler non-cosited sampling alignment */
- cinfo->CCIR601_sampling = FALSE;
-
- /* By default, apply fancy downsampling */
- cinfo->do_fancy_downsampling = TRUE;
-
- /* No input smoothing */
- cinfo->smoothing_factor = 0;
-
- /* DCT algorithm preference */
- cinfo->dct_method = JDCT_DEFAULT;
-
- /* No restart markers */
- cinfo->restart_interval = 0;
- cinfo->restart_in_rows = 0;
-
- /* Fill in default JFIF marker parameters. Note that whether the marker
- * will actually be written is determined by jpeg_set_colorspace.
- *
- * By default, the library emits JFIF version code 1.01.
- * An application that wants to emit JFIF 1.02 extension markers should set
- * JFIF_minor_version to 2. We could probably get away with just defaulting
- * to 1.02, but there may still be some decoders in use that will complain
- * about that; saying 1.01 should minimize compatibility problems.
- */
- cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
- cinfo->JFIF_minor_version = 1;
- cinfo->density_unit = 0; /* Pixel size is unknown by default */
- cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
- cinfo->Y_density = 1;
-
- /* Choose JPEG colorspace based on input space, set defaults accordingly */
-
- jpeg_default_colorspace(cinfo);
-}
-
-
-/*
- * Select an appropriate JPEG colorspace for in_color_space.
- */
-
-GLOBAL(void)
-jpeg_default_colorspace (j_compress_ptr cinfo)
-{
- switch (cinfo->in_color_space) {
- case JCS_GRAYSCALE:
- jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
- break;
- case JCS_RGB:
- jpeg_set_colorspace(cinfo, JCS_YCbCr);
- break;
- case JCS_YCbCr:
- jpeg_set_colorspace(cinfo, JCS_YCbCr);
- break;
- case JCS_CMYK:
- jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
- break;
- case JCS_YCCK:
- jpeg_set_colorspace(cinfo, JCS_YCCK);
- break;
- case JCS_UNKNOWN:
- jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
- break;
- default:
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- }
-}
-
-
-/*
- * Set the JPEG colorspace, and choose colorspace-dependent default values.
- */
-
-GLOBAL(void)
-jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
-{
- jpeg_component_info * compptr;
- int ci;
-
-#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
- (compptr = &cinfo->comp_info[index], \
- compptr->component_id = (id), \
- compptr->h_samp_factor = (hsamp), \
- compptr->v_samp_factor = (vsamp), \
- compptr->quant_tbl_no = (quant), \
- compptr->dc_tbl_no = (dctbl), \
- compptr->ac_tbl_no = (actbl) )
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
- * tables 1 for chrominance components.
- */
-
- cinfo->jpeg_color_space = colorspace;
-
- cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
- cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
-
- switch (colorspace) {
- case JCS_GRAYSCALE:
- cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
- cinfo->num_components = 1;
- /* JFIF specifies component ID 1 */
- SET_COMP(0, 1, 1,1, 0, 0,0);
- break;
- case JCS_RGB:
- cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
- cinfo->num_components = 3;
- SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
- SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
- SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
- break;
- case JCS_YCbCr:
- cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
- cinfo->num_components = 3;
- /* JFIF specifies component IDs 1,2,3 */
- /* We default to 2x2 subsamples of chrominance */
- SET_COMP(0, 1, 2,2, 0, 0,0);
- SET_COMP(1, 2, 1,1, 1, 1,1);
- SET_COMP(2, 3, 1,1, 1, 1,1);
- break;
- case JCS_CMYK:
- cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
- cinfo->num_components = 4;
- SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
- SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
- SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
- SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
- break;
- case JCS_YCCK:
- cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
- cinfo->num_components = 4;
- SET_COMP(0, 1, 2,2, 0, 0,0);
- SET_COMP(1, 2, 1,1, 1, 1,1);
- SET_COMP(2, 3, 1,1, 1, 1,1);
- SET_COMP(3, 4, 2,2, 0, 0,0);
- break;
- case JCS_UNKNOWN:
- cinfo->num_components = cinfo->input_components;
- if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
- for (ci = 0; ci < cinfo->num_components; ci++) {
- SET_COMP(ci, ci, 1,1, 0, 0,0);
- }
- break;
- default:
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- }
-}
-
-
-#ifdef C_PROGRESSIVE_SUPPORTED
-
-LOCAL(jpeg_scan_info *)
-fill_a_scan (jpeg_scan_info * scanptr, int ci,
- int Ss, int Se, int Ah, int Al)
-/* Support routine: generate one scan for specified component */
-{
- scanptr->comps_in_scan = 1;
- scanptr->component_index[0] = ci;
- scanptr->Ss = Ss;
- scanptr->Se = Se;
- scanptr->Ah = Ah;
- scanptr->Al = Al;
- scanptr++;
- return scanptr;
-}
-
-LOCAL(jpeg_scan_info *)
-fill_scans (jpeg_scan_info * scanptr, int ncomps,
- int Ss, int Se, int Ah, int Al)
-/* Support routine: generate one scan for each component */
-{
- int ci;
-
- for (ci = 0; ci < ncomps; ci++) {
- scanptr->comps_in_scan = 1;
- scanptr->component_index[0] = ci;
- scanptr->Ss = Ss;
- scanptr->Se = Se;
- scanptr->Ah = Ah;
- scanptr->Al = Al;
- scanptr++;
- }
- return scanptr;
-}
-
-LOCAL(jpeg_scan_info *)
-fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
-/* Support routine: generate interleaved DC scan if possible, else N scans */
-{
- int ci;
-
- if (ncomps <= MAX_COMPS_IN_SCAN) {
- /* Single interleaved DC scan */
- scanptr->comps_in_scan = ncomps;
- for (ci = 0; ci < ncomps; ci++)
- scanptr->component_index[ci] = ci;
- scanptr->Ss = scanptr->Se = 0;
- scanptr->Ah = Ah;
- scanptr->Al = Al;
- scanptr++;
- } else {
- /* Noninterleaved DC scan for each component */
- scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
- }
- return scanptr;
-}
-
-
-/*
- * Create a recommended progressive-JPEG script.
- * cinfo->num_components and cinfo->jpeg_color_space must be correct.
- */
-
-GLOBAL(void)
-jpeg_simple_progression (j_compress_ptr cinfo)
-{
- int ncomps = cinfo->num_components;
- int nscans;
- jpeg_scan_info * scanptr;
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* Figure space needed for script. Calculation must match code below! */
- if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
- /* Custom script for YCbCr color images. */
- nscans = 10;
- } else {
- /* All-purpose script for other color spaces. */
- if (ncomps > MAX_COMPS_IN_SCAN)
- nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
- else
- nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
- }
-
- /* Allocate space for script.
- * We need to put it in the permanent pool in case the application performs
- * multiple compressions without changing the settings. To avoid a memory
- * leak if jpeg_simple_progression is called repeatedly for the same JPEG
- * object, we try to re-use previously allocated space, and we allocate
- * enough space to handle YCbCr even if initially asked for grayscale.
- */
- if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
- cinfo->script_space_size = MAX(nscans, 10);
- cinfo->script_space = (jpeg_scan_info *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- cinfo->script_space_size * SIZEOF(jpeg_scan_info));
- }
- scanptr = cinfo->script_space;
- cinfo->scan_info = scanptr;
- cinfo->num_scans = nscans;
-
- if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
- /* Custom script for YCbCr color images. */
- /* Initial DC scan */
- scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
- /* Initial AC scan: get some luma data out in a hurry */
- scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
- /* Chroma data is too small to be worth expending many scans on */
- scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
- scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
- /* Complete spectral selection for luma AC */
- scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
- /* Refine next bit of luma AC */
- scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
- /* Finish DC successive approximation */
- scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
- /* Finish AC successive approximation */
- scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
- scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
- /* Luma bottom bit comes last since it's usually largest scan */
- scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
- } else {
- /* All-purpose script for other color spaces. */
- /* Successive approximation first pass */
- scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
- scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
- scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
- /* Successive approximation second pass */
- scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
- /* Successive approximation final pass */
- scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
- scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
- }
-}
-
-#endif /* C_PROGRESSIVE_SUPPORTED */
diff --git a/src/jpeg-8c/jcprepct.c b/src/jpeg-8c/jcprepct.c
deleted file mode 100644
index be44cc4b..00000000
--- a/src/jpeg-8c/jcprepct.c
+++ /dev/null
@@ -1,358 +0,0 @@
-/*
- * jcprepct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the compression preprocessing controller.
- * This controller manages the color conversion, downsampling,
- * and edge expansion steps.
- *
- * Most of the complexity here is associated with buffering input rows
- * as required by the downsampler. See the comments at the head of
- * jcsample.c for the downsampler's needs.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* At present, jcsample.c can request context rows only for smoothing.
- * In the future, we might also need context rows for CCIR601 sampling
- * or other more-complex downsampling procedures. The code to support
- * context rows should be compiled only if needed.
- */
-#ifdef INPUT_SMOOTHING_SUPPORTED
-#define CONTEXT_ROWS_SUPPORTED
-#endif
-
-
-/*
- * For the simple (no-context-row) case, we just need to buffer one
- * row group's worth of pixels for the downsampling step. At the bottom of
- * the image, we pad to a full row group by replicating the last pixel row.
- * The downsampler's last output row is then replicated if needed to pad
- * out to a full iMCU row.
- *
- * When providing context rows, we must buffer three row groups' worth of
- * pixels. Three row groups are physically allocated, but the row pointer
- * arrays are made five row groups high, with the extra pointers above and
- * below "wrapping around" to point to the last and first real row groups.
- * This allows the downsampler to access the proper context rows.
- * At the top and bottom of the image, we create dummy context rows by
- * copying the first or last real pixel row. This copying could be avoided
- * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
- * trouble on the compression side.
- */
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_prep_controller pub; /* public fields */
-
- /* Downsampling input buffer. This buffer holds color-converted data
- * until we have enough to do a downsample step.
- */
- JSAMPARRAY color_buf[MAX_COMPONENTS];
-
- JDIMENSION rows_to_go; /* counts rows remaining in source image */
- int next_buf_row; /* index of next row to store in color_buf */
-
-#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
- int this_row_group; /* starting row index of group to process */
- int next_buf_stop; /* downsample when we reach this index */
-#endif
-} my_prep_controller;
-
-typedef my_prep_controller * my_prep_ptr;
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
-
- if (pass_mode != JBUF_PASS_THRU)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- /* Initialize total-height counter for detecting bottom of image */
- prep->rows_to_go = cinfo->image_height;
- /* Mark the conversion buffer empty */
- prep->next_buf_row = 0;
-#ifdef CONTEXT_ROWS_SUPPORTED
- /* Preset additional state variables for context mode.
- * These aren't used in non-context mode, so we needn't test which mode.
- */
- prep->this_row_group = 0;
- /* Set next_buf_stop to stop after two row groups have been read in. */
- prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
-#endif
-}
-
-
-/*
- * Expand an image vertically from height input_rows to height output_rows,
- * by duplicating the bottom row.
- */
-
-LOCAL(void)
-expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
- int input_rows, int output_rows)
-{
- register int row;
-
- for (row = input_rows; row < output_rows; row++) {
- jcopy_sample_rows(image_data, input_rows-1, image_data, row,
- 1, num_cols);
- }
-}
-
-
-/*
- * Process some data in the simple no-context case.
- *
- * Preprocessor output data is counted in "row groups". A row group
- * is defined to be v_samp_factor sample rows of each component.
- * Downsampling will produce this much data from each max_v_samp_factor
- * input rows.
- */
-
-METHODDEF(void)
-pre_process_data (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
- int numrows, ci;
- JDIMENSION inrows;
- jpeg_component_info * compptr;
-
- while (*in_row_ctr < in_rows_avail &&
- *out_row_group_ctr < out_row_groups_avail) {
- /* Do color conversion to fill the conversion buffer. */
- inrows = in_rows_avail - *in_row_ctr;
- numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
- numrows = (int) MIN((JDIMENSION) numrows, inrows);
- (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
- prep->color_buf,
- (JDIMENSION) prep->next_buf_row,
- numrows);
- *in_row_ctr += numrows;
- prep->next_buf_row += numrows;
- prep->rows_to_go -= numrows;
- /* If at bottom of image, pad to fill the conversion buffer. */
- if (prep->rows_to_go == 0 &&
- prep->next_buf_row < cinfo->max_v_samp_factor) {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
- prep->next_buf_row, cinfo->max_v_samp_factor);
- }
- prep->next_buf_row = cinfo->max_v_samp_factor;
- }
- /* If we've filled the conversion buffer, empty it. */
- if (prep->next_buf_row == cinfo->max_v_samp_factor) {
- (*cinfo->downsample->downsample) (cinfo,
- prep->color_buf, (JDIMENSION) 0,
- output_buf, *out_row_group_ctr);
- prep->next_buf_row = 0;
- (*out_row_group_ctr)++;
- }
- /* If at bottom of image, pad the output to a full iMCU height.
- * Note we assume the caller is providing a one-iMCU-height output buffer!
- */
- if (prep->rows_to_go == 0 &&
- *out_row_group_ctr < out_row_groups_avail) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size;
- expand_bottom_edge(output_buf[ci],
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (int) (*out_row_group_ctr * numrows),
- (int) (out_row_groups_avail * numrows));
- }
- *out_row_group_ctr = out_row_groups_avail;
- break; /* can exit outer loop without test */
- }
- }
-}
-
-
-#ifdef CONTEXT_ROWS_SUPPORTED
-
-/*
- * Process some data in the context case.
- */
-
-METHODDEF(void)
-pre_process_context (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
- int numrows, ci;
- int buf_height = cinfo->max_v_samp_factor * 3;
- JDIMENSION inrows;
-
- while (*out_row_group_ctr < out_row_groups_avail) {
- if (*in_row_ctr < in_rows_avail) {
- /* Do color conversion to fill the conversion buffer. */
- inrows = in_rows_avail - *in_row_ctr;
- numrows = prep->next_buf_stop - prep->next_buf_row;
- numrows = (int) MIN((JDIMENSION) numrows, inrows);
- (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
- prep->color_buf,
- (JDIMENSION) prep->next_buf_row,
- numrows);
- /* Pad at top of image, if first time through */
- if (prep->rows_to_go == cinfo->image_height) {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- int row;
- for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
- jcopy_sample_rows(prep->color_buf[ci], 0,
- prep->color_buf[ci], -row,
- 1, cinfo->image_width);
- }
- }
- }
- *in_row_ctr += numrows;
- prep->next_buf_row += numrows;
- prep->rows_to_go -= numrows;
- } else {
- /* Return for more data, unless we are at the bottom of the image. */
- if (prep->rows_to_go != 0)
- break;
- /* When at bottom of image, pad to fill the conversion buffer. */
- if (prep->next_buf_row < prep->next_buf_stop) {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
- prep->next_buf_row, prep->next_buf_stop);
- }
- prep->next_buf_row = prep->next_buf_stop;
- }
- }
- /* If we've gotten enough data, downsample a row group. */
- if (prep->next_buf_row == prep->next_buf_stop) {
- (*cinfo->downsample->downsample) (cinfo,
- prep->color_buf,
- (JDIMENSION) prep->this_row_group,
- output_buf, *out_row_group_ctr);
- (*out_row_group_ctr)++;
- /* Advance pointers with wraparound as necessary. */
- prep->this_row_group += cinfo->max_v_samp_factor;
- if (prep->this_row_group >= buf_height)
- prep->this_row_group = 0;
- if (prep->next_buf_row >= buf_height)
- prep->next_buf_row = 0;
- prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
- }
- }
-}
-
-
-/*
- * Create the wrapped-around downsampling input buffer needed for context mode.
- */
-
-LOCAL(void)
-create_context_buffer (j_compress_ptr cinfo)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
- int rgroup_height = cinfo->max_v_samp_factor;
- int ci, i;
- jpeg_component_info * compptr;
- JSAMPARRAY true_buffer, fake_buffer;
-
- /* Grab enough space for fake row pointers for all the components;
- * we need five row groups' worth of pointers for each component.
- */
- fake_buffer = (JSAMPARRAY)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (cinfo->num_components * 5 * rgroup_height) *
- SIZEOF(JSAMPROW));
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Allocate the actual buffer space (3 row groups) for this component.
- * We make the buffer wide enough to allow the downsampler to edge-expand
- * horizontally within the buffer, if it so chooses.
- */
- true_buffer = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) (((long) compptr->width_in_blocks *
- cinfo->min_DCT_h_scaled_size *
- cinfo->max_h_samp_factor) / compptr->h_samp_factor),
- (JDIMENSION) (3 * rgroup_height));
- /* Copy true buffer row pointers into the middle of the fake row array */
- MEMCOPY(fake_buffer + rgroup_height, true_buffer,
- 3 * rgroup_height * SIZEOF(JSAMPROW));
- /* Fill in the above and below wraparound pointers */
- for (i = 0; i < rgroup_height; i++) {
- fake_buffer[i] = true_buffer[2 * rgroup_height + i];
- fake_buffer[4 * rgroup_height + i] = true_buffer[i];
- }
- prep->color_buf[ci] = fake_buffer + rgroup_height;
- fake_buffer += 5 * rgroup_height; /* point to space for next component */
- }
-}
-
-#endif /* CONTEXT_ROWS_SUPPORTED */
-
-
-/*
- * Initialize preprocessing controller.
- */
-
-GLOBAL(void)
-jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
-{
- my_prep_ptr prep;
- int ci;
- jpeg_component_info * compptr;
-
- if (need_full_buffer) /* safety check */
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- prep = (my_prep_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_prep_controller));
- cinfo->prep = (struct jpeg_c_prep_controller *) prep;
- prep->pub.start_pass = start_pass_prep;
-
- /* Allocate the color conversion buffer.
- * We make the buffer wide enough to allow the downsampler to edge-expand
- * horizontally within the buffer, if it so chooses.
- */
- if (cinfo->downsample->need_context_rows) {
- /* Set up to provide context rows */
-#ifdef CONTEXT_ROWS_SUPPORTED
- prep->pub.pre_process_data = pre_process_context;
- create_context_buffer(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- /* No context, just make it tall enough for one row group */
- prep->pub.pre_process_data = pre_process_data;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) (((long) compptr->width_in_blocks *
- cinfo->min_DCT_h_scaled_size *
- cinfo->max_h_samp_factor) / compptr->h_samp_factor),
- (JDIMENSION) cinfo->max_v_samp_factor);
- }
- }
-}
diff --git a/src/jpeg-8c/jcsample.c b/src/jpeg-8c/jcsample.c
deleted file mode 100644
index 4d36f85f..00000000
--- a/src/jpeg-8c/jcsample.c
+++ /dev/null
@@ -1,545 +0,0 @@
-/*
- * jcsample.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains downsampling routines.
- *
- * Downsampling input data is counted in "row groups". A row group
- * is defined to be max_v_samp_factor pixel rows of each component,
- * from which the downsampler produces v_samp_factor sample rows.
- * A single row group is processed in each call to the downsampler module.
- *
- * The downsampler is responsible for edge-expansion of its output data
- * to fill an integral number of DCT blocks horizontally. The source buffer
- * may be modified if it is helpful for this purpose (the source buffer is
- * allocated wide enough to correspond to the desired output width).
- * The caller (the prep controller) is responsible for vertical padding.
- *
- * The downsampler may request "context rows" by setting need_context_rows
- * during startup. In this case, the input arrays will contain at least
- * one row group's worth of pixels above and below the passed-in data;
- * the caller will create dummy rows at image top and bottom by replicating
- * the first or last real pixel row.
- *
- * An excellent reference for image resampling is
- * Digital Image Warping, George Wolberg, 1990.
- * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
- *
- * The downsampling algorithm used here is a simple average of the source
- * pixels covered by the output pixel. The hi-falutin sampling literature
- * refers to this as a "box filter". In general the characteristics of a box
- * filter are not very good, but for the specific cases we normally use (1:1
- * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
- * nearly so bad. If you intend to use other sampling ratios, you'd be well
- * advised to improve this code.
- *
- * A simple input-smoothing capability is provided. This is mainly intended
- * for cleaning up color-dithered GIF input files (if you find it inadequate,
- * we suggest using an external filtering program such as pnmconvol). When
- * enabled, each input pixel P is replaced by a weighted sum of itself and its
- * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
- * where SF = (smoothing_factor / 1024).
- * Currently, smoothing is only supported for 2h2v sampling factors.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Pointer to routine to downsample a single component */
-typedef JMETHOD(void, downsample1_ptr,
- (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data));
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_downsampler pub; /* public fields */
-
- /* Downsampling method pointers, one per component */
- downsample1_ptr methods[MAX_COMPONENTS];
-
- /* Height of an output row group for each component. */
- int rowgroup_height[MAX_COMPONENTS];
-
- /* These arrays save pixel expansion factors so that int_downsample need not
- * recompute them each time. They are unused for other downsampling methods.
- */
- UINT8 h_expand[MAX_COMPONENTS];
- UINT8 v_expand[MAX_COMPONENTS];
-} my_downsampler;
-
-typedef my_downsampler * my_downsample_ptr;
-
-
-/*
- * Initialize for a downsampling pass.
- */
-
-METHODDEF(void)
-start_pass_downsample (j_compress_ptr cinfo)
-{
- /* no work for now */
-}
-
-
-/*
- * Expand a component horizontally from width input_cols to width output_cols,
- * by duplicating the rightmost samples.
- */
-
-LOCAL(void)
-expand_right_edge (JSAMPARRAY image_data, int num_rows,
- JDIMENSION input_cols, JDIMENSION output_cols)
-{
- register JSAMPROW ptr;
- register JSAMPLE pixval;
- register int count;
- int row;
- int numcols = (int) (output_cols - input_cols);
-
- if (numcols > 0) {
- for (row = 0; row < num_rows; row++) {
- ptr = image_data[row] + input_cols;
- pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
- for (count = numcols; count > 0; count--)
- *ptr++ = pixval;
- }
- }
-}
-
-
-/*
- * Do downsampling for a whole row group (all components).
- *
- * In this version we simply downsample each component independently.
- */
-
-METHODDEF(void)
-sep_downsample (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_index,
- JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
-{
- my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
- int ci;
- jpeg_component_info * compptr;
- JSAMPARRAY in_ptr, out_ptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- in_ptr = input_buf[ci] + in_row_index;
- out_ptr = output_buf[ci] +
- (out_row_group_index * downsample->rowgroup_height[ci]);
- (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * One row group is processed per call.
- * This version handles arbitrary integral sampling ratios, without smoothing.
- * Note that this version is not actually used for customary sampling ratios.
- */
-
-METHODDEF(void)
-int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
- int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
- JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
- JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
- JSAMPROW inptr, outptr;
- INT32 outvalue;
-
- h_expand = downsample->h_expand[compptr->component_index];
- v_expand = downsample->v_expand[compptr->component_index];
- numpix = h_expand * v_expand;
- numpix2 = numpix/2;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data, cinfo->max_v_samp_factor,
- cinfo->image_width, output_cols * h_expand);
-
- inrow = outrow = 0;
- while (inrow < cinfo->max_v_samp_factor) {
- outptr = output_data[outrow];
- for (outcol = 0, outcol_h = 0; outcol < output_cols;
- outcol++, outcol_h += h_expand) {
- outvalue = 0;
- for (v = 0; v < v_expand; v++) {
- inptr = input_data[inrow+v] + outcol_h;
- for (h = 0; h < h_expand; h++) {
- outvalue += (INT32) GETJSAMPLE(*inptr++);
- }
- }
- *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
- }
- inrow += v_expand;
- outrow++;
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the special case of a full-size component,
- * without smoothing.
- */
-
-METHODDEF(void)
-fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- /* Copy the data */
- jcopy_sample_rows(input_data, 0, output_data, 0,
- cinfo->max_v_samp_factor, cinfo->image_width);
- /* Edge-expand */
- expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size);
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the common case of 2:1 horizontal and 1:1 vertical,
- * without smoothing.
- *
- * A note about the "bias" calculations: when rounding fractional values to
- * integer, we do not want to always round 0.5 up to the next integer.
- * If we did that, we'd introduce a noticeable bias towards larger values.
- * Instead, this code is arranged so that 0.5 will be rounded up or down at
- * alternate pixel locations (a simple ordered dither pattern).
- */
-
-METHODDEF(void)
-h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow;
- JDIMENSION outcol;
- JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
- register JSAMPROW inptr, outptr;
- register int bias;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data, cinfo->max_v_samp_factor,
- cinfo->image_width, output_cols * 2);
-
- for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
- outptr = output_data[inrow];
- inptr = input_data[inrow];
- bias = 0; /* bias = 0,1,0,1,... for successive samples */
- for (outcol = 0; outcol < output_cols; outcol++) {
- *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
- + bias) >> 1);
- bias ^= 1; /* 0=>1, 1=>0 */
- inptr += 2;
- }
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
- * without smoothing.
- */
-
-METHODDEF(void)
-h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow, outrow;
- JDIMENSION outcol;
- JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
- register JSAMPROW inptr0, inptr1, outptr;
- register int bias;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data, cinfo->max_v_samp_factor,
- cinfo->image_width, output_cols * 2);
-
- inrow = outrow = 0;
- while (inrow < cinfo->max_v_samp_factor) {
- outptr = output_data[outrow];
- inptr0 = input_data[inrow];
- inptr1 = input_data[inrow+1];
- bias = 1; /* bias = 1,2,1,2,... for successive samples */
- for (outcol = 0; outcol < output_cols; outcol++) {
- *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
- + bias) >> 2);
- bias ^= 3; /* 1=>2, 2=>1 */
- inptr0 += 2; inptr1 += 2;
- }
- inrow += 2;
- outrow++;
- }
-}
-
-
-#ifdef INPUT_SMOOTHING_SUPPORTED
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
- * with smoothing. One row of context is required.
- */
-
-METHODDEF(void)
-h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow, outrow;
- JDIMENSION colctr;
- JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
- register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
- INT32 membersum, neighsum, memberscale, neighscale;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
- cinfo->image_width, output_cols * 2);
-
- /* We don't bother to form the individual "smoothed" input pixel values;
- * we can directly compute the output which is the average of the four
- * smoothed values. Each of the four member pixels contributes a fraction
- * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
- * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
- * output. The four corner-adjacent neighbor pixels contribute a fraction
- * SF to just one smoothed pixel, or SF/4 to the final output; while the
- * eight edge-adjacent neighbors contribute SF to each of two smoothed
- * pixels, or SF/2 overall. In order to use integer arithmetic, these
- * factors are scaled by 2^16 = 65536.
- * Also recall that SF = smoothing_factor / 1024.
- */
-
- memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
- neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
-
- inrow = outrow = 0;
- while (inrow < cinfo->max_v_samp_factor) {
- outptr = output_data[outrow];
- inptr0 = input_data[inrow];
- inptr1 = input_data[inrow+1];
- above_ptr = input_data[inrow-1];
- below_ptr = input_data[inrow+2];
-
- /* Special case for first column: pretend column -1 is same as column 0 */
- membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
- neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
- GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
- neighsum += neighsum;
- neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
-
- for (colctr = output_cols - 2; colctr > 0; colctr--) {
- /* sum of pixels directly mapped to this output element */
- membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
- /* sum of edge-neighbor pixels */
- neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
- GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
- GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
- /* The edge-neighbors count twice as much as corner-neighbors */
- neighsum += neighsum;
- /* Add in the corner-neighbors */
- neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
- GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
- /* form final output scaled up by 2^16 */
- membersum = membersum * memberscale + neighsum * neighscale;
- /* round, descale and output it */
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
- }
-
- /* Special case for last column */
- membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
- neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
- GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
- neighsum += neighsum;
- neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
-
- inrow += 2;
- outrow++;
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the special case of a full-size component,
- * with smoothing. One row of context is required.
- */
-
-METHODDEF(void)
-fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow;
- JDIMENSION colctr;
- JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
- register JSAMPROW inptr, above_ptr, below_ptr, outptr;
- INT32 membersum, neighsum, memberscale, neighscale;
- int colsum, lastcolsum, nextcolsum;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
- cinfo->image_width, output_cols);
-
- /* Each of the eight neighbor pixels contributes a fraction SF to the
- * smoothed pixel, while the main pixel contributes (1-8*SF). In order
- * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
- * Also recall that SF = smoothing_factor / 1024.
- */
-
- memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
- neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
-
- for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
- outptr = output_data[inrow];
- inptr = input_data[inrow];
- above_ptr = input_data[inrow-1];
- below_ptr = input_data[inrow+1];
-
- /* Special case for first column */
- colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
- GETJSAMPLE(*inptr);
- membersum = GETJSAMPLE(*inptr++);
- nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
- GETJSAMPLE(*inptr);
- neighsum = colsum + (colsum - membersum) + nextcolsum;
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- lastcolsum = colsum; colsum = nextcolsum;
-
- for (colctr = output_cols - 2; colctr > 0; colctr--) {
- membersum = GETJSAMPLE(*inptr++);
- above_ptr++; below_ptr++;
- nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
- GETJSAMPLE(*inptr);
- neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- lastcolsum = colsum; colsum = nextcolsum;
- }
-
- /* Special case for last column */
- membersum = GETJSAMPLE(*inptr);
- neighsum = lastcolsum + (colsum - membersum) + colsum;
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
-
- }
-}
-
-#endif /* INPUT_SMOOTHING_SUPPORTED */
-
-
-/*
- * Module initialization routine for downsampling.
- * Note that we must select a routine for each component.
- */
-
-GLOBAL(void)
-jinit_downsampler (j_compress_ptr cinfo)
-{
- my_downsample_ptr downsample;
- int ci;
- jpeg_component_info * compptr;
- boolean smoothok = TRUE;
- int h_in_group, v_in_group, h_out_group, v_out_group;
-
- downsample = (my_downsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_downsampler));
- cinfo->downsample = (struct jpeg_downsampler *) downsample;
- downsample->pub.start_pass = start_pass_downsample;
- downsample->pub.downsample = sep_downsample;
- downsample->pub.need_context_rows = FALSE;
-
- if (cinfo->CCIR601_sampling)
- ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
-
- /* Verify we can handle the sampling factors, and set up method pointers */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Compute size of an "output group" for DCT scaling. This many samples
- * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
- */
- h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
- cinfo->min_DCT_h_scaled_size;
- v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size;
- h_in_group = cinfo->max_h_samp_factor;
- v_in_group = cinfo->max_v_samp_factor;
- downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
- if (h_in_group == h_out_group && v_in_group == v_out_group) {
-#ifdef INPUT_SMOOTHING_SUPPORTED
- if (cinfo->smoothing_factor) {
- downsample->methods[ci] = fullsize_smooth_downsample;
- downsample->pub.need_context_rows = TRUE;
- } else
-#endif
- downsample->methods[ci] = fullsize_downsample;
- } else if (h_in_group == h_out_group * 2 &&
- v_in_group == v_out_group) {
- smoothok = FALSE;
- downsample->methods[ci] = h2v1_downsample;
- } else if (h_in_group == h_out_group * 2 &&
- v_in_group == v_out_group * 2) {
-#ifdef INPUT_SMOOTHING_SUPPORTED
- if (cinfo->smoothing_factor) {
- downsample->methods[ci] = h2v2_smooth_downsample;
- downsample->pub.need_context_rows = TRUE;
- } else
-#endif
- downsample->methods[ci] = h2v2_downsample;
- } else if ((h_in_group % h_out_group) == 0 &&
- (v_in_group % v_out_group) == 0) {
- smoothok = FALSE;
- downsample->methods[ci] = int_downsample;
- downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
- downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
- } else
- ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
- }
-
-#ifdef INPUT_SMOOTHING_SUPPORTED
- if (cinfo->smoothing_factor && !smoothok)
- TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
-#endif
-}
diff --git a/src/jpeg-8c/jctrans.c b/src/jpeg-8c/jctrans.c
deleted file mode 100644
index 33648113..00000000
--- a/src/jpeg-8c/jctrans.c
+++ /dev/null
@@ -1,382 +0,0 @@
-/*
- * jctrans.c
- *
- * Copyright (C) 1995-1998, Thomas G. Lane.
- * Modified 2000-2013 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains library routines for transcoding compression,
- * that is, writing raw DCT coefficient arrays to an output JPEG file.
- * The routines in jcapimin.c will also be needed by a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL(void) transencode_master_selection
- JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
-LOCAL(void) transencode_coef_controller
- JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
-
-
-/*
- * Compression initialization for writing raw-coefficient data.
- * Before calling this, all parameters and a data destination must be set up.
- * Call jpeg_finish_compress() to actually write the data.
- *
- * The number of passed virtual arrays must match cinfo->num_components.
- * Note that the virtual arrays need not be filled or even realized at
- * the time write_coefficients is called; indeed, if the virtual arrays
- * were requested from this compression object's memory manager, they
- * typically will be realized during this routine and filled afterwards.
- */
-
-GLOBAL(void)
-jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
-{
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Mark all tables to be written */
- jpeg_suppress_tables(cinfo, FALSE);
- /* (Re)initialize error mgr and destination modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->dest->init_destination) (cinfo);
- /* Perform master selection of active modules */
- transencode_master_selection(cinfo, coef_arrays);
- /* Wait for jpeg_finish_compress() call */
- cinfo->next_scanline = 0; /* so jpeg_write_marker works */
- cinfo->global_state = CSTATE_WRCOEFS;
-}
-
-
-/*
- * Initialize the compression object with default parameters,
- * then copy from the source object all parameters needed for lossless
- * transcoding. Parameters that can be varied without loss (such as
- * scan script and Huffman optimization) are left in their default states.
- */
-
-GLOBAL(void)
-jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
- j_compress_ptr dstinfo)
-{
- JQUANT_TBL ** qtblptr;
- jpeg_component_info *incomp, *outcomp;
- JQUANT_TBL *c_quant, *slot_quant;
- int tblno, ci, coefi;
-
- /* Safety check to ensure start_compress not called yet. */
- if (dstinfo->global_state != CSTATE_START)
- ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
- /* Copy fundamental image dimensions */
- dstinfo->image_width = srcinfo->image_width;
- dstinfo->image_height = srcinfo->image_height;
- dstinfo->input_components = srcinfo->num_components;
- dstinfo->in_color_space = srcinfo->jpeg_color_space;
- dstinfo->jpeg_width = srcinfo->output_width;
- dstinfo->jpeg_height = srcinfo->output_height;
- dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
- dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
- /* Initialize all parameters to default values */
- jpeg_set_defaults(dstinfo);
- /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
- * Fix it to get the right header markers for the image colorspace.
- */
- jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
- dstinfo->data_precision = srcinfo->data_precision;
- dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
- /* Copy the source's quantization tables. */
- for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
- if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
- qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
- if (*qtblptr == NULL)
- *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
- MEMCOPY((*qtblptr)->quantval,
- srcinfo->quant_tbl_ptrs[tblno]->quantval,
- SIZEOF((*qtblptr)->quantval));
- (*qtblptr)->sent_table = FALSE;
- }
- }
- /* Copy the source's per-component info.
- * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
- */
- dstinfo->num_components = srcinfo->num_components;
- if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
- MAX_COMPONENTS);
- for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
- ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
- outcomp->component_id = incomp->component_id;
- outcomp->h_samp_factor = incomp->h_samp_factor;
- outcomp->v_samp_factor = incomp->v_samp_factor;
- outcomp->quant_tbl_no = incomp->quant_tbl_no;
- /* Make sure saved quantization table for component matches the qtable
- * slot. If not, the input file re-used this qtable slot.
- * IJG encoder currently cannot duplicate this.
- */
- tblno = outcomp->quant_tbl_no;
- if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
- srcinfo->quant_tbl_ptrs[tblno] == NULL)
- ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
- slot_quant = srcinfo->quant_tbl_ptrs[tblno];
- c_quant = incomp->quant_table;
- if (c_quant != NULL) {
- for (coefi = 0; coefi < DCTSIZE2; coefi++) {
- if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
- ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
- }
- }
- /* Note: we do not copy the source's Huffman table assignments;
- * instead we rely on jpeg_set_colorspace to have made a suitable choice.
- */
- }
- /* Also copy JFIF version and resolution information, if available.
- * Strictly speaking this isn't "critical" info, but it's nearly
- * always appropriate to copy it if available. In particular,
- * if the application chooses to copy JFIF 1.02 extension markers from
- * the source file, we need to copy the version to make sure we don't
- * emit a file that has 1.02 extensions but a claimed version of 1.01.
- * We will *not*, however, copy version info from mislabeled "2.01" files.
- */
- if (srcinfo->saw_JFIF_marker) {
- if (srcinfo->JFIF_major_version == 1) {
- dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
- dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
- }
- dstinfo->density_unit = srcinfo->density_unit;
- dstinfo->X_density = srcinfo->X_density;
- dstinfo->Y_density = srcinfo->Y_density;
- }
-}
-
-
-/*
- * Master selection of compression modules for transcoding.
- * This substitutes for jcinit.c's initialization of the full compressor.
- */
-
-LOCAL(void)
-transencode_master_selection (j_compress_ptr cinfo,
- jvirt_barray_ptr * coef_arrays)
-{
- /* Initialize master control (includes parameter checking/processing) */
- jinit_c_master_control(cinfo, TRUE /* transcode only */);
-
- /* Entropy encoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code)
- jinit_arith_encoder(cinfo);
- else {
- jinit_huff_encoder(cinfo);
- }
-
- /* We need a special coefficient buffer controller. */
- transencode_coef_controller(cinfo, coef_arrays);
-
- jinit_marker_writer(cinfo);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Write the datastream header (SOI, JFIF) immediately.
- * Frame and scan headers are postponed till later.
- * This lets application insert special markers after the SOI.
- */
- (*cinfo->marker->write_file_header) (cinfo);
-}
-
-
-/*
- * The rest of this file is a special implementation of the coefficient
- * buffer controller. This is similar to jccoefct.c, but it handles only
- * output from presupplied virtual arrays. Furthermore, we generate any
- * dummy padding blocks on-the-fly rather than expecting them to be present
- * in the arrays.
- */
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_coef_controller pub; /* public fields */
-
- JDIMENSION iMCU_row_num; /* iMCU row # within image */
- JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* Virtual block array for each component. */
- jvirt_barray_ptr * whole_image;
-
- /* Workspace for constructing dummy blocks at right/bottom edges. */
- JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-
-LOCAL(void)
-start_iMCU_row (j_compress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->mcu_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- if (pass_mode != JBUF_CRANK_DEST)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- coef->iMCU_row_num = 0;
- start_iMCU_row(cinfo);
-}
-
-
-/*
- * Process some data.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the scan.
- * The data is obtained from the virtual arrays and fed to the entropy coder.
- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
- *
- * NB: input_buf is ignored; it is likely to be a NULL pointer.
- */
-
-METHODDEF(boolean)
-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, ci, xindex, yindex, yoffset, blockcnt;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan. */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- coef->iMCU_row_num * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (coef->iMCU_row_num < last_iMCU_row ||
- yindex+yoffset < compptr->last_row_height) {
- /* Fill in pointers to real blocks in this row */
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < blockcnt; xindex++)
- MCU_buffer[blkn++] = buffer_ptr++;
- } else {
- /* At bottom of image, need a whole row of dummy blocks */
- xindex = 0;
- }
- /* Fill in any dummy blocks needed in this row.
- * Dummy blocks are filled in the same way as in jccoefct.c:
- * all zeroes in the AC entries, DC entries equal to previous
- * block's DC value. The init routine has already zeroed the
- * AC entries, so we need only set the DC entries correctly.
- */
- for (; xindex < compptr->MCU_width; xindex++) {
- MCU_buffer[blkn] = coef->dummy_buffer[blkn];
- MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
- blkn++;
- }
- }
- }
- /* Try to write the MCU. */
- if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->mcu_ctr = MCU_col_num;
- return FALSE;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->mcu_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- coef->iMCU_row_num++;
- start_iMCU_row(cinfo);
- return TRUE;
-}
-
-
-/*
- * Initialize coefficient buffer controller.
- *
- * Each passed coefficient array must be the right size for that
- * coefficient: width_in_blocks wide and height_in_blocks high,
- * with unitheight at least v_samp_factor.
- */
-
-LOCAL(void)
-transencode_coef_controller (j_compress_ptr cinfo,
- jvirt_barray_ptr * coef_arrays)
-{
- my_coef_ptr coef;
- JBLOCKROW buffer;
- int i;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_c_coef_controller *) coef;
- coef->pub.start_pass = start_pass_coef;
- coef->pub.compress_data = compress_output;
-
- /* Save pointer to virtual arrays */
- coef->whole_image = coef_arrays;
-
- /* Allocate and pre-zero space for dummy DCT blocks. */
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
- coef->dummy_buffer[i] = buffer + i;
- }
-}
diff --git a/src/jpeg-8c/jdapimin.c b/src/jpeg-8c/jdapimin.c
deleted file mode 100644
index 7f1ce4c0..00000000
--- a/src/jpeg-8c/jdapimin.c
+++ /dev/null
@@ -1,396 +0,0 @@
-/*
- * jdapimin.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * Modified 2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half
- * of the JPEG library. These are the "minimum" API routines that may be
- * needed in either the normal full-decompression case or the
- * transcoding-only case.
- *
- * Most of the routines intended to be called directly by an application
- * are in this file or in jdapistd.c. But also see jcomapi.c for routines
- * shared by compression and decompression, and jdtrans.c for the transcoding
- * case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Initialization of a JPEG decompression object.
- * The error manager must already be set up (in case memory manager fails).
- */
-
-GLOBAL(void)
-jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
-{
- int i;
-
- /* Guard against version mismatches between library and caller. */
- cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
- if (version != JPEG_LIB_VERSION)
- ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
- if (structsize != SIZEOF(struct jpeg_decompress_struct))
- ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
- (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
-
- /* For debugging purposes, we zero the whole master structure.
- * But the application has already set the err pointer, and may have set
- * client_data, so we have to save and restore those fields.
- * Note: if application hasn't set client_data, tools like Purify may
- * complain here.
- */
- {
- struct jpeg_error_mgr * err = cinfo->err;
- void * client_data = cinfo->client_data; /* ignore Purify complaint here */
- MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
- cinfo->err = err;
- cinfo->client_data = client_data;
- }
- cinfo->is_decompressor = TRUE;
-
- /* Initialize a memory manager instance for this object */
- jinit_memory_mgr((j_common_ptr) cinfo);
-
- /* Zero out pointers to permanent structures. */
- cinfo->progress = NULL;
- cinfo->src = NULL;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++)
- cinfo->quant_tbl_ptrs[i] = NULL;
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- cinfo->dc_huff_tbl_ptrs[i] = NULL;
- cinfo->ac_huff_tbl_ptrs[i] = NULL;
- }
-
- /* Initialize marker processor so application can override methods
- * for COM, APPn markers before calling jpeg_read_header.
- */
- cinfo->marker_list = NULL;
- jinit_marker_reader(cinfo);
-
- /* And initialize the overall input controller. */
- jinit_input_controller(cinfo);
-
- /* OK, I'm ready */
- cinfo->global_state = DSTATE_START;
-}
-
-
-/*
- * Destruction of a JPEG decompression object
- */
-
-GLOBAL(void)
-jpeg_destroy_decompress (j_decompress_ptr cinfo)
-{
- jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Abort processing of a JPEG decompression operation,
- * but don't destroy the object itself.
- */
-
-GLOBAL(void)
-jpeg_abort_decompress (j_decompress_ptr cinfo)
-{
- jpeg_abort((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Set default decompression parameters.
- */
-
-LOCAL(void)
-default_decompress_parms (j_decompress_ptr cinfo)
-{
- /* Guess the input colorspace, and set output colorspace accordingly. */
- /* (Wish JPEG committee had provided a real way to specify this...) */
- /* Note application may override our guesses. */
- switch (cinfo->num_components) {
- case 1:
- cinfo->jpeg_color_space = JCS_GRAYSCALE;
- cinfo->out_color_space = JCS_GRAYSCALE;
- break;
-
- case 3:
- if (cinfo->saw_JFIF_marker) {
- cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
- } else if (cinfo->saw_Adobe_marker) {
- switch (cinfo->Adobe_transform) {
- case 0:
- cinfo->jpeg_color_space = JCS_RGB;
- break;
- case 1:
- cinfo->jpeg_color_space = JCS_YCbCr;
- break;
- default:
- WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
- break;
- }
- } else {
- /* Saw no special markers, try to guess from the component IDs */
- int cid0 = cinfo->comp_info[0].component_id;
- int cid1 = cinfo->comp_info[1].component_id;
- int cid2 = cinfo->comp_info[2].component_id;
-
- if (cid0 == 1 && cid1 == 2 && cid2 == 3)
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
- else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
- cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
- else {
- TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
- }
- }
- /* Always guess RGB is proper output colorspace. */
- cinfo->out_color_space = JCS_RGB;
- break;
-
- case 4:
- if (cinfo->saw_Adobe_marker) {
- switch (cinfo->Adobe_transform) {
- case 0:
- cinfo->jpeg_color_space = JCS_CMYK;
- break;
- case 2:
- cinfo->jpeg_color_space = JCS_YCCK;
- break;
- default:
- WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
- cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
- break;
- }
- } else {
- /* No special markers, assume straight CMYK. */
- cinfo->jpeg_color_space = JCS_CMYK;
- }
- cinfo->out_color_space = JCS_CMYK;
- break;
-
- default:
- cinfo->jpeg_color_space = JCS_UNKNOWN;
- cinfo->out_color_space = JCS_UNKNOWN;
- break;
- }
-
- /* Set defaults for other decompression parameters. */
- cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */
- cinfo->scale_denom = cinfo->block_size;
- cinfo->output_gamma = 1.0;
- cinfo->buffered_image = FALSE;
- cinfo->raw_data_out = FALSE;
- cinfo->dct_method = JDCT_DEFAULT;
- cinfo->do_fancy_upsampling = TRUE;
- cinfo->do_block_smoothing = TRUE;
- cinfo->quantize_colors = FALSE;
- /* We set these in case application only sets quantize_colors. */
- cinfo->dither_mode = JDITHER_FS;
-#ifdef QUANT_2PASS_SUPPORTED
- cinfo->two_pass_quantize = TRUE;
-#else
- cinfo->two_pass_quantize = FALSE;
-#endif
- cinfo->desired_number_of_colors = 256;
- cinfo->colormap = NULL;
- /* Initialize for no mode change in buffered-image mode. */
- cinfo->enable_1pass_quant = FALSE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
-}
-
-
-/*
- * Decompression startup: read start of JPEG datastream to see what's there.
- * Need only initialize JPEG object and supply a data source before calling.
- *
- * This routine will read as far as the first SOS marker (ie, actual start of
- * compressed data), and will save all tables and parameters in the JPEG
- * object. It will also initialize the decompression parameters to default
- * values, and finally return JPEG_HEADER_OK. On return, the application may
- * adjust the decompression parameters and then call jpeg_start_decompress.
- * (Or, if the application only wanted to determine the image parameters,
- * the data need not be decompressed. In that case, call jpeg_abort or
- * jpeg_destroy to release any temporary space.)
- * If an abbreviated (tables only) datastream is presented, the routine will
- * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
- * re-use the JPEG object to read the abbreviated image datastream(s).
- * It is unnecessary (but OK) to call jpeg_abort in this case.
- * The JPEG_SUSPENDED return code only occurs if the data source module
- * requests suspension of the decompressor. In this case the application
- * should load more source data and then re-call jpeg_read_header to resume
- * processing.
- * If a non-suspending data source is used and require_image is TRUE, then the
- * return code need not be inspected since only JPEG_HEADER_OK is possible.
- *
- * This routine is now just a front end to jpeg_consume_input, with some
- * extra error checking.
- */
-
-GLOBAL(int)
-jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
-{
- int retcode;
-
- if (cinfo->global_state != DSTATE_START &&
- cinfo->global_state != DSTATE_INHEADER)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- retcode = jpeg_consume_input(cinfo);
-
- switch (retcode) {
- case JPEG_REACHED_SOS:
- retcode = JPEG_HEADER_OK;
- break;
- case JPEG_REACHED_EOI:
- if (require_image) /* Complain if application wanted an image */
- ERREXIT(cinfo, JERR_NO_IMAGE);
- /* Reset to start state; it would be safer to require the application to
- * call jpeg_abort, but we can't change it now for compatibility reasons.
- * A side effect is to free any temporary memory (there shouldn't be any).
- */
- jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
- retcode = JPEG_HEADER_TABLES_ONLY;
- break;
- case JPEG_SUSPENDED:
- /* no work */
- break;
- }
-
- return retcode;
-}
-
-
-/*
- * Consume data in advance of what the decompressor requires.
- * This can be called at any time once the decompressor object has
- * been created and a data source has been set up.
- *
- * This routine is essentially a state machine that handles a couple
- * of critical state-transition actions, namely initial setup and
- * transition from header scanning to ready-for-start_decompress.
- * All the actual input is done via the input controller's consume_input
- * method.
- */
-
-GLOBAL(int)
-jpeg_consume_input (j_decompress_ptr cinfo)
-{
- int retcode = JPEG_SUSPENDED;
-
- /* NB: every possible DSTATE value should be listed in this switch */
- switch (cinfo->global_state) {
- case DSTATE_START:
- /* Start-of-datastream actions: reset appropriate modules */
- (*cinfo->inputctl->reset_input_controller) (cinfo);
- /* Initialize application's data source module */
- (*cinfo->src->init_source) (cinfo);
- cinfo->global_state = DSTATE_INHEADER;
- /*FALLTHROUGH*/
- case DSTATE_INHEADER:
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
- /* Set up default parameters based on header data */
- default_decompress_parms(cinfo);
- /* Set global state: ready for start_decompress */
- cinfo->global_state = DSTATE_READY;
- }
- break;
- case DSTATE_READY:
- /* Can't advance past first SOS until start_decompress is called */
- retcode = JPEG_REACHED_SOS;
- break;
- case DSTATE_PRELOAD:
- case DSTATE_PRESCAN:
- case DSTATE_SCANNING:
- case DSTATE_RAW_OK:
- case DSTATE_BUFIMAGE:
- case DSTATE_BUFPOST:
- case DSTATE_STOPPING:
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- break;
- default:
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- return retcode;
-}
-
-
-/*
- * Have we finished reading the input file?
- */
-
-GLOBAL(boolean)
-jpeg_input_complete (j_decompress_ptr cinfo)
-{
- /* Check for valid jpeg object */
- if (cinfo->global_state < DSTATE_START ||
- cinfo->global_state > DSTATE_STOPPING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return cinfo->inputctl->eoi_reached;
-}
-
-
-/*
- * Is there more than one scan?
- */
-
-GLOBAL(boolean)
-jpeg_has_multiple_scans (j_decompress_ptr cinfo)
-{
- /* Only valid after jpeg_read_header completes */
- if (cinfo->global_state < DSTATE_READY ||
- cinfo->global_state > DSTATE_STOPPING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return cinfo->inputctl->has_multiple_scans;
-}
-
-
-/*
- * Finish JPEG decompression.
- *
- * This will normally just verify the file trailer and release temp storage.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL(boolean)
-jpeg_finish_decompress (j_decompress_ptr cinfo)
-{
- if ((cinfo->global_state == DSTATE_SCANNING ||
- cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
- /* Terminate final pass of non-buffered mode */
- if (cinfo->output_scanline < cinfo->output_height)
- ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
- (*cinfo->master->finish_output_pass) (cinfo);
- cinfo->global_state = DSTATE_STOPPING;
- } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
- /* Finishing after a buffered-image operation */
- cinfo->global_state = DSTATE_STOPPING;
- } else if (cinfo->global_state != DSTATE_STOPPING) {
- /* STOPPING = repeat call after a suspension, anything else is error */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- /* Read until EOI */
- while (! cinfo->inputctl->eoi_reached) {
- if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
- return FALSE; /* Suspend, come back later */
- }
- /* Do final cleanup */
- (*cinfo->src->term_source) (cinfo);
- /* We can use jpeg_abort to release memory and reset global_state */
- jpeg_abort((j_common_ptr) cinfo);
- return TRUE;
-}
diff --git a/src/jpeg-8c/jdapistd.c b/src/jpeg-8c/jdapistd.c
deleted file mode 100644
index 9d745377..00000000
--- a/src/jpeg-8c/jdapistd.c
+++ /dev/null
@@ -1,275 +0,0 @@
-/*
- * jdapistd.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half
- * of the JPEG library. These are the "standard" API routines that are
- * used in the normal full-decompression case. They are not used by a
- * transcoding-only application. Note that if an application links in
- * jpeg_start_decompress, it will end up linking in the entire decompressor.
- * We thus must separate this file from jdapimin.c to avoid linking the
- * whole decompression library into a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Decompression initialization.
- * jpeg_read_header must be completed before calling this.
- *
- * If a multipass operating mode was selected, this will do all but the
- * last pass, and thus may take a great deal of time.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL(boolean)
-jpeg_start_decompress (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state == DSTATE_READY) {
- /* First call: initialize master control, select active modules */
- jinit_master_decompress(cinfo);
- if (cinfo->buffered_image) {
- /* No more work here; expecting jpeg_start_output next */
- cinfo->global_state = DSTATE_BUFIMAGE;
- return TRUE;
- }
- cinfo->global_state = DSTATE_PRELOAD;
- }
- if (cinfo->global_state == DSTATE_PRELOAD) {
- /* If file has multiple scans, absorb them all into the coef buffer */
- if (cinfo->inputctl->has_multiple_scans) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- for (;;) {
- int retcode;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL)
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- /* Absorb some more input */
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_SUSPENDED)
- return FALSE;
- if (retcode == JPEG_REACHED_EOI)
- break;
- /* Advance progress counter if appropriate */
- if (cinfo->progress != NULL &&
- (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
- if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
- /* jdmaster underestimated number of scans; ratchet up one scan */
- cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
- }
- }
- }
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
- }
- cinfo->output_scan_number = cinfo->input_scan_number;
- } else if (cinfo->global_state != DSTATE_PRESCAN)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Perform any dummy output passes, and set up for the final pass */
- return output_pass_setup(cinfo);
-}
-
-
-/*
- * Set up for an output pass, and perform any dummy pass(es) needed.
- * Common subroutine for jpeg_start_decompress and jpeg_start_output.
- * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
- * Exit: If done, returns TRUE and sets global_state for proper output mode.
- * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
- */
-
-LOCAL(boolean)
-output_pass_setup (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state != DSTATE_PRESCAN) {
- /* First call: do pass setup */
- (*cinfo->master->prepare_for_output_pass) (cinfo);
- cinfo->output_scanline = 0;
- cinfo->global_state = DSTATE_PRESCAN;
- }
- /* Loop over any required dummy passes */
- while (cinfo->master->is_dummy_pass) {
-#ifdef QUANT_2PASS_SUPPORTED
- /* Crank through the dummy pass */
- while (cinfo->output_scanline < cinfo->output_height) {
- JDIMENSION last_scanline;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
- /* Process some data */
- last_scanline = cinfo->output_scanline;
- (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
- &cinfo->output_scanline, (JDIMENSION) 0);
- if (cinfo->output_scanline == last_scanline)
- return FALSE; /* No progress made, must suspend */
- }
- /* Finish up dummy pass, and set up for another one */
- (*cinfo->master->finish_output_pass) (cinfo);
- (*cinfo->master->prepare_for_output_pass) (cinfo);
- cinfo->output_scanline = 0;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* QUANT_2PASS_SUPPORTED */
- }
- /* Ready for application to drive output pass through
- * jpeg_read_scanlines or jpeg_read_raw_data.
- */
- cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
- return TRUE;
-}
-
-
-/*
- * Read some scanlines of data from the JPEG decompressor.
- *
- * The return value will be the number of lines actually read.
- * This may be less than the number requested in several cases,
- * including bottom of image, data source suspension, and operating
- * modes that emit multiple scanlines at a time.
- *
- * Note: we warn about excess calls to jpeg_read_scanlines() since
- * this likely signals an application programmer error. However,
- * an oversize buffer (max_lines > scanlines remaining) is not an error.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
- JDIMENSION max_lines)
-{
- JDIMENSION row_ctr;
-
- if (cinfo->global_state != DSTATE_SCANNING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->output_scanline >= cinfo->output_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Process some data */
- row_ctr = 0;
- (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
- cinfo->output_scanline += row_ctr;
- return row_ctr;
-}
-
-
-/*
- * Alternate entry point to read raw data.
- * Processes exactly one iMCU row per call, unless suspended.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
- JDIMENSION max_lines)
-{
- JDIMENSION lines_per_iMCU_row;
-
- if (cinfo->global_state != DSTATE_RAW_OK)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->output_scanline >= cinfo->output_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Verify that at least one iMCU row can be returned. */
- lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
- if (max_lines < lines_per_iMCU_row)
- ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
- /* Decompress directly into user's buffer. */
- if (! (*cinfo->coef->decompress_data) (cinfo, data))
- return 0; /* suspension forced, can do nothing more */
-
- /* OK, we processed one iMCU row. */
- cinfo->output_scanline += lines_per_iMCU_row;
- return lines_per_iMCU_row;
-}
-
-
-/* Additional entry points for buffered-image mode. */
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Initialize for an output pass in buffered-image mode.
- */
-
-GLOBAL(boolean)
-jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
-{
- if (cinfo->global_state != DSTATE_BUFIMAGE &&
- cinfo->global_state != DSTATE_PRESCAN)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Limit scan number to valid range */
- if (scan_number <= 0)
- scan_number = 1;
- if (cinfo->inputctl->eoi_reached &&
- scan_number > cinfo->input_scan_number)
- scan_number = cinfo->input_scan_number;
- cinfo->output_scan_number = scan_number;
- /* Perform any dummy output passes, and set up for the real pass */
- return output_pass_setup(cinfo);
-}
-
-
-/*
- * Finish up after an output pass in buffered-image mode.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL(boolean)
-jpeg_finish_output (j_decompress_ptr cinfo)
-{
- if ((cinfo->global_state == DSTATE_SCANNING ||
- cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
- /* Terminate this pass. */
- /* We do not require the whole pass to have been completed. */
- (*cinfo->master->finish_output_pass) (cinfo);
- cinfo->global_state = DSTATE_BUFPOST;
- } else if (cinfo->global_state != DSTATE_BUFPOST) {
- /* BUFPOST = repeat call after a suspension, anything else is error */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- /* Read markers looking for SOS or EOI */
- while (cinfo->input_scan_number <= cinfo->output_scan_number &&
- ! cinfo->inputctl->eoi_reached) {
- if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
- return FALSE; /* Suspend, come back later */
- }
- cinfo->global_state = DSTATE_BUFIMAGE;
- return TRUE;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
diff --git a/src/jpeg-8c/jdarith.c b/src/jpeg-8c/jdarith.c
deleted file mode 100644
index c858b248..00000000
--- a/src/jpeg-8c/jdarith.c
+++ /dev/null
@@ -1,772 +0,0 @@
-/*
- * jdarith.c
- *
- * Developed 1997-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains portable arithmetic entropy decoding routines for JPEG
- * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
- *
- * Both sequential and progressive modes are supported in this single module.
- *
- * Suspension is not currently supported in this module.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Expanded entropy decoder object for arithmetic decoding. */
-
-typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
-
- INT32 c; /* C register, base of coding interval + input bit buffer */
- INT32 a; /* A register, normalized size of coding interval */
- int ct; /* bit shift counter, # of bits left in bit buffer part of C */
- /* init: ct = -16 */
- /* run: ct = 0..7 */
- /* error: ct = -1 */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
- int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
-
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
-
- /* Pointers to statistics areas (these workspaces have image lifespan) */
- unsigned char * dc_stats[NUM_ARITH_TBLS];
- unsigned char * ac_stats[NUM_ARITH_TBLS];
-
- /* Statistics bin for coding with fixed probability 0.5 */
- unsigned char fixed_bin[4];
-} arith_entropy_decoder;
-
-typedef arith_entropy_decoder * arith_entropy_ptr;
-
-/* The following two definitions specify the allocation chunk size
- * for the statistics area.
- * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
- * 49 statistics bins for DC, and 245 statistics bins for AC coding.
- *
- * We use a compact representation with 1 byte per statistics bin,
- * thus the numbers directly represent byte sizes.
- * This 1 byte per statistics bin contains the meaning of the MPS
- * (more probable symbol) in the highest bit (mask 0x80), and the
- * index into the probability estimation state machine table
- * in the lower bits (mask 0x7F).
- */
-
-#define DC_STAT_BINS 64
-#define AC_STAT_BINS 256
-
-
-LOCAL(int)
-get_byte (j_decompress_ptr cinfo)
-/* Read next input byte; we do not support suspension in this module. */
-{
- struct jpeg_source_mgr * src = cinfo->src;
-
- if (src->bytes_in_buffer == 0)
- if (! (*src->fill_input_buffer) (cinfo))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
- src->bytes_in_buffer--;
- return GETJOCTET(*src->next_input_byte++);
-}
-
-
-/*
- * The core arithmetic decoding routine (common in JPEG and JBIG).
- * This needs to go as fast as possible.
- * Machine-dependent optimization facilities
- * are not utilized in this portable implementation.
- * However, this code should be fairly efficient and
- * may be a good base for further optimizations anyway.
- *
- * Return value is 0 or 1 (binary decision).
- *
- * Note: I've changed the handling of the code base & bit
- * buffer register C compared to other implementations
- * based on the standards layout & procedures.
- * While it also contains both the actual base of the
- * coding interval (16 bits) and the next-bits buffer,
- * the cut-point between these two parts is floating
- * (instead of fixed) with the bit shift counter CT.
- * Thus, we also need only one (variable instead of
- * fixed size) shift for the LPS/MPS decision, and
- * we can get away with any renormalization update
- * of C (except for new data insertion, of course).
- *
- * I've also introduced a new scheme for accessing
- * the probability estimation state machine table,
- * derived from Markus Kuhn's JBIG implementation.
- */
-
-LOCAL(int)
-arith_decode (j_decompress_ptr cinfo, unsigned char *st)
-{
- register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
- register unsigned char nl, nm;
- register INT32 qe, temp;
- register int sv, data;
-
- /* Renormalization & data input per section D.2.6 */
- while (e->a < 0x8000L) {
- if (--e->ct < 0) {
- /* Need to fetch next data byte */
- if (cinfo->unread_marker)
- data = 0; /* stuff zero data */
- else {
- data = get_byte(cinfo); /* read next input byte */
- if (data == 0xFF) { /* zero stuff or marker code */
- do data = get_byte(cinfo);
- while (data == 0xFF); /* swallow extra 0xFF bytes */
- if (data == 0)
- data = 0xFF; /* discard stuffed zero byte */
- else {
- /* Note: Different from the Huffman decoder, hitting
- * a marker while processing the compressed data
- * segment is legal in arithmetic coding.
- * The convention is to supply zero data
- * then until decoding is complete.
- */
- cinfo->unread_marker = data;
- data = 0;
- }
- }
- }
- e->c = (e->c << 8) | data; /* insert data into C register */
- if ((e->ct += 8) < 0) /* update bit shift counter */
- /* Need more initial bytes */
- if (++e->ct == 0)
- /* Got 2 initial bytes -> re-init A and exit loop */
- e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
- }
- e->a <<= 1;
- }
-
- /* Fetch values from our compact representation of Table D.2:
- * Qe values and probability estimation state machine
- */
- sv = *st;
- qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
- nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
- nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
-
- /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
- temp = e->a - qe;
- e->a = temp;
- temp <<= e->ct;
- if (e->c >= temp) {
- e->c -= temp;
- /* Conditional LPS (less probable symbol) exchange */
- if (e->a < qe) {
- e->a = qe;
- *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
- } else {
- e->a = qe;
- *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
- sv ^= 0x80; /* Exchange LPS/MPS */
- }
- } else if (e->a < 0x8000L) {
- /* Conditional MPS (more probable symbol) exchange */
- if (e->a < qe) {
- *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
- sv ^= 0x80; /* Exchange LPS/MPS */
- } else {
- *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
- }
- }
-
- return sv >> 7;
-}
-
-
-/*
- * Check for a restart marker & resynchronize decoder.
- */
-
-LOCAL(void)
-process_restart (j_decompress_ptr cinfo)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- int ci;
- jpeg_component_info * compptr;
-
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
-
- /* Re-initialize statistics areas */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
- MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
- /* Reset DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- entropy->dc_context[ci] = 0;
- }
- if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
- (cinfo->progressive_mode && cinfo->Ss)) {
- MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
- }
- }
-
- /* Reset arithmetic decoding variables */
- entropy->c = 0;
- entropy->a = 0;
- entropy->ct = -16; /* force reading 2 initial bytes to fill C */
-
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-/*
- * Arithmetic MCU decoding.
- * Each of these routines decodes and returns one MCU's worth of
- * arithmetic-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
- */
-
-/*
- * MCU decoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int blkn, ci, tbl, sign;
- int v, m;
-
- /* Process restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- process_restart(cinfo);
- entropy->restarts_to_go--;
- }
-
- if (entropy->ct == -1) return TRUE; /* if error do nothing */
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
-
- /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
-
- /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
- st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
-
- /* Figure F.19: Decode_DC_DIFF */
- if (arith_decode(cinfo, st) == 0)
- entropy->dc_context[ci] = 0;
- else {
- /* Figure F.21: Decoding nonzero value v */
- /* Figure F.22: Decoding the sign of v */
- sign = arith_decode(cinfo, st + 1);
- st += 2; st += sign;
- /* Figure F.23: Decoding the magnitude category of v */
- if ((m = arith_decode(cinfo, st)) != 0) {
- st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
- while (arith_decode(cinfo, st)) {
- if ((m <<= 1) == 0x8000) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* magnitude overflow */
- return TRUE;
- }
- st += 1;
- }
- }
- /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
- if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
- entropy->dc_context[ci] = 0; /* zero diff category */
- else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
- entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
- else
- entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
- v = m;
- /* Figure F.24: Decoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- if (arith_decode(cinfo, st)) v |= m;
- v += 1; if (sign) v = -v;
- entropy->last_dc_val[ci] += v;
- }
-
- /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
- (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int tbl, sign, k;
- int v, m;
- const int * natural_order;
-
- /* Process restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- process_restart(cinfo);
- entropy->restarts_to_go--;
- }
-
- if (entropy->ct == -1) return TRUE; /* if error do nothing */
-
- natural_order = cinfo->natural_order;
-
- /* There is always only one block per MCU */
- block = MCU_data[0];
- tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
-
- /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
-
- /* Figure F.20: Decode_AC_coefficients */
- for (k = cinfo->Ss; k <= cinfo->Se; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- if (arith_decode(cinfo, st)) break; /* EOB flag */
- while (arith_decode(cinfo, st + 1) == 0) {
- st += 3; k++;
- if (k > cinfo->Se) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* spectral overflow */
- return TRUE;
- }
- }
- /* Figure F.21: Decoding nonzero value v */
- /* Figure F.22: Decoding the sign of v */
- sign = arith_decode(cinfo, entropy->fixed_bin);
- st += 2;
- /* Figure F.23: Decoding the magnitude category of v */
- if ((m = arith_decode(cinfo, st)) != 0) {
- if (arith_decode(cinfo, st)) {
- m <<= 1;
- st = entropy->ac_stats[tbl] +
- (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
- while (arith_decode(cinfo, st)) {
- if ((m <<= 1) == 0x8000) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* magnitude overflow */
- return TRUE;
- }
- st += 1;
- }
- }
- }
- v = m;
- /* Figure F.24: Decoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- if (arith_decode(cinfo, st)) v |= m;
- v += 1; if (sign) v = -v;
- /* Scale and output coefficient in natural (dezigzagged) order */
- (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for DC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- unsigned char *st;
- int p1, blkn;
-
- /* Process restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- process_restart(cinfo);
- entropy->restarts_to_go--;
- }
-
- st = entropy->fixed_bin; /* use fixed probability estimation */
- p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- /* Encoded data is simply the next bit of the two's-complement DC value */
- if (arith_decode(cinfo, st))
- MCU_data[blkn][0][0] |= p1;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- JCOEFPTR thiscoef;
- unsigned char *st;
- int tbl, k, kex;
- int p1, m1;
- const int * natural_order;
-
- /* Process restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- process_restart(cinfo);
- entropy->restarts_to_go--;
- }
-
- if (entropy->ct == -1) return TRUE; /* if error do nothing */
-
- natural_order = cinfo->natural_order;
-
- /* There is always only one block per MCU */
- block = MCU_data[0];
- tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
-
- p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
-
- /* Establish EOBx (previous stage end-of-block) index */
- for (kex = cinfo->Se; kex > 0; kex--)
- if ((*block)[natural_order[kex]]) break;
-
- for (k = cinfo->Ss; k <= cinfo->Se; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- if (k > kex)
- if (arith_decode(cinfo, st)) break; /* EOB flag */
- for (;;) {
- thiscoef = *block + natural_order[k];
- if (*thiscoef) { /* previously nonzero coef */
- if (arith_decode(cinfo, st + 2)) {
- if (*thiscoef < 0)
- *thiscoef += m1;
- else
- *thiscoef += p1;
- }
- break;
- }
- if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
- if (arith_decode(cinfo, entropy->fixed_bin))
- *thiscoef = m1;
- else
- *thiscoef = p1;
- break;
- }
- st += 3; k++;
- if (k > cinfo->Se) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* spectral overflow */
- return TRUE;
- }
- }
- }
-
- return TRUE;
-}
-
-
-/*
- * Decode one MCU's worth of arithmetic-compressed coefficients.
- */
-
-METHODDEF(boolean)
-decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- jpeg_component_info * compptr;
- JBLOCKROW block;
- unsigned char *st;
- int blkn, ci, tbl, sign, k;
- int v, m;
- const int * natural_order;
-
- /* Process restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- process_restart(cinfo);
- entropy->restarts_to_go--;
- }
-
- if (entropy->ct == -1) return TRUE; /* if error do nothing */
-
- natural_order = cinfo->natural_order;
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
-
- /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
-
- tbl = compptr->dc_tbl_no;
-
- /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
- st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
-
- /* Figure F.19: Decode_DC_DIFF */
- if (arith_decode(cinfo, st) == 0)
- entropy->dc_context[ci] = 0;
- else {
- /* Figure F.21: Decoding nonzero value v */
- /* Figure F.22: Decoding the sign of v */
- sign = arith_decode(cinfo, st + 1);
- st += 2; st += sign;
- /* Figure F.23: Decoding the magnitude category of v */
- if ((m = arith_decode(cinfo, st)) != 0) {
- st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
- while (arith_decode(cinfo, st)) {
- if ((m <<= 1) == 0x8000) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* magnitude overflow */
- return TRUE;
- }
- st += 1;
- }
- }
- /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
- if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
- entropy->dc_context[ci] = 0; /* zero diff category */
- else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
- entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
- else
- entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
- v = m;
- /* Figure F.24: Decoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- if (arith_decode(cinfo, st)) v |= m;
- v += 1; if (sign) v = -v;
- entropy->last_dc_val[ci] += v;
- }
-
- (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
-
- /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
-
- tbl = compptr->ac_tbl_no;
-
- /* Figure F.20: Decode_AC_coefficients */
- for (k = 1; k <= cinfo->lim_Se; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- if (arith_decode(cinfo, st)) break; /* EOB flag */
- while (arith_decode(cinfo, st + 1) == 0) {
- st += 3; k++;
- if (k > cinfo->lim_Se) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* spectral overflow */
- return TRUE;
- }
- }
- /* Figure F.21: Decoding nonzero value v */
- /* Figure F.22: Decoding the sign of v */
- sign = arith_decode(cinfo, entropy->fixed_bin);
- st += 2;
- /* Figure F.23: Decoding the magnitude category of v */
- if ((m = arith_decode(cinfo, st)) != 0) {
- if (arith_decode(cinfo, st)) {
- m <<= 1;
- st = entropy->ac_stats[tbl] +
- (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
- while (arith_decode(cinfo, st)) {
- if ((m <<= 1) == 0x8000) {
- WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
- entropy->ct = -1; /* magnitude overflow */
- return TRUE;
- }
- st += 1;
- }
- }
- }
- v = m;
- /* Figure F.24: Decoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- if (arith_decode(cinfo, st)) v |= m;
- v += 1; if (sign) v = -v;
- (*block)[natural_order[k]] = (JCOEF) v;
- }
- }
-
- return TRUE;
-}
-
-
-/*
- * Initialize for an arithmetic-compressed scan.
- */
-
-METHODDEF(void)
-start_pass (j_decompress_ptr cinfo)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
-
- if (cinfo->progressive_mode) {
- /* Validate progressive scan parameters */
- if (cinfo->Ss == 0) {
- if (cinfo->Se != 0)
- goto bad;
- } else {
- /* need not check Ss/Se < 0 since they came from unsigned bytes */
- if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
- goto bad;
- /* AC scans may have only one component */
- if (cinfo->comps_in_scan != 1)
- goto bad;
- }
- if (cinfo->Ah != 0) {
- /* Successive approximation refinement scan: must have Al = Ah-1. */
- if (cinfo->Ah-1 != cinfo->Al)
- goto bad;
- }
- if (cinfo->Al > 13) { /* need not check for < 0 */
- bad:
- ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
- cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
- }
- /* Update progression status, and verify that scan order is legal.
- * Note that inter-scan inconsistencies are treated as warnings
- * not fatal errors ... not clear if this is right way to behave.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
- int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
- if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
- for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
- int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
- if (cinfo->Ah != expected)
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
- coef_bit_ptr[coefi] = cinfo->Al;
- }
- }
- /* Select MCU decoding routine */
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.decode_mcu = decode_mcu_DC_first;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.decode_mcu = decode_mcu_DC_refine;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_refine;
- }
- } else {
- /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
- * This ought to be an error condition, but we make it a warning.
- */
- if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
- (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
- WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
- /* Select MCU decoding routine */
- entropy->pub.decode_mcu = decode_mcu;
- }
-
- /* Allocate & initialize requested statistics areas */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
- tbl = compptr->dc_tbl_no;
- if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
- ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
- if (entropy->dc_stats[tbl] == NULL)
- entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
- MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
- /* Initialize DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- entropy->dc_context[ci] = 0;
- }
- if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
- (cinfo->progressive_mode && cinfo->Ss)) {
- tbl = compptr->ac_tbl_no;
- if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
- ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
- if (entropy->ac_stats[tbl] == NULL)
- entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
- MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
- }
- }
-
- /* Initialize arithmetic decoding variables */
- entropy->c = 0;
- entropy->a = 0;
- entropy->ct = -16; /* force reading 2 initial bytes to fill C */
-
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-/*
- * Module initialization routine for arithmetic entropy decoding.
- */
-
-GLOBAL(void)
-jinit_arith_decoder (j_decompress_ptr cinfo)
-{
- arith_entropy_ptr entropy;
- int i;
-
- entropy = (arith_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(arith_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- entropy->dc_stats[i] = NULL;
- entropy->ac_stats[i] = NULL;
- }
-
- /* Initialize index for fixed probability estimation */
- entropy->fixed_bin[0] = 113;
-
- if (cinfo->progressive_mode) {
- /* Create progression status table */
- int *coef_bit_ptr, ci;
- cinfo->coef_bits = (int (*)[DCTSIZE2])
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components*DCTSIZE2*SIZEOF(int));
- coef_bit_ptr = & cinfo->coef_bits[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (i = 0; i < DCTSIZE2; i++)
- *coef_bit_ptr++ = -1;
- }
-}
diff --git a/src/jpeg-8c/jdatadst.c b/src/jpeg-8c/jdatadst.c
deleted file mode 100644
index 472d5f32..00000000
--- a/src/jpeg-8c/jdatadst.c
+++ /dev/null
@@ -1,267 +0,0 @@
-/*
- * jdatadst.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * Modified 2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains compression data destination routines for the case of
- * emitting JPEG data to memory or to a file (or any stdio stream).
- * While these routines are sufficient for most applications,
- * some will want to use a different destination manager.
- * IMPORTANT: we assume that fwrite() will correctly transcribe an array of
- * JOCTETs into 8-bit-wide elements on external storage. If char is wider
- * than 8 bits on your machine, you may need to do some tweaking.
- */
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jerror.h"
-
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
-extern void * malloc JPP((size_t size));
-extern void free JPP((void *ptr));
-#endif
-
-
-/* Expanded data destination object for stdio output */
-
-typedef struct {
- struct jpeg_destination_mgr pub; /* public fields */
-
- FILE * outfile; /* target stream */
- JOCTET * buffer; /* start of buffer */
-} my_destination_mgr;
-
-typedef my_destination_mgr * my_dest_ptr;
-
-#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
-
-
-/* Expanded data destination object for memory output */
-
-typedef struct {
- struct jpeg_destination_mgr pub; /* public fields */
-
- unsigned char ** outbuffer; /* target buffer */
- unsigned long * outsize;
- unsigned char * newbuffer; /* newly allocated buffer */
- JOCTET * buffer; /* start of buffer */
- size_t bufsize;
-} my_mem_destination_mgr;
-
-typedef my_mem_destination_mgr * my_mem_dest_ptr;
-
-
-/*
- * Initialize destination --- called by jpeg_start_compress
- * before any data is actually written.
- */
-
-METHODDEF(void)
-init_destination (j_compress_ptr cinfo)
-{
- my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
-
- /* Allocate the output buffer --- it will be released when done with image */
- dest->buffer = (JOCTET *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
-
- dest->pub.next_output_byte = dest->buffer;
- dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
-}
-
-METHODDEF(void)
-init_mem_destination (j_compress_ptr cinfo)
-{
- /* no work necessary here */
-}
-
-
-/*
- * Empty the output buffer --- called whenever buffer fills up.
- *
- * In typical applications, this should write the entire output buffer
- * (ignoring the current state of next_output_byte & free_in_buffer),
- * reset the pointer & count to the start of the buffer, and return TRUE
- * indicating that the buffer has been dumped.
- *
- * In applications that need to be able to suspend compression due to output
- * overrun, a FALSE return indicates that the buffer cannot be emptied now.
- * In this situation, the compressor will return to its caller (possibly with
- * an indication that it has not accepted all the supplied scanlines). The
- * application should resume compression after it has made more room in the
- * output buffer. Note that there are substantial restrictions on the use of
- * suspension --- see the documentation.
- *
- * When suspending, the compressor will back up to a convenient restart point
- * (typically the start of the current MCU). next_output_byte & free_in_buffer
- * indicate where the restart point will be if the current call returns FALSE.
- * Data beyond this point will be regenerated after resumption, so do not
- * write it out when emptying the buffer externally.
- */
-
-METHODDEF(boolean)
-empty_output_buffer (j_compress_ptr cinfo)
-{
- my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
-
- if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
- (size_t) OUTPUT_BUF_SIZE)
- ERREXIT(cinfo, JERR_FILE_WRITE);
-
- dest->pub.next_output_byte = dest->buffer;
- dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
-
- return TRUE;
-}
-
-METHODDEF(boolean)
-empty_mem_output_buffer (j_compress_ptr cinfo)
-{
- size_t nextsize;
- JOCTET * nextbuffer;
- my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
-
- /* Try to allocate new buffer with double size */
- nextsize = dest->bufsize * 2;
- nextbuffer = malloc(nextsize);
-
- if (nextbuffer == NULL)
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
-
- MEMCOPY(nextbuffer, dest->buffer, dest->bufsize);
-
- if (dest->newbuffer != NULL)
- free(dest->newbuffer);
-
- dest->newbuffer = nextbuffer;
-
- dest->pub.next_output_byte = nextbuffer + dest->bufsize;
- dest->pub.free_in_buffer = dest->bufsize;
-
- dest->buffer = nextbuffer;
- dest->bufsize = nextsize;
-
- return TRUE;
-}
-
-
-/*
- * Terminate destination --- called by jpeg_finish_compress
- * after all data has been written. Usually needs to flush buffer.
- *
- * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
- * application must deal with any cleanup that should happen even
- * for error exit.
- */
-
-METHODDEF(void)
-term_destination (j_compress_ptr cinfo)
-{
- my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
- size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
-
- /* Write any data remaining in the buffer */
- if (datacount > 0) {
- if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
- ERREXIT(cinfo, JERR_FILE_WRITE);
- }
- fflush(dest->outfile);
- /* Make sure we wrote the output file OK */
- if (ferror(dest->outfile))
- ERREXIT(cinfo, JERR_FILE_WRITE);
-}
-
-METHODDEF(void)
-term_mem_destination (j_compress_ptr cinfo)
-{
- my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
-
- *dest->outbuffer = dest->buffer;
- *dest->outsize = dest->bufsize - dest->pub.free_in_buffer;
-}
-
-
-/*
- * Prepare for output to a stdio stream.
- * The caller must have already opened the stream, and is responsible
- * for closing it after finishing compression.
- */
-
-GLOBAL(void)
-jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
-{
- my_dest_ptr dest;
-
- /* The destination object is made permanent so that multiple JPEG images
- * can be written to the same file without re-executing jpeg_stdio_dest.
- * This makes it dangerous to use this manager and a different destination
- * manager serially with the same JPEG object, because their private object
- * sizes may be different. Caveat programmer.
- */
- if (cinfo->dest == NULL) { /* first time for this JPEG object? */
- cinfo->dest = (struct jpeg_destination_mgr *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_destination_mgr));
- }
-
- dest = (my_dest_ptr) cinfo->dest;
- dest->pub.init_destination = init_destination;
- dest->pub.empty_output_buffer = empty_output_buffer;
- dest->pub.term_destination = term_destination;
- dest->outfile = outfile;
-}
-
-
-/*
- * Prepare for output to a memory buffer.
- * The caller may supply an own initial buffer with appropriate size.
- * Otherwise, or when the actual data output exceeds the given size,
- * the library adapts the buffer size as necessary.
- * The standard library functions malloc/free are used for allocating
- * larger memory, so the buffer is available to the application after
- * finishing compression, and then the application is responsible for
- * freeing the requested memory.
- */
-
-GLOBAL(void)
-jpeg_mem_dest (j_compress_ptr cinfo,
- unsigned char ** outbuffer, unsigned long * outsize)
-{
- my_mem_dest_ptr dest;
-
- if (outbuffer == NULL || outsize == NULL) /* sanity check */
- ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
- /* The destination object is made permanent so that multiple JPEG images
- * can be written to the same buffer without re-executing jpeg_mem_dest.
- */
- if (cinfo->dest == NULL) { /* first time for this JPEG object? */
- cinfo->dest = (struct jpeg_destination_mgr *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_mem_destination_mgr));
- }
-
- dest = (my_mem_dest_ptr) cinfo->dest;
- dest->pub.init_destination = init_mem_destination;
- dest->pub.empty_output_buffer = empty_mem_output_buffer;
- dest->pub.term_destination = term_mem_destination;
- dest->outbuffer = outbuffer;
- dest->outsize = outsize;
- dest->newbuffer = NULL;
-
- if (*outbuffer == NULL || *outsize == 0) {
- /* Allocate initial buffer */
- dest->newbuffer = *outbuffer = malloc(OUTPUT_BUF_SIZE);
- if (dest->newbuffer == NULL)
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
- *outsize = OUTPUT_BUF_SIZE;
- }
-
- dest->pub.next_output_byte = dest->buffer = *outbuffer;
- dest->pub.free_in_buffer = dest->bufsize = *outsize;
-}
diff --git a/src/jpeg-8c/jdatasrc.c b/src/jpeg-8c/jdatasrc.c
deleted file mode 100644
index c8fe3daf..00000000
--- a/src/jpeg-8c/jdatasrc.c
+++ /dev/null
@@ -1,274 +0,0 @@
-/*
- * jdatasrc.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * Modified 2009-2010 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains decompression data source routines for the case of
- * reading JPEG data from memory or from a file (or any stdio stream).
- * While these routines are sufficient for most applications,
- * some will want to use a different source manager.
- * IMPORTANT: we assume that fread() will correctly transcribe an array of
- * JOCTETs from 8-bit-wide elements on external storage. If char is wider
- * than 8 bits on your machine, you may need to do some tweaking.
- */
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jerror.h"
-
-
-/* Expanded data source object for stdio input */
-
-typedef struct {
- struct jpeg_source_mgr pub; /* public fields */
-
- FILE * infile; /* source stream */
- JOCTET * buffer; /* start of buffer */
- boolean start_of_file; /* have we gotten any data yet? */
-} my_source_mgr;
-
-typedef my_source_mgr * my_src_ptr;
-
-#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
-
-
-/*
- * Initialize source --- called by jpeg_read_header
- * before any data is actually read.
- */
-
-METHODDEF(void)
-init_source (j_decompress_ptr cinfo)
-{
- my_src_ptr src = (my_src_ptr) cinfo->src;
-
- /* We reset the empty-input-file flag for each image,
- * but we don't clear the input buffer.
- * This is correct behavior for reading a series of images from one source.
- */
- src->start_of_file = TRUE;
-}
-
-METHODDEF(void)
-init_mem_source (j_decompress_ptr cinfo)
-{
- /* no work necessary here */
-}
-
-
-/*
- * Fill the input buffer --- called whenever buffer is emptied.
- *
- * In typical applications, this should read fresh data into the buffer
- * (ignoring the current state of next_input_byte & bytes_in_buffer),
- * reset the pointer & count to the start of the buffer, and return TRUE
- * indicating that the buffer has been reloaded. It is not necessary to
- * fill the buffer entirely, only to obtain at least one more byte.
- *
- * There is no such thing as an EOF return. If the end of the file has been
- * reached, the routine has a choice of ERREXIT() or inserting fake data into
- * the buffer. In most cases, generating a warning message and inserting a
- * fake EOI marker is the best course of action --- this will allow the
- * decompressor to output however much of the image is there. However,
- * the resulting error message is misleading if the real problem is an empty
- * input file, so we handle that case specially.
- *
- * In applications that need to be able to suspend compression due to input
- * not being available yet, a FALSE return indicates that no more data can be
- * obtained right now, but more may be forthcoming later. In this situation,
- * the decompressor will return to its caller (with an indication of the
- * number of scanlines it has read, if any). The application should resume
- * decompression after it has loaded more data into the input buffer. Note
- * that there are substantial restrictions on the use of suspension --- see
- * the documentation.
- *
- * When suspending, the decompressor will back up to a convenient restart point
- * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
- * indicate where the restart point will be if the current call returns FALSE.
- * Data beyond this point must be rescanned after resumption, so move it to
- * the front of the buffer rather than discarding it.
- */
-
-METHODDEF(boolean)
-fill_input_buffer (j_decompress_ptr cinfo)
-{
- my_src_ptr src = (my_src_ptr) cinfo->src;
- size_t nbytes;
-
- nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
-
- if (nbytes <= 0) {
- if (src->start_of_file) /* Treat empty input file as fatal error */
- ERREXIT(cinfo, JERR_INPUT_EMPTY);
- WARNMS(cinfo, JWRN_JPEG_EOF);
- /* Insert a fake EOI marker */
- src->buffer[0] = (JOCTET) 0xFF;
- src->buffer[1] = (JOCTET) JPEG_EOI;
- nbytes = 2;
- }
-
- src->pub.next_input_byte = src->buffer;
- src->pub.bytes_in_buffer = nbytes;
- src->start_of_file = FALSE;
-
- return TRUE;
-}
-
-METHODDEF(boolean)
-fill_mem_input_buffer (j_decompress_ptr cinfo)
-{
- static JOCTET mybuffer[4];
-
- /* The whole JPEG data is expected to reside in the supplied memory
- * buffer, so any request for more data beyond the given buffer size
- * is treated as an error.
- */
- WARNMS(cinfo, JWRN_JPEG_EOF);
- /* Insert a fake EOI marker */
- mybuffer[0] = (JOCTET) 0xFF;
- mybuffer[1] = (JOCTET) JPEG_EOI;
-
- cinfo->src->next_input_byte = mybuffer;
- cinfo->src->bytes_in_buffer = 2;
-
- return TRUE;
-}
-
-
-/*
- * Skip data --- used to skip over a potentially large amount of
- * uninteresting data (such as an APPn marker).
- *
- * Writers of suspendable-input applications must note that skip_input_data
- * is not granted the right to give a suspension return. If the skip extends
- * beyond the data currently in the buffer, the buffer can be marked empty so
- * that the next read will cause a fill_input_buffer call that can suspend.
- * Arranging for additional bytes to be discarded before reloading the input
- * buffer is the application writer's problem.
- */
-
-METHODDEF(void)
-skip_input_data (j_decompress_ptr cinfo, long num_bytes)
-{
- struct jpeg_source_mgr * src = cinfo->src;
-
- /* Just a dumb implementation for now. Could use fseek() except
- * it doesn't work on pipes. Not clear that being smart is worth
- * any trouble anyway --- large skips are infrequent.
- */
- if (num_bytes > 0) {
- while (num_bytes > (long) src->bytes_in_buffer) {
- num_bytes -= (long) src->bytes_in_buffer;
- (void) (*src->fill_input_buffer) (cinfo);
- /* note we assume that fill_input_buffer will never return FALSE,
- * so suspension need not be handled.
- */
- }
- src->next_input_byte += (size_t) num_bytes;
- src->bytes_in_buffer -= (size_t) num_bytes;
- }
-}
-
-
-/*
- * An additional method that can be provided by data source modules is the
- * resync_to_restart method for error recovery in the presence of RST markers.
- * For the moment, this source module just uses the default resync method
- * provided by the JPEG library. That method assumes that no backtracking
- * is possible.
- */
-
-
-/*
- * Terminate source --- called by jpeg_finish_decompress
- * after all data has been read. Often a no-op.
- *
- * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
- * application must deal with any cleanup that should happen even
- * for error exit.
- */
-
-METHODDEF(void)
-term_source (j_decompress_ptr cinfo)
-{
- /* no work necessary here */
-}
-
-
-/*
- * Prepare for input from a stdio stream.
- * The caller must have already opened the stream, and is responsible
- * for closing it after finishing decompression.
- */
-
-GLOBAL(void)
-jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
-{
- my_src_ptr src;
-
- /* The source object and input buffer are made permanent so that a series
- * of JPEG images can be read from the same file by calling jpeg_stdio_src
- * only before the first one. (If we discarded the buffer at the end of
- * one image, we'd likely lose the start of the next one.)
- * This makes it unsafe to use this manager and a different source
- * manager serially with the same JPEG object. Caveat programmer.
- */
- if (cinfo->src == NULL) { /* first time for this JPEG object? */
- cinfo->src = (struct jpeg_source_mgr *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_source_mgr));
- src = (my_src_ptr) cinfo->src;
- src->buffer = (JOCTET *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- INPUT_BUF_SIZE * SIZEOF(JOCTET));
- }
-
- src = (my_src_ptr) cinfo->src;
- src->pub.init_source = init_source;
- src->pub.fill_input_buffer = fill_input_buffer;
- src->pub.skip_input_data = skip_input_data;
- src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
- src->pub.term_source = term_source;
- src->infile = infile;
- src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
- src->pub.next_input_byte = NULL; /* until buffer loaded */
-}
-
-
-/*
- * Prepare for input from a supplied memory buffer.
- * The buffer must contain the whole JPEG data.
- */
-
-GLOBAL(void)
-jpeg_mem_src (j_decompress_ptr cinfo,
- unsigned char * inbuffer, unsigned long insize)
-{
- struct jpeg_source_mgr * src;
-
- if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
- ERREXIT(cinfo, JERR_INPUT_EMPTY);
-
- /* The source object is made permanent so that a series of JPEG images
- * can be read from the same buffer by calling jpeg_mem_src only before
- * the first one.
- */
- if (cinfo->src == NULL) { /* first time for this JPEG object? */
- cinfo->src = (struct jpeg_source_mgr *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(struct jpeg_source_mgr));
- }
-
- src = cinfo->src;
- src->init_source = init_mem_source;
- src->fill_input_buffer = fill_mem_input_buffer;
- src->skip_input_data = skip_input_data;
- src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
- src->term_source = term_source;
- src->bytes_in_buffer = (size_t) insize;
- src->next_input_byte = (JOCTET *) inbuffer;
-}
diff --git a/src/jpeg-8c/jdcoefct.c b/src/jpeg-8c/jdcoefct.c
deleted file mode 100644
index 462e92c6..00000000
--- a/src/jpeg-8c/jdcoefct.c
+++ /dev/null
@@ -1,736 +0,0 @@
-/*
- * jdcoefct.c
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the coefficient buffer controller for decompression.
- * This controller is the top level of the JPEG decompressor proper.
- * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
- *
- * In buffered-image mode, this controller is the interface between
- * input-oriented processing and output-oriented processing.
- * Also, the input side (only) is used when reading a file for transcoding.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-/* Block smoothing is only applicable for progressive JPEG, so: */
-#ifndef D_PROGRESSIVE_SUPPORTED
-#undef BLOCK_SMOOTHING_SUPPORTED
-#endif
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_coef_controller pub; /* public fields */
-
- /* These variables keep track of the current location of the input side. */
- /* cinfo->input_iMCU_row is also used for this. */
- JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* The output side's location is represented by cinfo->output_iMCU_row. */
-
- /* In single-pass modes, it's sufficient to buffer just one MCU.
- * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
- * and let the entropy decoder write into that workspace each time.
- * (On 80x86, the workspace is FAR even though it's not really very big;
- * this is to keep the module interfaces unchanged when a large coefficient
- * buffer is necessary.)
- * In multi-pass modes, this array points to the current MCU's blocks
- * within the virtual arrays; it is used only by the input side.
- */
- JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* In multi-pass modes, we need a virtual block array for each component. */
- jvirt_barray_ptr whole_image[MAX_COMPONENTS];
-#endif
-
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- /* When doing block smoothing, we latch coefficient Al values here */
- int * coef_bits_latch;
-#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
-#endif
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-/* Forward declarations */
-METHODDEF(int) decompress_onepass
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-METHODDEF(int) decompress_data
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-#ifdef BLOCK_SMOOTHING_SUPPORTED
-LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
-METHODDEF(int) decompress_smooth_data
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-
-
-LOCAL(void)
-start_iMCU_row (j_decompress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row (input side) */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->MCU_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for an input processing pass.
- */
-
-METHODDEF(void)
-start_input_pass (j_decompress_ptr cinfo)
-{
- cinfo->input_iMCU_row = 0;
- start_iMCU_row(cinfo);
-}
-
-
-/*
- * Initialize for an output processing pass.
- */
-
-METHODDEF(void)
-start_output_pass (j_decompress_ptr cinfo)
-{
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* If multipass, check to see whether to use block smoothing on this pass */
- if (coef->pub.coef_arrays != NULL) {
- if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
- coef->pub.decompress_data = decompress_smooth_data;
- else
- coef->pub.decompress_data = decompress_data;
- }
-#endif
- cinfo->output_iMCU_row = 0;
-}
-
-
-/*
- * Decompress and return some data in the single-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Input and output must run in lockstep since we have only a one-MCU buffer.
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- *
- * NB: output_buf contains a plane for each component in image,
- * which we index according to the component's SOF position.
- */
-
-METHODDEF(int)
-decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, ci, xindex, yindex, yoffset, useful_width;
- JSAMPARRAY output_ptr;
- JDIMENSION start_col, output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
-
- /* Loop to process as much as one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
- MCU_col_num++) {
- /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
- jzero_far((void FAR *) coef->MCU_buffer[0],
- (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
- if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->MCU_ctr = MCU_col_num;
- return JPEG_SUSPENDED;
- }
- /* Determine where data should go in output_buf and do the IDCT thing.
- * We skip dummy blocks at the right and bottom edges (but blkn gets
- * incremented past them!). Note the inner loop relies on having
- * allocated the MCU_buffer[] blocks sequentially.
- */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed) {
- blkn += compptr->MCU_blocks;
- continue;
- }
- inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
- useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- output_ptr = output_buf[compptr->component_index] +
- yoffset * compptr->DCT_v_scaled_size;
- start_col = MCU_col_num * compptr->MCU_sample_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (cinfo->input_iMCU_row < last_iMCU_row ||
- yoffset+yindex < compptr->last_row_height) {
- output_col = start_col;
- for (xindex = 0; xindex < useful_width; xindex++) {
- (*inverse_DCT) (cinfo, compptr,
- (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
- output_ptr, output_col);
- output_col += compptr->DCT_h_scaled_size;
- }
- }
- blkn += compptr->MCU_width;
- output_ptr += compptr->DCT_v_scaled_size;
- }
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->MCU_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- cinfo->output_iMCU_row++;
- if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
- start_iMCU_row(cinfo);
- return JPEG_ROW_COMPLETED;
- }
- /* Completed the scan */
- (*cinfo->inputctl->finish_input_pass) (cinfo);
- return JPEG_SCAN_COMPLETED;
-}
-
-
-/*
- * Dummy consume-input routine for single-pass operation.
- */
-
-METHODDEF(int)
-dummy_consume_data (j_decompress_ptr cinfo)
-{
- return JPEG_SUSPENDED; /* Always indicate nothing was done */
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Consume input data and store it in the full-image coefficient buffer.
- * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
- * ie, v_samp_factor block rows for each component in the scan.
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- */
-
-METHODDEF(int)
-consume_data (j_decompress_ptr cinfo)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- int blkn, ci, xindex, yindex, yoffset;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan. */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- cinfo->input_iMCU_row * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, TRUE);
- /* Note: entropy decoder expects buffer to be zeroed,
- * but this is handled automatically by the memory manager
- * because we requested a pre-zeroed array.
- */
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
- coef->MCU_buffer[blkn++] = buffer_ptr++;
- }
- }
- }
- /* Try to fetch the MCU. */
- if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->MCU_ctr = MCU_col_num;
- return JPEG_SUSPENDED;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->MCU_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
- start_iMCU_row(cinfo);
- return JPEG_ROW_COMPLETED;
- }
- /* Completed the scan */
- (*cinfo->inputctl->finish_input_pass) (cinfo);
- return JPEG_SCAN_COMPLETED;
-}
-
-
-/*
- * Decompress and return some data in the multi-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- *
- * NB: output_buf contains a plane for each component in image.
- */
-
-METHODDEF(int)
-decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION block_num;
- int ci, block_row, block_rows;
- JBLOCKARRAY buffer;
- JBLOCKROW buffer_ptr;
- JSAMPARRAY output_ptr;
- JDIMENSION output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
-
- /* Force some input to be done if we are getting ahead of the input. */
- while (cinfo->input_scan_number < cinfo->output_scan_number ||
- (cinfo->input_scan_number == cinfo->output_scan_number &&
- cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
- if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
- return JPEG_SUSPENDED;
- }
-
- /* OK, output from the virtual arrays. */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed)
- continue;
- /* Align the virtual buffer for this component. */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- cinfo->output_iMCU_row * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (cinfo->output_iMCU_row < last_iMCU_row)
- block_rows = compptr->v_samp_factor;
- else {
- /* NB: can't use last_row_height here; it is input-side-dependent! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- }
- inverse_DCT = cinfo->idct->inverse_DCT[ci];
- output_ptr = output_buf[ci];
- /* Loop over all DCT blocks to be processed. */
- for (block_row = 0; block_row < block_rows; block_row++) {
- buffer_ptr = buffer[block_row];
- output_col = 0;
- for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
- (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
- output_ptr, output_col);
- buffer_ptr++;
- output_col += compptr->DCT_h_scaled_size;
- }
- output_ptr += compptr->DCT_v_scaled_size;
- }
- }
-
- if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
- return JPEG_ROW_COMPLETED;
- return JPEG_SCAN_COMPLETED;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-#ifdef BLOCK_SMOOTHING_SUPPORTED
-
-/*
- * This code applies interblock smoothing as described by section K.8
- * of the JPEG standard: the first 5 AC coefficients are estimated from
- * the DC values of a DCT block and its 8 neighboring blocks.
- * We apply smoothing only for progressive JPEG decoding, and only if
- * the coefficients it can estimate are not yet known to full precision.
- */
-
-/* Natural-order array positions of the first 5 zigzag-order coefficients */
-#define Q01_POS 1
-#define Q10_POS 8
-#define Q20_POS 16
-#define Q11_POS 9
-#define Q02_POS 2
-
-/*
- * Determine whether block smoothing is applicable and safe.
- * We also latch the current states of the coef_bits[] entries for the
- * AC coefficients; otherwise, if the input side of the decompressor
- * advances into a new scan, we might think the coefficients are known
- * more accurately than they really are.
- */
-
-LOCAL(boolean)
-smoothing_ok (j_decompress_ptr cinfo)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- boolean smoothing_useful = FALSE;
- int ci, coefi;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtable;
- int * coef_bits;
- int * coef_bits_latch;
-
- if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
- return FALSE;
-
- /* Allocate latch area if not already done */
- if (coef->coef_bits_latch == NULL)
- coef->coef_bits_latch = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components *
- (SAVED_COEFS * SIZEOF(int)));
- coef_bits_latch = coef->coef_bits_latch;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* All components' quantization values must already be latched. */
- if ((qtable = compptr->quant_table) == NULL)
- return FALSE;
- /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
- if (qtable->quantval[0] == 0 ||
- qtable->quantval[Q01_POS] == 0 ||
- qtable->quantval[Q10_POS] == 0 ||
- qtable->quantval[Q20_POS] == 0 ||
- qtable->quantval[Q11_POS] == 0 ||
- qtable->quantval[Q02_POS] == 0)
- return FALSE;
- /* DC values must be at least partly known for all components. */
- coef_bits = cinfo->coef_bits[ci];
- if (coef_bits[0] < 0)
- return FALSE;
- /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
- for (coefi = 1; coefi <= 5; coefi++) {
- coef_bits_latch[coefi] = coef_bits[coefi];
- if (coef_bits[coefi] != 0)
- smoothing_useful = TRUE;
- }
- coef_bits_latch += SAVED_COEFS;
- }
-
- return smoothing_useful;
-}
-
-
-/*
- * Variant of decompress_data for use when doing block smoothing.
- */
-
-METHODDEF(int)
-decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION block_num, last_block_column;
- int ci, block_row, block_rows, access_rows;
- JBLOCKARRAY buffer;
- JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
- JSAMPARRAY output_ptr;
- JDIMENSION output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
- boolean first_row, last_row;
- JBLOCK workspace;
- int *coef_bits;
- JQUANT_TBL *quanttbl;
- INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
- int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
- int Al, pred;
-
- /* Force some input to be done if we are getting ahead of the input. */
- while (cinfo->input_scan_number <= cinfo->output_scan_number &&
- ! cinfo->inputctl->eoi_reached) {
- if (cinfo->input_scan_number == cinfo->output_scan_number) {
- /* If input is working on current scan, we ordinarily want it to
- * have completed the current row. But if input scan is DC,
- * we want it to keep one row ahead so that next block row's DC
- * values are up to date.
- */
- JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
- if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
- break;
- }
- if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
- return JPEG_SUSPENDED;
- }
-
- /* OK, output from the virtual arrays. */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed)
- continue;
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (cinfo->output_iMCU_row < last_iMCU_row) {
- block_rows = compptr->v_samp_factor;
- access_rows = block_rows * 2; /* this and next iMCU row */
- last_row = FALSE;
- } else {
- /* NB: can't use last_row_height here; it is input-side-dependent! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- access_rows = block_rows; /* this iMCU row only */
- last_row = TRUE;
- }
- /* Align the virtual buffer for this component. */
- if (cinfo->output_iMCU_row > 0) {
- access_rows += compptr->v_samp_factor; /* prior iMCU row too */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
- (JDIMENSION) access_rows, FALSE);
- buffer += compptr->v_samp_factor; /* point to current iMCU row */
- first_row = FALSE;
- } else {
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
- first_row = TRUE;
- }
- /* Fetch component-dependent info */
- coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
- quanttbl = compptr->quant_table;
- Q00 = quanttbl->quantval[0];
- Q01 = quanttbl->quantval[Q01_POS];
- Q10 = quanttbl->quantval[Q10_POS];
- Q20 = quanttbl->quantval[Q20_POS];
- Q11 = quanttbl->quantval[Q11_POS];
- Q02 = quanttbl->quantval[Q02_POS];
- inverse_DCT = cinfo->idct->inverse_DCT[ci];
- output_ptr = output_buf[ci];
- /* Loop over all DCT blocks to be processed. */
- for (block_row = 0; block_row < block_rows; block_row++) {
- buffer_ptr = buffer[block_row];
- if (first_row && block_row == 0)
- prev_block_row = buffer_ptr;
- else
- prev_block_row = buffer[block_row-1];
- if (last_row && block_row == block_rows-1)
- next_block_row = buffer_ptr;
- else
- next_block_row = buffer[block_row+1];
- /* We fetch the surrounding DC values using a sliding-register approach.
- * Initialize all nine here so as to do the right thing on narrow pics.
- */
- DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
- DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
- DC7 = DC8 = DC9 = (int) next_block_row[0][0];
- output_col = 0;
- last_block_column = compptr->width_in_blocks - 1;
- for (block_num = 0; block_num <= last_block_column; block_num++) {
- /* Fetch current DCT block into workspace so we can modify it. */
- jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
- /* Update DC values */
- if (block_num < last_block_column) {
- DC3 = (int) prev_block_row[1][0];
- DC6 = (int) buffer_ptr[1][0];
- DC9 = (int) next_block_row[1][0];
- }
- /* Compute coefficient estimates per K.8.
- * An estimate is applied only if coefficient is still zero,
- * and is not known to be fully accurate.
- */
- /* AC01 */
- if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
- num = 36 * Q00 * (DC4 - DC6);
- if (num >= 0) {
- pred = (int) (((Q01<<7) + num) / (Q01<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q01<<7) - num) / (Q01<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[1] = (JCOEF) pred;
- }
- /* AC10 */
- if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
- num = 36 * Q00 * (DC2 - DC8);
- if (num >= 0) {
- pred = (int) (((Q10<<7) + num) / (Q10<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q10<<7) - num) / (Q10<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[8] = (JCOEF) pred;
- }
- /* AC20 */
- if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
- num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
- if (num >= 0) {
- pred = (int) (((Q20<<7) + num) / (Q20<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q20<<7) - num) / (Q20<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[16] = (JCOEF) pred;
- }
- /* AC11 */
- if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
- num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
- if (num >= 0) {
- pred = (int) (((Q11<<7) + num) / (Q11<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q11<<7) - num) / (Q11<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[9] = (JCOEF) pred;
- }
- /* AC02 */
- if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
- num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
- if (num >= 0) {
- pred = (int) (((Q02<<7) + num) / (Q02<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q02<<7) - num) / (Q02<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[2] = (JCOEF) pred;
- }
- /* OK, do the IDCT */
- (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
- output_ptr, output_col);
- /* Advance for next column */
- DC1 = DC2; DC2 = DC3;
- DC4 = DC5; DC5 = DC6;
- DC7 = DC8; DC8 = DC9;
- buffer_ptr++, prev_block_row++, next_block_row++;
- output_col += compptr->DCT_h_scaled_size;
- }
- output_ptr += compptr->DCT_v_scaled_size;
- }
- }
-
- if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
- return JPEG_ROW_COMPLETED;
- return JPEG_SCAN_COMPLETED;
-}
-
-#endif /* BLOCK_SMOOTHING_SUPPORTED */
-
-
-/*
- * Initialize coefficient buffer controller.
- */
-
-GLOBAL(void)
-jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_coef_ptr coef;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_d_coef_controller *) coef;
- coef->pub.start_input_pass = start_input_pass;
- coef->pub.start_output_pass = start_output_pass;
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- coef->coef_bits_latch = NULL;
-#endif
-
- /* Create the coefficient buffer. */
- if (need_full_buffer) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* Allocate a full-image virtual array for each component, */
- /* padded to a multiple of samp_factor DCT blocks in each direction. */
- /* Note we ask for a pre-zeroed array. */
- int ci, access_rows;
- jpeg_component_info *compptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- access_rows = compptr->v_samp_factor;
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- /* If block smoothing could be used, need a bigger window */
- if (cinfo->progressive_mode)
- access_rows *= 3;
-#endif
- coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
- (JDIMENSION) jround_up((long) compptr->width_in_blocks,
- (long) compptr->h_samp_factor),
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor),
- (JDIMENSION) access_rows);
- }
- coef->pub.consume_data = consume_data;
- coef->pub.decompress_data = decompress_data;
- coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- /* We only need a single-MCU buffer. */
- JBLOCKROW buffer;
- int i;
-
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
- coef->MCU_buffer[i] = buffer + i;
- }
- coef->pub.consume_data = dummy_consume_data;
- coef->pub.decompress_data = decompress_onepass;
- coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
- }
-}
diff --git a/src/jpeg-8c/jdcolor.c b/src/jpeg-8c/jdcolor.c
deleted file mode 100644
index 6c04dfe8..00000000
--- a/src/jpeg-8c/jdcolor.c
+++ /dev/null
@@ -1,396 +0,0 @@
-/*
- * jdcolor.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains output colorspace conversion routines.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_color_deconverter pub; /* public fields */
-
- /* Private state for YCC->RGB conversion */
- int * Cr_r_tab; /* => table for Cr to R conversion */
- int * Cb_b_tab; /* => table for Cb to B conversion */
- INT32 * Cr_g_tab; /* => table for Cr to G conversion */
- INT32 * Cb_g_tab; /* => table for Cb to G conversion */
-} my_color_deconverter;
-
-typedef my_color_deconverter * my_cconvert_ptr;
-
-
-/**************** YCbCr -> RGB conversion: most common case **************/
-
-/*
- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
- * The conversion equations to be implemented are therefore
- * R = Y + 1.40200 * Cr
- * G = Y - 0.34414 * Cb - 0.71414 * Cr
- * B = Y + 1.77200 * Cb
- * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
- *
- * To avoid floating-point arithmetic, we represent the fractional constants
- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
- * the products by 2^16, with appropriate rounding, to get the correct answer.
- * Notice that Y, being an integral input, does not contribute any fraction
- * so it need not participate in the rounding.
- *
- * For even more speed, we avoid doing any multiplications in the inner loop
- * by precalculating the constants times Cb and Cr for all possible values.
- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
- * for 12-bit samples it is still acceptable. It's not very reasonable for
- * 16-bit samples, but if you want lossless storage you shouldn't be changing
- * colorspace anyway.
- * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
- * values for the G calculation are left scaled up, since we must add them
- * together before rounding.
- */
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize tables for YCC->RGB colorspace conversion.
- */
-
-LOCAL(void)
-build_ycc_rgb_table (j_decompress_ptr cinfo)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- int i;
- INT32 x;
- SHIFT_TEMPS
-
- cconvert->Cr_r_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- cconvert->Cb_b_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- cconvert->Cr_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
- cconvert->Cb_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
-
- for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
- /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
- /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
- /* Cr=>R value is nearest int to 1.40200 * x */
- cconvert->Cr_r_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
- /* Cb=>B value is nearest int to 1.77200 * x */
- cconvert->Cb_b_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
- /* Cr=>G value is scaled-up -0.71414 * x */
- cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
- /* Cb=>G value is scaled-up -0.34414 * x */
- /* We also add in ONE_HALF so that need not do it in inner loop */
- cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
- }
-}
-
-
-/*
- * Convert some rows of samples to the output colorspace.
- *
- * Note that we change from noninterleaved, one-plane-per-component format
- * to interleaved-pixel format. The output buffer is therefore three times
- * as wide as the input buffer.
- * A starting row offset is provided only for the input buffer. The caller
- * can easily adjust the passed output_buf value to accommodate any row
- * offset required on that side.
- */
-
-METHODDEF(void)
-ycc_rgb_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int y, cb, cr;
- register JSAMPROW outptr;
- register JSAMPROW inptr0, inptr1, inptr2;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- register int * Crrtab = cconvert->Cr_r_tab;
- register int * Cbbtab = cconvert->Cb_b_tab;
- register INT32 * Crgtab = cconvert->Cr_g_tab;
- register INT32 * Cbgtab = cconvert->Cb_g_tab;
- SHIFT_TEMPS
-
- while (--num_rows >= 0) {
- inptr0 = input_buf[0][input_row];
- inptr1 = input_buf[1][input_row];
- inptr2 = input_buf[2][input_row];
- input_row++;
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- y = GETJSAMPLE(inptr0[col]);
- cb = GETJSAMPLE(inptr1[col]);
- cr = GETJSAMPLE(inptr2[col]);
- /* Range-limiting is essential due to noise introduced by DCT losses. */
- outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
- outptr[RGB_GREEN] = range_limit[y +
- ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
- SCALEBITS))];
- outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
- outptr += RGB_PIXELSIZE;
- }
- }
-}
-
-
-/**************** Cases other than YCbCr -> RGB **************/
-
-
-/*
- * Color conversion for no colorspace change: just copy the data,
- * converting from separate-planes to interleaved representation.
- */
-
-METHODDEF(void)
-null_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- register JSAMPROW inptr, outptr;
- register JDIMENSION count;
- register int num_components = cinfo->num_components;
- JDIMENSION num_cols = cinfo->output_width;
- int ci;
-
- while (--num_rows >= 0) {
- for (ci = 0; ci < num_components; ci++) {
- inptr = input_buf[ci][input_row];
- outptr = output_buf[0] + ci;
- for (count = num_cols; count > 0; count--) {
- *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
- outptr += num_components;
- }
- }
- input_row++;
- output_buf++;
- }
-}
-
-
-/*
- * Color conversion for grayscale: just copy the data.
- * This also works for YCbCr -> grayscale conversion, in which
- * we just copy the Y (luminance) component and ignore chrominance.
- */
-
-METHODDEF(void)
-grayscale_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
- num_rows, cinfo->output_width);
-}
-
-
-/*
- * Convert grayscale to RGB: just duplicate the graylevel three times.
- * This is provided to support applications that don't want to cope
- * with grayscale as a separate case.
- */
-
-METHODDEF(void)
-gray_rgb_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- register JSAMPROW inptr, outptr;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
-
- while (--num_rows >= 0) {
- inptr = input_buf[0][input_row++];
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- /* We can dispense with GETJSAMPLE() here */
- outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
- outptr += RGB_PIXELSIZE;
- }
- }
-}
-
-
-/*
- * Adobe-style YCCK->CMYK conversion.
- * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
- * conversion as above, while passing K (black) unchanged.
- * We assume build_ycc_rgb_table has been called.
- */
-
-METHODDEF(void)
-ycck_cmyk_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int y, cb, cr;
- register JSAMPROW outptr;
- register JSAMPROW inptr0, inptr1, inptr2, inptr3;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- register int * Crrtab = cconvert->Cr_r_tab;
- register int * Cbbtab = cconvert->Cb_b_tab;
- register INT32 * Crgtab = cconvert->Cr_g_tab;
- register INT32 * Cbgtab = cconvert->Cb_g_tab;
- SHIFT_TEMPS
-
- while (--num_rows >= 0) {
- inptr0 = input_buf[0][input_row];
- inptr1 = input_buf[1][input_row];
- inptr2 = input_buf[2][input_row];
- inptr3 = input_buf[3][input_row];
- input_row++;
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- y = GETJSAMPLE(inptr0[col]);
- cb = GETJSAMPLE(inptr1[col]);
- cr = GETJSAMPLE(inptr2[col]);
- /* Range-limiting is essential due to noise introduced by DCT losses. */
- outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
- outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
- ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
- SCALEBITS)))];
- outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
- /* K passes through unchanged */
- outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
- outptr += 4;
- }
- }
-}
-
-
-/*
- * Empty method for start_pass.
- */
-
-METHODDEF(void)
-start_pass_dcolor (j_decompress_ptr cinfo)
-{
- /* no work needed */
-}
-
-
-/*
- * Module initialization routine for output colorspace conversion.
- */
-
-GLOBAL(void)
-jinit_color_deconverter (j_decompress_ptr cinfo)
-{
- my_cconvert_ptr cconvert;
- int ci;
-
- cconvert = (my_cconvert_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_color_deconverter));
- cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
- cconvert->pub.start_pass = start_pass_dcolor;
-
- /* Make sure num_components agrees with jpeg_color_space */
- switch (cinfo->jpeg_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->num_components != 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- case JCS_RGB:
- case JCS_YCbCr:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- case JCS_CMYK:
- case JCS_YCCK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- default: /* JCS_UNKNOWN can be anything */
- if (cinfo->num_components < 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
- }
-
- /* Set out_color_components and conversion method based on requested space.
- * Also clear the component_needed flags for any unused components,
- * so that earlier pipeline stages can avoid useless computation.
- */
-
- switch (cinfo->out_color_space) {
- case JCS_GRAYSCALE:
- cinfo->out_color_components = 1;
- if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
- cinfo->jpeg_color_space == JCS_YCbCr) {
- cconvert->pub.color_convert = grayscale_convert;
- /* For color->grayscale conversion, only the Y (0) component is needed */
- for (ci = 1; ci < cinfo->num_components; ci++)
- cinfo->comp_info[ci].component_needed = FALSE;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_RGB:
- cinfo->out_color_components = RGB_PIXELSIZE;
- if (cinfo->jpeg_color_space == JCS_YCbCr) {
- cconvert->pub.color_convert = ycc_rgb_convert;
- build_ycc_rgb_table(cinfo);
- } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
- cconvert->pub.color_convert = gray_rgb_convert;
- } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
- cconvert->pub.color_convert = null_convert;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_CMYK:
- cinfo->out_color_components = 4;
- if (cinfo->jpeg_color_space == JCS_YCCK) {
- cconvert->pub.color_convert = ycck_cmyk_convert;
- build_ycc_rgb_table(cinfo);
- } else if (cinfo->jpeg_color_space == JCS_CMYK) {
- cconvert->pub.color_convert = null_convert;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- default:
- /* Permit null conversion to same output space */
- if (cinfo->out_color_space == cinfo->jpeg_color_space) {
- cinfo->out_color_components = cinfo->num_components;
- cconvert->pub.color_convert = null_convert;
- } else /* unsupported non-null conversion */
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
- }
-
- if (cinfo->quantize_colors)
- cinfo->output_components = 1; /* single colormapped output component */
- else
- cinfo->output_components = cinfo->out_color_components;
-}
diff --git a/src/jpeg-8c/jdct.h b/src/jpeg-8c/jdct.h
deleted file mode 100644
index 360dec80..00000000
--- a/src/jpeg-8c/jdct.h
+++ /dev/null
@@ -1,393 +0,0 @@
-/*
- * jdct.h
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file contains common declarations for the forward and
- * inverse DCT modules. These declarations are private to the DCT managers
- * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
- * The individual DCT algorithms are kept in separate files to ease
- * machine-dependent tuning (e.g., assembly coding).
- */
-
-
-/*
- * A forward DCT routine is given a pointer to an input sample array and
- * a pointer to a work area of type DCTELEM[]; the DCT is to be performed
- * in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
- * for 12-bit samples. (NOTE: Floating-point DCT implementations use an
- * array of type FAST_FLOAT, instead.)
- * The input data is to be fetched from the sample array starting at a
- * specified column. (Any row offset needed will be applied to the array
- * pointer before it is passed to the FDCT code.)
- * Note that the number of samples fetched by the FDCT routine is
- * DCT_h_scaled_size * DCT_v_scaled_size.
- * The DCT outputs are returned scaled up by a factor of 8; they therefore
- * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
- * convention improves accuracy in integer implementations and saves some
- * work in floating-point ones.
- * Quantization of the output coefficients is done by jcdctmgr.c.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef int DCTELEM; /* 16 or 32 bits is fine */
-#else
-typedef INT32 DCTELEM; /* must have 32 bits */
-#endif
-
-typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
- JSAMPARRAY sample_data,
- JDIMENSION start_col));
-typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
- JSAMPARRAY sample_data,
- JDIMENSION start_col));
-
-
-/*
- * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
- * to an output sample array. The routine must dequantize the input data as
- * well as perform the IDCT; for dequantization, it uses the multiplier table
- * pointed to by compptr->dct_table. The output data is to be placed into the
- * sample array starting at a specified column. (Any row offset needed will
- * be applied to the array pointer before it is passed to the IDCT code.)
- * Note that the number of samples emitted by the IDCT routine is
- * DCT_h_scaled_size * DCT_v_scaled_size.
- */
-
-/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
-
-/*
- * Each IDCT routine has its own ideas about the best dct_table element type.
- */
-
-typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
-#if BITS_IN_JSAMPLE == 8
-typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
-#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
-#else
-typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
-#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
-#endif
-typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
-
-
-/*
- * Each IDCT routine is responsible for range-limiting its results and
- * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- * be quite far out of range if the input data is corrupt, so a bulletproof
- * range-limiting step is required. We use a mask-and-table-lookup method
- * to do the combined operations quickly. See the comments with
- * prepare_range_limit_table (in jdmaster.c) for more info.
- */
-
-#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
-
-#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_fdct_islow jFDislow
-#define jpeg_fdct_ifast jFDifast
-#define jpeg_fdct_float jFDfloat
-#define jpeg_fdct_7x7 jFD7x7
-#define jpeg_fdct_6x6 jFD6x6
-#define jpeg_fdct_5x5 jFD5x5
-#define jpeg_fdct_4x4 jFD4x4
-#define jpeg_fdct_3x3 jFD3x3
-#define jpeg_fdct_2x2 jFD2x2
-#define jpeg_fdct_1x1 jFD1x1
-#define jpeg_fdct_9x9 jFD9x9
-#define jpeg_fdct_10x10 jFD10x10
-#define jpeg_fdct_11x11 jFD11x11
-#define jpeg_fdct_12x12 jFD12x12
-#define jpeg_fdct_13x13 jFD13x13
-#define jpeg_fdct_14x14 jFD14x14
-#define jpeg_fdct_15x15 jFD15x15
-#define jpeg_fdct_16x16 jFD16x16
-#define jpeg_fdct_16x8 jFD16x8
-#define jpeg_fdct_14x7 jFD14x7
-#define jpeg_fdct_12x6 jFD12x6
-#define jpeg_fdct_10x5 jFD10x5
-#define jpeg_fdct_8x4 jFD8x4
-#define jpeg_fdct_6x3 jFD6x3
-#define jpeg_fdct_4x2 jFD4x2
-#define jpeg_fdct_2x1 jFD2x1
-#define jpeg_fdct_8x16 jFD8x16
-#define jpeg_fdct_7x14 jFD7x14
-#define jpeg_fdct_6x12 jFD6x12
-#define jpeg_fdct_5x10 jFD5x10
-#define jpeg_fdct_4x8 jFD4x8
-#define jpeg_fdct_3x6 jFD3x6
-#define jpeg_fdct_2x4 jFD2x4
-#define jpeg_fdct_1x2 jFD1x2
-#define jpeg_idct_islow jRDislow
-#define jpeg_idct_ifast jRDifast
-#define jpeg_idct_float jRDfloat
-#define jpeg_idct_7x7 jRD7x7
-#define jpeg_idct_6x6 jRD6x6
-#define jpeg_idct_5x5 jRD5x5
-#define jpeg_idct_4x4 jRD4x4
-#define jpeg_idct_3x3 jRD3x3
-#define jpeg_idct_2x2 jRD2x2
-#define jpeg_idct_1x1 jRD1x1
-#define jpeg_idct_9x9 jRD9x9
-#define jpeg_idct_10x10 jRD10x10
-#define jpeg_idct_11x11 jRD11x11
-#define jpeg_idct_12x12 jRD12x12
-#define jpeg_idct_13x13 jRD13x13
-#define jpeg_idct_14x14 jRD14x14
-#define jpeg_idct_15x15 jRD15x15
-#define jpeg_idct_16x16 jRD16x16
-#define jpeg_idct_16x8 jRD16x8
-#define jpeg_idct_14x7 jRD14x7
-#define jpeg_idct_12x6 jRD12x6
-#define jpeg_idct_10x5 jRD10x5
-#define jpeg_idct_8x4 jRD8x4
-#define jpeg_idct_6x3 jRD6x3
-#define jpeg_idct_4x2 jRD4x2
-#define jpeg_idct_2x1 jRD2x1
-#define jpeg_idct_8x16 jRD8x16
-#define jpeg_idct_7x14 jRD7x14
-#define jpeg_idct_6x12 jRD6x12
-#define jpeg_idct_5x10 jRD5x10
-#define jpeg_idct_4x8 jRD4x8
-#define jpeg_idct_3x6 jRD3x8
-#define jpeg_idct_2x4 jRD2x4
-#define jpeg_idct_1x2 jRD1x2
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-/* Extern declarations for the forward and inverse DCT routines. */
-
-EXTERN(void) jpeg_fdct_islow
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_ifast
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_float
- JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_7x7
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_6x6
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_5x5
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_4x4
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_3x3
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_2x2
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_1x1
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_9x9
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_10x10
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_11x11
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_12x12
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_13x13
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_14x14
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_15x15
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_16x16
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_16x8
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_14x7
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_12x6
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_10x5
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_8x4
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_6x3
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_4x2
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_2x1
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_8x16
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_7x14
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_6x12
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_5x10
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_4x8
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_3x6
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_2x4
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-EXTERN(void) jpeg_fdct_1x2
- JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
-
-EXTERN(void) jpeg_idct_islow
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_ifast
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_float
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_7x7
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_6x6
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_5x5
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_4x4
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_3x3
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_2x2
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_1x1
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_9x9
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_10x10
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_11x11
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_12x12
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_13x13
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_14x14
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_15x15
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_16x16
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_16x8
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_14x7
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_12x6
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_10x5
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_8x4
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_6x3
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_4x2
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_2x1
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_8x16
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_7x14
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_6x12
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_5x10
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_4x8
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_3x6
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_2x4
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_1x2
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-
-
-/*
- * Macros for handling fixed-point arithmetic; these are used by many
- * but not all of the DCT/IDCT modules.
- *
- * All values are expected to be of type INT32.
- * Fractional constants are scaled left by CONST_BITS bits.
- * CONST_BITS is defined within each module using these macros,
- * and may differ from one module to the next.
- */
-
-#define ONE ((INT32) 1)
-#define CONST_SCALE (ONE << CONST_BITS)
-
-/* Convert a positive real constant to an integer scaled by CONST_SCALE.
- * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
- * thus causing a lot of useless floating-point operations at run time.
- */
-
-#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
-
-/* Descale and correctly round an INT32 value that's scaled by N bits.
- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- * the fudge factor is correct for either sign of X.
- */
-
-#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * This macro is used only when the two inputs will actually be no more than
- * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
- * full 32x32 multiply. This provides a useful speedup on many machines.
- * Unfortunately there is no way to specify a 16x16->32 multiply portably
- * in C, but some C compilers will do the right thing if you provide the
- * correct combination of casts.
- */
-
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
-#endif
-#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
-#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
-#endif
-
-#ifndef MULTIPLY16C16 /* default definition */
-#define MULTIPLY16C16(var,const) ((var) * (const))
-#endif
-
-/* Same except both inputs are variables. */
-
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
-#endif
-
-#ifndef MULTIPLY16V16 /* default definition */
-#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
-#endif
diff --git a/src/jpeg-8c/jddctmgr.c b/src/jpeg-8c/jddctmgr.c
deleted file mode 100644
index 0ded9d57..00000000
--- a/src/jpeg-8c/jddctmgr.c
+++ /dev/null
@@ -1,384 +0,0 @@
-/*
- * jddctmgr.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * Modified 2002-2010 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the inverse-DCT management logic.
- * This code selects a particular IDCT implementation to be used,
- * and it performs related housekeeping chores. No code in this file
- * is executed per IDCT step, only during output pass setup.
- *
- * Note that the IDCT routines are responsible for performing coefficient
- * dequantization as well as the IDCT proper. This module sets up the
- * dequantization multiplier table needed by the IDCT routine.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-
-/*
- * The decompressor input side (jdinput.c) saves away the appropriate
- * quantization table for each component at the start of the first scan
- * involving that component. (This is necessary in order to correctly
- * decode files that reuse Q-table slots.)
- * When we are ready to make an output pass, the saved Q-table is converted
- * to a multiplier table that will actually be used by the IDCT routine.
- * The multiplier table contents are IDCT-method-dependent. To support
- * application changes in IDCT method between scans, we can remake the
- * multiplier tables if necessary.
- * In buffered-image mode, the first output pass may occur before any data
- * has been seen for some components, and thus before their Q-tables have
- * been saved away. To handle this case, multiplier tables are preset
- * to zeroes; the result of the IDCT will be a neutral gray level.
- */
-
-
-/* Private subobject for this module */
-
-typedef struct {
- struct jpeg_inverse_dct pub; /* public fields */
-
- /* This array contains the IDCT method code that each multiplier table
- * is currently set up for, or -1 if it's not yet set up.
- * The actual multiplier tables are pointed to by dct_table in the
- * per-component comp_info structures.
- */
- int cur_method[MAX_COMPONENTS];
-} my_idct_controller;
-
-typedef my_idct_controller * my_idct_ptr;
-
-
-/* Allocated multiplier tables: big enough for any supported variant */
-
-typedef union {
- ISLOW_MULT_TYPE islow_array[DCTSIZE2];
-#ifdef DCT_IFAST_SUPPORTED
- IFAST_MULT_TYPE ifast_array[DCTSIZE2];
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- FLOAT_MULT_TYPE float_array[DCTSIZE2];
-#endif
-} multiplier_table;
-
-
-/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
- * so be sure to compile that code if either ISLOW or SCALING is requested.
- */
-#ifdef DCT_ISLOW_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#else
-#ifdef IDCT_SCALING_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#endif
-#endif
-
-
-/*
- * Prepare for an output pass.
- * Here we select the proper IDCT routine for each component and build
- * a matching multiplier table.
- */
-
-METHODDEF(void)
-start_pass (j_decompress_ptr cinfo)
-{
- my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
- int ci, i;
- jpeg_component_info *compptr;
- int method = 0;
- inverse_DCT_method_ptr method_ptr = NULL;
- JQUANT_TBL * qtbl;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Select the proper IDCT routine for this component's scaling */
- switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
-#ifdef IDCT_SCALING_SUPPORTED
- case ((1 << 8) + 1):
- method_ptr = jpeg_idct_1x1;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((2 << 8) + 2):
- method_ptr = jpeg_idct_2x2;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((3 << 8) + 3):
- method_ptr = jpeg_idct_3x3;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((4 << 8) + 4):
- method_ptr = jpeg_idct_4x4;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((5 << 8) + 5):
- method_ptr = jpeg_idct_5x5;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((6 << 8) + 6):
- method_ptr = jpeg_idct_6x6;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((7 << 8) + 7):
- method_ptr = jpeg_idct_7x7;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((9 << 8) + 9):
- method_ptr = jpeg_idct_9x9;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((10 << 8) + 10):
- method_ptr = jpeg_idct_10x10;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((11 << 8) + 11):
- method_ptr = jpeg_idct_11x11;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((12 << 8) + 12):
- method_ptr = jpeg_idct_12x12;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((13 << 8) + 13):
- method_ptr = jpeg_idct_13x13;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((14 << 8) + 14):
- method_ptr = jpeg_idct_14x14;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((15 << 8) + 15):
- method_ptr = jpeg_idct_15x15;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((16 << 8) + 16):
- method_ptr = jpeg_idct_16x16;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((16 << 8) + 8):
- method_ptr = jpeg_idct_16x8;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((14 << 8) + 7):
- method_ptr = jpeg_idct_14x7;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((12 << 8) + 6):
- method_ptr = jpeg_idct_12x6;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((10 << 8) + 5):
- method_ptr = jpeg_idct_10x5;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((8 << 8) + 4):
- method_ptr = jpeg_idct_8x4;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((6 << 8) + 3):
- method_ptr = jpeg_idct_6x3;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((4 << 8) + 2):
- method_ptr = jpeg_idct_4x2;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((2 << 8) + 1):
- method_ptr = jpeg_idct_2x1;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((8 << 8) + 16):
- method_ptr = jpeg_idct_8x16;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((7 << 8) + 14):
- method_ptr = jpeg_idct_7x14;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((6 << 8) + 12):
- method_ptr = jpeg_idct_6x12;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((5 << 8) + 10):
- method_ptr = jpeg_idct_5x10;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((4 << 8) + 8):
- method_ptr = jpeg_idct_4x8;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((3 << 8) + 6):
- method_ptr = jpeg_idct_3x6;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((2 << 8) + 4):
- method_ptr = jpeg_idct_2x4;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
- case ((1 << 8) + 2):
- method_ptr = jpeg_idct_1x2;
- method = JDCT_ISLOW; /* jidctint uses islow-style table */
- break;
-#endif
- case ((DCTSIZE << 8) + DCTSIZE):
- switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- method_ptr = jpeg_idct_islow;
- method = JDCT_ISLOW;
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- method_ptr = jpeg_idct_ifast;
- method = JDCT_IFAST;
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- method_ptr = jpeg_idct_float;
- method = JDCT_FLOAT;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- break;
- default:
- ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
- compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
- break;
- }
- idct->pub.inverse_DCT[ci] = method_ptr;
- /* Create multiplier table from quant table.
- * However, we can skip this if the component is uninteresting
- * or if we already built the table. Also, if no quant table
- * has yet been saved for the component, we leave the
- * multiplier table all-zero; we'll be reading zeroes from the
- * coefficient controller's buffer anyway.
- */
- if (! compptr->component_needed || idct->cur_method[ci] == method)
- continue;
- qtbl = compptr->quant_table;
- if (qtbl == NULL) /* happens if no data yet for component */
- continue;
- idct->cur_method[ci] = method;
- switch (method) {
-#ifdef PROVIDE_ISLOW_TABLES
- case JDCT_ISLOW:
- {
- /* For LL&M IDCT method, multipliers are equal to raw quantization
- * coefficients, but are stored as ints to ensure access efficiency.
- */
- ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
- for (i = 0; i < DCTSIZE2; i++) {
- ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
- }
- }
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, multipliers are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * For integer operation, the multiplier table is to be scaled by
- * IFAST_SCALE_BITS.
- */
- IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
-#define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
-
- for (i = 0; i < DCTSIZE2; i++) {
- ifmtbl[i] = (IFAST_MULT_TYPE)
- DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
- (INT32) aanscales[i]),
- CONST_BITS-IFAST_SCALE_BITS);
- }
- }
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, multipliers are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 1/8.
- */
- FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
-
- i = 0;
- for (row = 0; row < DCTSIZE; row++) {
- for (col = 0; col < DCTSIZE; col++) {
- fmtbl[i] = (FLOAT_MULT_TYPE)
- ((double) qtbl->quantval[i] *
- aanscalefactor[row] * aanscalefactor[col] * 0.125);
- i++;
- }
- }
- }
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- }
-}
-
-
-/*
- * Initialize IDCT manager.
- */
-
-GLOBAL(void)
-jinit_inverse_dct (j_decompress_ptr cinfo)
-{
- my_idct_ptr idct;
- int ci;
- jpeg_component_info *compptr;
-
- idct = (my_idct_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_idct_controller));
- cinfo->idct = (struct jpeg_inverse_dct *) idct;
- idct->pub.start_pass = start_pass;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Allocate and pre-zero a multiplier table for each component */
- compptr->dct_table =
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(multiplier_table));
- MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
- /* Mark multiplier table not yet set up for any method */
- idct->cur_method[ci] = -1;
- }
-}
diff --git a/src/jpeg-8c/jdhuff.c b/src/jpeg-8c/jdhuff.c
deleted file mode 100644
index 06f92fe4..00000000
--- a/src/jpeg-8c/jdhuff.c
+++ /dev/null
@@ -1,1541 +0,0 @@
-/*
- * jdhuff.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2006-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines.
- * Both sequential and progressive modes are supported in this single module.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU. To do this, we copy state variables
- * into local working storage, and update them back to the permanent
- * storage only upon successful completion of an MCU.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Derived data constructed for each Huffman table */
-
-#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
-
-typedef struct {
- /* Basic tables: (element [0] of each array is unused) */
- INT32 maxcode[18]; /* largest code of length k (-1 if none) */
- /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
- INT32 valoffset[17]; /* huffval[] offset for codes of length k */
- /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
- * the smallest code of length k; so given a code of length k, the
- * corresponding symbol is huffval[code + valoffset[k]]
- */
-
- /* Link to public Huffman table (needed only in jpeg_huff_decode) */
- JHUFF_TBL *pub;
-
- /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
- * the input data stream. If the next Huffman code is no more
- * than HUFF_LOOKAHEAD bits long, we can obtain its length and
- * the corresponding symbol directly from these tables.
- */
- int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
- UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
-} d_derived_tbl;
-
-
-/*
- * Fetching the next N bits from the input stream is a time-critical operation
- * for the Huffman decoders. We implement it with a combination of inline
- * macros and out-of-line subroutines. Note that N (the number of bits
- * demanded at one time) never exceeds 15 for JPEG use.
- *
- * We read source bytes into get_buffer and dole out bits as needed.
- * If get_buffer already contains enough bits, they are fetched in-line
- * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
- * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
- * as full as possible (not just to the number of bits needed; this
- * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
- * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
- * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
- * at least the requested number of bits --- dummy zeroes are inserted if
- * necessary.
- */
-
-typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
-#define BIT_BUF_SIZE 32 /* size of buffer in bits */
-
-/* If long is > 32 bits on your machine, and shifting/masking longs is
- * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
- * appropriately should be a win. Unfortunately we can't define the size
- * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
- * because not all machines measure sizeof in 8-bit bytes.
- */
-
-typedef struct { /* Bitreading state saved across MCUs */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
-} bitread_perm_state;
-
-typedef struct { /* Bitreading working state within an MCU */
- /* Current data source location */
- /* We need a copy, rather than munging the original, in case of suspension */
- const JOCTET * next_input_byte; /* => next byte to read from source */
- size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
- /* Bit input buffer --- note these values are kept in register variables,
- * not in this struct, inside the inner loops.
- */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- /* Pointer needed by jpeg_fill_bit_buffer. */
- j_decompress_ptr cinfo; /* back link to decompress master record */
-} bitread_working_state;
-
-/* Macros to declare and load/save bitread local variables. */
-#define BITREAD_STATE_VARS \
- register bit_buf_type get_buffer; \
- register int bits_left; \
- bitread_working_state br_state
-
-#define BITREAD_LOAD_STATE(cinfop,permstate) \
- br_state.cinfo = cinfop; \
- br_state.next_input_byte = cinfop->src->next_input_byte; \
- br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
- get_buffer = permstate.get_buffer; \
- bits_left = permstate.bits_left;
-
-#define BITREAD_SAVE_STATE(cinfop,permstate) \
- cinfop->src->next_input_byte = br_state.next_input_byte; \
- cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
- permstate.get_buffer = get_buffer; \
- permstate.bits_left = bits_left
-
-/*
- * These macros provide the in-line portion of bit fetching.
- * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
- * before using GET_BITS, PEEK_BITS, or DROP_BITS.
- * The variables get_buffer and bits_left are assumed to be locals,
- * but the state struct might not be (jpeg_huff_decode needs this).
- * CHECK_BIT_BUFFER(state,n,action);
- * Ensure there are N bits in get_buffer; if suspend, take action.
- * val = GET_BITS(n);
- * Fetch next N bits.
- * val = PEEK_BITS(n);
- * Fetch next N bits without removing them from the buffer.
- * DROP_BITS(n);
- * Discard next N bits.
- * The value N should be a simple variable, not an expression, because it
- * is evaluated multiple times.
- */
-
-#define CHECK_BIT_BUFFER(state,nbits,action) \
- { if (bits_left < (nbits)) { \
- if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
- { action; } \
- get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
-
-#define GET_BITS(nbits) \
- (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
-
-#define PEEK_BITS(nbits) \
- (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
-
-#define DROP_BITS(nbits) \
- (bits_left -= (nbits))
-
-
-/*
- * Code for extracting next Huffman-coded symbol from input bit stream.
- * Again, this is time-critical and we make the main paths be macros.
- *
- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
- * without looping. Usually, more than 95% of the Huffman codes will be 8
- * or fewer bits long. The few overlength codes are handled with a loop,
- * which need not be inline code.
- *
- * Notes about the HUFF_DECODE macro:
- * 1. Near the end of the data segment, we may fail to get enough bits
- * for a lookahead. In that case, we do it the hard way.
- * 2. If the lookahead table contains no entry, the next code must be
- * more than HUFF_LOOKAHEAD bits long.
- * 3. jpeg_huff_decode returns -1 if forced to suspend.
- */
-
-#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
-{ register int nb, look; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- nb = 1; goto slowlabel; \
- } \
- } \
- look = PEEK_BITS(HUFF_LOOKAHEAD); \
- if ((nb = htbl->look_nbits[look]) != 0) { \
- DROP_BITS(nb); \
- result = htbl->look_sym[look]; \
- } else { \
- nb = HUFF_LOOKAHEAD+1; \
-slowlabel: \
- if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
- { failaction; } \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- } \
-}
-
-
-/*
- * Expanded entropy decoder object for Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
- unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src) ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src) \
- ((dest).EOBRUN = (src).EOBRUN, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
-
- /* These fields are loaded into local variables at start of each MCU.
- * In case of suspension, we exit WITHOUT updating them.
- */
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
-
- /* These fields are NOT loaded into local working state. */
- boolean insufficient_data; /* set TRUE after emitting warning */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
-
- /* Following two fields used only in progressive mode */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
-
- d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
-
- /* Following fields used only in sequential mode */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
-
- /* Precalculated info set up by start_pass for use in decode_mcu: */
-
- /* Pointers to derived tables to be used for each block within an MCU */
- d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- /* Whether we care about the DC and AC coefficient values for each block */
- int coef_limit[D_MAX_BLOCKS_IN_MCU];
-} huff_entropy_decoder;
-
-typedef huff_entropy_decoder * huff_entropy_ptr;
-
-
-static const int jpeg_zigzag_order[8][8] = {
- { 0, 1, 5, 6, 14, 15, 27, 28 },
- { 2, 4, 7, 13, 16, 26, 29, 42 },
- { 3, 8, 12, 17, 25, 30, 41, 43 },
- { 9, 11, 18, 24, 31, 40, 44, 53 },
- { 10, 19, 23, 32, 39, 45, 52, 54 },
- { 20, 22, 33, 38, 46, 51, 55, 60 },
- { 21, 34, 37, 47, 50, 56, 59, 61 },
- { 35, 36, 48, 49, 57, 58, 62, 63 }
-};
-
-static const int jpeg_zigzag_order7[7][7] = {
- { 0, 1, 5, 6, 14, 15, 27 },
- { 2, 4, 7, 13, 16, 26, 28 },
- { 3, 8, 12, 17, 25, 29, 38 },
- { 9, 11, 18, 24, 30, 37, 39 },
- { 10, 19, 23, 31, 36, 40, 45 },
- { 20, 22, 32, 35, 41, 44, 46 },
- { 21, 33, 34, 42, 43, 47, 48 }
-};
-
-static const int jpeg_zigzag_order6[6][6] = {
- { 0, 1, 5, 6, 14, 15 },
- { 2, 4, 7, 13, 16, 25 },
- { 3, 8, 12, 17, 24, 26 },
- { 9, 11, 18, 23, 27, 32 },
- { 10, 19, 22, 28, 31, 33 },
- { 20, 21, 29, 30, 34, 35 }
-};
-
-static const int jpeg_zigzag_order5[5][5] = {
- { 0, 1, 5, 6, 14 },
- { 2, 4, 7, 13, 15 },
- { 3, 8, 12, 16, 21 },
- { 9, 11, 17, 20, 22 },
- { 10, 18, 19, 23, 24 }
-};
-
-static const int jpeg_zigzag_order4[4][4] = {
- { 0, 1, 5, 6 },
- { 2, 4, 7, 12 },
- { 3, 8, 11, 13 },
- { 9, 10, 14, 15 }
-};
-
-static const int jpeg_zigzag_order3[3][3] = {
- { 0, 1, 5 },
- { 2, 4, 6 },
- { 3, 7, 8 }
-};
-
-static const int jpeg_zigzag_order2[2][2] = {
- { 0, 1 },
- { 2, 3 }
-};
-
-
-/*
- * Compute the derived values for a Huffman table.
- * This routine also performs some validation checks on the table.
- */
-
-LOCAL(void)
-jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl)
-{
- JHUFF_TBL *htbl;
- d_derived_tbl *dtbl;
- int p, i, l, si, numsymbols;
- int lookbits, ctr;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
-
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
-
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
-
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (d_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(d_derived_tbl));
- dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
-
- /* Figure C.1: make table of Huffman code length for each symbol */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- numsymbols = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
-
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- si++;
- }
-
- /* Figure F.15: generate decoding tables for bit-sequential decoding */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- if (htbl->bits[l]) {
- /* valoffset[l] = huffval[] index of 1st symbol of code length l,
- * minus the minimum code of length l
- */
- dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
- p += htbl->bits[l];
- dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
- } else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
- }
- }
- dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
-
- /* Compute lookahead tables to speed up decoding.
- * First we set all the table entries to 0, indicating "too long";
- * then we iterate through the Huffman codes that are short enough and
- * fill in all the entries that correspond to bit sequences starting
- * with that code.
- */
-
- MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
-
- p = 0;
- for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
- /* l = current code's length, p = its index in huffcode[] & huffval[]. */
- /* Generate left-justified code followed by all possible bit sequences */
- lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
- for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
- }
- }
- }
-
- /* Validate symbols as being reasonable.
- * For AC tables, we make no check, but accept all byte values 0..255.
- * For DC tables, we require the symbols to be in range 0..15.
- * (Tighter bounds could be applied depending on the data depth and mode,
- * but this is sufficient to ensure safe decoding.)
- */
- if (isDC) {
- for (i = 0; i < numsymbols; i++) {
- int sym = htbl->huffval[i];
- if (sym < 0 || sym > 15)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- }
- }
-}
-
-
-/*
- * Out-of-line code for bit fetching.
- * Note: current values of get_buffer and bits_left are passed as parameters,
- * but are returned in the corresponding fields of the state struct.
- *
- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
- * of get_buffer to be used. (On machines with wider words, an even larger
- * buffer could be used.) However, on some machines 32-bit shifts are
- * quite slow and take time proportional to the number of places shifted.
- * (This is true with most PC compilers, for instance.) In this case it may
- * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
- * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
- */
-
-#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS 15 /* minimum allowable value */
-#else
-#define MIN_GET_BITS (BIT_BUF_SIZE-7)
-#endif
-
-
-LOCAL(boolean)
-jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
-/* Load up the bit buffer to a depth of at least nbits */
-{
- /* Copy heavily used state fields into locals (hopefully registers) */
- register const JOCTET * next_input_byte = state->next_input_byte;
- register size_t bytes_in_buffer = state->bytes_in_buffer;
- j_decompress_ptr cinfo = state->cinfo;
-
- /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
- /* (It is assumed that no request will be for more than that many bits.) */
- /* We fail to do so only if we hit a marker or are forced to suspend. */
-
- if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
- while (bits_left < MIN_GET_BITS) {
- register int c;
-
- /* Attempt to read a byte */
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
-
- /* If it's 0xFF, check and discard stuffed zero byte */
- if (c == 0xFF) {
- /* Loop here to discard any padding FF's on terminating marker,
- * so that we can save a valid unread_marker value. NOTE: we will
- * accept multiple FF's followed by a 0 as meaning a single FF data
- * byte. This data pattern is not valid according to the standard.
- */
- do {
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
-
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data.
- * Save the marker code for later use.
- * Fine point: it might appear that we should save the marker into
- * bitread working state, not straight into permanent state. But
- * once we have hit a marker, we cannot need to suspend within the
- * current MCU, because we will read no more bytes from the data
- * source. So it is OK to update permanent state right away.
- */
- cinfo->unread_marker = c;
- /* See if we need to insert some fake zero bits. */
- goto no_more_bytes;
- }
- }
-
- /* OK, load c into get_buffer */
- get_buffer = (get_buffer << 8) | c;
- bits_left += 8;
- } /* end while */
- } else {
- no_more_bytes:
- /* We get here if we've read the marker that terminates the compressed
- * data segment. There should be enough bits in the buffer register
- * to satisfy the request; if so, no problem.
- */
- if (nbits > bits_left) {
- /* Uh-oh. Report corrupted data to user and stuff zeroes into
- * the data stream, so that we can produce some kind of image.
- * We use a nonvolatile flag to ensure that only one warning message
- * appears per data segment.
- */
- if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
- WARNMS(cinfo, JWRN_HIT_MARKER);
- ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
- }
- /* Fill the buffer with zero bits */
- get_buffer <<= MIN_GET_BITS - bits_left;
- bits_left = MIN_GET_BITS;
- }
- }
-
- /* Unload the local registers */
- state->next_input_byte = next_input_byte;
- state->bytes_in_buffer = bytes_in_buffer;
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- return TRUE;
-}
-
-
-/*
- * Figure F.12: extend sign bit.
- * On some machines, a shift and sub will be faster than a table lookup.
- */
-
-#ifdef AVOID_TABLES
-
-#define BIT_MASK(nbits) ((1<<(nbits))-1)
-#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
-
-#else
-
-#define BIT_MASK(nbits) bmask[nbits]
-#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
-
-static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
- { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
- 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
-
-#endif /* AVOID_TABLES */
-
-
-/*
- * Out-of-line code for Huffman code decoding.
- */
-
-LOCAL(int)
-jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
-{
- register int l = min_bits;
- register INT32 code;
-
- /* HUFF_DECODE has determined that the code is at least min_bits */
- /* bits long, so fetch that many bits in one swoop. */
-
- CHECK_BIT_BUFFER(*state, l, return -1);
- code = GET_BITS(l);
-
- /* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
-
- while (code > htbl->maxcode[l]) {
- code <<= 1;
- CHECK_BIT_BUFFER(*state, 1, return -1);
- code |= GET_BITS(1);
- l++;
- }
-
- /* Unload the local registers */
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- /* With garbage input we may reach the sentinel value l = 17. */
-
- if (l > 16) {
- WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
- }
-
- return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
-}
-
-
-/*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
-
-LOCAL(boolean)
-process_restart (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci;
-
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
- entropy->bitstate.bits_left = 0;
-
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Re-init EOB run count, too */
- entropy->saved.EOBRUN = 0;
-
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-
- /* Reset out-of-data flag, unless read_restart_marker left us smack up
- * against a marker. In that case we will end up treating the next data
- * segment as empty, and we can avoid producing bogus output pixels by
- * leaving the flag set.
- */
- if (cinfo->unread_marker == 0)
- entropy->insufficient_data = FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Huffman MCU decoding.
- * Each of these routines decodes and returns one MCU's worth of
- * Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
- * (Wholesale zeroing is usually a little faster than retail...)
- *
- * We return FALSE if data source requested suspension. In that case no
- * changes have been made to permanent state. (Exception: some output
- * coefficients may already have been assigned. This is harmless for
- * spectral selection, since we'll just re-assign them on the next call.
- * Successive approximation AC refinement has to be more careful, however.)
- */
-
-/*
- * MCU decoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int Al = cinfo->Al;
- register int s, r;
- int blkn, ci;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- savable_state state;
- d_derived_tbl * tbl;
- jpeg_component_info * compptr;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- tbl = entropy->derived_tbls[compptr->dc_tbl_no];
-
- /* Decode a single block's worth of coefficients */
-
- /* Section F.2.2.1: decode the DC coefficient difference */
- HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
-
- /* Convert DC difference to actual value, update last_dc_val */
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
- (*block)[0] = (JCOEF) (s << Al);
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- unsigned int EOBRUN;
- int Se, Al;
- const int * natural_order;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
-
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
-
- /* Load up working state.
- * We can avoid loading/saving bitread state if in an EOB run.
- */
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
-
- /* There is always only one block per MCU */
-
- if (EOBRUN > 0) /* if it's a band of zeroes... */
- EOBRUN--; /* ...process it now (we do nothing) */
- else {
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
-
- for (k = cinfo->Ss; k <= Se; k++) {
- HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Scale and output coefficient in natural (dezigzagged) order */
- (*block)[natural_order[k]] = (JCOEF) (s << Al);
- } else {
- if (r == 15) { /* ZRL */
- k += 15; /* skip 15 zeroes in band */
- } else { /* EOBr, run length is 2^r + appended bits */
- EOBRUN = 1 << r;
- if (r) { /* EOBr, r > 0 */
- CHECK_BIT_BUFFER(br_state, r, return FALSE);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- EOBRUN--; /* this band is processed at this moment */
- break; /* force end-of-band */
- }
- }
- }
-
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- }
-
- /* Completed MCU, so update state */
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component, although the spec
- * is not very clear on the point.
- */
-
-METHODDEF(boolean)
-decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- int blkn;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* Not worth the cycles to check insufficient_data here,
- * since we will not change the data anyway if we read zeroes.
- */
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
-
- /* Encoded data is simply the next bit of the two's-complement DC value */
- CHECK_BIT_BUFFER(br_state, 1, return FALSE);
- if (GET_BITS(1))
- (*block)[0] |= p1;
- /* Note: since we use |=, repeating the assignment later is safe */
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- unsigned int EOBRUN;
- int Se, p1, m1;
- const int * natural_order;
- JBLOCKROW block;
- JCOEFPTR thiscoef;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
- int num_newnz;
- int newnz_pos[DCTSIZE2];
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, don't modify the MCU.
- */
- if (! entropy->insufficient_data) {
-
- Se = cinfo->Se;
- p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
- natural_order = cinfo->natural_order;
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
-
- /* There is always only one block per MCU */
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
-
- /* If we are forced to suspend, we must undo the assignments to any newly
- * nonzero coefficients in the block, because otherwise we'd get confused
- * next time about which coefficients were already nonzero.
- * But we need not undo addition of bits to already-nonzero coefficients;
- * instead, we can test the current bit to see if we already did it.
- */
- num_newnz = 0;
-
- /* initialize coefficient loop counter to start of band */
- k = cinfo->Ss;
-
- if (EOBRUN == 0) {
- for (; k <= Se; k++) {
- HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
- r = s >> 4;
- s &= 15;
- if (s) {
- if (s != 1) /* size of new coef should always be 1 */
- WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1))
- s = p1; /* newly nonzero coef is positive */
- else
- s = m1; /* newly nonzero coef is negative */
- } else {
- if (r != 15) {
- EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
- if (r) {
- CHECK_BIT_BUFFER(br_state, r, goto undoit);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- break; /* rest of block is handled by EOB logic */
- }
- /* note s = 0 for processing ZRL */
- }
- /* Advance over already-nonzero coefs and r still-zero coefs,
- * appending correction bits to the nonzeroes. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- do {
- thiscoef = *block + natural_order[k];
- if (*thiscoef != 0) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
- if (*thiscoef >= 0)
- *thiscoef += p1;
- else
- *thiscoef += m1;
- }
- }
- } else {
- if (--r < 0)
- break; /* reached target zero coefficient */
- }
- k++;
- } while (k <= Se);
- if (s) {
- int pos = natural_order[k];
- /* Output newly nonzero coefficient */
- (*block)[pos] = (JCOEF) s;
- /* Remember its position in case we have to suspend */
- newnz_pos[num_newnz++] = pos;
- }
- }
- }
-
- if (EOBRUN > 0) {
- /* Scan any remaining coefficient positions after the end-of-band
- * (the last newly nonzero coefficient, if any). Append a correction
- * bit to each already-nonzero coefficient. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- for (; k <= Se; k++) {
- thiscoef = *block + natural_order[k];
- if (*thiscoef != 0) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
- if (*thiscoef >= 0)
- *thiscoef += p1;
- else
- *thiscoef += m1;
- }
- }
- }
- }
- /* Count one block completed in EOB run */
- EOBRUN--;
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-
-undoit:
- /* Re-zero any output coefficients that we made newly nonzero */
- while (num_newnz > 0)
- (*block)[newnz_pos[--num_newnz]] = 0;
-
- return FALSE;
-}
-
-
-/*
- * Decode one MCU's worth of Huffman-compressed coefficients,
- * partial blocks.
- */
-
-METHODDEF(boolean)
-decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- const int * natural_order;
- int Se, blkn;
- BITREAD_STATE_VARS;
- savable_state state;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
-
- natural_order = cinfo->natural_order;
- Se = cinfo->lim_Se;
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * htbl;
- register int s, k, r;
- int coef_limit, ci;
-
- /* Decode a single block's worth of coefficients */
-
- /* Section F.2.2.1: decode the DC coefficient difference */
- htbl = entropy->dc_cur_tbls[blkn];
- HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
-
- htbl = entropy->ac_cur_tbls[blkn];
- k = 1;
- coef_limit = entropy->coef_limit[blkn];
- if (coef_limit) {
- /* Convert DC difference to actual value, update last_dc_val */
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
- ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient */
- (*block)[0] = (JCOEF) s;
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (; k < coef_limit; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in natural_order[] will save us
- * if k > Se, which could happen if the data is corrupted.
- */
- (*block)[natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- goto EndOfBlock;
- k += 15;
- }
- }
- } else {
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- }
- }
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (; k <= Se; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
- EndOfBlock: ;
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * Decode one MCU's worth of Huffman-compressed coefficients,
- * full-size blocks.
- */
-
-METHODDEF(boolean)
-decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn;
- BITREAD_STATE_VARS;
- savable_state state;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * htbl;
- register int s, k, r;
- int coef_limit, ci;
-
- /* Decode a single block's worth of coefficients */
-
- /* Section F.2.2.1: decode the DC coefficient difference */
- htbl = entropy->dc_cur_tbls[blkn];
- HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
-
- htbl = entropy->ac_cur_tbls[blkn];
- k = 1;
- coef_limit = entropy->coef_limit[blkn];
- if (coef_limit) {
- /* Convert DC difference to actual value, update last_dc_val */
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
- ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient */
- (*block)[0] = (JCOEF) s;
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (; k < coef_limit; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- goto EndOfBlock;
- k += 15;
- }
- }
- } else {
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- }
- }
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
- EndOfBlock: ;
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- */
-
-METHODDEF(void)
-start_pass_huff_decoder (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, blkn, tbl, i;
- jpeg_component_info * compptr;
-
- if (cinfo->progressive_mode) {
- /* Validate progressive scan parameters */
- if (cinfo->Ss == 0) {
- if (cinfo->Se != 0)
- goto bad;
- } else {
- /* need not check Ss/Se < 0 since they came from unsigned bytes */
- if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
- goto bad;
- /* AC scans may have only one component */
- if (cinfo->comps_in_scan != 1)
- goto bad;
- }
- if (cinfo->Ah != 0) {
- /* Successive approximation refinement scan: must have Al = Ah-1. */
- if (cinfo->Ah-1 != cinfo->Al)
- goto bad;
- }
- if (cinfo->Al > 13) { /* need not check for < 0 */
- /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
- * but the spec doesn't say so, and we try to be liberal about what we
- * accept. Note: large Al values could result in out-of-range DC
- * coefficients during early scans, leading to bizarre displays due to
- * overflows in the IDCT math. But we won't crash.
- */
- bad:
- ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
- cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
- }
- /* Update progression status, and verify that scan order is legal.
- * Note that inter-scan inconsistencies are treated as warnings
- * not fatal errors ... not clear if this is right way to behave.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
- int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
- if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
- for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
- int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
- if (cinfo->Ah != expected)
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
- coef_bit_ptr[coefi] = cinfo->Al;
- }
- }
-
- /* Select MCU decoding routine */
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.decode_mcu = decode_mcu_DC_first;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.decode_mcu = decode_mcu_DC_refine;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_refine;
- }
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Make sure requested tables are present, and compute derived tables.
- * We may build same derived table more than once, but it's not expensive.
- */
- if (cinfo->Ss == 0) {
- if (cinfo->Ah == 0) { /* DC refinement needs no table */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->derived_tbls[tbl]);
- }
- } else {
- tbl = compptr->ac_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
- & entropy->derived_tbls[tbl]);
- /* remember the single active table */
- entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Initialize private state variables */
- entropy->saved.EOBRUN = 0;
- } else {
- /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
- * This ought to be an error condition, but we make it a warning because
- * there are some baseline files out there with all zeroes in these bytes.
- */
- if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
- ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
- cinfo->Se != cinfo->lim_Se))
- WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
-
- /* Select MCU decoding routine */
- /* We retain the hard-coded case for full-size blocks.
- * This is not necessary, but it appears that this version is slightly
- * more performant in the given implementation.
- * With an improved implementation we would prefer a single optimized
- * function.
- */
- if (cinfo->lim_Se != DCTSIZE2-1)
- entropy->pub.decode_mcu = decode_mcu_sub;
- else
- entropy->pub.decode_mcu = decode_mcu;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->dc_derived_tbls[tbl]);
- if (cinfo->lim_Se) { /* AC needs no table when not present */
- tbl = compptr->ac_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
- & entropy->ac_derived_tbls[tbl]);
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Precalculate decoding info for each block in an MCU of this scan */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- /* Precalculate which table to use for each block */
- entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
- entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
- /* Decide whether we really care about the coefficient values */
- if (compptr->component_needed) {
- ci = compptr->DCT_v_scaled_size;
- i = compptr->DCT_h_scaled_size;
- switch (cinfo->lim_Se) {
- case (1*1-1):
- entropy->coef_limit[blkn] = 1;
- break;
- case (2*2-1):
- if (ci <= 0 || ci > 2) ci = 2;
- if (i <= 0 || i > 2) i = 2;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
- break;
- case (3*3-1):
- if (ci <= 0 || ci > 3) ci = 3;
- if (i <= 0 || i > 3) i = 3;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
- break;
- case (4*4-1):
- if (ci <= 0 || ci > 4) ci = 4;
- if (i <= 0 || i > 4) i = 4;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
- break;
- case (5*5-1):
- if (ci <= 0 || ci > 5) ci = 5;
- if (i <= 0 || i > 5) i = 5;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
- break;
- case (6*6-1):
- if (ci <= 0 || ci > 6) ci = 6;
- if (i <= 0 || i > 6) i = 6;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
- break;
- case (7*7-1):
- if (ci <= 0 || ci > 7) ci = 7;
- if (i <= 0 || i > 7) i = 7;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
- break;
- default:
- if (ci <= 0 || ci > 8) ci = 8;
- if (i <= 0 || i > 8) i = 8;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
- break;
- }
- } else {
- entropy->coef_limit[blkn] = 0;
- }
- }
- }
-
- /* Initialize bitread state variables */
- entropy->bitstate.bits_left = 0;
- entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
- entropy->insufficient_data = FALSE;
-
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-/*
- * Module initialization routine for Huffman entropy decoding.
- */
-
-GLOBAL(void)
-jinit_huff_decoder (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy;
- int i;
-
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass_huff_decoder;
-
- if (cinfo->progressive_mode) {
- /* Create progression status table */
- int *coef_bit_ptr, ci;
- cinfo->coef_bits = (int (*)[DCTSIZE2])
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components*DCTSIZE2*SIZEOF(int));
- coef_bit_ptr = & cinfo->coef_bits[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (i = 0; i < DCTSIZE2; i++)
- *coef_bit_ptr++ = -1;
-
- /* Mark derived tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->derived_tbls[i] = NULL;
- }
- } else {
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- }
- }
-}
diff --git a/src/jpeg-8c/jdinput.c b/src/jpeg-8c/jdinput.c
deleted file mode 100644
index 2c5c717b..00000000
--- a/src/jpeg-8c/jdinput.c
+++ /dev/null
@@ -1,661 +0,0 @@
-/*
- * jdinput.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2002-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains input control logic for the JPEG decompressor.
- * These routines are concerned with controlling the decompressor's input
- * processing (marker reading and coefficient decoding). The actual input
- * reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_input_controller pub; /* public fields */
-
- int inheaders; /* Nonzero until first SOS is reached */
-} my_input_controller;
-
-typedef my_input_controller * my_inputctl_ptr;
-
-
-/* Forward declarations */
-METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Routines to calculate various quantities related to the size of the image.
- */
-
-
-/*
- * Compute output image dimensions and related values.
- * NOTE: this is exported for possible use by application.
- * Hence it mustn't do anything that can't be done twice.
- */
-
-GLOBAL(void)
-jpeg_core_output_dimensions (j_decompress_ptr cinfo)
-/* Do computations that are needed before master selection phase.
- * This function is used for transcoding and full decompression.
- */
-{
-#ifdef IDCT_SCALING_SUPPORTED
- int ci;
- jpeg_component_info *compptr;
-
- /* Compute actual output image dimensions and DCT scaling choices. */
- if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) {
- /* Provide 1/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 1;
- cinfo->min_DCT_v_scaled_size = 1;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) {
- /* Provide 2/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 2;
- cinfo->min_DCT_v_scaled_size = 2;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) {
- /* Provide 3/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 3;
- cinfo->min_DCT_v_scaled_size = 3;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) {
- /* Provide 4/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 4;
- cinfo->min_DCT_v_scaled_size = 4;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) {
- /* Provide 5/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 5;
- cinfo->min_DCT_v_scaled_size = 5;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) {
- /* Provide 6/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 6;
- cinfo->min_DCT_v_scaled_size = 6;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) {
- /* Provide 7/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 7;
- cinfo->min_DCT_v_scaled_size = 7;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) {
- /* Provide 8/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 8;
- cinfo->min_DCT_v_scaled_size = 8;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) {
- /* Provide 9/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 9;
- cinfo->min_DCT_v_scaled_size = 9;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) {
- /* Provide 10/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 10;
- cinfo->min_DCT_v_scaled_size = 10;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) {
- /* Provide 11/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 11;
- cinfo->min_DCT_v_scaled_size = 11;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) {
- /* Provide 12/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 12;
- cinfo->min_DCT_v_scaled_size = 12;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) {
- /* Provide 13/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 13;
- cinfo->min_DCT_v_scaled_size = 13;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) {
- /* Provide 14/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 14;
- cinfo->min_DCT_v_scaled_size = 14;
- } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) {
- /* Provide 15/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 15;
- cinfo->min_DCT_v_scaled_size = 15;
- } else {
- /* Provide 16/block_size scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size);
- cinfo->min_DCT_h_scaled_size = 16;
- cinfo->min_DCT_v_scaled_size = 16;
- }
-
- /* Recompute dimensions of components */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size;
- compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size;
- }
-
-#else /* !IDCT_SCALING_SUPPORTED */
-
- /* Hardwire it to "no scaling" */
- cinfo->output_width = cinfo->image_width;
- cinfo->output_height = cinfo->image_height;
- /* jdinput.c has already initialized DCT_scaled_size,
- * and has computed unscaled downsampled_width and downsampled_height.
- */
-
-#endif /* IDCT_SCALING_SUPPORTED */
-}
-
-
-LOCAL(void)
-initial_setup (j_decompress_ptr cinfo)
-/* Called once, when first SOS marker is reached */
-{
- int ci;
- jpeg_component_info *compptr;
-
- /* Make sure image isn't bigger than I can handle */
- if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
- (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
- /* For now, precision must match compiled-in value... */
- if (cinfo->data_precision != BITS_IN_JSAMPLE)
- ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
-
- /* Check that number of components won't exceed internal array sizes */
- if (cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
-
- /* Compute maximum sampling factors; check factor validity */
- cinfo->max_h_samp_factor = 1;
- cinfo->max_v_samp_factor = 1;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
- compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
- ERREXIT(cinfo, JERR_BAD_SAMPLING);
- cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
- compptr->h_samp_factor);
- cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
- compptr->v_samp_factor);
- }
-
- /* Derive block_size, natural_order, and lim_Se */
- if (cinfo->is_baseline || (cinfo->progressive_mode &&
- cinfo->comps_in_scan)) { /* no pseudo SOS marker */
- cinfo->block_size = DCTSIZE;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- } else
- switch (cinfo->Se) {
- case (1*1-1):
- cinfo->block_size = 1;
- cinfo->natural_order = jpeg_natural_order; /* not needed */
- cinfo->lim_Se = cinfo->Se;
- break;
- case (2*2-1):
- cinfo->block_size = 2;
- cinfo->natural_order = jpeg_natural_order2;
- cinfo->lim_Se = cinfo->Se;
- break;
- case (3*3-1):
- cinfo->block_size = 3;
- cinfo->natural_order = jpeg_natural_order3;
- cinfo->lim_Se = cinfo->Se;
- break;
- case (4*4-1):
- cinfo->block_size = 4;
- cinfo->natural_order = jpeg_natural_order4;
- cinfo->lim_Se = cinfo->Se;
- break;
- case (5*5-1):
- cinfo->block_size = 5;
- cinfo->natural_order = jpeg_natural_order5;
- cinfo->lim_Se = cinfo->Se;
- break;
- case (6*6-1):
- cinfo->block_size = 6;
- cinfo->natural_order = jpeg_natural_order6;
- cinfo->lim_Se = cinfo->Se;
- break;
- case (7*7-1):
- cinfo->block_size = 7;
- cinfo->natural_order = jpeg_natural_order7;
- cinfo->lim_Se = cinfo->Se;
- break;
- case (8*8-1):
- cinfo->block_size = 8;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (9*9-1):
- cinfo->block_size = 9;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (10*10-1):
- cinfo->block_size = 10;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (11*11-1):
- cinfo->block_size = 11;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (12*12-1):
- cinfo->block_size = 12;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (13*13-1):
- cinfo->block_size = 13;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (14*14-1):
- cinfo->block_size = 14;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (15*15-1):
- cinfo->block_size = 15;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- case (16*16-1):
- cinfo->block_size = 16;
- cinfo->natural_order = jpeg_natural_order;
- cinfo->lim_Se = DCTSIZE2-1;
- break;
- default:
- ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
- cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
- break;
- }
-
- /* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
- * In the full decompressor,
- * this will be overridden by jpeg_calc_output_dimensions in jdmaster.c;
- * but in the transcoder,
- * jpeg_calc_output_dimensions is not used, so we must do it here.
- */
- cinfo->min_DCT_h_scaled_size = cinfo->block_size;
- cinfo->min_DCT_v_scaled_size = cinfo->block_size;
-
- /* Compute dimensions of components */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->DCT_h_scaled_size = cinfo->block_size;
- compptr->DCT_v_scaled_size = cinfo->block_size;
- /* Size in DCT blocks */
- compptr->width_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) (cinfo->max_h_samp_factor * cinfo->block_size));
- compptr->height_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
- /* downsampled_width and downsampled_height will also be overridden by
- * jdmaster.c if we are doing full decompression. The transcoder library
- * doesn't use these values, but the calling application might.
- */
- /* Size in samples */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) cinfo->max_h_samp_factor);
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) cinfo->max_v_samp_factor);
- /* Mark component needed, until color conversion says otherwise */
- compptr->component_needed = TRUE;
- /* Mark no quantization table yet saved for component */
- compptr->quant_table = NULL;
- }
-
- /* Compute number of fully interleaved MCU rows. */
- cinfo->total_iMCU_rows = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
-
- /* Decide whether file contains multiple scans */
- if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
- cinfo->inputctl->has_multiple_scans = TRUE;
- else
- cinfo->inputctl->has_multiple_scans = FALSE;
-}
-
-
-LOCAL(void)
-per_scan_setup (j_decompress_ptr cinfo)
-/* Do computations that are needed before processing a JPEG scan */
-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
-{
- int ci, mcublks, tmp;
- jpeg_component_info *compptr;
-
- if (cinfo->comps_in_scan == 1) {
-
- /* Noninterleaved (single-component) scan */
- compptr = cinfo->cur_comp_info[0];
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = compptr->width_in_blocks;
- cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
-
- /* For noninterleaved scan, always one block per MCU */
- compptr->MCU_width = 1;
- compptr->MCU_height = 1;
- compptr->MCU_blocks = 1;
- compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
- compptr->last_col_width = 1;
- /* For noninterleaved scans, it is convenient to define last_row_height
- * as the number of block rows present in the last iMCU row.
- */
- tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (tmp == 0) tmp = compptr->v_samp_factor;
- compptr->last_row_height = tmp;
-
- /* Prepare array describing MCU composition */
- cinfo->blocks_in_MCU = 1;
- cinfo->MCU_membership[0] = 0;
-
- } else {
-
- /* Interleaved (multi-component) scan */
- if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
- MAX_COMPS_IN_SCAN);
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width,
- (long) (cinfo->max_h_samp_factor * cinfo->block_size));
- cinfo->MCU_rows_in_scan = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
-
- cinfo->blocks_in_MCU = 0;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Sampling factors give # of blocks of component in each MCU */
- compptr->MCU_width = compptr->h_samp_factor;
- compptr->MCU_height = compptr->v_samp_factor;
- compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
- compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
- /* Figure number of non-dummy blocks in last MCU column & row */
- tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
- if (tmp == 0) tmp = compptr->MCU_width;
- compptr->last_col_width = tmp;
- tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
- if (tmp == 0) tmp = compptr->MCU_height;
- compptr->last_row_height = tmp;
- /* Prepare array describing MCU composition */
- mcublks = compptr->MCU_blocks;
- if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
- ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
- while (mcublks-- > 0) {
- cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
- }
- }
-
- }
-}
-
-
-/*
- * Save away a copy of the Q-table referenced by each component present
- * in the current scan, unless already saved during a prior scan.
- *
- * In a multiple-scan JPEG file, the encoder could assign different components
- * the same Q-table slot number, but change table definitions between scans
- * so that each component uses a different Q-table. (The IJG encoder is not
- * currently capable of doing this, but other encoders might.) Since we want
- * to be able to dequantize all the components at the end of the file, this
- * means that we have to save away the table actually used for each component.
- * We do this by copying the table at the start of the first scan containing
- * the component.
- * The JPEG spec prohibits the encoder from changing the contents of a Q-table
- * slot between scans of a component using that slot. If the encoder does so
- * anyway, this decoder will simply use the Q-table values that were current
- * at the start of the first scan for the component.
- *
- * The decompressor output side looks only at the saved quant tables,
- * not at the current Q-table slots.
- */
-
-LOCAL(void)
-latch_quant_tables (j_decompress_ptr cinfo)
-{
- int ci, qtblno;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtbl;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* No work if we already saved Q-table for this component */
- if (compptr->quant_table != NULL)
- continue;
- /* Make sure specified quantization table is present */
- qtblno = compptr->quant_tbl_no;
- if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
- cinfo->quant_tbl_ptrs[qtblno] == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
- /* OK, save away the quantization table */
- qtbl = (JQUANT_TBL *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(JQUANT_TBL));
- MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
- compptr->quant_table = qtbl;
- }
-}
-
-
-/*
- * Initialize the input modules to read a scan of compressed data.
- * The first call to this is done by jdmaster.c after initializing
- * the entire decompressor (during jpeg_start_decompress).
- * Subsequent calls come from consume_markers, below.
- */
-
-METHODDEF(void)
-start_input_pass (j_decompress_ptr cinfo)
-{
- per_scan_setup(cinfo);
- latch_quant_tables(cinfo);
- (*cinfo->entropy->start_pass) (cinfo);
- (*cinfo->coef->start_input_pass) (cinfo);
- cinfo->inputctl->consume_input = cinfo->coef->consume_data;
-}
-
-
-/*
- * Finish up after inputting a compressed-data scan.
- * This is called by the coefficient controller after it's read all
- * the expected data of the scan.
- */
-
-METHODDEF(void)
-finish_input_pass (j_decompress_ptr cinfo)
-{
- cinfo->inputctl->consume_input = consume_markers;
-}
-
-
-/*
- * Read JPEG markers before, between, or after compressed-data scans.
- * Change state as necessary when a new scan is reached.
- * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- *
- * The consume_input method pointer points either here or to the
- * coefficient controller's consume_data routine, depending on whether
- * we are reading a compressed data segment or inter-segment markers.
- *
- * Note: This function should NOT return a pseudo SOS marker (with zero
- * component number) to the caller. A pseudo marker received by
- * read_markers is processed and then skipped for other markers.
- */
-
-METHODDEF(int)
-consume_markers (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
- int val;
-
- if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
- return JPEG_REACHED_EOI;
-
- for (;;) { /* Loop to pass pseudo SOS marker */
- val = (*cinfo->marker->read_markers) (cinfo);
-
- switch (val) {
- case JPEG_REACHED_SOS: /* Found SOS */
- if (inputctl->inheaders) { /* 1st SOS */
- if (inputctl->inheaders == 1)
- initial_setup(cinfo);
- if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */
- inputctl->inheaders = 2;
- break;
- }
- inputctl->inheaders = 0;
- /* Note: start_input_pass must be called by jdmaster.c
- * before any more input can be consumed. jdapimin.c is
- * responsible for enforcing this sequencing.
- */
- } else { /* 2nd or later SOS marker */
- if (! inputctl->pub.has_multiple_scans)
- ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
- if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */
- break;
- start_input_pass(cinfo);
- }
- return val;
- case JPEG_REACHED_EOI: /* Found EOI */
- inputctl->pub.eoi_reached = TRUE;
- if (inputctl->inheaders) { /* Tables-only datastream, apparently */
- if (cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOF_NO_SOS);
- } else {
- /* Prevent infinite loop in coef ctlr's decompress_data routine
- * if user set output_scan_number larger than number of scans.
- */
- if (cinfo->output_scan_number > cinfo->input_scan_number)
- cinfo->output_scan_number = cinfo->input_scan_number;
- }
- return val;
- case JPEG_SUSPENDED:
- return val;
- default:
- return val;
- }
- }
-}
-
-
-/*
- * Reset state to begin a fresh datastream.
- */
-
-METHODDEF(void)
-reset_input_controller (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
-
- inputctl->pub.consume_input = consume_markers;
- inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
- inputctl->pub.eoi_reached = FALSE;
- inputctl->inheaders = 1;
- /* Reset other modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->marker->reset_marker_reader) (cinfo);
- /* Reset progression state -- would be cleaner if entropy decoder did this */
- cinfo->coef_bits = NULL;
-}
-
-
-/*
- * Initialize the input controller module.
- * This is called only once, when the decompression object is created.
- */
-
-GLOBAL(void)
-jinit_input_controller (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl;
-
- /* Create subobject in permanent pool */
- inputctl = (my_inputctl_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_input_controller));
- cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
- /* Initialize method pointers */
- inputctl->pub.consume_input = consume_markers;
- inputctl->pub.reset_input_controller = reset_input_controller;
- inputctl->pub.start_input_pass = start_input_pass;
- inputctl->pub.finish_input_pass = finish_input_pass;
- /* Initialize state: can't use reset_input_controller since we don't
- * want to try to reset other modules yet.
- */
- inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
- inputctl->pub.eoi_reached = FALSE;
- inputctl->inheaders = 1;
-}
diff --git a/src/jpeg-8c/jdmainct.c b/src/jpeg-8c/jdmainct.c
deleted file mode 100644
index c04e8223..00000000
--- a/src/jpeg-8c/jdmainct.c
+++ /dev/null
@@ -1,512 +0,0 @@
-/*
- * jdmainct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the main buffer controller for decompression.
- * The main buffer lies between the JPEG decompressor proper and the
- * post-processor; it holds downsampled data in the JPEG colorspace.
- *
- * Note that this code is bypassed in raw-data mode, since the application
- * supplies the equivalent of the main buffer in that case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * In the current system design, the main buffer need never be a full-image
- * buffer; any full-height buffers will be found inside the coefficient or
- * postprocessing controllers. Nonetheless, the main controller is not
- * trivial. Its responsibility is to provide context rows for upsampling/
- * rescaling, and doing this in an efficient fashion is a bit tricky.
- *
- * Postprocessor input data is counted in "row groups". A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component. (We require DCT_scaled_size values to be
- * chosen such that these numbers are integers. In practice DCT_scaled_size
- * values will likely be powers of two, so we actually have the stronger
- * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
- * Upsampling will typically produce max_v_samp_factor pixel rows from each
- * row group (times any additional scale factor that the upsampler is
- * applying).
- *
- * The coefficient controller will deliver data to us one iMCU row at a time;
- * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
- * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
- * to one row of MCUs when the image is fully interleaved.) Note that the
- * number of sample rows varies across components, but the number of row
- * groups does not. Some garbage sample rows may be included in the last iMCU
- * row at the bottom of the image.
- *
- * Depending on the vertical scaling algorithm used, the upsampler may need
- * access to the sample row(s) above and below its current input row group.
- * The upsampler is required to set need_context_rows TRUE at global selection
- * time if so. When need_context_rows is FALSE, this controller can simply
- * obtain one iMCU row at a time from the coefficient controller and dole it
- * out as row groups to the postprocessor.
- *
- * When need_context_rows is TRUE, this controller guarantees that the buffer
- * passed to postprocessing contains at least one row group's worth of samples
- * above and below the row group(s) being processed. Note that the context
- * rows "above" the first passed row group appear at negative row offsets in
- * the passed buffer. At the top and bottom of the image, the required
- * context rows are manufactured by duplicating the first or last real sample
- * row; this avoids having special cases in the upsampling inner loops.
- *
- * The amount of context is fixed at one row group just because that's a
- * convenient number for this controller to work with. The existing
- * upsamplers really only need one sample row of context. An upsampler
- * supporting arbitrary output rescaling might wish for more than one row
- * group of context when shrinking the image; tough, we don't handle that.
- * (This is justified by the assumption that downsizing will be handled mostly
- * by adjusting the DCT_scaled_size values, so that the actual scale factor at
- * the upsample step needn't be much less than one.)
- *
- * To provide the desired context, we have to retain the last two row groups
- * of one iMCU row while reading in the next iMCU row. (The last row group
- * can't be processed until we have another row group for its below-context,
- * and so we have to save the next-to-last group too for its above-context.)
- * We could do this most simply by copying data around in our buffer, but
- * that'd be very slow. We can avoid copying any data by creating a rather
- * strange pointer structure. Here's how it works. We allocate a workspace
- * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
- * of row groups per iMCU row). We create two sets of redundant pointers to
- * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
- * pointer lists look like this:
- * M+1 M-1
- * master pointer --> 0 master pointer --> 0
- * 1 1
- * ... ...
- * M-3 M-3
- * M-2 M
- * M-1 M+1
- * M M-2
- * M+1 M-1
- * 0 0
- * We read alternate iMCU rows using each master pointer; thus the last two
- * row groups of the previous iMCU row remain un-overwritten in the workspace.
- * The pointer lists are set up so that the required context rows appear to
- * be adjacent to the proper places when we pass the pointer lists to the
- * upsampler.
- *
- * The above pictures describe the normal state of the pointer lists.
- * At top and bottom of the image, we diddle the pointer lists to duplicate
- * the first or last sample row as necessary (this is cheaper than copying
- * sample rows around).
- *
- * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
- * situation each iMCU row provides only one row group so the buffering logic
- * must be different (eg, we must read two iMCU rows before we can emit the
- * first row group). For now, we simply do not support providing context
- * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
- * be worth providing --- if someone wants a 1/8th-size preview, they probably
- * want it quick and dirty, so a context-free upsampler is sufficient.
- */
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_main_controller pub; /* public fields */
-
- /* Pointer to allocated workspace (M or M+2 row groups). */
- JSAMPARRAY buffer[MAX_COMPONENTS];
-
- boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
- JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
-
- /* Remaining fields are only used in the context case. */
-
- /* These are the master pointers to the funny-order pointer lists. */
- JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
-
- int whichptr; /* indicates which pointer set is now in use */
- int context_state; /* process_data state machine status */
- JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
- JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
-} my_main_controller;
-
-typedef my_main_controller * my_main_ptr;
-
-/* context_state values: */
-#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
-#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
-#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
-
-
-/* Forward declarations */
-METHODDEF(void) process_data_simple_main
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-METHODDEF(void) process_data_context_main
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF(void) process_data_crank_post
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#endif
-
-
-LOCAL(void)
-alloc_funny_pointers (j_decompress_ptr cinfo)
-/* Allocate space for the funny pointer lists.
- * This is done only once, not once per pass.
- */
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, rgroup;
- int M = cinfo->min_DCT_v_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-
- /* Get top-level space for component array pointers.
- * We alloc both arrays with one call to save a few cycles.
- */
- main_ptr->xbuffer[0] = (JSAMPIMAGE)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
- main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
- /* Get space for pointer lists --- M+4 row groups in each list.
- * We alloc both pointer lists with one call to save a few cycles.
- */
- xbuf = (JSAMPARRAY)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
- xbuf += rgroup; /* want one row group at negative offsets */
- main_ptr->xbuffer[0][ci] = xbuf;
- xbuf += rgroup * (M + 4);
- main_ptr->xbuffer[1][ci] = xbuf;
- }
-}
-
-
-LOCAL(void)
-make_funny_pointers (j_decompress_ptr cinfo)
-/* Create the funny pointer lists discussed in the comments above.
- * The actual workspace is already allocated (in main_ptr->buffer),
- * and the space for the pointer lists is allocated too.
- * This routine just fills in the curiously ordered lists.
- * This will be repeated at the beginning of each pass.
- */
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_v_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY buf, xbuf0, xbuf1;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
- xbuf0 = main_ptr->xbuffer[0][ci];
- xbuf1 = main_ptr->xbuffer[1][ci];
- /* First copy the workspace pointers as-is */
- buf = main_ptr->buffer[ci];
- for (i = 0; i < rgroup * (M + 2); i++) {
- xbuf0[i] = xbuf1[i] = buf[i];
- }
- /* In the second list, put the last four row groups in swapped order */
- for (i = 0; i < rgroup * 2; i++) {
- xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
- xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
- }
- /* The wraparound pointers at top and bottom will be filled later
- * (see set_wraparound_pointers, below). Initially we want the "above"
- * pointers to duplicate the first actual data line. This only needs
- * to happen in xbuffer[0].
- */
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[0];
- }
- }
-}
-
-
-LOCAL(void)
-set_wraparound_pointers (j_decompress_ptr cinfo)
-/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
- * This changes the pointer list state from top-of-image to the normal state.
- */
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_v_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf0, xbuf1;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
- xbuf0 = main_ptr->xbuffer[0][ci];
- xbuf1 = main_ptr->xbuffer[1][ci];
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
- xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
- xbuf0[rgroup*(M+2) + i] = xbuf0[i];
- xbuf1[rgroup*(M+2) + i] = xbuf1[i];
- }
- }
-}
-
-
-LOCAL(void)
-set_bottom_pointers (j_decompress_ptr cinfo)
-/* Change the pointer lists to duplicate the last sample row at the bottom
- * of the image. whichptr indicates which xbuffer holds the final iMCU row.
- * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
- */
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- int ci, i, rgroup, iMCUheight, rows_left;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Count sample rows in one iMCU row and in one row group */
- iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
- rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
- /* Count nondummy sample rows remaining for this component */
- rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
- if (rows_left == 0) rows_left = iMCUheight;
- /* Count nondummy row groups. Should get same answer for each component,
- * so we need only do it once.
- */
- if (ci == 0) {
- main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
- }
- /* Duplicate the last real sample row rgroup*2 times; this pads out the
- * last partial rowgroup and ensures at least one full rowgroup of context.
- */
- xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci];
- for (i = 0; i < rgroup * 2; i++) {
- xbuf[rows_left + i] = xbuf[rows_left-1];
- }
- }
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->upsample->need_context_rows) {
- main_ptr->pub.process_data = process_data_context_main;
- make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
- main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
- main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
- main_ptr->iMCU_row_ctr = 0;
- } else {
- /* Simple case with no context needed */
- main_ptr->pub.process_data = process_data_simple_main;
- }
- main_ptr->buffer_full = FALSE; /* Mark buffer empty */
- main_ptr->rowgroup_ctr = 0;
- break;
-#ifdef QUANT_2PASS_SUPPORTED
- case JBUF_CRANK_DEST:
- /* For last pass of 2-pass quantization, just crank the postprocessor */
- main_ptr->pub.process_data = process_data_crank_post;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data.
- * This handles the simple case where no context is required.
- */
-
-METHODDEF(void)
-process_data_simple_main (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
- JDIMENSION rowgroups_avail;
-
- /* Read input data if we haven't filled the main buffer yet */
- if (! main_ptr->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer))
- return; /* suspension forced, can do nothing more */
- main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- }
-
- /* There are always min_DCT_scaled_size row groups in an iMCU row. */
- rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
- /* Note: at the bottom of the image, we may pass extra garbage row groups
- * to the postprocessor. The postprocessor has to check for bottom
- * of image anyway (at row resolution), so no point in us doing it too.
- */
-
- /* Feed the postprocessor */
- (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer,
- &main_ptr->rowgroup_ctr, rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
-
- /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
- if (main_ptr->rowgroup_ctr >= rowgroups_avail) {
- main_ptr->buffer_full = FALSE;
- main_ptr->rowgroup_ctr = 0;
- }
-}
-
-
-/*
- * Process some data.
- * This handles the case where context rows must be provided.
- */
-
-METHODDEF(void)
-process_data_context_main (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
-
- /* Read input data if we haven't filled the main buffer yet */
- if (! main_ptr->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo,
- main_ptr->xbuffer[main_ptr->whichptr]))
- return; /* suspension forced, can do nothing more */
- main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- main_ptr->iMCU_row_ctr++; /* count rows received */
- }
-
- /* Postprocessor typically will not swallow all the input data it is handed
- * in one call (due to filling the output buffer first). Must be prepared
- * to exit and restart. This switch lets us keep track of how far we got.
- * Note that each case falls through to the next on successful completion.
- */
- switch (main_ptr->context_state) {
- case CTX_POSTPONED_ROW:
- /* Call postprocessor using previously set pointers for postponed row */
- (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
- &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
- if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
- return; /* Need to suspend */
- main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
- if (*out_row_ctr >= out_rows_avail)
- return; /* Postprocessor exactly filled output buf */
- /*FALLTHROUGH*/
- case CTX_PREPARE_FOR_IMCU:
- /* Prepare to process first M-1 row groups of this iMCU row */
- main_ptr->rowgroup_ctr = 0;
- main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
- /* Check for bottom of image: if so, tweak pointers to "duplicate"
- * the last sample row, and adjust rowgroups_avail to ignore padding rows.
- */
- if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows)
- set_bottom_pointers(cinfo);
- main_ptr->context_state = CTX_PROCESS_IMCU;
- /*FALLTHROUGH*/
- case CTX_PROCESS_IMCU:
- /* Call postprocessor using previously set pointers */
- (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
- &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
- if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
- return; /* Need to suspend */
- /* After the first iMCU, change wraparound pointers to normal state */
- if (main_ptr->iMCU_row_ctr == 1)
- set_wraparound_pointers(cinfo);
- /* Prepare to load new iMCU row using other xbuffer list */
- main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */
- main_ptr->buffer_full = FALSE;
- /* Still need to process last row group of this iMCU row, */
- /* which is saved at index M+1 of the other xbuffer */
- main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
- main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
- main_ptr->context_state = CTX_POSTPONED_ROW;
- }
-}
-
-
-/*
- * Process some data.
- * Final pass of two-pass quantization: just call the postprocessor.
- * Source data will be the postprocessor controller's internal buffer.
- */
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-METHODDEF(void)
-process_data_crank_post (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
- (JDIMENSION *) NULL, (JDIMENSION) 0,
- output_buf, out_row_ctr, out_rows_avail);
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize main buffer controller.
- */
-
-GLOBAL(void)
-jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_main_ptr main_ptr;
- int ci, rgroup, ngroups;
- jpeg_component_info *compptr;
-
- main_ptr = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
- cinfo->main = (struct jpeg_d_main_controller *) main_ptr;
- main_ptr->pub.start_pass = start_pass_main;
-
- if (need_full_buffer) /* shouldn't happen */
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- /* Allocate the workspace.
- * ngroups is the number of row groups we need.
- */
- if (cinfo->upsample->need_context_rows) {
- if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
- ERREXIT(cinfo, JERR_NOTIMPL);
- alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
- ngroups = cinfo->min_DCT_v_scaled_size + 2;
- } else {
- ngroups = cinfo->min_DCT_v_scaled_size;
- }
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
- main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * compptr->DCT_h_scaled_size,
- (JDIMENSION) (rgroup * ngroups));
- }
-}
diff --git a/src/jpeg-8c/jdmarker.c b/src/jpeg-8c/jdmarker.c
deleted file mode 100644
index f2a9cc42..00000000
--- a/src/jpeg-8c/jdmarker.c
+++ /dev/null
@@ -1,1406 +0,0 @@
-/*
- * jdmarker.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * Modified 2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains routines to decode JPEG datastream markers.
- * Most of the complexity arises from our desire to support input
- * suspension: if not all of the data for a marker is available,
- * we must exit back to the application. On resumption, we reprocess
- * the marker.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-typedef enum { /* JPEG marker codes */
- M_SOF0 = 0xc0,
- M_SOF1 = 0xc1,
- M_SOF2 = 0xc2,
- M_SOF3 = 0xc3,
-
- M_SOF5 = 0xc5,
- M_SOF6 = 0xc6,
- M_SOF7 = 0xc7,
-
- M_JPG = 0xc8,
- M_SOF9 = 0xc9,
- M_SOF10 = 0xca,
- M_SOF11 = 0xcb,
-
- M_SOF13 = 0xcd,
- M_SOF14 = 0xce,
- M_SOF15 = 0xcf,
-
- M_DHT = 0xc4,
-
- M_DAC = 0xcc,
-
- M_RST0 = 0xd0,
- M_RST1 = 0xd1,
- M_RST2 = 0xd2,
- M_RST3 = 0xd3,
- M_RST4 = 0xd4,
- M_RST5 = 0xd5,
- M_RST6 = 0xd6,
- M_RST7 = 0xd7,
-
- M_SOI = 0xd8,
- M_EOI = 0xd9,
- M_SOS = 0xda,
- M_DQT = 0xdb,
- M_DNL = 0xdc,
- M_DRI = 0xdd,
- M_DHP = 0xde,
- M_EXP = 0xdf,
-
- M_APP0 = 0xe0,
- M_APP1 = 0xe1,
- M_APP2 = 0xe2,
- M_APP3 = 0xe3,
- M_APP4 = 0xe4,
- M_APP5 = 0xe5,
- M_APP6 = 0xe6,
- M_APP7 = 0xe7,
- M_APP8 = 0xe8,
- M_APP9 = 0xe9,
- M_APP10 = 0xea,
- M_APP11 = 0xeb,
- M_APP12 = 0xec,
- M_APP13 = 0xed,
- M_APP14 = 0xee,
- M_APP15 = 0xef,
-
- M_JPG0 = 0xf0,
- M_JPG13 = 0xfd,
- M_COM = 0xfe,
-
- M_TEM = 0x01,
-
- M_ERROR = 0x100
-} JPEG_MARKER;
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_marker_reader pub; /* public fields */
-
- /* Application-overridable marker processing methods */
- jpeg_marker_parser_method process_COM;
- jpeg_marker_parser_method process_APPn[16];
-
- /* Limit on marker data length to save for each marker type */
- unsigned int length_limit_COM;
- unsigned int length_limit_APPn[16];
-
- /* Status of COM/APPn marker saving */
- jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */
- unsigned int bytes_read; /* data bytes read so far in marker */
- /* Note: cur_marker is not linked into marker_list until it's all read. */
-} my_marker_reader;
-
-typedef my_marker_reader * my_marker_ptr;
-
-
-/*
- * Macros for fetching data from the data source module.
- *
- * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
- * the current restart point; we update them only when we have reached a
- * suitable place to restart if a suspension occurs.
- */
-
-/* Declare and initialize local copies of input pointer/count */
-#define INPUT_VARS(cinfo) \
- struct jpeg_source_mgr * datasrc = (cinfo)->src; \
- const JOCTET * next_input_byte = datasrc->next_input_byte; \
- size_t bytes_in_buffer = datasrc->bytes_in_buffer
-
-/* Unload the local copies --- do this only at a restart boundary */
-#define INPUT_SYNC(cinfo) \
- ( datasrc->next_input_byte = next_input_byte, \
- datasrc->bytes_in_buffer = bytes_in_buffer )
-
-/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */
-#define INPUT_RELOAD(cinfo) \
- ( next_input_byte = datasrc->next_input_byte, \
- bytes_in_buffer = datasrc->bytes_in_buffer )
-
-/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
- * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
- * but we must reload the local copies after a successful fill.
- */
-#define MAKE_BYTE_AVAIL(cinfo,action) \
- if (bytes_in_buffer == 0) { \
- if (! (*datasrc->fill_input_buffer) (cinfo)) \
- { action; } \
- INPUT_RELOAD(cinfo); \
- }
-
-/* Read a byte into variable V.
- * If must suspend, take the specified action (typically "return FALSE").
- */
-#define INPUT_BYTE(cinfo,V,action) \
- MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
- bytes_in_buffer--; \
- V = GETJOCTET(*next_input_byte++); )
-
-/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
- * V should be declared unsigned int or perhaps INT32.
- */
-#define INPUT_2BYTES(cinfo,V,action) \
- MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
- bytes_in_buffer--; \
- V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
- MAKE_BYTE_AVAIL(cinfo,action); \
- bytes_in_buffer--; \
- V += GETJOCTET(*next_input_byte++); )
-
-
-/*
- * Routines to process JPEG markers.
- *
- * Entry condition: JPEG marker itself has been read and its code saved
- * in cinfo->unread_marker; input restart point is just after the marker.
- *
- * Exit: if return TRUE, have read and processed any parameters, and have
- * updated the restart point to point after the parameters.
- * If return FALSE, was forced to suspend before reaching end of
- * marker parameters; restart point has not been moved. Same routine
- * will be called again after application supplies more input data.
- *
- * This approach to suspension assumes that all of a marker's parameters
- * can fit into a single input bufferload. This should hold for "normal"
- * markers. Some COM/APPn markers might have large parameter segments
- * that might not fit. If we are simply dropping such a marker, we use
- * skip_input_data to get past it, and thereby put the problem on the
- * source manager's shoulders. If we are saving the marker's contents
- * into memory, we use a slightly different convention: when forced to
- * suspend, the marker processor updates the restart point to the end of
- * what it's consumed (ie, the end of the buffer) before returning FALSE.
- * On resumption, cinfo->unread_marker still contains the marker code,
- * but the data source will point to the next chunk of marker data.
- * The marker processor must retain internal state to deal with this.
- *
- * Note that we don't bother to avoid duplicate trace messages if a
- * suspension occurs within marker parameters. Other side effects
- * require more care.
- */
-
-
-LOCAL(boolean)
-get_soi (j_decompress_ptr cinfo)
-/* Process an SOI marker */
-{
- int i;
-
- TRACEMS(cinfo, 1, JTRC_SOI);
-
- if (cinfo->marker->saw_SOI)
- ERREXIT(cinfo, JERR_SOI_DUPLICATE);
-
- /* Reset all parameters that are defined to be reset by SOI */
-
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- cinfo->arith_dc_L[i] = 0;
- cinfo->arith_dc_U[i] = 1;
- cinfo->arith_ac_K[i] = 5;
- }
- cinfo->restart_interval = 0;
-
- /* Set initial assumptions for colorspace etc */
-
- cinfo->jpeg_color_space = JCS_UNKNOWN;
- cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
-
- cinfo->saw_JFIF_marker = FALSE;
- cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */
- cinfo->JFIF_minor_version = 1;
- cinfo->density_unit = 0;
- cinfo->X_density = 1;
- cinfo->Y_density = 1;
- cinfo->saw_Adobe_marker = FALSE;
- cinfo->Adobe_transform = 0;
-
- cinfo->marker->saw_SOI = TRUE;
-
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_sof (j_decompress_ptr cinfo, boolean is_baseline, boolean is_prog,
- boolean is_arith)
-/* Process a SOFn marker */
-{
- INT32 length;
- int c, ci;
- jpeg_component_info * compptr;
- INPUT_VARS(cinfo);
-
- cinfo->is_baseline = is_baseline;
- cinfo->progressive_mode = is_prog;
- cinfo->arith_code = is_arith;
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
- INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
- INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
- INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
-
- length -= 8;
-
- TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
- (int) cinfo->image_width, (int) cinfo->image_height,
- cinfo->num_components);
-
- if (cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOF_DUPLICATE);
-
- /* We don't support files in which the image height is initially specified */
- /* as 0 and is later redefined by DNL. As long as we have to check that, */
- /* might as well have a general sanity check. */
- if (cinfo->image_height <= 0 || cinfo->image_width <= 0
- || cinfo->num_components <= 0)
- ERREXIT(cinfo, JERR_EMPTY_IMAGE);
-
- if (length != (cinfo->num_components * 3))
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- if (cinfo->comp_info == NULL) /* do only once, even if suspend */
- cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * SIZEOF(jpeg_component_info));
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->component_index = ci;
- INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
- INPUT_BYTE(cinfo, c, return FALSE);
- compptr->h_samp_factor = (c >> 4) & 15;
- compptr->v_samp_factor = (c ) & 15;
- INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
-
- TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
- compptr->component_id, compptr->h_samp_factor,
- compptr->v_samp_factor, compptr->quant_tbl_no);
- }
-
- cinfo->marker->saw_SOF = TRUE;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_sos (j_decompress_ptr cinfo)
-/* Process a SOS marker */
-{
- INT32 length;
- int i, ci, n, c, cc;
- jpeg_component_info * compptr;
- INPUT_VARS(cinfo);
-
- if (! cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOS_NO_SOF);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
-
- TRACEMS1(cinfo, 1, JTRC_SOS, n);
-
- if (length != (n * 2 + 6) || n > MAX_COMPS_IN_SCAN ||
- (n == 0 && !cinfo->progressive_mode))
- /* pseudo SOS marker only allowed in progressive mode */
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- cinfo->comps_in_scan = n;
-
- /* Collect the component-spec parameters */
-
- for (i = 0; i < n; i++) {
- INPUT_BYTE(cinfo, cc, return FALSE);
- INPUT_BYTE(cinfo, c, return FALSE);
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (cc == compptr->component_id)
- goto id_found;
- }
-
- ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
-
- id_found:
-
- cinfo->cur_comp_info[i] = compptr;
- compptr->dc_tbl_no = (c >> 4) & 15;
- compptr->ac_tbl_no = (c ) & 15;
-
- TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
- compptr->dc_tbl_no, compptr->ac_tbl_no);
- }
-
- /* Collect the additional scan parameters Ss, Se, Ah/Al. */
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Ss = c;
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Se = c;
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Ah = (c >> 4) & 15;
- cinfo->Al = (c ) & 15;
-
- TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
- cinfo->Ah, cinfo->Al);
-
- /* Prepare to scan data & restart markers */
- cinfo->marker->next_restart_num = 0;
-
- /* Count another (non-pseudo) SOS marker */
- if (n) cinfo->input_scan_number++;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-#ifdef D_ARITH_CODING_SUPPORTED
-
-LOCAL(boolean)
-get_dac (j_decompress_ptr cinfo)
-/* Process a DAC marker */
-{
- INT32 length;
- int index, val;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- INPUT_BYTE(cinfo, index, return FALSE);
- INPUT_BYTE(cinfo, val, return FALSE);
-
- length -= 2;
-
- TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
-
- if (index < 0 || index >= (2*NUM_ARITH_TBLS))
- ERREXIT1(cinfo, JERR_DAC_INDEX, index);
-
- if (index >= NUM_ARITH_TBLS) { /* define AC table */
- cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
- } else { /* define DC table */
- cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
- cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
- if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
- ERREXIT1(cinfo, JERR_DAC_VALUE, val);
- }
- }
-
- if (length != 0)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-#else /* ! D_ARITH_CODING_SUPPORTED */
-
-#define get_dac(cinfo) skip_variable(cinfo)
-
-#endif /* D_ARITH_CODING_SUPPORTED */
-
-
-LOCAL(boolean)
-get_dht (j_decompress_ptr cinfo)
-/* Process a DHT marker */
-{
- INT32 length;
- UINT8 bits[17];
- UINT8 huffval[256];
- int i, index, count;
- JHUFF_TBL **htblptr;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 16) {
- INPUT_BYTE(cinfo, index, return FALSE);
-
- TRACEMS1(cinfo, 1, JTRC_DHT, index);
-
- bits[0] = 0;
- count = 0;
- for (i = 1; i <= 16; i++) {
- INPUT_BYTE(cinfo, bits[i], return FALSE);
- count += bits[i];
- }
-
- length -= 1 + 16;
-
- TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
- bits[1], bits[2], bits[3], bits[4],
- bits[5], bits[6], bits[7], bits[8]);
- TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
- bits[9], bits[10], bits[11], bits[12],
- bits[13], bits[14], bits[15], bits[16]);
-
- /* Here we just do minimal validation of the counts to avoid walking
- * off the end of our table space. jdhuff.c will check more carefully.
- */
- if (count > 256 || ((INT32) count) > length)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
-
- for (i = 0; i < count; i++)
- INPUT_BYTE(cinfo, huffval[i], return FALSE);
-
- length -= count;
-
- if (index & 0x10) { /* AC table definition */
- index -= 0x10;
- htblptr = &cinfo->ac_huff_tbl_ptrs[index];
- } else { /* DC table definition */
- htblptr = &cinfo->dc_huff_tbl_ptrs[index];
- }
-
- if (index < 0 || index >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_DHT_INDEX, index);
-
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
-
- MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
- MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
- }
-
- if (length != 0)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_dqt (j_decompress_ptr cinfo)
-/* Process a DQT marker */
-{
- INT32 length, count, i;
- int n, prec;
- unsigned int tmp;
- JQUANT_TBL *quant_ptr;
- const int *natural_order;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- length--;
- INPUT_BYTE(cinfo, n, return FALSE);
- prec = n >> 4;
- n &= 0x0F;
-
- TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
-
- if (n >= NUM_QUANT_TBLS)
- ERREXIT1(cinfo, JERR_DQT_INDEX, n);
-
- if (cinfo->quant_tbl_ptrs[n] == NULL)
- cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
- quant_ptr = cinfo->quant_tbl_ptrs[n];
-
- if (prec) {
- if (length < DCTSIZE2 * 2) {
- /* Initialize full table for safety. */
- for (i = 0; i < DCTSIZE2; i++) {
- quant_ptr->quantval[i] = 1;
- }
- count = length >> 1;
- } else
- count = DCTSIZE2;
- } else {
- if (length < DCTSIZE2) {
- /* Initialize full table for safety. */
- for (i = 0; i < DCTSIZE2; i++) {
- quant_ptr->quantval[i] = 1;
- }
- count = length;
- } else
- count = DCTSIZE2;
- }
-
- switch (count) {
- case (2*2): natural_order = jpeg_natural_order2; break;
- case (3*3): natural_order = jpeg_natural_order3; break;
- case (4*4): natural_order = jpeg_natural_order4; break;
- case (5*5): natural_order = jpeg_natural_order5; break;
- case (6*6): natural_order = jpeg_natural_order6; break;
- case (7*7): natural_order = jpeg_natural_order7; break;
- default: natural_order = jpeg_natural_order; break;
- }
-
- for (i = 0; i < count; i++) {
- if (prec)
- INPUT_2BYTES(cinfo, tmp, return FALSE);
- else
- INPUT_BYTE(cinfo, tmp, return FALSE);
- /* We convert the zigzag-order table to natural array order. */
- quant_ptr->quantval[natural_order[i]] = (UINT16) tmp;
- }
-
- if (cinfo->err->trace_level >= 2) {
- for (i = 0; i < DCTSIZE2; i += 8) {
- TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
- quant_ptr->quantval[i], quant_ptr->quantval[i+1],
- quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
- quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
- quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
- }
- }
-
- length -= count;
- if (prec) length -= count;
- }
-
- if (length != 0)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_dri (j_decompress_ptr cinfo)
-/* Process a DRI marker */
-{
- INT32 length;
- unsigned int tmp;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- if (length != 4)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_2BYTES(cinfo, tmp, return FALSE);
-
- TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
-
- cinfo->restart_interval = tmp;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-/*
- * Routines for processing APPn and COM markers.
- * These are either saved in memory or discarded, per application request.
- * APP0 and APP14 are specially checked to see if they are
- * JFIF and Adobe markers, respectively.
- */
-
-#define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */
-#define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */
-#define APPN_DATA_LEN 14 /* Must be the largest of the above!! */
-
-
-LOCAL(void)
-examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
- unsigned int datalen, INT32 remaining)
-/* Examine first few bytes from an APP0.
- * Take appropriate action if it is a JFIF marker.
- * datalen is # of bytes at data[], remaining is length of rest of marker data.
- */
-{
- INT32 totallen = (INT32) datalen + remaining;
-
- if (datalen >= APP0_DATA_LEN &&
- GETJOCTET(data[0]) == 0x4A &&
- GETJOCTET(data[1]) == 0x46 &&
- GETJOCTET(data[2]) == 0x49 &&
- GETJOCTET(data[3]) == 0x46 &&
- GETJOCTET(data[4]) == 0) {
- /* Found JFIF APP0 marker: save info */
- cinfo->saw_JFIF_marker = TRUE;
- cinfo->JFIF_major_version = GETJOCTET(data[5]);
- cinfo->JFIF_minor_version = GETJOCTET(data[6]);
- cinfo->density_unit = GETJOCTET(data[7]);
- cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
- cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
- /* Check version.
- * Major version must be 1, anything else signals an incompatible change.
- * (We used to treat this as an error, but now it's a nonfatal warning,
- * because some bozo at Hijaak couldn't read the spec.)
- * Minor version should be 0..2, but process anyway if newer.
- */
- if (cinfo->JFIF_major_version != 1)
- WARNMS2(cinfo, JWRN_JFIF_MAJOR,
- cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
- /* Generate trace messages */
- TRACEMS5(cinfo, 1, JTRC_JFIF,
- cinfo->JFIF_major_version, cinfo->JFIF_minor_version,
- cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
- /* Validate thumbnail dimensions and issue appropriate messages */
- if (GETJOCTET(data[12]) | GETJOCTET(data[13]))
- TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL,
- GETJOCTET(data[12]), GETJOCTET(data[13]));
- totallen -= APP0_DATA_LEN;
- if (totallen !=
- ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3))
- TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen);
- } else if (datalen >= 6 &&
- GETJOCTET(data[0]) == 0x4A &&
- GETJOCTET(data[1]) == 0x46 &&
- GETJOCTET(data[2]) == 0x58 &&
- GETJOCTET(data[3]) == 0x58 &&
- GETJOCTET(data[4]) == 0) {
- /* Found JFIF "JFXX" extension APP0 marker */
- /* The library doesn't actually do anything with these,
- * but we try to produce a helpful trace message.
- */
- switch (GETJOCTET(data[5])) {
- case 0x10:
- TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen);
- break;
- case 0x11:
- TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen);
- break;
- case 0x13:
- TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen);
- break;
- default:
- TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION,
- GETJOCTET(data[5]), (int) totallen);
- break;
- }
- } else {
- /* Start of APP0 does not match "JFIF" or "JFXX", or too short */
- TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen);
- }
-}
-
-
-LOCAL(void)
-examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data,
- unsigned int datalen, INT32 remaining)
-/* Examine first few bytes from an APP14.
- * Take appropriate action if it is an Adobe marker.
- * datalen is # of bytes at data[], remaining is length of rest of marker data.
- */
-{
- unsigned int version, flags0, flags1, transform;
-
- if (datalen >= APP14_DATA_LEN &&
- GETJOCTET(data[0]) == 0x41 &&
- GETJOCTET(data[1]) == 0x64 &&
- GETJOCTET(data[2]) == 0x6F &&
- GETJOCTET(data[3]) == 0x62 &&
- GETJOCTET(data[4]) == 0x65) {
- /* Found Adobe APP14 marker */
- version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]);
- flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]);
- flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]);
- transform = GETJOCTET(data[11]);
- TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
- cinfo->saw_Adobe_marker = TRUE;
- cinfo->Adobe_transform = (UINT8) transform;
- } else {
- /* Start of APP14 does not match "Adobe", or too short */
- TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining));
- }
-}
-
-
-METHODDEF(boolean)
-get_interesting_appn (j_decompress_ptr cinfo)
-/* Process an APP0 or APP14 marker without saving it */
-{
- INT32 length;
- JOCTET b[APPN_DATA_LEN];
- unsigned int i, numtoread;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- /* get the interesting part of the marker data */
- if (length >= APPN_DATA_LEN)
- numtoread = APPN_DATA_LEN;
- else if (length > 0)
- numtoread = (unsigned int) length;
- else
- numtoread = 0;
- for (i = 0; i < numtoread; i++)
- INPUT_BYTE(cinfo, b[i], return FALSE);
- length -= numtoread;
-
- /* process it */
- switch (cinfo->unread_marker) {
- case M_APP0:
- examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length);
- break;
- case M_APP14:
- examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length);
- break;
- default:
- /* can't get here unless jpeg_save_markers chooses wrong processor */
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
- break;
- }
-
- /* skip any remaining data -- could be lots */
- INPUT_SYNC(cinfo);
- if (length > 0)
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-
-#ifdef SAVE_MARKERS_SUPPORTED
-
-METHODDEF(boolean)
-save_marker (j_decompress_ptr cinfo)
-/* Save an APPn or COM marker into the marker list */
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
- jpeg_saved_marker_ptr cur_marker = marker->cur_marker;
- unsigned int bytes_read, data_length;
- JOCTET FAR * data;
- INT32 length = 0;
- INPUT_VARS(cinfo);
-
- if (cur_marker == NULL) {
- /* begin reading a marker */
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
- if (length >= 0) { /* watch out for bogus length word */
- /* figure out how much we want to save */
- unsigned int limit;
- if (cinfo->unread_marker == (int) M_COM)
- limit = marker->length_limit_COM;
- else
- limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0];
- if ((unsigned int) length < limit)
- limit = (unsigned int) length;
- /* allocate and initialize the marker item */
- cur_marker = (jpeg_saved_marker_ptr)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(struct jpeg_marker_struct) + limit);
- cur_marker->next = NULL;
- cur_marker->marker = (UINT8) cinfo->unread_marker;
- cur_marker->original_length = (unsigned int) length;
- cur_marker->data_length = limit;
- /* data area is just beyond the jpeg_marker_struct */
- data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1);
- marker->cur_marker = cur_marker;
- marker->bytes_read = 0;
- bytes_read = 0;
- data_length = limit;
- } else {
- /* deal with bogus length word */
- bytes_read = data_length = 0;
- data = NULL;
- }
- } else {
- /* resume reading a marker */
- bytes_read = marker->bytes_read;
- data_length = cur_marker->data_length;
- data = cur_marker->data + bytes_read;
- }
-
- while (bytes_read < data_length) {
- INPUT_SYNC(cinfo); /* move the restart point to here */
- marker->bytes_read = bytes_read;
- /* If there's not at least one byte in buffer, suspend */
- MAKE_BYTE_AVAIL(cinfo, return FALSE);
- /* Copy bytes with reasonable rapidity */
- while (bytes_read < data_length && bytes_in_buffer > 0) {
- *data++ = *next_input_byte++;
- bytes_in_buffer--;
- bytes_read++;
- }
- }
-
- /* Done reading what we want to read */
- if (cur_marker != NULL) { /* will be NULL if bogus length word */
- /* Add new marker to end of list */
- if (cinfo->marker_list == NULL) {
- cinfo->marker_list = cur_marker;
- } else {
- jpeg_saved_marker_ptr prev = cinfo->marker_list;
- while (prev->next != NULL)
- prev = prev->next;
- prev->next = cur_marker;
- }
- /* Reset pointer & calc remaining data length */
- data = cur_marker->data;
- length = cur_marker->original_length - data_length;
- }
- /* Reset to initial state for next marker */
- marker->cur_marker = NULL;
-
- /* Process the marker if interesting; else just make a generic trace msg */
- switch (cinfo->unread_marker) {
- case M_APP0:
- examine_app0(cinfo, data, data_length, length);
- break;
- case M_APP14:
- examine_app14(cinfo, data, data_length, length);
- break;
- default:
- TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker,
- (int) (data_length + length));
- break;
- }
-
- /* skip any remaining data -- could be lots */
- INPUT_SYNC(cinfo); /* do before skip_input_data */
- if (length > 0)
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-#endif /* SAVE_MARKERS_SUPPORTED */
-
-
-METHODDEF(boolean)
-skip_variable (j_decompress_ptr cinfo)
-/* Skip over an unknown or uninteresting variable-length marker */
-{
- INT32 length;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
-
- INPUT_SYNC(cinfo); /* do before skip_input_data */
- if (length > 0)
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-
-/*
- * Find the next JPEG marker, save it in cinfo->unread_marker.
- * Returns FALSE if had to suspend before reaching a marker;
- * in that case cinfo->unread_marker is unchanged.
- *
- * Note that the result might not be a valid marker code,
- * but it will never be 0 or FF.
- */
-
-LOCAL(boolean)
-next_marker (j_decompress_ptr cinfo)
-{
- int c;
- INPUT_VARS(cinfo);
-
- for (;;) {
- INPUT_BYTE(cinfo, c, return FALSE);
- /* Skip any non-FF bytes.
- * This may look a bit inefficient, but it will not occur in a valid file.
- * We sync after each discarded byte so that a suspending data source
- * can discard the byte from its buffer.
- */
- while (c != 0xFF) {
- cinfo->marker->discarded_bytes++;
- INPUT_SYNC(cinfo);
- INPUT_BYTE(cinfo, c, return FALSE);
- }
- /* This loop swallows any duplicate FF bytes. Extra FFs are legal as
- * pad bytes, so don't count them in discarded_bytes. We assume there
- * will not be so many consecutive FF bytes as to overflow a suspending
- * data source's input buffer.
- */
- do {
- INPUT_BYTE(cinfo, c, return FALSE);
- } while (c == 0xFF);
- if (c != 0)
- break; /* found a valid marker, exit loop */
- /* Reach here if we found a stuffed-zero data sequence (FF/00).
- * Discard it and loop back to try again.
- */
- cinfo->marker->discarded_bytes += 2;
- INPUT_SYNC(cinfo);
- }
-
- if (cinfo->marker->discarded_bytes != 0) {
- WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
- cinfo->marker->discarded_bytes = 0;
- }
-
- cinfo->unread_marker = c;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-first_marker (j_decompress_ptr cinfo)
-/* Like next_marker, but used to obtain the initial SOI marker. */
-/* For this marker, we do not allow preceding garbage or fill; otherwise,
- * we might well scan an entire input file before realizing it ain't JPEG.
- * If an application wants to process non-JFIF files, it must seek to the
- * SOI before calling the JPEG library.
- */
-{
- int c, c2;
- INPUT_VARS(cinfo);
-
- INPUT_BYTE(cinfo, c, return FALSE);
- INPUT_BYTE(cinfo, c2, return FALSE);
- if (c != 0xFF || c2 != (int) M_SOI)
- ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
-
- cinfo->unread_marker = c2;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-/*
- * Read markers until SOS or EOI.
- *
- * Returns same codes as are defined for jpeg_consume_input:
- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- *
- * Note: This function may return a pseudo SOS marker (with zero
- * component number) for treat by input controller's consume_input.
- * consume_input itself should filter out (skip) the pseudo marker
- * after processing for the caller.
- */
-
-METHODDEF(int)
-read_markers (j_decompress_ptr cinfo)
-{
- /* Outer loop repeats once for each marker. */
- for (;;) {
- /* Collect the marker proper, unless we already did. */
- /* NB: first_marker() enforces the requirement that SOI appear first. */
- if (cinfo->unread_marker == 0) {
- if (! cinfo->marker->saw_SOI) {
- if (! first_marker(cinfo))
- return JPEG_SUSPENDED;
- } else {
- if (! next_marker(cinfo))
- return JPEG_SUSPENDED;
- }
- }
- /* At this point cinfo->unread_marker contains the marker code and the
- * input point is just past the marker proper, but before any parameters.
- * A suspension will cause us to return with this state still true.
- */
- switch (cinfo->unread_marker) {
- case M_SOI:
- if (! get_soi(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF0: /* Baseline */
- if (! get_sof(cinfo, TRUE, FALSE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF1: /* Extended sequential, Huffman */
- if (! get_sof(cinfo, FALSE, FALSE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF2: /* Progressive, Huffman */
- if (! get_sof(cinfo, FALSE, TRUE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF9: /* Extended sequential, arithmetic */
- if (! get_sof(cinfo, FALSE, FALSE, TRUE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF10: /* Progressive, arithmetic */
- if (! get_sof(cinfo, FALSE, TRUE, TRUE))
- return JPEG_SUSPENDED;
- break;
-
- /* Currently unsupported SOFn types */
- case M_SOF3: /* Lossless, Huffman */
- case M_SOF5: /* Differential sequential, Huffman */
- case M_SOF6: /* Differential progressive, Huffman */
- case M_SOF7: /* Differential lossless, Huffman */
- case M_JPG: /* Reserved for JPEG extensions */
- case M_SOF11: /* Lossless, arithmetic */
- case M_SOF13: /* Differential sequential, arithmetic */
- case M_SOF14: /* Differential progressive, arithmetic */
- case M_SOF15: /* Differential lossless, arithmetic */
- ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
- break;
-
- case M_SOS:
- if (! get_sos(cinfo))
- return JPEG_SUSPENDED;
- cinfo->unread_marker = 0; /* processed the marker */
- return JPEG_REACHED_SOS;
-
- case M_EOI:
- TRACEMS(cinfo, 1, JTRC_EOI);
- cinfo->unread_marker = 0; /* processed the marker */
- return JPEG_REACHED_EOI;
-
- case M_DAC:
- if (! get_dac(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DHT:
- if (! get_dht(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DQT:
- if (! get_dqt(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DRI:
- if (! get_dri(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_APP0:
- case M_APP1:
- case M_APP2:
- case M_APP3:
- case M_APP4:
- case M_APP5:
- case M_APP6:
- case M_APP7:
- case M_APP8:
- case M_APP9:
- case M_APP10:
- case M_APP11:
- case M_APP12:
- case M_APP13:
- case M_APP14:
- case M_APP15:
- if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[
- cinfo->unread_marker - (int) M_APP0]) (cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_COM:
- if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_RST0: /* these are all parameterless */
- case M_RST1:
- case M_RST2:
- case M_RST3:
- case M_RST4:
- case M_RST5:
- case M_RST6:
- case M_RST7:
- case M_TEM:
- TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
- break;
-
- case M_DNL: /* Ignore DNL ... perhaps the wrong thing */
- if (! skip_variable(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- default: /* must be DHP, EXP, JPGn, or RESn */
- /* For now, we treat the reserved markers as fatal errors since they are
- * likely to be used to signal incompatible JPEG Part 3 extensions.
- * Once the JPEG 3 version-number marker is well defined, this code
- * ought to change!
- */
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
- break;
- }
- /* Successfully processed marker, so reset state variable */
- cinfo->unread_marker = 0;
- } /* end loop */
-}
-
-
-/*
- * Read a restart marker, which is expected to appear next in the datastream;
- * if the marker is not there, take appropriate recovery action.
- * Returns FALSE if suspension is required.
- *
- * This is called by the entropy decoder after it has read an appropriate
- * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder
- * has already read a marker from the data source. Under normal conditions
- * cinfo->unread_marker will be reset to 0 before returning; if not reset,
- * it holds a marker which the decoder will be unable to read past.
- */
-
-METHODDEF(boolean)
-read_restart_marker (j_decompress_ptr cinfo)
-{
- /* Obtain a marker unless we already did. */
- /* Note that next_marker will complain if it skips any data. */
- if (cinfo->unread_marker == 0) {
- if (! next_marker(cinfo))
- return FALSE;
- }
-
- if (cinfo->unread_marker ==
- ((int) M_RST0 + cinfo->marker->next_restart_num)) {
- /* Normal case --- swallow the marker and let entropy decoder continue */
- TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num);
- cinfo->unread_marker = 0;
- } else {
- /* Uh-oh, the restart markers have been messed up. */
- /* Let the data source manager determine how to resync. */
- if (! (*cinfo->src->resync_to_restart) (cinfo,
- cinfo->marker->next_restart_num))
- return FALSE;
- }
-
- /* Update next-restart state */
- cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
-
- return TRUE;
-}
-
-
-/*
- * This is the default resync_to_restart method for data source managers
- * to use if they don't have any better approach. Some data source managers
- * may be able to back up, or may have additional knowledge about the data
- * which permits a more intelligent recovery strategy; such managers would
- * presumably supply their own resync method.
- *
- * read_restart_marker calls resync_to_restart if it finds a marker other than
- * the restart marker it was expecting. (This code is *not* used unless
- * a nonzero restart interval has been declared.) cinfo->unread_marker is
- * the marker code actually found (might be anything, except 0 or FF).
- * The desired restart marker number (0..7) is passed as a parameter.
- * This routine is supposed to apply whatever error recovery strategy seems
- * appropriate in order to position the input stream to the next data segment.
- * Note that cinfo->unread_marker is treated as a marker appearing before
- * the current data-source input point; usually it should be reset to zero
- * before returning.
- * Returns FALSE if suspension is required.
- *
- * This implementation is substantially constrained by wanting to treat the
- * input as a data stream; this means we can't back up. Therefore, we have
- * only the following actions to work with:
- * 1. Simply discard the marker and let the entropy decoder resume at next
- * byte of file.
- * 2. Read forward until we find another marker, discarding intervening
- * data. (In theory we could look ahead within the current bufferload,
- * without having to discard data if we don't find the desired marker.
- * This idea is not implemented here, in part because it makes behavior
- * dependent on buffer size and chance buffer-boundary positions.)
- * 3. Leave the marker unread (by failing to zero cinfo->unread_marker).
- * This will cause the entropy decoder to process an empty data segment,
- * inserting dummy zeroes, and then we will reprocess the marker.
- *
- * #2 is appropriate if we think the desired marker lies ahead, while #3 is
- * appropriate if the found marker is a future restart marker (indicating
- * that we have missed the desired restart marker, probably because it got
- * corrupted).
- * We apply #2 or #3 if the found marker is a restart marker no more than
- * two counts behind or ahead of the expected one. We also apply #2 if the
- * found marker is not a legal JPEG marker code (it's certainly bogus data).
- * If the found marker is a restart marker more than 2 counts away, we do #1
- * (too much risk that the marker is erroneous; with luck we will be able to
- * resync at some future point).
- * For any valid non-restart JPEG marker, we apply #3. This keeps us from
- * overrunning the end of a scan. An implementation limited to single-scan
- * files might find it better to apply #2 for markers other than EOI, since
- * any other marker would have to be bogus data in that case.
- */
-
-GLOBAL(boolean)
-jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
-{
- int marker = cinfo->unread_marker;
- int action = 1;
-
- /* Always put up a warning. */
- WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
-
- /* Outer loop handles repeated decision after scanning forward. */
- for (;;) {
- if (marker < (int) M_SOF0)
- action = 2; /* invalid marker */
- else if (marker < (int) M_RST0 || marker > (int) M_RST7)
- action = 3; /* valid non-restart marker */
- else {
- if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
- marker == ((int) M_RST0 + ((desired+2) & 7)))
- action = 3; /* one of the next two expected restarts */
- else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
- marker == ((int) M_RST0 + ((desired-2) & 7)))
- action = 2; /* a prior restart, so advance */
- else
- action = 1; /* desired restart or too far away */
- }
- TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
- switch (action) {
- case 1:
- /* Discard marker and let entropy decoder resume processing. */
- cinfo->unread_marker = 0;
- return TRUE;
- case 2:
- /* Scan to the next marker, and repeat the decision loop. */
- if (! next_marker(cinfo))
- return FALSE;
- marker = cinfo->unread_marker;
- break;
- case 3:
- /* Return without advancing past this marker. */
- /* Entropy decoder will be forced to process an empty segment. */
- return TRUE;
- }
- } /* end loop */
-}
-
-
-/*
- * Reset marker processing state to begin a fresh datastream.
- */
-
-METHODDEF(void)
-reset_marker_reader (j_decompress_ptr cinfo)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
-
- cinfo->comp_info = NULL; /* until allocated by get_sof */
- cinfo->input_scan_number = 0; /* no SOS seen yet */
- cinfo->unread_marker = 0; /* no pending marker */
- marker->pub.saw_SOI = FALSE; /* set internal state too */
- marker->pub.saw_SOF = FALSE;
- marker->pub.discarded_bytes = 0;
- marker->cur_marker = NULL;
-}
-
-
-/*
- * Initialize the marker reader module.
- * This is called only once, when the decompression object is created.
- */
-
-GLOBAL(void)
-jinit_marker_reader (j_decompress_ptr cinfo)
-{
- my_marker_ptr marker;
- int i;
-
- /* Create subobject in permanent pool */
- marker = (my_marker_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_marker_reader));
- cinfo->marker = (struct jpeg_marker_reader *) marker;
- /* Initialize public method pointers */
- marker->pub.reset_marker_reader = reset_marker_reader;
- marker->pub.read_markers = read_markers;
- marker->pub.read_restart_marker = read_restart_marker;
- /* Initialize COM/APPn processing.
- * By default, we examine and then discard APP0 and APP14,
- * but simply discard COM and all other APPn.
- */
- marker->process_COM = skip_variable;
- marker->length_limit_COM = 0;
- for (i = 0; i < 16; i++) {
- marker->process_APPn[i] = skip_variable;
- marker->length_limit_APPn[i] = 0;
- }
- marker->process_APPn[0] = get_interesting_appn;
- marker->process_APPn[14] = get_interesting_appn;
- /* Reset marker processing state */
- reset_marker_reader(cinfo);
-}
-
-
-/*
- * Control saving of COM and APPn markers into marker_list.
- */
-
-#ifdef SAVE_MARKERS_SUPPORTED
-
-GLOBAL(void)
-jpeg_save_markers (j_decompress_ptr cinfo, int marker_code,
- unsigned int length_limit)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
- long maxlength;
- jpeg_marker_parser_method processor;
-
- /* Length limit mustn't be larger than what we can allocate
- * (should only be a concern in a 16-bit environment).
- */
- maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct);
- if (((long) length_limit) > maxlength)
- length_limit = (unsigned int) maxlength;
-
- /* Choose processor routine to use.
- * APP0/APP14 have special requirements.
- */
- if (length_limit) {
- processor = save_marker;
- /* If saving APP0/APP14, save at least enough for our internal use. */
- if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN)
- length_limit = APP0_DATA_LEN;
- else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN)
- length_limit = APP14_DATA_LEN;
- } else {
- processor = skip_variable;
- /* If discarding APP0/APP14, use our regular on-the-fly processor. */
- if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14)
- processor = get_interesting_appn;
- }
-
- if (marker_code == (int) M_COM) {
- marker->process_COM = processor;
- marker->length_limit_COM = length_limit;
- } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) {
- marker->process_APPn[marker_code - (int) M_APP0] = processor;
- marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit;
- } else
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
-}
-
-#endif /* SAVE_MARKERS_SUPPORTED */
-
-
-/*
- * Install a special processing method for COM or APPn markers.
- */
-
-GLOBAL(void)
-jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
- jpeg_marker_parser_method routine)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
-
- if (marker_code == (int) M_COM)
- marker->process_COM = routine;
- else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
- marker->process_APPn[marker_code - (int) M_APP0] = routine;
- else
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
-}
diff --git a/src/jpeg-8c/jdmaster.c b/src/jpeg-8c/jdmaster.c
deleted file mode 100644
index 8c1146e4..00000000
--- a/src/jpeg-8c/jdmaster.c
+++ /dev/null
@@ -1,533 +0,0 @@
-/*
- * jdmaster.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2002-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains master control logic for the JPEG decompressor.
- * These routines are concerned with selecting the modules to be executed
- * and with determining the number of passes and the work to be done in each
- * pass.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_decomp_master pub; /* public fields */
-
- int pass_number; /* # of passes completed */
-
- boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
-
- /* Saved references to initialized quantizer modules,
- * in case we need to switch modes.
- */
- struct jpeg_color_quantizer * quantizer_1pass;
- struct jpeg_color_quantizer * quantizer_2pass;
-} my_decomp_master;
-
-typedef my_decomp_master * my_master_ptr;
-
-
-/*
- * Determine whether merged upsample/color conversion should be used.
- * CRUCIAL: this must match the actual capabilities of jdmerge.c!
- */
-
-LOCAL(boolean)
-use_merged_upsample (j_decompress_ptr cinfo)
-{
-#ifdef UPSAMPLE_MERGING_SUPPORTED
- /* Merging is the equivalent of plain box-filter upsampling */
- if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
- return FALSE;
- /* jdmerge.c only supports YCC=>RGB color conversion */
- if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
- cinfo->out_color_space != JCS_RGB ||
- cinfo->out_color_components != RGB_PIXELSIZE)
- return FALSE;
- /* and it only handles 2h1v or 2h2v sampling ratios */
- if (cinfo->comp_info[0].h_samp_factor != 2 ||
- cinfo->comp_info[1].h_samp_factor != 1 ||
- cinfo->comp_info[2].h_samp_factor != 1 ||
- cinfo->comp_info[0].v_samp_factor > 2 ||
- cinfo->comp_info[1].v_samp_factor != 1 ||
- cinfo->comp_info[2].v_samp_factor != 1)
- return FALSE;
- /* furthermore, it doesn't work if we've scaled the IDCTs differently */
- if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
- cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
- cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
- cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
- cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
- cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
- return FALSE;
- /* ??? also need to test for upsample-time rescaling, when & if supported */
- return TRUE; /* by golly, it'll work... */
-#else
- return FALSE;
-#endif
-}
-
-
-/*
- * Compute output image dimensions and related values.
- * NOTE: this is exported for possible use by application.
- * Hence it mustn't do anything that can't be done twice.
- * Also note that it may be called before the master module is initialized!
- */
-
-GLOBAL(void)
-jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
-/* Do computations that are needed before master selection phase.
- * This function is used for full decompression.
- */
-{
-#ifdef IDCT_SCALING_SUPPORTED
- int ci;
- jpeg_component_info *compptr;
-#endif
-
- /* Prevent application from calling me at wrong times */
- if (cinfo->global_state != DSTATE_READY)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* Compute core output image dimensions and DCT scaling choices. */
- jpeg_core_output_dimensions(cinfo);
-
-#ifdef IDCT_SCALING_SUPPORTED
-
- /* In selecting the actual DCT scaling for each component, we try to
- * scale up the chroma components via IDCT scaling rather than upsampling.
- * This saves time if the upsampler gets to use 1:1 scaling.
- * Note this code adapts subsampling ratios which are powers of 2.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- int ssize = 1;
- while (cinfo->min_DCT_h_scaled_size * ssize <=
- (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
- (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
- ssize = ssize * 2;
- }
- compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
- ssize = 1;
- while (cinfo->min_DCT_v_scaled_size * ssize <=
- (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
- (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
- ssize = ssize * 2;
- }
- compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
-
- /* We don't support IDCT ratios larger than 2. */
- if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
- compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
- else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
- compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
- }
-
- /* Recompute downsampled dimensions of components;
- * application needs to know these if using raw downsampled data.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Size in samples, after IDCT scaling */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width *
- (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
- (long) (cinfo->max_h_samp_factor * cinfo->block_size));
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height *
- (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
- (long) (cinfo->max_v_samp_factor * cinfo->block_size));
- }
-
-#endif /* IDCT_SCALING_SUPPORTED */
-
- /* Report number of components in selected colorspace. */
- /* Probably this should be in the color conversion module... */
- switch (cinfo->out_color_space) {
- case JCS_GRAYSCALE:
- cinfo->out_color_components = 1;
- break;
- case JCS_RGB:
-#if RGB_PIXELSIZE != 3
- cinfo->out_color_components = RGB_PIXELSIZE;
- break;
-#endif /* else share code with YCbCr */
- case JCS_YCbCr:
- cinfo->out_color_components = 3;
- break;
- case JCS_CMYK:
- case JCS_YCCK:
- cinfo->out_color_components = 4;
- break;
- default: /* else must be same colorspace as in file */
- cinfo->out_color_components = cinfo->num_components;
- break;
- }
- cinfo->output_components = (cinfo->quantize_colors ? 1 :
- cinfo->out_color_components);
-
- /* See if upsampler will want to emit more than one row at a time */
- if (use_merged_upsample(cinfo))
- cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
- else
- cinfo->rec_outbuf_height = 1;
-}
-
-
-/*
- * Several decompression processes need to range-limit values to the range
- * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
- * due to noise introduced by quantization, roundoff error, etc. These
- * processes are inner loops and need to be as fast as possible. On most
- * machines, particularly CPUs with pipelines or instruction prefetch,
- * a (subscript-check-less) C table lookup
- * x = sample_range_limit[x];
- * is faster than explicit tests
- * if (x < 0) x = 0;
- * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
- * These processes all use a common table prepared by the routine below.
- *
- * For most steps we can mathematically guarantee that the initial value
- * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
- * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
- * limiting step (just after the IDCT), a wildly out-of-range value is
- * possible if the input data is corrupt. To avoid any chance of indexing
- * off the end of memory and getting a bad-pointer trap, we perform the
- * post-IDCT limiting thus:
- * x = range_limit[x & MASK];
- * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
- * samples. Under normal circumstances this is more than enough range and
- * a correct output will be generated; with bogus input data the mask will
- * cause wraparound, and we will safely generate a bogus-but-in-range output.
- * For the post-IDCT step, we want to convert the data from signed to unsigned
- * representation by adding CENTERJSAMPLE at the same time that we limit it.
- * So the post-IDCT limiting table ends up looking like this:
- * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
- * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- * 0,1,...,CENTERJSAMPLE-1
- * Negative inputs select values from the upper half of the table after
- * masking.
- *
- * We can save some space by overlapping the start of the post-IDCT table
- * with the simpler range limiting table. The post-IDCT table begins at
- * sample_range_limit + CENTERJSAMPLE.
- *
- * Note that the table is allocated in near data space on PCs; it's small
- * enough and used often enough to justify this.
- */
-
-LOCAL(void)
-prepare_range_limit_table (j_decompress_ptr cinfo)
-/* Allocate and fill in the sample_range_limit table */
-{
- JSAMPLE * table;
- int i;
-
- table = (JSAMPLE *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
- table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
- cinfo->sample_range_limit = table;
- /* First segment of "simple" table: limit[x] = 0 for x < 0 */
- MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
- /* Main part of "simple" table: limit[x] = x */
- for (i = 0; i <= MAXJSAMPLE; i++)
- table[i] = (JSAMPLE) i;
- table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
- /* End of simple table, rest of first half of post-IDCT table */
- for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
- table[i] = MAXJSAMPLE;
- /* Second half of post-IDCT table */
- MEMZERO(table + (2 * (MAXJSAMPLE+1)),
- (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
- MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
- cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
-}
-
-
-/*
- * Master selection of decompression modules.
- * This is done once at jpeg_start_decompress time. We determine
- * which modules will be used and give them appropriate initialization calls.
- * We also initialize the decompressor input side to begin consuming data.
- *
- * Since jpeg_read_header has finished, we know what is in the SOF
- * and (first) SOS markers. We also have all the application parameter
- * settings.
- */
-
-LOCAL(void)
-master_selection (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
- boolean use_c_buffer;
- long samplesperrow;
- JDIMENSION jd_samplesperrow;
-
- /* Initialize dimensions and other stuff */
- jpeg_calc_output_dimensions(cinfo);
- prepare_range_limit_table(cinfo);
-
- /* Width of an output scanline must be representable as JDIMENSION. */
- samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
- jd_samplesperrow = (JDIMENSION) samplesperrow;
- if ((long) jd_samplesperrow != samplesperrow)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
-
- /* Initialize my private state */
- master->pass_number = 0;
- master->using_merged_upsample = use_merged_upsample(cinfo);
-
- /* Color quantizer selection */
- master->quantizer_1pass = NULL;
- master->quantizer_2pass = NULL;
- /* No mode changes if not using buffered-image mode. */
- if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
- cinfo->enable_1pass_quant = FALSE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
- }
- if (cinfo->quantize_colors) {
- if (cinfo->raw_data_out)
- ERREXIT(cinfo, JERR_NOTIMPL);
- /* 2-pass quantizer only works in 3-component color space. */
- if (cinfo->out_color_components != 3) {
- cinfo->enable_1pass_quant = TRUE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
- cinfo->colormap = NULL;
- } else if (cinfo->colormap != NULL) {
- cinfo->enable_external_quant = TRUE;
- } else if (cinfo->two_pass_quantize) {
- cinfo->enable_2pass_quant = TRUE;
- } else {
- cinfo->enable_1pass_quant = TRUE;
- }
-
- if (cinfo->enable_1pass_quant) {
-#ifdef QUANT_1PASS_SUPPORTED
- jinit_1pass_quantizer(cinfo);
- master->quantizer_1pass = cinfo->cquantize;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- }
-
- /* We use the 2-pass code to map to external colormaps. */
- if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
-#ifdef QUANT_2PASS_SUPPORTED
- jinit_2pass_quantizer(cinfo);
- master->quantizer_2pass = cinfo->cquantize;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- }
- /* If both quantizers are initialized, the 2-pass one is left active;
- * this is necessary for starting with quantization to an external map.
- */
- }
-
- /* Post-processing: in particular, color conversion first */
- if (! cinfo->raw_data_out) {
- if (master->using_merged_upsample) {
-#ifdef UPSAMPLE_MERGING_SUPPORTED
- jinit_merged_upsampler(cinfo); /* does color conversion too */
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- jinit_color_deconverter(cinfo);
- jinit_upsampler(cinfo);
- }
- jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
- }
- /* Inverse DCT */
- jinit_inverse_dct(cinfo);
- /* Entropy decoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code)
- jinit_arith_decoder(cinfo);
- else {
- jinit_huff_decoder(cinfo);
- }
-
- /* Initialize principal buffer controllers. */
- use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
- jinit_d_coef_controller(cinfo, use_c_buffer);
-
- if (! cinfo->raw_data_out)
- jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Initialize input side of decompressor to consume first scan. */
- (*cinfo->inputctl->start_input_pass) (cinfo);
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* If jpeg_start_decompress will read the whole file, initialize
- * progress monitoring appropriately. The input step is counted
- * as one pass.
- */
- if (cinfo->progress != NULL && ! cinfo->buffered_image &&
- cinfo->inputctl->has_multiple_scans) {
- int nscans;
- /* Estimate number of scans to set pass_limit. */
- if (cinfo->progressive_mode) {
- /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
- nscans = 2 + 3 * cinfo->num_components;
- } else {
- /* For a nonprogressive multiscan file, estimate 1 scan per component. */
- nscans = cinfo->num_components;
- }
- cinfo->progress->pass_counter = 0L;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
- cinfo->progress->completed_passes = 0;
- cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
- /* Count the input pass as done */
- master->pass_number++;
- }
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-}
-
-
-/*
- * Per-pass setup.
- * This is called at the beginning of each output pass. We determine which
- * modules will be active during this pass and give them appropriate
- * start_pass calls. We also set is_dummy_pass to indicate whether this
- * is a "real" output pass or a dummy pass for color quantization.
- * (In the latter case, jdapistd.c will crank the pass to completion.)
- */
-
-METHODDEF(void)
-prepare_for_output_pass (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- if (master->pub.is_dummy_pass) {
-#ifdef QUANT_2PASS_SUPPORTED
- /* Final pass of 2-pass quantization */
- master->pub.is_dummy_pass = FALSE;
- (*cinfo->cquantize->start_pass) (cinfo, FALSE);
- (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
- (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* QUANT_2PASS_SUPPORTED */
- } else {
- if (cinfo->quantize_colors && cinfo->colormap == NULL) {
- /* Select new quantization method */
- if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
- cinfo->cquantize = master->quantizer_2pass;
- master->pub.is_dummy_pass = TRUE;
- } else if (cinfo->enable_1pass_quant) {
- cinfo->cquantize = master->quantizer_1pass;
- } else {
- ERREXIT(cinfo, JERR_MODE_CHANGE);
- }
- }
- (*cinfo->idct->start_pass) (cinfo);
- (*cinfo->coef->start_output_pass) (cinfo);
- if (! cinfo->raw_data_out) {
- if (! master->using_merged_upsample)
- (*cinfo->cconvert->start_pass) (cinfo);
- (*cinfo->upsample->start_pass) (cinfo);
- if (cinfo->quantize_colors)
- (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
- (*cinfo->post->start_pass) (cinfo,
- (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
- (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
- }
- }
-
- /* Set up progress monitor's pass info if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->completed_passes = master->pass_number;
- cinfo->progress->total_passes = master->pass_number +
- (master->pub.is_dummy_pass ? 2 : 1);
- /* In buffered-image mode, we assume one more output pass if EOI not
- * yet reached, but no more passes if EOI has been reached.
- */
- if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
- cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
- }
- }
-}
-
-
-/*
- * Finish up at end of an output pass.
- */
-
-METHODDEF(void)
-finish_output_pass (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- if (cinfo->quantize_colors)
- (*cinfo->cquantize->finish_pass) (cinfo);
- master->pass_number++;
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Switch to a new external colormap between output passes.
- */
-
-GLOBAL(void)
-jpeg_new_colormap (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- /* Prevent application from calling me at wrong times */
- if (cinfo->global_state != DSTATE_BUFIMAGE)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (cinfo->quantize_colors && cinfo->enable_external_quant &&
- cinfo->colormap != NULL) {
- /* Select 2-pass quantizer for external colormap use */
- cinfo->cquantize = master->quantizer_2pass;
- /* Notify quantizer of colormap change */
- (*cinfo->cquantize->new_color_map) (cinfo);
- master->pub.is_dummy_pass = FALSE; /* just in case */
- } else
- ERREXIT(cinfo, JERR_MODE_CHANGE);
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-/*
- * Initialize master decompression control and select active modules.
- * This is performed at the start of jpeg_start_decompress.
- */
-
-GLOBAL(void)
-jinit_master_decompress (j_decompress_ptr cinfo)
-{
- my_master_ptr master;
-
- master = (my_master_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_decomp_master));
- cinfo->master = (struct jpeg_decomp_master *) master;
- master->pub.prepare_for_output_pass = prepare_for_output_pass;
- master->pub.finish_output_pass = finish_output_pass;
-
- master->pub.is_dummy_pass = FALSE;
-
- master_selection(cinfo);
-}
diff --git a/src/jpeg-8c/jdmerge.c b/src/jpeg-8c/jdmerge.c
deleted file mode 100644
index 37444468..00000000
--- a/src/jpeg-8c/jdmerge.c
+++ /dev/null
@@ -1,400 +0,0 @@
-/*
- * jdmerge.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains code for merged upsampling/color conversion.
- *
- * This file combines functions from jdsample.c and jdcolor.c;
- * read those files first to understand what's going on.
- *
- * When the chroma components are to be upsampled by simple replication
- * (ie, box filtering), we can save some work in color conversion by
- * calculating all the output pixels corresponding to a pair of chroma
- * samples at one time. In the conversion equations
- * R = Y + K1 * Cr
- * G = Y + K2 * Cb + K3 * Cr
- * B = Y + K4 * Cb
- * only the Y term varies among the group of pixels corresponding to a pair
- * of chroma samples, so the rest of the terms can be calculated just once.
- * At typical sampling ratios, this eliminates half or three-quarters of the
- * multiplications needed for color conversion.
- *
- * This file currently provides implementations for the following cases:
- * YCbCr => RGB color conversion only.
- * Sampling ratios of 2h1v or 2h2v.
- * No scaling needed at upsample time.
- * Corner-aligned (non-CCIR601) sampling alignment.
- * Other special cases could be added, but in most applications these are
- * the only common cases. (For uncommon cases we fall back on the more
- * general code in jdsample.c and jdcolor.c.)
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef UPSAMPLE_MERGING_SUPPORTED
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_upsampler pub; /* public fields */
-
- /* Pointer to routine to do actual upsampling/conversion of one row group */
- JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
- JSAMPARRAY output_buf));
-
- /* Private state for YCC->RGB conversion */
- int * Cr_r_tab; /* => table for Cr to R conversion */
- int * Cb_b_tab; /* => table for Cb to B conversion */
- INT32 * Cr_g_tab; /* => table for Cr to G conversion */
- INT32 * Cb_g_tab; /* => table for Cb to G conversion */
-
- /* For 2:1 vertical sampling, we produce two output rows at a time.
- * We need a "spare" row buffer to hold the second output row if the
- * application provides just a one-row buffer; we also use the spare
- * to discard the dummy last row if the image height is odd.
- */
- JSAMPROW spare_row;
- boolean spare_full; /* T if spare buffer is occupied */
-
- JDIMENSION out_row_width; /* samples per output row */
- JDIMENSION rows_to_go; /* counts rows remaining in image */
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize tables for YCC->RGB colorspace conversion.
- * This is taken directly from jdcolor.c; see that file for more info.
- */
-
-LOCAL(void)
-build_ycc_rgb_table (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- int i;
- INT32 x;
- SHIFT_TEMPS
-
- upsample->Cr_r_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- upsample->Cb_b_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- upsample->Cr_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
- upsample->Cb_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
-
- for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
- /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
- /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
- /* Cr=>R value is nearest int to 1.40200 * x */
- upsample->Cr_r_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
- /* Cb=>B value is nearest int to 1.77200 * x */
- upsample->Cb_b_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
- /* Cr=>G value is scaled-up -0.71414 * x */
- upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
- /* Cb=>G value is scaled-up -0.34414 * x */
- /* We also add in ONE_HALF so that need not do it in inner loop */
- upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
- }
-}
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF(void)
-start_pass_merged_upsample (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Mark the spare buffer empty */
- upsample->spare_full = FALSE;
- /* Initialize total-height counter for detecting bottom of image */
- upsample->rows_to_go = cinfo->output_height;
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * The control routine just handles the row buffering considerations.
- */
-
-METHODDEF(void)
-merged_2v_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-/* 2:1 vertical sampling case: may need a spare row. */
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- JSAMPROW work_ptrs[2];
- JDIMENSION num_rows; /* number of rows returned to caller */
-
- if (upsample->spare_full) {
- /* If we have a spare row saved from a previous cycle, just return it. */
- jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
- 1, upsample->out_row_width);
- num_rows = 1;
- upsample->spare_full = FALSE;
- } else {
- /* Figure number of rows to return to caller. */
- num_rows = 2;
- /* Not more than the distance to the end of the image. */
- if (num_rows > upsample->rows_to_go)
- num_rows = upsample->rows_to_go;
- /* And not more than what the client can accept: */
- out_rows_avail -= *out_row_ctr;
- if (num_rows > out_rows_avail)
- num_rows = out_rows_avail;
- /* Create output pointer array for upsampler. */
- work_ptrs[0] = output_buf[*out_row_ctr];
- if (num_rows > 1) {
- work_ptrs[1] = output_buf[*out_row_ctr + 1];
- } else {
- work_ptrs[1] = upsample->spare_row;
- upsample->spare_full = TRUE;
- }
- /* Now do the upsampling. */
- (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
- }
-
- /* Adjust counts */
- *out_row_ctr += num_rows;
- upsample->rows_to_go -= num_rows;
- /* When the buffer is emptied, declare this input row group consumed */
- if (! upsample->spare_full)
- (*in_row_group_ctr)++;
-}
-
-
-METHODDEF(void)
-merged_1v_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-/* 1:1 vertical sampling case: much easier, never need a spare row. */
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Just do the upsampling. */
- (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
- output_buf + *out_row_ctr);
- /* Adjust counts */
- (*out_row_ctr)++;
- (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by the control routines to do
- * the actual upsampling/conversion. One row group is processed per call.
- *
- * Note: since we may be writing directly into application-supplied buffers,
- * we have to be honest about the output width; we can't assume the buffer
- * has been rounded up to an even width.
- */
-
-
-/*
- * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
- */
-
-METHODDEF(void)
-h2v1_merged_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
- JSAMPARRAY output_buf)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- register int y, cred, cgreen, cblue;
- int cb, cr;
- register JSAMPROW outptr;
- JSAMPROW inptr0, inptr1, inptr2;
- JDIMENSION col;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- int * Crrtab = upsample->Cr_r_tab;
- int * Cbbtab = upsample->Cb_b_tab;
- INT32 * Crgtab = upsample->Cr_g_tab;
- INT32 * Cbgtab = upsample->Cb_g_tab;
- SHIFT_TEMPS
-
- inptr0 = input_buf[0][in_row_group_ctr];
- inptr1 = input_buf[1][in_row_group_ctr];
- inptr2 = input_buf[2][in_row_group_ctr];
- outptr = output_buf[0];
- /* Loop for each pair of output pixels */
- for (col = cinfo->output_width >> 1; col > 0; col--) {
- /* Do the chroma part of the calculation */
- cb = GETJSAMPLE(*inptr1++);
- cr = GETJSAMPLE(*inptr2++);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- /* Fetch 2 Y values and emit 2 pixels */
- y = GETJSAMPLE(*inptr0++);
- outptr[RGB_RED] = range_limit[y + cred];
- outptr[RGB_GREEN] = range_limit[y + cgreen];
- outptr[RGB_BLUE] = range_limit[y + cblue];
- outptr += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr0++);
- outptr[RGB_RED] = range_limit[y + cred];
- outptr[RGB_GREEN] = range_limit[y + cgreen];
- outptr[RGB_BLUE] = range_limit[y + cblue];
- outptr += RGB_PIXELSIZE;
- }
- /* If image width is odd, do the last output column separately */
- if (cinfo->output_width & 1) {
- cb = GETJSAMPLE(*inptr1);
- cr = GETJSAMPLE(*inptr2);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- y = GETJSAMPLE(*inptr0);
- outptr[RGB_RED] = range_limit[y + cred];
- outptr[RGB_GREEN] = range_limit[y + cgreen];
- outptr[RGB_BLUE] = range_limit[y + cblue];
- }
-}
-
-
-/*
- * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
- */
-
-METHODDEF(void)
-h2v2_merged_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
- JSAMPARRAY output_buf)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- register int y, cred, cgreen, cblue;
- int cb, cr;
- register JSAMPROW outptr0, outptr1;
- JSAMPROW inptr00, inptr01, inptr1, inptr2;
- JDIMENSION col;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- int * Crrtab = upsample->Cr_r_tab;
- int * Cbbtab = upsample->Cb_b_tab;
- INT32 * Crgtab = upsample->Cr_g_tab;
- INT32 * Cbgtab = upsample->Cb_g_tab;
- SHIFT_TEMPS
-
- inptr00 = input_buf[0][in_row_group_ctr*2];
- inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
- inptr1 = input_buf[1][in_row_group_ctr];
- inptr2 = input_buf[2][in_row_group_ctr];
- outptr0 = output_buf[0];
- outptr1 = output_buf[1];
- /* Loop for each group of output pixels */
- for (col = cinfo->output_width >> 1; col > 0; col--) {
- /* Do the chroma part of the calculation */
- cb = GETJSAMPLE(*inptr1++);
- cr = GETJSAMPLE(*inptr2++);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- /* Fetch 4 Y values and emit 4 pixels */
- y = GETJSAMPLE(*inptr00++);
- outptr0[RGB_RED] = range_limit[y + cred];
- outptr0[RGB_GREEN] = range_limit[y + cgreen];
- outptr0[RGB_BLUE] = range_limit[y + cblue];
- outptr0 += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr00++);
- outptr0[RGB_RED] = range_limit[y + cred];
- outptr0[RGB_GREEN] = range_limit[y + cgreen];
- outptr0[RGB_BLUE] = range_limit[y + cblue];
- outptr0 += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr01++);
- outptr1[RGB_RED] = range_limit[y + cred];
- outptr1[RGB_GREEN] = range_limit[y + cgreen];
- outptr1[RGB_BLUE] = range_limit[y + cblue];
- outptr1 += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr01++);
- outptr1[RGB_RED] = range_limit[y + cred];
- outptr1[RGB_GREEN] = range_limit[y + cgreen];
- outptr1[RGB_BLUE] = range_limit[y + cblue];
- outptr1 += RGB_PIXELSIZE;
- }
- /* If image width is odd, do the last output column separately */
- if (cinfo->output_width & 1) {
- cb = GETJSAMPLE(*inptr1);
- cr = GETJSAMPLE(*inptr2);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- y = GETJSAMPLE(*inptr00);
- outptr0[RGB_RED] = range_limit[y + cred];
- outptr0[RGB_GREEN] = range_limit[y + cgreen];
- outptr0[RGB_BLUE] = range_limit[y + cblue];
- y = GETJSAMPLE(*inptr01);
- outptr1[RGB_RED] = range_limit[y + cred];
- outptr1[RGB_GREEN] = range_limit[y + cgreen];
- outptr1[RGB_BLUE] = range_limit[y + cblue];
- }
-}
-
-
-/*
- * Module initialization routine for merged upsampling/color conversion.
- *
- * NB: this is called under the conditions determined by use_merged_upsample()
- * in jdmaster.c. That routine MUST correspond to the actual capabilities
- * of this module; no safety checks are made here.
- */
-
-GLOBAL(void)
-jinit_merged_upsampler (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample;
-
- upsample = (my_upsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_upsampler));
- cinfo->upsample = (struct jpeg_upsampler *) upsample;
- upsample->pub.start_pass = start_pass_merged_upsample;
- upsample->pub.need_context_rows = FALSE;
-
- upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
-
- if (cinfo->max_v_samp_factor == 2) {
- upsample->pub.upsample = merged_2v_upsample;
- upsample->upmethod = h2v2_merged_upsample;
- /* Allocate a spare row buffer */
- upsample->spare_row = (JSAMPROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
- } else {
- upsample->pub.upsample = merged_1v_upsample;
- upsample->upmethod = h2v1_merged_upsample;
- /* No spare row needed */
- upsample->spare_row = NULL;
- }
-
- build_ycc_rgb_table(cinfo);
-}
-
-#endif /* UPSAMPLE_MERGING_SUPPORTED */
diff --git a/src/jpeg-8c/jdpostct.c b/src/jpeg-8c/jdpostct.c
deleted file mode 100644
index 571563d7..00000000
--- a/src/jpeg-8c/jdpostct.c
+++ /dev/null
@@ -1,290 +0,0 @@
-/*
- * jdpostct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the decompression postprocessing controller.
- * This controller manages the upsampling, color conversion, and color
- * quantization/reduction steps; specifically, it controls the buffering
- * between upsample/color conversion and color quantization/reduction.
- *
- * If no color quantization/reduction is required, then this module has no
- * work to do, and it just hands off to the upsample/color conversion code.
- * An integrated upsample/convert/quantize process would replace this module
- * entirely.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_post_controller pub; /* public fields */
-
- /* Color quantization source buffer: this holds output data from
- * the upsample/color conversion step to be passed to the quantizer.
- * For two-pass color quantization, we need a full-image buffer;
- * for one-pass operation, a strip buffer is sufficient.
- */
- jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
- JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
- JDIMENSION strip_height; /* buffer size in rows */
- /* for two-pass mode only: */
- JDIMENSION starting_row; /* row # of first row in current strip */
- JDIMENSION next_row; /* index of next row to fill/empty in strip */
-} my_post_controller;
-
-typedef my_post_controller * my_post_ptr;
-
-
-/* Forward declarations */
-METHODDEF(void) post_process_1pass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF(void) post_process_prepass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-METHODDEF(void) post_process_2pass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->quantize_colors) {
- /* Single-pass processing with color quantization. */
- post->pub.post_process_data = post_process_1pass;
- /* We could be doing buffered-image output before starting a 2-pass
- * color quantization; in that case, jinit_d_post_controller did not
- * allocate a strip buffer. Use the virtual-array buffer as workspace.
- */
- if (post->buffer == NULL) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- (JDIMENSION) 0, post->strip_height, TRUE);
- }
- } else {
- /* For single-pass processing without color quantization,
- * I have no work to do; just call the upsampler directly.
- */
- post->pub.post_process_data = cinfo->upsample->upsample;
- }
- break;
-#ifdef QUANT_2PASS_SUPPORTED
- case JBUF_SAVE_AND_PASS:
- /* First pass of 2-pass quantization */
- if (post->whole_image == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- post->pub.post_process_data = post_process_prepass;
- break;
- case JBUF_CRANK_DEST:
- /* Second pass of 2-pass quantization */
- if (post->whole_image == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- post->pub.post_process_data = post_process_2pass;
- break;
-#endif /* QUANT_2PASS_SUPPORTED */
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
- post->starting_row = post->next_row = 0;
-}
-
-
-/*
- * Process some data in the one-pass (strip buffer) case.
- * This is used for color precision reduction as well as one-pass quantization.
- */
-
-METHODDEF(void)
-post_process_1pass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION num_rows, max_rows;
-
- /* Fill the buffer, but not more than what we can dump out in one go. */
- /* Note we rely on the upsampler to detect bottom of image. */
- max_rows = out_rows_avail - *out_row_ctr;
- if (max_rows > post->strip_height)
- max_rows = post->strip_height;
- num_rows = 0;
- (*cinfo->upsample->upsample) (cinfo,
- input_buf, in_row_group_ctr, in_row_groups_avail,
- post->buffer, &num_rows, max_rows);
- /* Quantize and emit data. */
- (*cinfo->cquantize->color_quantize) (cinfo,
- post->buffer, output_buf + *out_row_ctr, (int) num_rows);
- *out_row_ctr += num_rows;
-}
-
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-/*
- * Process some data in the first pass of 2-pass quantization.
- */
-
-METHODDEF(void)
-post_process_prepass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION old_next_row, num_rows;
-
- /* Reposition virtual buffer if at start of strip. */
- if (post->next_row == 0) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- post->starting_row, post->strip_height, TRUE);
- }
-
- /* Upsample some data (up to a strip height's worth). */
- old_next_row = post->next_row;
- (*cinfo->upsample->upsample) (cinfo,
- input_buf, in_row_group_ctr, in_row_groups_avail,
- post->buffer, &post->next_row, post->strip_height);
-
- /* Allow quantizer to scan new data. No data is emitted, */
- /* but we advance out_row_ctr so outer loop can tell when we're done. */
- if (post->next_row > old_next_row) {
- num_rows = post->next_row - old_next_row;
- (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
- (JSAMPARRAY) NULL, (int) num_rows);
- *out_row_ctr += num_rows;
- }
-
- /* Advance if we filled the strip. */
- if (post->next_row >= post->strip_height) {
- post->starting_row += post->strip_height;
- post->next_row = 0;
- }
-}
-
-
-/*
- * Process some data in the second pass of 2-pass quantization.
- */
-
-METHODDEF(void)
-post_process_2pass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION num_rows, max_rows;
-
- /* Reposition virtual buffer if at start of strip. */
- if (post->next_row == 0) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- post->starting_row, post->strip_height, FALSE);
- }
-
- /* Determine number of rows to emit. */
- num_rows = post->strip_height - post->next_row; /* available in strip */
- max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
- if (num_rows > max_rows)
- num_rows = max_rows;
- /* We have to check bottom of image here, can't depend on upsampler. */
- max_rows = cinfo->output_height - post->starting_row;
- if (num_rows > max_rows)
- num_rows = max_rows;
-
- /* Quantize and emit data. */
- (*cinfo->cquantize->color_quantize) (cinfo,
- post->buffer + post->next_row, output_buf + *out_row_ctr,
- (int) num_rows);
- *out_row_ctr += num_rows;
-
- /* Advance if we filled the strip. */
- post->next_row += num_rows;
- if (post->next_row >= post->strip_height) {
- post->starting_row += post->strip_height;
- post->next_row = 0;
- }
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize postprocessing controller.
- */
-
-GLOBAL(void)
-jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_post_ptr post;
-
- post = (my_post_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_post_controller));
- cinfo->post = (struct jpeg_d_post_controller *) post;
- post->pub.start_pass = start_pass_dpost;
- post->whole_image = NULL; /* flag for no virtual arrays */
- post->buffer = NULL; /* flag for no strip buffer */
-
- /* Create the quantization buffer, if needed */
- if (cinfo->quantize_colors) {
- /* The buffer strip height is max_v_samp_factor, which is typically
- * an efficient number of rows for upsampling to return.
- * (In the presence of output rescaling, we might want to be smarter?)
- */
- post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
- if (need_full_buffer) {
- /* Two-pass color quantization: need full-image storage. */
- /* We round up the number of rows to a multiple of the strip height. */
-#ifdef QUANT_2PASS_SUPPORTED
- post->whole_image = (*cinfo->mem->request_virt_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- cinfo->output_width * cinfo->out_color_components,
- (JDIMENSION) jround_up((long) cinfo->output_height,
- (long) post->strip_height),
- post->strip_height);
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif /* QUANT_2PASS_SUPPORTED */
- } else {
- /* One-pass color quantization: just make a strip buffer. */
- post->buffer = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->output_width * cinfo->out_color_components,
- post->strip_height);
- }
- }
-}
diff --git a/src/jpeg-8c/jdsample.c b/src/jpeg-8c/jdsample.c
deleted file mode 100644
index 7bc8885b..00000000
--- a/src/jpeg-8c/jdsample.c
+++ /dev/null
@@ -1,361 +0,0 @@
-/*
- * jdsample.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * Modified 2002-2008 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains upsampling routines.
- *
- * Upsampling input data is counted in "row groups". A row group
- * is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
- * sample rows of each component. Upsampling will normally produce
- * max_v_samp_factor pixel rows from each row group (but this could vary
- * if the upsampler is applying a scale factor of its own).
- *
- * An excellent reference for image resampling is
- * Digital Image Warping, George Wolberg, 1990.
- * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Pointer to routine to upsample a single component */
-typedef JMETHOD(void, upsample1_ptr,
- (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_upsampler pub; /* public fields */
-
- /* Color conversion buffer. When using separate upsampling and color
- * conversion steps, this buffer holds one upsampled row group until it
- * has been color converted and output.
- * Note: we do not allocate any storage for component(s) which are full-size,
- * ie do not need rescaling. The corresponding entry of color_buf[] is
- * simply set to point to the input data array, thereby avoiding copying.
- */
- JSAMPARRAY color_buf[MAX_COMPONENTS];
-
- /* Per-component upsampling method pointers */
- upsample1_ptr methods[MAX_COMPONENTS];
-
- int next_row_out; /* counts rows emitted from color_buf */
- JDIMENSION rows_to_go; /* counts rows remaining in image */
-
- /* Height of an input row group for each component. */
- int rowgroup_height[MAX_COMPONENTS];
-
- /* These arrays save pixel expansion factors so that int_expand need not
- * recompute them each time. They are unused for other upsampling methods.
- */
- UINT8 h_expand[MAX_COMPONENTS];
- UINT8 v_expand[MAX_COMPONENTS];
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF(void)
-start_pass_upsample (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Mark the conversion buffer empty */
- upsample->next_row_out = cinfo->max_v_samp_factor;
- /* Initialize total-height counter for detecting bottom of image */
- upsample->rows_to_go = cinfo->output_height;
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * In this version we upsample each component independently.
- * We upsample one row group into the conversion buffer, then apply
- * color conversion a row at a time.
- */
-
-METHODDEF(void)
-sep_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- int ci;
- jpeg_component_info * compptr;
- JDIMENSION num_rows;
-
- /* Fill the conversion buffer, if it's empty */
- if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Invoke per-component upsample method. Notice we pass a POINTER
- * to color_buf[ci], so that fullsize_upsample can change it.
- */
- (*upsample->methods[ci]) (cinfo, compptr,
- input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
- upsample->color_buf + ci);
- }
- upsample->next_row_out = 0;
- }
-
- /* Color-convert and emit rows */
-
- /* How many we have in the buffer: */
- num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
- /* Not more than the distance to the end of the image. Need this test
- * in case the image height is not a multiple of max_v_samp_factor:
- */
- if (num_rows > upsample->rows_to_go)
- num_rows = upsample->rows_to_go;
- /* And not more than what the client can accept: */
- out_rows_avail -= *out_row_ctr;
- if (num_rows > out_rows_avail)
- num_rows = out_rows_avail;
-
- (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
- (JDIMENSION) upsample->next_row_out,
- output_buf + *out_row_ctr,
- (int) num_rows);
-
- /* Adjust counts */
- *out_row_ctr += num_rows;
- upsample->rows_to_go -= num_rows;
- upsample->next_row_out += num_rows;
- /* When the buffer is emptied, declare this input row group consumed */
- if (upsample->next_row_out >= cinfo->max_v_samp_factor)
- (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by sep_upsample to upsample pixel values
- * of a single component. One row group is processed per call.
- */
-
-
-/*
- * For full-size components, we just make color_buf[ci] point at the
- * input buffer, and thus avoid copying any data. Note that this is
- * safe only because sep_upsample doesn't declare the input row group
- * "consumed" until we are done color converting and emitting it.
- */
-
-METHODDEF(void)
-fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- *output_data_ptr = input_data;
-}
-
-
-/*
- * This is a no-op version used for "uninteresting" components.
- * These components will not be referenced by color conversion.
- */
-
-METHODDEF(void)
-noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- *output_data_ptr = NULL; /* safety check */
-}
-
-
-/*
- * This version handles any integral sampling ratios.
- * This is not used for typical JPEG files, so it need not be fast.
- * Nor, for that matter, is it particularly accurate: the algorithm is
- * simple replication of the input pixel onto the corresponding output
- * pixels. The hi-falutin sampling literature refers to this as a
- * "box filter". A box filter tends to introduce visible artifacts,
- * so if you are actually going to use 3:1 or 4:1 sampling ratios
- * you would be well advised to improve this code.
- */
-
-METHODDEF(void)
-int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- register int h;
- JSAMPROW outend;
- int h_expand, v_expand;
- int inrow, outrow;
-
- h_expand = upsample->h_expand[compptr->component_index];
- v_expand = upsample->v_expand[compptr->component_index];
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- /* Generate one output row with proper horizontal expansion */
- inptr = input_data[inrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- for (h = h_expand; h > 0; h--) {
- *outptr++ = invalue;
- }
- }
- /* Generate any additional output rows by duplicating the first one */
- if (v_expand > 1) {
- jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
- v_expand-1, cinfo->output_width);
- }
- inrow++;
- outrow += v_expand;
- }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF(void)
-h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- JSAMPROW outend;
- int outrow;
-
- for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
- inptr = input_data[outrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- *outptr++ = invalue;
- *outptr++ = invalue;
- }
- }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF(void)
-h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- JSAMPROW outend;
- int inrow, outrow;
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- inptr = input_data[inrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- *outptr++ = invalue;
- *outptr++ = invalue;
- }
- jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
- 1, cinfo->output_width);
- inrow++;
- outrow += 2;
- }
-}
-
-
-/*
- * Module initialization routine for upsampling.
- */
-
-GLOBAL(void)
-jinit_upsampler (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample;
- int ci;
- jpeg_component_info * compptr;
- boolean need_buffer;
- int h_in_group, v_in_group, h_out_group, v_out_group;
-
- upsample = (my_upsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_upsampler));
- cinfo->upsample = (struct jpeg_upsampler *) upsample;
- upsample->pub.start_pass = start_pass_upsample;
- upsample->pub.upsample = sep_upsample;
- upsample->pub.need_context_rows = FALSE; /* until we find out differently */
-
- if (cinfo->CCIR601_sampling) /* this isn't supported */
- ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
-
- /* Verify we can handle the sampling factors, select per-component methods,
- * and create storage as needed.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Compute size of an "input group" after IDCT scaling. This many samples
- * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
- */
- h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
- cinfo->min_DCT_h_scaled_size;
- v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
- cinfo->min_DCT_v_scaled_size;
- h_out_group = cinfo->max_h_samp_factor;
- v_out_group = cinfo->max_v_samp_factor;
- upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
- need_buffer = TRUE;
- if (! compptr->component_needed) {
- /* Don't bother to upsample an uninteresting component. */
- upsample->methods[ci] = noop_upsample;
- need_buffer = FALSE;
- } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
- /* Fullsize components can be processed without any work. */
- upsample->methods[ci] = fullsize_upsample;
- need_buffer = FALSE;
- } else if (h_in_group * 2 == h_out_group &&
- v_in_group == v_out_group) {
- /* Special case for 2h1v upsampling */
- upsample->methods[ci] = h2v1_upsample;
- } else if (h_in_group * 2 == h_out_group &&
- v_in_group * 2 == v_out_group) {
- /* Special case for 2h2v upsampling */
- upsample->methods[ci] = h2v2_upsample;
- } else if ((h_out_group % h_in_group) == 0 &&
- (v_out_group % v_in_group) == 0) {
- /* Generic integral-factors upsampling method */
- upsample->methods[ci] = int_upsample;
- upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
- upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
- } else
- ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
- if (need_buffer) {
- upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) jround_up((long) cinfo->output_width,
- (long) cinfo->max_h_samp_factor),
- (JDIMENSION) cinfo->max_v_samp_factor);
- }
- }
-}
diff --git a/src/jpeg-8c/jdtrans.c b/src/jpeg-8c/jdtrans.c
deleted file mode 100644
index e358b1bb..00000000
--- a/src/jpeg-8c/jdtrans.c
+++ /dev/null
@@ -1,140 +0,0 @@
-/*
- * jdtrans.c
- *
- * Copyright (C) 1995-1997, Thomas G. Lane.
- * Modified 2000-2013 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains library routines for transcoding decompression,
- * that is, reading raw DCT coefficient arrays from an input JPEG file.
- * The routines in jdapimin.c will also be needed by a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Read the coefficient arrays from a JPEG file.
- * jpeg_read_header must be completed before calling this.
- *
- * The entire image is read into a set of virtual coefficient-block arrays,
- * one per component. The return value is a pointer to the array of
- * virtual-array descriptors. These can be manipulated directly via the
- * JPEG memory manager, or handed off to jpeg_write_coefficients().
- * To release the memory occupied by the virtual arrays, call
- * jpeg_finish_decompress() when done with the data.
- *
- * An alternative usage is to simply obtain access to the coefficient arrays
- * during a buffered-image-mode decompression operation. This is allowed
- * after any jpeg_finish_output() call. The arrays can be accessed until
- * jpeg_finish_decompress() is called. (Note that any call to the library
- * may reposition the arrays, so don't rely on access_virt_barray() results
- * to stay valid across library calls.)
- *
- * Returns NULL if suspended. This case need be checked only if
- * a suspending data source is used.
- */
-
-GLOBAL(jvirt_barray_ptr *)
-jpeg_read_coefficients (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state == DSTATE_READY) {
- /* First call: initialize active modules */
- transdecode_master_selection(cinfo);
- cinfo->global_state = DSTATE_RDCOEFS;
- }
- if (cinfo->global_state == DSTATE_RDCOEFS) {
- /* Absorb whole file into the coef buffer */
- for (;;) {
- int retcode;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL)
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- /* Absorb some more input */
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_SUSPENDED)
- return NULL;
- if (retcode == JPEG_REACHED_EOI)
- break;
- /* Advance progress counter if appropriate */
- if (cinfo->progress != NULL &&
- (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
- if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
- /* startup underestimated number of scans; ratchet up one scan */
- cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
- }
- }
- }
- /* Set state so that jpeg_finish_decompress does the right thing */
- cinfo->global_state = DSTATE_STOPPING;
- }
- /* At this point we should be in state DSTATE_STOPPING if being used
- * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
- * to the coefficients during a full buffered-image-mode decompression.
- */
- if ((cinfo->global_state == DSTATE_STOPPING ||
- cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
- return cinfo->coef->coef_arrays;
- }
- /* Oops, improper usage */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return NULL; /* keep compiler happy */
-}
-
-
-/*
- * Master selection of decompression modules for transcoding.
- * This substitutes for jdmaster.c's initialization of the full decompressor.
- */
-
-LOCAL(void)
-transdecode_master_selection (j_decompress_ptr cinfo)
-{
- /* This is effectively a buffered-image operation. */
- cinfo->buffered_image = TRUE;
-
- /* Compute output image dimensions and related values. */
- jpeg_core_output_dimensions(cinfo);
-
- /* Entropy decoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code)
- jinit_arith_decoder(cinfo);
- else {
- jinit_huff_decoder(cinfo);
- }
-
- /* Always get a full-image coefficient buffer. */
- jinit_d_coef_controller(cinfo, TRUE);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Initialize input side of decompressor to consume first scan. */
- (*cinfo->inputctl->start_input_pass) (cinfo);
-
- /* Initialize progress monitoring. */
- if (cinfo->progress != NULL) {
- int nscans;
- /* Estimate number of scans to set pass_limit. */
- if (cinfo->progressive_mode) {
- /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
- nscans = 2 + 3 * cinfo->num_components;
- } else if (cinfo->inputctl->has_multiple_scans) {
- /* For a nonprogressive multiscan file, estimate 1 scan per component. */
- nscans = cinfo->num_components;
- } else {
- nscans = 1;
- }
- cinfo->progress->pass_counter = 0L;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
- cinfo->progress->completed_passes = 0;
- cinfo->progress->total_passes = 1;
- }
-}
diff --git a/src/jpeg-8c/jerror.c b/src/jpeg-8c/jerror.c
deleted file mode 100644
index 2860d3fa..00000000
--- a/src/jpeg-8c/jerror.c
+++ /dev/null
@@ -1,254 +0,0 @@
-/*
- * jerror.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains simple error-reporting and trace-message routines.
- * These are suitable for Unix-like systems and others where writing to
- * stderr is the right thing to do. Many applications will want to replace
- * some or all of these routines.
- *
- * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
- * you get a Windows-specific hack to display error messages in a dialog box.
- * It ain't much, but it beats dropping error messages into the bit bucket,
- * which is what happens to output to stderr under most Windows C compilers.
- *
- * These routines are used by both the compression and decompression code.
- */
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jversion.h"
-#include "jerror.h"
-
-#include <stdlib.h>
-
-#ifdef USE_WINDOWS_MESSAGEBOX
-#include <windows.h>
-#endif
-
-#ifndef EXIT_FAILURE /* define exit() codes if not provided */
-#define EXIT_FAILURE 1
-#endif
-
-
-/*
- * Create the message string table.
- * We do this from the master message list in jerror.h by re-reading
- * jerror.h with a suitable definition for macro JMESSAGE.
- * The message table is made an external symbol just in case any applications
- * want to refer to it directly.
- */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_std_message_table jMsgTable
-#endif
-
-#define JMESSAGE(code,string) string ,
-
-const char * const jpeg_std_message_table[] = {
-#include "jerror.h"
- NULL
-};
-
-
-/*
- * Error exit handler: must not return to caller.
- *
- * Applications may override this if they want to get control back after
- * an error. Typically one would longjmp somewhere instead of exiting.
- * The setjmp buffer can be made a private field within an expanded error
- * handler object. Note that the info needed to generate an error message
- * is stored in the error object, so you can generate the message now or
- * later, at your convenience.
- * You should make sure that the JPEG object is cleaned up (with jpeg_abort
- * or jpeg_destroy) at some point.
- */
-
-METHODDEF(void)
-error_exit (j_common_ptr cinfo)
-{
- /* Always display the message */
- (*cinfo->err->output_message) (cinfo);
-
- /* Let the memory manager delete any temp files before we die */
- jpeg_destroy(cinfo);
-
- exit(EXIT_FAILURE);
-}
-
-
-/*
- * Actual output of an error or trace message.
- * Applications may override this method to send JPEG messages somewhere
- * other than stderr.
- *
- * On Windows, printing to stderr is generally completely useless,
- * so we provide optional code to produce an error-dialog popup.
- * Most Windows applications will still prefer to override this routine,
- * but if they don't, it'll do something at least marginally useful.
- *
- * NOTE: to use the library in an environment that doesn't support the
- * C stdio library, you may have to delete the call to fprintf() entirely,
- * not just not use this routine.
- */
-
-METHODDEF(void)
-output_message (j_common_ptr cinfo)
-{
- char buffer[JMSG_LENGTH_MAX];
-
- /* Create the message */
- (*cinfo->err->format_message) (cinfo, buffer);
-
-#ifdef USE_WINDOWS_MESSAGEBOX
- /* Display it in a message dialog box */
- MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
- MB_OK | MB_ICONERROR);
-#else
- /* Send it to stderr, adding a newline */
- fprintf(stderr, "%s\n", buffer);
-#endif
-}
-
-
-/*
- * Decide whether to emit a trace or warning message.
- * msg_level is one of:
- * -1: recoverable corrupt-data warning, may want to abort.
- * 0: important advisory messages (always display to user).
- * 1: first level of tracing detail.
- * 2,3,...: successively more detailed tracing messages.
- * An application might override this method if it wanted to abort on warnings
- * or change the policy about which messages to display.
- */
-
-METHODDEF(void)
-emit_message (j_common_ptr cinfo, int msg_level)
-{
- struct jpeg_error_mgr * err = cinfo->err;
-
- if (msg_level < 0) {
- /* It's a warning message. Since corrupt files may generate many warnings,
- * the policy implemented here is to show only the first warning,
- * unless trace_level >= 3.
- */
- if (err->num_warnings == 0 || err->trace_level >= 3)
- (*err->output_message) (cinfo);
- /* Always count warnings in num_warnings. */
- err->num_warnings++;
- } else {
- /* It's a trace message. Show it if trace_level >= msg_level. */
- if (err->trace_level >= msg_level)
- (*err->output_message) (cinfo);
- }
-}
-
-
-/*
- * Format a message string for the most recent JPEG error or message.
- * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
- * characters. Note that no '\n' character is added to the string.
- * Few applications should need to override this method.
- */
-
-METHODDEF(void)
-format_message (j_common_ptr cinfo, char * buffer)
-{
- struct jpeg_error_mgr * err = cinfo->err;
- int msg_code = err->msg_code;
- const char * msgtext = NULL;
- const char * msgptr;
- char ch;
- boolean isstring;
-
- /* Look up message string in proper table */
- if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
- msgtext = err->jpeg_message_table[msg_code];
- } else if (err->addon_message_table != NULL &&
- msg_code >= err->first_addon_message &&
- msg_code <= err->last_addon_message) {
- msgtext = err->addon_message_table[msg_code - err->first_addon_message];
- }
-
- /* Defend against bogus message number */
- if (msgtext == NULL) {
- err->msg_parm.i[0] = msg_code;
- msgtext = err->jpeg_message_table[0];
- }
-
- /* Check for string parameter, as indicated by %s in the message text */
- isstring = FALSE;
- msgptr = msgtext;
- while ((ch = *msgptr++) != '\0') {
- if (ch == '%') {
- if (*msgptr == 's') isstring = TRUE;
- break;
- }
- }
-
- /* Format the message into the passed buffer */
- if (isstring)
- sprintf(buffer, msgtext, err->msg_parm.s);
- else
- sprintf(buffer, msgtext,
- err->msg_parm.i[0], err->msg_parm.i[1],
- err->msg_parm.i[2], err->msg_parm.i[3],
- err->msg_parm.i[4], err->msg_parm.i[5],
- err->msg_parm.i[6], err->msg_parm.i[7]);
-}
-
-
-/*
- * Reset error state variables at start of a new image.
- * This is called during compression startup to reset trace/error
- * processing to default state, without losing any application-specific
- * method pointers. An application might possibly want to override
- * this method if it has additional error processing state.
- */
-
-METHODDEF(void)
-reset_error_mgr (j_common_ptr cinfo)
-{
- cinfo->err->num_warnings = 0;
- /* trace_level is not reset since it is an application-supplied parameter */
- cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
-}
-
-
-/*
- * Fill in the standard error-handling methods in a jpeg_error_mgr object.
- * Typical call is:
- * struct jpeg_compress_struct cinfo;
- * struct jpeg_error_mgr err;
- *
- * cinfo.err = jpeg_std_error(&err);
- * after which the application may override some of the methods.
- */
-
-GLOBAL(struct jpeg_error_mgr *)
-jpeg_std_error (struct jpeg_error_mgr * err)
-{
- err->error_exit = error_exit;
- err->emit_message = emit_message;
- err->output_message = output_message;
- err->format_message = format_message;
- err->reset_error_mgr = reset_error_mgr;
-
- err->trace_level = 0; /* default = no tracing */
- err->num_warnings = 0; /* no warnings emitted yet */
- err->msg_code = 0; /* may be useful as a flag for "no error" */
-
- /* Initialize message table pointers */
- err->jpeg_message_table = jpeg_std_message_table;
- err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
-
- err->addon_message_table = NULL;
- err->first_addon_message = 0; /* for safety */
- err->last_addon_message = 0;
-
- return err;
-}
diff --git a/src/jpeg-8c/jerror.h b/src/jpeg-8c/jerror.h
deleted file mode 100644
index 1cfb2b19..00000000
--- a/src/jpeg-8c/jerror.h
+++ /dev/null
@@ -1,304 +0,0 @@
-/*
- * jerror.h
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * Modified 1997-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file defines the error and message codes for the JPEG library.
- * Edit this file to add new codes, or to translate the message strings to
- * some other language.
- * A set of error-reporting macros are defined too. Some applications using
- * the JPEG library may wish to include this file to get the error codes
- * and/or the macros.
- */
-
-/*
- * To define the enum list of message codes, include this file without
- * defining macro JMESSAGE. To create a message string table, include it
- * again with a suitable JMESSAGE definition (see jerror.c for an example).
- */
-#ifndef JMESSAGE
-#ifndef JERROR_H
-/* First time through, define the enum list */
-#define JMAKE_ENUM_LIST
-#else
-/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
-#define JMESSAGE(code,string)
-#endif /* JERROR_H */
-#endif /* JMESSAGE */
-
-#ifdef JMAKE_ENUM_LIST
-
-typedef enum {
-
-#define JMESSAGE(code,string) code ,
-
-#endif /* JMAKE_ENUM_LIST */
-
-JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
-
-/* For maintenance convenience, list is alphabetical by message code name */
-JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
-JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
-JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
-JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
-JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
-JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
-JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
-JMESSAGE(JERR_BAD_DROP_SAMPLING,
- "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
-JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
-JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
-JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
-JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
-JMESSAGE(JERR_BAD_LIB_VERSION,
- "Wrong JPEG library version: library is %d, caller expects %d")
-JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
-JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
-JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
-JMESSAGE(JERR_BAD_PROGRESSION,
- "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
-JMESSAGE(JERR_BAD_PROG_SCRIPT,
- "Invalid progressive parameters at scan script entry %d")
-JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
-JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
-JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
-JMESSAGE(JERR_BAD_STRUCT_SIZE,
- "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
-JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
-JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
-JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
-JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
-JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
-JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
-JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
-JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
-JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
-JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
-JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
-JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
-JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
-JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
-JMESSAGE(JERR_FILE_READ, "Input file read error")
-JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
-JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
-JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
-JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
-JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
-JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
-JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
-JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
- "Cannot transcode due to multiple use of quantization table %d")
-JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
-JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
-JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
-JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
-JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
-JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
-JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
-JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
-JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
-JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
-JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
-JMESSAGE(JERR_QUANT_COMPONENTS,
- "Cannot quantize more than %d color components")
-JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
-JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
-JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
-JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
-JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
-JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
-JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
-JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
-JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
-JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
-JMESSAGE(JERR_TFILE_WRITE,
- "Write failed on temporary file --- out of disk space?")
-JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
-JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
-JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
-JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
-JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
-JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
-JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
-JMESSAGE(JMSG_VERSION, JVERSION)
-JMESSAGE(JTRC_16BIT_TABLES,
- "Caution: quantization tables are too coarse for baseline JPEG")
-JMESSAGE(JTRC_ADOBE,
- "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
-JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
-JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
-JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
-JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
-JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
-JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
-JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
-JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
-JMESSAGE(JTRC_EOI, "End Of Image")
-JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
-JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
-JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
- "Warning: thumbnail image size does not match data length %u")
-JMESSAGE(JTRC_JFIF_EXTENSION,
- "JFIF extension marker: type 0x%02x, length %u")
-JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
-JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
-JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
-JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
-JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
-JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
-JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
-JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
-JMESSAGE(JTRC_RST, "RST%d")
-JMESSAGE(JTRC_SMOOTH_NOTIMPL,
- "Smoothing not supported with nonstandard sampling ratios")
-JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
-JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
-JMESSAGE(JTRC_SOI, "Start of Image")
-JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
-JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
-JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
-JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
-JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
-JMESSAGE(JTRC_THUMB_JPEG,
- "JFIF extension marker: JPEG-compressed thumbnail image, length %u")
-JMESSAGE(JTRC_THUMB_PALETTE,
- "JFIF extension marker: palette thumbnail image, length %u")
-JMESSAGE(JTRC_THUMB_RGB,
- "JFIF extension marker: RGB thumbnail image, length %u")
-JMESSAGE(JTRC_UNKNOWN_IDS,
- "Unrecognized component IDs %d %d %d, assuming YCbCr")
-JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
-JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
-JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
-JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
-JMESSAGE(JWRN_BOGUS_PROGRESSION,
- "Inconsistent progression sequence for component %d coefficient %d")
-JMESSAGE(JWRN_EXTRANEOUS_DATA,
- "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
-JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
-JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
-JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
-JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
-JMESSAGE(JWRN_MUST_RESYNC,
- "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
-JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
-JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
-
-#ifdef JMAKE_ENUM_LIST
-
- JMSG_LASTMSGCODE
-} J_MESSAGE_CODE;
-
-#undef JMAKE_ENUM_LIST
-#endif /* JMAKE_ENUM_LIST */
-
-/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
-#undef JMESSAGE
-
-
-#ifndef JERROR_H
-#define JERROR_H
-
-/* Macros to simplify using the error and trace message stuff */
-/* The first parameter is either type of cinfo pointer */
-
-/* Fatal errors (print message and exit) */
-#define ERREXIT(cinfo,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT1(cinfo,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT2(cinfo,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT3(cinfo,code,p1,p2,p3) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (cinfo)->err->msg_parm.i[3] = (p4), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (cinfo)->err->msg_parm.i[3] = (p4), \
- (cinfo)->err->msg_parm.i[4] = (p5), \
- (cinfo)->err->msg_parm.i[5] = (p6), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXITS(cinfo,code,str) \
- ((cinfo)->err->msg_code = (code), \
- strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-
-#define MAKESTMT(stuff) do { stuff } while (0)
-
-/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
-#define WARNMS(cinfo,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-#define WARNMS1(cinfo,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-#define WARNMS2(cinfo,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-
-/* Informational/debugging messages */
-#define TRACEMS(cinfo,lvl,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS1(cinfo,lvl,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS2(cinfo,lvl,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- _mp[4] = (p5); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMSS(cinfo,lvl,code,str) \
- ((cinfo)->err->msg_code = (code), \
- strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-
-#endif /* JERROR_H */
diff --git a/src/jpeg-8c/jfdctflt.c b/src/jpeg-8c/jfdctflt.c
deleted file mode 100644
index 74d0d862..00000000
--- a/src/jpeg-8c/jfdctflt.c
+++ /dev/null
@@ -1,174 +0,0 @@
-/*
- * jfdctflt.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * Modified 2003-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * This implementation should be more accurate than either of the integer
- * DCT implementations. However, it may not give the same results on all
- * machines because of differences in roundoff behavior. Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values. However, that problem does not arise if
- * we use floating point arithmetic.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL(void)
-jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
- FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
- FAST_FLOAT *dataptr;
- JSAMPROW elemptr;
- int ctr;
-
- /* Pass 1: process rows. */
-
- dataptr = data;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Load data into workspace */
- tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
- tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
- tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
- tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
- tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
- tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
- tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
- tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
- dataptr[4] = tmp10 - tmp11;
-
- z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
- dataptr[2] = tmp13 + z1; /* phase 5 */
- dataptr[6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
- z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
- z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
- z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[5] = z13 + z2; /* phase 6 */
- dataptr[3] = z13 - z2;
- dataptr[1] = z11 + z4;
- dataptr[7] = z11 - z4;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
- dataptr[DCTSIZE*4] = tmp10 - tmp11;
-
- z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
- dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
- dataptr[DCTSIZE*6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
- z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
- z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
- z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
- dataptr[DCTSIZE*3] = z13 - z2;
- dataptr[DCTSIZE*1] = z11 + z4;
- dataptr[DCTSIZE*7] = z11 - z4;
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/src/jpeg-8c/jfdctfst.c b/src/jpeg-8c/jfdctfst.c
deleted file mode 100644
index 8cad5f22..00000000
--- a/src/jpeg-8c/jfdctfst.c
+++ /dev/null
@@ -1,230 +0,0 @@
-/*
- * jfdctfst.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * Modified 2003-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values. The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_IFAST_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jfdctint.c for more details. However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * Again to save a few shifts, the intermediate results between pass 1 and
- * pass 2 are not upscaled, but are represented only to integral precision.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13. This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
-
-#define CONST_BITS 8
-
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 8
-#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
-#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
-#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
-#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
-#else
-#define FIX_0_382683433 FIX(0.382683433)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_707106781 FIX(0.707106781)
-#define FIX_1_306562965 FIX(1.306562965)
-#endif
-
-
-/* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
-
-#ifndef USE_ACCURATE_ROUNDING
-#undef DESCALE
-#define DESCALE(x,n) RIGHT_SHIFT(x, n)
-#endif
-
-
-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
- * descale to yield a DCTELEM result.
- */
-
-#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL(void)
-jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- DCTELEM tmp10, tmp11, tmp12, tmp13;
- DCTELEM z1, z2, z3, z4, z5, z11, z13;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
-
- dataptr = data;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Load data into workspace */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
- tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
- dataptr[4] = tmp10 - tmp11;
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
- dataptr[2] = tmp13 + z1; /* phase 5 */
- dataptr[6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
- z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
- z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
- z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[5] = z13 + z2; /* phase 6 */
- dataptr[3] = z13 - z2;
- dataptr[1] = z11 + z4;
- dataptr[7] = z11 - z4;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
- dataptr[DCTSIZE*4] = tmp10 - tmp11;
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
- dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
- dataptr[DCTSIZE*6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
- z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
- z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
- z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
- dataptr[DCTSIZE*3] = z13 - z2;
- dataptr[DCTSIZE*1] = z11 + z4;
- dataptr[DCTSIZE*7] = z11 - z4;
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#endif /* DCT_IFAST_SUPPORTED */
diff --git a/src/jpeg-8c/jfdctint.c b/src/jpeg-8c/jfdctint.c
deleted file mode 100644
index 1dde58c4..00000000
--- a/src/jpeg-8c/jfdctint.c
+++ /dev/null
@@ -1,4348 +0,0 @@
-/*
- * jfdctint.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * Modification developed 2003-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- *
- * We also provide FDCT routines with various input sample block sizes for
- * direct resolution reduction or enlargement and for direct resolving the
- * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
- * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
- *
- * For N<8 we fill the remaining block coefficients with zero.
- * For N>8 we apply a partial N-point FDCT on the input samples, computing
- * just the lower 8 frequency coefficients and discarding the rest.
- *
- * We must scale the output coefficients of the N-point FDCT appropriately
- * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling
- * is folded into the constant multipliers (pass 2) and/or final/initial
- * shifting.
- *
- * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
- * since there would be too many additional constants to pre-calculate.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_ISLOW_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
-#endif
-
-
-/*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
- * larger than the true DCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D DCT,
- * because the y0 and y4 outputs need not be divided by sqrt(N).
- * In the IJG code, this factor of 8 is removed by the quantization step
- * (in jcdctmgr.c), NOT in this module.
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (For 12-bit sample data, the intermediate
- * array is INT32 anyway.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 13
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 13
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
-#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
-#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
-#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
-#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
-#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
-#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
-#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
-#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
-#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
-#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
-#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
-#else
-#define FIX_0_298631336 FIX(0.298631336)
-#define FIX_0_390180644 FIX(0.390180644)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_765366865 FIX(0.765366865)
-#define FIX_0_899976223 FIX(0.899976223)
-#define FIX_1_175875602 FIX(1.175875602)
-#define FIX_1_501321110 FIX(1.501321110)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_1_961570560 FIX(1.961570560)
-#define FIX_2_053119869 FIX(2.053119869)
-#define FIX_2_562915447 FIX(2.562915447)
-#define FIX_3_072711026 FIX(3.072711026)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL(void)
-jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- dataptr = data;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
-
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
- CONST_BITS-PASS1_BITS);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents sqrt(2) * cos(K*pi/16).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
-
- tmp10 = tmp0 + tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
- tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
-
- tmp12 += z1;
- tmp13 += z1;
-
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM)
- RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM)
- RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
-
- /* Add fudge factor here for final descale. */
- tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents sqrt(2) * cos(K*pi/16).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
-
- tmp10 = tmp0 + tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
-
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
- tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
-
- tmp12 += z1;
- tmp13 += z1;
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM)
- RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM)
- RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#ifdef DCT_SCALING_SUPPORTED
-
-
-/*
- * Perform the forward DCT on a 7x7 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12;
- INT32 z1, z2, z3;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* cK represents sqrt(2) * cos(K*pi/14). */
-
- dataptr = data;
- for (ctr = 0; ctr < 7; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
- tmp3 = GETJSAMPLE(elemptr[3]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
-
- z1 = tmp0 + tmp2;
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
- dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
- dataptr[4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/7)**2 = 64/49, which we fold
- * into the constant multipliers:
- * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 7; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
- tmp3 = dataptr[DCTSIZE*3];
-
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
- tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
-
- z1 = tmp0 + tmp2;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
- CONST_BITS+PASS1_BITS);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 6x6 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11, tmp12;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* cK represents sqrt(2) * cos(K*pi/12). */
-
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
- tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
- CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
- CONST_BITS-PASS1_BITS);
-
- dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
- dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
- dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)**2 = 16/9, which we fold
- * into the constant multipliers:
- * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
- tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 5x5 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We scale the results further by 2 as part of output adaption */
- /* scaling for different DCT size. */
- /* cK represents sqrt(2) * cos(K*pi/10). */
-
- dataptr = data;
- for (ctr = 0; ctr < 5; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
- tmp2 = GETJSAMPLE(elemptr[2]);
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));
- tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
- dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);
- dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
-
- dataptr[1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
- CONST_BITS-PASS1_BITS-1);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/5)**2 = 64/25, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 5; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
- tmp2 = dataptr[DCTSIZE*2];
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 4x4 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */
- /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
-
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));
- dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));
-
- /* Odd part */
-
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);
-
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS-2);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS-2);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
-
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
-
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
-
- /* Odd part */
-
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 3x3 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We scale the results further by 2**2 as part of output adaption */
- /* scaling for different DCT size. */
- /* cK represents sqrt(2) * cos(K*pi/6). */
-
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
- tmp1 = GETJSAMPLE(elemptr[1]);
-
- tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
- CONST_BITS-PASS1_BITS-2);
-
- /* Odd part */
-
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
- CONST_BITS-PASS1_BITS-2);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/3)**2 = 64/9, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
- tmp1 = dataptr[DCTSIZE*1];
-
- tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 2x2 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- JSAMPROW elemptr;
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT. */
-
- /* Row 0 */
- elemptr = sample_data[0] + start_col;
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
- tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
-
- /* Row 1 */
- elemptr = sample_data[1] + start_col;
-
- tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
- tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/2)**2 = 2**4.
- */
-
- /* Column 0 */
- /* Apply unsigned->signed conversion */
- data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4);
- data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4);
-
- /* Column 1 */
- data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4);
- data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4);
-}
-
-
-/*
- * Perform the forward DCT on a 1x1 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* We leave the result scaled up by an overall factor of 8. */
- /* We must also scale the output by (8/1)**2 = 2**6. */
- /* Apply unsigned->signed conversion */
- data[0] = (DCTELEM)
- ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6);
-}
-
-
-/*
- * Perform the forward DCT on a 9x9 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2;
- DCTELEM workspace[8];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* we scale the results further by 2 as part of output adaption */
- /* scaling for different DCT size. */
- /* cK represents sqrt(2) * cos(K*pi/18). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);
- tmp4 = GETJSAMPLE(elemptr[4]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);
-
- z1 = tmp0 + tmp2 + tmp3;
- z2 = tmp1 + tmp4;
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);
- dataptr[6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */
- CONST_BITS-1);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */
- z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */
- + z1 + z2, CONST_BITS-1);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */
- + z1 - z2, CONST_BITS-1);
-
- /* Odd part */
-
- dataptr[3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */
- CONST_BITS-1);
-
- tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */
- tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */
- tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);
-
- tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */
-
- dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);
- dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 9)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/9)**2 = 64/81, which we partially
- * fold into the constant multipliers and final/initial shifting:
- * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];
- tmp4 = dataptr[DCTSIZE*4];
-
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];
- tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];
- tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];
-
- z1 = tmp0 + tmp2 + tmp3;
- z2 = tmp1 + tmp4;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */
- CONST_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */
- CONST_BITS+2);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */
- z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */
- + z1 + z2, CONST_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */
- + z1 - z2, CONST_BITS+2);
-
- /* Odd part */
-
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */
- CONST_BITS+2);
-
- tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */
- tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */
- tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);
-
- tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */
-
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM)
- DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 10x10 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- DCTELEM workspace[8*2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* we scale the results further by 2 as part of output adaption */
- /* scaling for different DCT size. */
- /* cK represents sqrt(2) * cos(K*pi/20). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
- tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
-
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);
- tmp12 += tmp12;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
- CONST_BITS-1);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
- CONST_BITS-1);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
- CONST_BITS-1);
-
- /* Odd part */
-
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);
- tmp2 <<= CONST_BITS;
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
- CONST_BITS-1);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
- (tmp11 << (CONST_BITS - 1)) - tmp2;
- dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);
- dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 10)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/10)**2 = 16/25, which we partially
- * fold into the constant multipliers and final/initial shifting:
- * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
- tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
-
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
- CONST_BITS+2);
- tmp12 += tmp12;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
- CONST_BITS+2);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
- CONST_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
- CONST_BITS+2);
-
- /* Odd part */
-
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+2);
- tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
- CONST_BITS+2);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
- MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on an 11x11 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 z1, z2, z3;
- DCTELEM workspace[8*3];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* we scale the results further by 2 as part of output adaption */
- /* scaling for different DCT size. */
- /* cK represents sqrt(2) * cos(K*pi/22). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);
- tmp5 = GETJSAMPLE(elemptr[5]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);
- tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);
- tmp5 += tmp5;
- tmp0 -= tmp5;
- tmp1 -= tmp5;
- tmp2 -= tmp5;
- tmp3 -= tmp5;
- tmp4 -= tmp5;
- z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */
- MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */
- z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */
- z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */
- dataptr[2] = (DCTELEM)
- DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */
- - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */
- CONST_BITS-1);
- dataptr[4] = (DCTELEM)
- DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */
- - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */
- + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */
- CONST_BITS-1);
- dataptr[6] = (DCTELEM)
- DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */
- - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */
- CONST_BITS-1);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */
- tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */
- + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */
- tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */
- tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */
- - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */
- tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */
- tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */
- + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */
- tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */
- - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 11)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/11)**2 = 64/121, which we partially
- * fold into the constant multipliers and final/initial shifting:
- * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];
- tmp5 = dataptr[DCTSIZE*5];
-
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];
- tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];
- tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];
- tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];
- tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,
- FIX(1.057851240)), /* 128/121 */
- CONST_BITS+2);
- tmp5 += tmp5;
- tmp0 -= tmp5;
- tmp1 -= tmp5;
- tmp2 -= tmp5;
- tmp3 -= tmp5;
- tmp4 -= tmp5;
- z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */
- MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */
- z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */
- z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */
- - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */
- CONST_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */
- - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */
- + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */
- CONST_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */
- - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */
- CONST_BITS+2);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */
- tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */
- + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */
- tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */
- tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */
- - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */
- tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */
- tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */
- + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */
- tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */
- - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 12x12 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- DCTELEM workspace[8*4];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT. */
- /* cK represents sqrt(2) * cos(K*pi/24). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
-
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);
- dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
- CONST_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
- CONST_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 12)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/12)**2 = 4/9, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
-
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
- CONST_BITS+1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
- MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
- CONST_BITS+1);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 13x13 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- INT32 z1, z2;
- DCTELEM workspace[8*5];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT. */
- /* cK represents sqrt(2) * cos(K*pi/26). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);
- tmp6 = GETJSAMPLE(elemptr[6]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);
- tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);
- tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);
- tmp6 += tmp6;
- tmp0 -= tmp6;
- tmp1 -= tmp6;
- tmp2 -= tmp6;
- tmp3 -= tmp6;
- tmp4 -= tmp6;
- tmp5 -= tmp6;
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */
- MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */
- MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */
- MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */
- MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */
- MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */
- CONST_BITS);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */
- MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */
- MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */
- z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */
- MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */
- MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */
-
- dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */
- MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */
- MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */
- tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */
- MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */
- tmp1 += tmp4 + tmp5 +
- MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */
- MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */
- tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */
- tmp2 += tmp4 + tmp6 -
- MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */
- MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */
- tmp3 += tmp5 + tmp6 +
- MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */
- MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 13)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/13)**2 = 64/169, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];
- tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];
- tmp6 = dataptr[DCTSIZE*6];
-
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];
- tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];
- tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];
- tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];
- tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];
- tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,
- FIX(0.757396450)), /* 128/169 */
- CONST_BITS+1);
- tmp6 += tmp6;
- tmp0 -= tmp6;
- tmp1 -= tmp6;
- tmp2 -= tmp6;
- tmp3 -= tmp6;
- tmp4 -= tmp6;
- tmp5 -= tmp6;
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */
- MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */
- MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */
- MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */
- MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */
- MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */
- CONST_BITS+1);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */
- MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */
- MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */
- z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */
- MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */
- MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */
-
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */
- MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */
- MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */
- tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */
- MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */
- tmp1 += tmp4 + tmp5 +
- MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */
- MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */
- tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */
- tmp2 += tmp4 + tmp6 -
- MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */
- MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */
- tmp3 += tmp5 + tmp6 +
- MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */
- MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 14x14 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- DCTELEM workspace[8*6];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT. */
- /* cK represents sqrt(2) * cos(K*pi/28). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
- tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
-
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);
- tmp13 += tmp13;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
- CONST_BITS);
-
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
-
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
- CONST_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
- CONST_BITS);
-
- /* Odd part */
-
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);
- tmp3 <<= CONST_BITS;
- tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
- dataptr[5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
- CONST_BITS);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
- CONST_BITS);
- dataptr[1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
- MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
- CONST_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 14)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/14)**2 = 16/49, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
- tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
-
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+1);
- tmp13 += tmp13;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
- CONST_BITS+1);
-
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
-
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
- CONST_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
- CONST_BITS+1);
-
- /* Odd part */
-
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[DCTSIZE*7] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+1);
- tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
- tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
- CONST_BITS+1);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
- CONST_BITS+1);
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3
- - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
- - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
- CONST_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 15x15 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 z1, z2, z3;
- DCTELEM workspace[8*7];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT. */
- /* cK represents sqrt(2) * cos(K*pi/30). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);
- tmp7 = GETJSAMPLE(elemptr[7]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);
- tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);
- tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);
- tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);
-
- z1 = tmp0 + tmp4 + tmp5;
- z2 = tmp1 + tmp3 + tmp6;
- z3 = tmp2 + tmp7;
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);
- z3 += z3;
- dataptr[6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */
- MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */
- CONST_BITS);
- tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
- z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */
- MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */
- z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */
- MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */
- z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */
- MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */
- MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */
-
- dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);
- dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);
-
- /* Odd part */
-
- tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
- FIX(1.224744871)); /* c5 */
- tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */
- MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */
- tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */
- tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */
- MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */
- MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */
- tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */
- MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */
- MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */
- tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */
- MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */
- MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 15)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/15)**2 = 64/225, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];
- tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];
- tmp7 = dataptr[DCTSIZE*7];
-
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];
- tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];
- tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];
- tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];
- tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];
- tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];
- tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];
-
- z1 = tmp0 + tmp4 + tmp5;
- z2 = tmp1 + tmp3 + tmp6;
- z3 = tmp2 + tmp7;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */
- CONST_BITS+2);
- z3 += z3;
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */
- MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */
- CONST_BITS+2);
- tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
- z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */
- MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */
- z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */
- MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */
- z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */
- MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */
- MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */
-
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);
-
- /* Odd part */
-
- tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
- FIX(1.393487498)); /* c5 */
- tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */
- MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */
- tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */
- tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */
- MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */
- MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */
- tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */
- MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */
- MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */
- tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */
- MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */
- MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 16x16 sample block.
- */
-
-GLOBAL(void)
-jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
- DCTELEM workspace[DCTSIZE2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* cK represents sqrt(2) * cos(K*pi/32). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
-
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS-PASS1_BITS);
-
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == DCTSIZE * 2)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/16)**2 = 1/2**2.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
-
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS+PASS1_BITS+2);
-
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */
- CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS+PASS1_BITS+2);
-
- /* Odd part */
-
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 16x8 sample block.
- *
- * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */
-
- dataptr = data;
- ctr = 0;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
-
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS-PASS1_BITS);
-
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by 8/16 = 1/2.
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
-
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
- CONST_BITS+PASS1_BITS+1);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
-
- tmp10 = tmp0 + tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
-
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
- tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
-
- tmp12 += z1;
- tmp13 += z1;
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12,
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13,
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12,
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13,
- CONST_BITS+PASS1_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 14x7 sample block.
- *
- * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 z1, z2, z3;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Zero bottom row of output coefficient block. */
- MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */
-
- dataptr = data;
- for (ctr = 0; ctr < 7; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
- tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
-
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);
- tmp13 += tmp13;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
- CONST_BITS-PASS1_BITS);
-
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
-
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);
- tmp3 <<= CONST_BITS;
- tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
- dataptr[5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
- CONST_BITS-PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
- CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
- MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
- CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/14)*(8/7) = 32/49, which we
- * partially fold into the constant multipliers and final shifting:
- * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
- tmp3 = dataptr[DCTSIZE*3];
-
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
- tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
-
- z1 = tmp0 + tmp2;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
- CONST_BITS+PASS1_BITS+1);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 12x6 sample block.
- *
- * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Zero 2 bottom rows of output coefficient block. */
- MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */
-
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
-
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
- CONST_BITS-PASS1_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/12)*(8/6) = 8/9, which we
- * partially fold into the constant multipliers and final shifting:
- * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
- tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
- CONST_BITS+PASS1_BITS+1);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 10x5 sample block.
- *
- * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Zero 3 bottom rows of output coefficient block. */
- MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */
-
- dataptr = data;
- for (ctr = 0; ctr < 5; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
- tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
-
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);
- tmp12 += tmp12;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
- CONST_BITS-PASS1_BITS);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);
- tmp2 <<= CONST_BITS;
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
- CONST_BITS-PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
- (tmp11 << (CONST_BITS - 1)) - tmp2;
- dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/10)*(8/5) = 32/25, which we
- * fold into the constant multipliers:
- * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
- tmp2 = dataptr[DCTSIZE*2];
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on an 8x4 sample block.
- *
- * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Zero 4 bottom rows of output coefficient block. */
- MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We must also scale the output by 8/4 = 2, which we add here. */
-
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
-
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-2);
- dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
- CONST_BITS-PASS1_BITS-1);
- dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
- CONST_BITS-PASS1_BITS-1);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
-
- tmp10 = tmp0 + tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-2);
-
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
- tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
-
- tmp12 += z1;
- tmp13 += z1;
-
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1);
- dataptr[5] = (DCTELEM)
- RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1);
- dataptr[7] = (DCTELEM)
- RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
-
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
-
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
-
- /* Odd part */
-
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 6x3 sample block.
- *
- * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11, tmp12;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We scale the results further by 2 as part of output adaption */
- /* scaling for different DCT size. */
- /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
-
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
- tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
- CONST_BITS-PASS1_BITS-1);
-
- /* Odd part */
-
- tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
- CONST_BITS-PASS1_BITS-1);
-
- dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));
- dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));
- dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
- tmp1 = dataptr[DCTSIZE*1];
-
- tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 4x2 sample block.
- *
- * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */
- /* 4-point FDCT kernel, */
- /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
-
- dataptr = data;
- for (ctr = 0; ctr < 2; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3));
- dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3));
-
- /* Odd part */
-
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-4);
-
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS-3);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS-3);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1));
- tmp1 = dataptr[DCTSIZE*1];
-
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
-
- /* Odd part */
-
- dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 2x1 sample block.
- *
- * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1;
- JSAMPROW elemptr;
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- elemptr = sample_data[0] + start_col;
-
- tmp0 = GETJSAMPLE(elemptr[0]);
- tmp1 = GETJSAMPLE(elemptr[1]);
-
- /* We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/2)*(8/1) = 2**5.
- */
-
- /* Even part */
- /* Apply unsigned->signed conversion */
- data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
-
- /* Odd part */
- data[1] = (DCTELEM) ((tmp0 - tmp1) << 5);
-}
-
-
-/*
- * Perform the forward DCT on an 8x16 sample block.
- *
- * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
- INT32 z1;
- DCTELEM workspace[DCTSIZE2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
-
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
- CONST_BITS-PASS1_BITS);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
-
- tmp10 = tmp0 + tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
-
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
- tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
-
- tmp12 += z1;
- tmp13 += z1;
-
- dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == DCTSIZE * 2)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by 8/16 = 1/2.
- * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
-
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS+PASS1_BITS+1);
-
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS+PASS1_BITS+1);
-
- /* Odd part */
-
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 7x14 sample block.
- *
- * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 z1, z2, z3;
- DCTELEM workspace[8*6];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
- tmp3 = GETJSAMPLE(elemptr[3]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
-
- z1 = tmp0 + tmp2;
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
- dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
- dataptr[4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
-
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 14)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/7)*(8/14) = 32/49, which we
- * fold into the constant multipliers:
- * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = 0; ctr < 7; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
- tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
-
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+PASS1_BITS);
- tmp13 += tmp13;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
- CONST_BITS+PASS1_BITS);
-
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
-
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[DCTSIZE*7] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+PASS1_BITS);
- tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
- tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
- CONST_BITS+PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3
- - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
- - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 6x12 sample block.
- *
- * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- DCTELEM workspace[8*4];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
- tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
- CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
- CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
- CONST_BITS-PASS1_BITS);
-
- dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
- dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
- dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 12)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)*(8/12) = 8/9, which we
- * fold into the constant multipliers:
- * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
-
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
- MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
-
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 5x10 sample block.
- *
- * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- DCTELEM workspace[8*2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */
-
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
- tmp2 = GETJSAMPLE(elemptr[2]);
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
-
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);
- tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
- dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
-
- dataptr[1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
- CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
- CONST_BITS-PASS1_BITS);
-
- ctr++;
-
- if (ctr != DCTSIZE) {
- if (ctr == 10)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/5)*(8/10) = 32/25, which we
- * fold into the constant multipliers:
- * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.
- */
-
- dataptr = data;
- wsptr = workspace;
- for (ctr = 0; ctr < 5; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
- tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
-
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
-
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp12 += tmp12;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
- CONST_BITS+PASS1_BITS);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
- CONST_BITS+PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
- MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 4x8 sample block.
- *
- * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We must also scale the output by 8/4 = 2, which we add here. */
- /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */
-
- dataptr = data;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
-
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));
-
- /* Odd part */
-
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);
-
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS-1);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
-
- /* Add fudge factor here for final descale. */
- tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
-
- tmp10 = tmp0 + tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
-
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
- tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
-
- tmp12 += z1;
- tmp13 += z1;
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM)
- RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM)
- RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 3x6 sample block.
- *
- * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11, tmp12;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- /* We scale the results further by 2 as part of output adaption */
- /* scaling for different DCT size. */
- /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */
-
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
- tmp1 = GETJSAMPLE(elemptr[1]);
-
- tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
- CONST_BITS-PASS1_BITS-1);
-
- /* Odd part */
-
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
- CONST_BITS-PASS1_BITS-1);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
- tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
-
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
- CONST_BITS+PASS1_BITS);
-
- /* Odd part */
-
- tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 2x4 sample block.
- *
- * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT. */
- /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */
-
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- elemptr = sample_data[ctr] + start_col;
-
- /* Even part */
-
- tmp0 = GETJSAMPLE(elemptr[0]);
- tmp1 = GETJSAMPLE(elemptr[1]);
-
- /* Apply unsigned->signed conversion */
- dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3);
-
- /* Odd part */
-
- dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * 4-point FDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
-
- dataptr = data;
- for (ctr = 0; ctr < 2; ctr++) {
- /* Even part */
-
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
-
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
-
- dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1);
- dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1);
-
- /* Odd part */
-
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-1);
-
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-/*
- * Perform the forward DCT on a 1x2 sample block.
- *
- * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
- */
-
-GLOBAL(void)
-jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
-{
- INT32 tmp0, tmp1;
-
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
-
- tmp0 = GETJSAMPLE(sample_data[0][start_col]);
- tmp1 = GETJSAMPLE(sample_data[1][start_col]);
-
- /* We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/1)*(8/2) = 2**5.
- */
-
- /* Even part */
- /* Apply unsigned->signed conversion */
- data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
-
- /* Odd part */
- data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5);
-}
-
-#endif /* DCT_SCALING_SUPPORTED */
-#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/src/jpeg-8c/jidctflt.c b/src/jpeg-8c/jidctflt.c
deleted file mode 100644
index 23ae9d33..00000000
--- a/src/jpeg-8c/jidctflt.c
+++ /dev/null
@@ -1,235 +0,0 @@
-/*
- * jidctflt.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * Modified 2010 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * This implementation should be more accurate than either of the integer
- * IDCT implementations. However, it may not give the same results on all
- * machines because of differences in roundoff behavior. Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values. However, that problem does not arise if
- * we use floating point arithmetic.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a float result.
- */
-
-#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL(void)
-jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
- FAST_FLOAT z5, z10, z11, z12, z13;
- JCOEFPTR inptr;
- FLOAT_MULT_TYPE * quantptr;
- FAST_FLOAT * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = cinfo->sample_range_limit;
- int ctr;
- FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = tmp0 + tmp2; /* phase 3 */
- tmp11 = tmp0 - tmp2;
-
- tmp13 = tmp1 + tmp3; /* phases 5-3 */
- tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
-
- tmp0 = tmp10 + tmp13; /* phase 2 */
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- z13 = tmp6 + tmp5; /* phase 6 */
- z10 = tmp6 - tmp5;
- z11 = tmp4 + tmp7;
- z12 = tmp4 - tmp7;
-
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
-
- z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
- tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
- tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 - tmp5;
-
- wsptr[DCTSIZE*0] = tmp0 + tmp7;
- wsptr[DCTSIZE*7] = tmp0 - tmp7;
- wsptr[DCTSIZE*1] = tmp1 + tmp6;
- wsptr[DCTSIZE*6] = tmp1 - tmp6;
- wsptr[DCTSIZE*2] = tmp2 + tmp5;
- wsptr[DCTSIZE*5] = tmp2 - tmp5;
- wsptr[DCTSIZE*3] = tmp3 + tmp4;
- wsptr[DCTSIZE*4] = tmp3 - tmp4;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * And testing floats for zero is relatively expensive, so we don't bother.
- */
-
- /* Even part */
-
- /* Apply signed->unsigned and prepare float->int conversion */
- z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
- tmp10 = z5 + wsptr[4];
- tmp11 = z5 - wsptr[4];
-
- tmp13 = wsptr[2] + wsptr[6];
- tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
-
- tmp0 = tmp10 + tmp13;
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- z13 = wsptr[5] + wsptr[3];
- z10 = wsptr[5] - wsptr[3];
- z11 = wsptr[1] + wsptr[7];
- z12 = wsptr[1] - wsptr[7];
-
- tmp7 = z11 + z13;
- tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
-
- z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
- tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
- tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7;
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 - tmp5;
-
- /* Final output stage: float->int conversion and range-limit */
-
- outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
- outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
- outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
- outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
- outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
- outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
- outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
- outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/src/jpeg-8c/jidctfst.c b/src/jpeg-8c/jidctfst.c
deleted file mode 100644
index dba4216f..00000000
--- a/src/jpeg-8c/jidctfst.c
+++ /dev/null
@@ -1,368 +0,0 @@
-/*
- * jidctfst.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values. The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_IFAST_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jidctint.c for more details. However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * The dequantized coefficients are not integers because the AA&N scaling
- * factors have been incorporated. We represent them scaled up by PASS1_BITS,
- * so that the first and second IDCT rounds have the same input scaling.
- * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
- * avoid a descaling shift; this compromises accuracy rather drastically
- * for small quantization table entries, but it saves a lot of shifts.
- * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
- * so we use a much larger scaling factor to preserve accuracy.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13. This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 8
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 8
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 8
-#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
-#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
-#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
-#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
-#else
-#define FIX_1_082392200 FIX(1.082392200)
-#define FIX_1_414213562 FIX(1.414213562)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_2_613125930 FIX(2.613125930)
-#endif
-
-
-/* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
-
-#ifndef USE_ACCURATE_ROUNDING
-#undef DESCALE
-#define DESCALE(x,n) RIGHT_SHIFT(x, n)
-#endif
-
-
-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
- * descale to yield a DCTELEM result.
- */
-
-#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
- * multiplication will do. For 12-bit data, the multiplier table is
- * declared INT32, so a 32-bit multiply will be used.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
-#else
-#define DEQUANTIZE(coef,quantval) \
- DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
-#endif
-
-
-/* Like DESCALE, but applies to a DCTELEM and produces an int.
- * We assume that int right shift is unsigned if INT32 right shift is.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS DCTELEM ishift_temp;
-#if BITS_IN_JSAMPLE == 8
-#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
-#else
-#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
-#endif
-#define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
- (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-#ifdef USE_ACCURATE_ROUNDING
-#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
-#else
-#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
-#endif
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL(void)
-jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- DCTELEM tmp10, tmp11, tmp12, tmp13;
- DCTELEM z5, z10, z11, z12, z13;
- JCOEFPTR inptr;
- IFAST_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS /* for DESCALE */
- ISHIFT_TEMPS /* for IDESCALE */
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = tmp0 + tmp2; /* phase 3 */
- tmp11 = tmp0 - tmp2;
-
- tmp13 = tmp1 + tmp3; /* phases 5-3 */
- tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
-
- tmp0 = tmp10 + tmp13; /* phase 2 */
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- z13 = tmp6 + tmp5; /* phase 6 */
- z10 = tmp6 - tmp5;
- z11 = tmp4 + tmp7;
- z12 = tmp4 - tmp7;
-
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
-
- z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
- tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
- tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
-
- wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
- wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
- wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
- wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
- wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
- wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
- wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
- wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
-#ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- outptr[4] = dcval;
- outptr[5] = dcval;
- outptr[6] = dcval;
- outptr[7] = dcval;
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-#endif
-
- /* Even part */
-
- tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
- tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
-
- tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
- tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- - tmp13;
-
- tmp0 = tmp10 + tmp13;
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
- z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
- z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
- z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
-
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
-
- z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
- tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
- tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
-
- /* Final output stage: scale down by a factor of 8 and range-limit */
-
- outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-#endif /* DCT_IFAST_SUPPORTED */
diff --git a/src/jpeg-8c/jidctint.c b/src/jpeg-8c/jidctint.c
deleted file mode 100644
index dcdf7ce4..00000000
--- a/src/jpeg-8c/jidctint.c
+++ /dev/null
@@ -1,5137 +0,0 @@
-/*
- * jidctint.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * Modification developed 2002-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- *
- * We also provide IDCT routines with various output sample block sizes for
- * direct resolution reduction or enlargement and for direct resolving the
- * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
- * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block.
- *
- * For N<8 we simply take the corresponding low-frequency coefficients of
- * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
- * to yield the downscaled outputs.
- * This can be seen as direct low-pass downsampling from the DCT domain
- * point of view rather than the usual spatial domain point of view,
- * yielding significant computational savings and results at least
- * as good as common bilinear (averaging) spatial downsampling.
- *
- * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
- * lower frequencies and higher frequencies assumed to be zero.
- * It turns out that the computational effort is similar to the 8x8 IDCT
- * regarding the output size.
- * Furthermore, the scaling and descaling is the same for all IDCT sizes.
- *
- * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
- * since there would be too many additional constants to pre-calculate.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_ISLOW_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
-#endif
-
-
-/*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- * larger than the true IDCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D IDCT,
- * because the y0 and y4 inputs need not be divided by sqrt(N).
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (To scale up 12-bit sample data further, an
- * intermediate INT32 array would be needed.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 13
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 13
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
-#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
-#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
-#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
-#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
-#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
-#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
-#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
-#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
-#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
-#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
-#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
-#else
-#define FIX_0_298631336 FIX(0.298631336)
-#define FIX_0_390180644 FIX(0.390180644)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_765366865 FIX(0.765366865)
-#define FIX_0_899976223 FIX(0.899976223)
-#define FIX_1_175875602 FIX(1.175875602)
-#define FIX_1_501321110 FIX(1.501321110)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_1_961570560 FIX(1.961570560)
-#define FIX_2_053119869 FIX(2.053119869)
-#define FIX_2_562915447 FIX(2.562915447)
-#define FIX_3_072711026 FIX(3.072711026)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result. In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
-
-#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL(void)
-jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z2 <<= CONST_BITS;
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z2 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- tmp0 = z2 + z3;
- tmp1 = z2 - z3;
-
- tmp10 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
- tmp11 = tmp1 + tmp3;
- tmp12 = tmp1 - tmp3;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- z2 = tmp0 + tmp2;
- z3 = tmp1 + tmp3;
-
- z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
- z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
- z2 += z1;
- z3 += z1;
-
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- tmp0 += z1 + z2;
- tmp3 += z1 + z3;
-
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp1 += z1 + z3;
- tmp2 += z1 + z2;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
-#ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- outptr[4] = dcval;
- outptr[5] = dcval;
- outptr[6] = dcval;
- outptr[7] = dcval;
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-#endif
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
-
- /* Add fudge factor here for final descale. */
- z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 = (INT32) wsptr[4];
-
- tmp0 = (z2 + z3) << CONST_BITS;
- tmp1 = (z2 - z3) << CONST_BITS;
-
- tmp10 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
- tmp11 = tmp1 + tmp3;
- tmp12 = tmp1 - tmp3;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) wsptr[7];
- tmp1 = (INT32) wsptr[5];
- tmp2 = (INT32) wsptr[3];
- tmp3 = (INT32) wsptr[1];
-
- z2 = tmp0 + tmp2;
- z3 = tmp1 + tmp3;
-
- z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
- z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
- z2 += z1;
- z3 += z1;
-
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- tmp0 += z1 + z2;
- tmp3 += z1 + z3;
-
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp1 += z1 + z3;
- tmp2 += z1 + z2;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-#ifdef IDCT_SCALING_SUPPORTED
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 7x7 output block.
- *
- * Optimized algorithm with 12 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/14).
- */
-
-GLOBAL(void)
-jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[7*7]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp13 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
- tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
- tmp0 = z1 + z3;
- z2 -= tmp0;
- tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
- tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
- tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
- tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-
- tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
- tmp1 += tmp2;
- z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
- tmp0 += z2;
- tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
-
- /* Final output stage */
-
- wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 7 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 7; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp13 <<= CONST_BITS;
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[4];
- z3 = (INT32) wsptr[6];
-
- tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
- tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
- tmp0 = z1 + z3;
- z2 -= tmp0;
- tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
- tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
- tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
- tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
-
- tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
- tmp1 += tmp2;
- z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
- tmp0 += z2;
- tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 7; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 6x6 output block.
- *
- * Optimized algorithm with 3 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/12).
- */
-
-GLOBAL(void)
-jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[6*6]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
- tmp1 = tmp0 + tmp10;
- tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
- tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
- tmp10 = tmp1 + tmp0;
- tmp12 = tmp1 - tmp0;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
- tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
- tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
- tmp1 = (z1 - z2 - z3) << PASS1_BITS;
-
- /* Final output stage */
-
- wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[6*1] = (int) (tmp11 + tmp1);
- wsptr[6*4] = (int) (tmp11 - tmp1);
- wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 6 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
- tmp2 = (INT32) wsptr[4];
- tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
- tmp1 = tmp0 + tmp10;
- tmp11 = tmp0 - tmp10 - tmp10;
- tmp10 = (INT32) wsptr[2];
- tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
- tmp10 = tmp1 + tmp0;
- tmp12 = tmp1 - tmp0;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
- tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
- tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
- tmp1 = (z1 - z2 - z3) << CONST_BITS;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 6; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 5x5 output block.
- *
- * Optimized algorithm with 5 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/10).
- */
-
-GLOBAL(void)
-jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[5*5]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp12 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
- z3 = tmp12 + z2;
- tmp10 = z3 + z1;
- tmp11 = z3 - z1;
- tmp12 -= z2 << 2;
-
- /* Odd part */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
- tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
- tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
-
- /* Final output stage */
-
- wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 5 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 5; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp12 <<= CONST_BITS;
- tmp0 = (INT32) wsptr[2];
- tmp1 = (INT32) wsptr[4];
- z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
- z3 = tmp12 + z2;
- tmp10 = z3 + z1;
- tmp11 = z3 - z1;
- tmp12 -= z2 << 2;
-
- /* Odd part */
-
- z2 = (INT32) wsptr[1];
- z3 = (INT32) wsptr[3];
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
- tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
- tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 5; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 4x4 output block.
- *
- * Optimized algorithm with 3 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
- */
-
-GLOBAL(void)
-jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp2, tmp10, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[4*4]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-
- tmp10 = (tmp0 + tmp2) << PASS1_BITS;
- tmp12 = (tmp0 - tmp2) << PASS1_BITS;
-
- /* Odd part */
- /* Same rotation as in the even part of the 8x8 LL&M IDCT */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS);
- tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS);
-
- /* Final output stage */
-
- wsptr[4*0] = (int) (tmp10 + tmp0);
- wsptr[4*3] = (int) (tmp10 - tmp0);
- wsptr[4*1] = (int) (tmp12 + tmp2);
- wsptr[4*2] = (int) (tmp12 - tmp2);
- }
-
- /* Pass 2: process 4 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp2 = (INT32) wsptr[2];
-
- tmp10 = (tmp0 + tmp2) << CONST_BITS;
- tmp12 = (tmp0 - tmp2) << CONST_BITS;
-
- /* Odd part */
- /* Same rotation as in the even part of the 8x8 LL&M IDCT */
-
- z2 = (INT32) wsptr[1];
- z3 = (INT32) wsptr[3];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
- tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 4; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 3x3 output block.
- *
- * Optimized algorithm with 2 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/6).
- */
-
-GLOBAL(void)
-jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp2, tmp10, tmp12;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[3*3]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
- tmp10 = tmp0 + tmp12;
- tmp2 = tmp0 - tmp12 - tmp12;
-
- /* Odd part */
-
- tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
-
- /* Final output stage */
-
- wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 3 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 3; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
- tmp2 = (INT32) wsptr[2];
- tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
- tmp10 = tmp0 + tmp12;
- tmp2 = tmp0 - tmp12 - tmp12;
-
- /* Odd part */
-
- tmp12 = (INT32) wsptr[1];
- tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 3; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 2x2 output block.
- *
- * Multiplication-less algorithm.
- */
-
-GLOBAL(void)
-jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- ISLOW_MULT_TYPE * quantptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input. */
-
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
-
- /* Column 0 */
- tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
- /* Add fudge factor here for final descale. */
- tmp4 += ONE << 2;
-
- tmp0 = tmp4 + tmp5;
- tmp2 = tmp4 - tmp5;
-
- /* Column 1 */
- tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]);
- tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]);
-
- tmp1 = tmp4 + tmp5;
- tmp3 = tmp4 - tmp5;
-
- /* Pass 2: process 2 rows, store into output array. */
-
- /* Row 0 */
- outptr = output_buf[0] + output_col;
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
-
- /* Row 1 */
- outptr = output_buf[1] + output_col;
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK];
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 1x1 output block.
- *
- * We hardly need an inverse DCT routine for this: just take the
- * average pixel value, which is one-eighth of the DC coefficient.
- */
-
-GLOBAL(void)
-jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- int dcval;
- ISLOW_MULT_TYPE * quantptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- SHIFT_TEMPS
-
- /* 1x1 is trivial: just take the DC coefficient divided by 8. */
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
- dcval = (int) DESCALE((INT32) dcval, 3);
-
- output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 9x9 output block.
- *
- * Optimized algorithm with 10 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/18).
- */
-
-GLOBAL(void)
-jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*9]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
- tmp1 = tmp0 + tmp3;
- tmp2 = tmp0 - tmp3 - tmp3;
-
- tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
- tmp11 = tmp2 + tmp0;
- tmp14 = tmp2 - tmp0 - tmp0;
-
- tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
- tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
- tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
-
- tmp10 = tmp1 + tmp0 - tmp3;
- tmp12 = tmp1 - tmp0 + tmp2;
- tmp13 = tmp1 - tmp2 + tmp3;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
-
- tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
- tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
- tmp0 = tmp2 + tmp3 - z2;
- tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
- tmp2 += z2 - tmp1;
- tmp3 += z2 + tmp1;
- tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 9 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 9; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[4];
- z3 = (INT32) wsptr[6];
-
- tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
- tmp1 = tmp0 + tmp3;
- tmp2 = tmp0 - tmp3 - tmp3;
-
- tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
- tmp11 = tmp2 + tmp0;
- tmp14 = tmp2 - tmp0 - tmp0;
-
- tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
- tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
- tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
-
- tmp10 = tmp1 + tmp0 - tmp3;
- tmp12 = tmp1 - tmp0 + tmp2;
- tmp13 = tmp1 - tmp2 + tmp3;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
-
- tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
- tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
- tmp0 = tmp2 + tmp3 - z2;
- tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
- tmp2 += z2 - tmp1;
- tmp3 += z2 + tmp1;
- tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 10x10 output block.
- *
- * Optimized algorithm with 12 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/20).
- */
-
-GLOBAL(void)
-jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
- INT32 z1, z2, z3, z4, z5;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*10]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z3 += ONE << (CONST_BITS-PASS1_BITS-1);
- z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
- z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
- tmp10 = z3 + z1;
- tmp11 = z3 - z2;
-
- tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
- CONST_BITS-PASS1_BITS);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
- tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
- tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
-
- tmp20 = tmp10 + tmp12;
- tmp24 = tmp10 - tmp12;
- tmp21 = tmp11 + tmp13;
- tmp23 = tmp11 - tmp13;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = z2 + z4;
- tmp13 = z2 - z4;
-
- tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
- z5 = z3 << CONST_BITS;
-
- z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
- z4 = z5 + tmp12;
-
- tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
- tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
-
- z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
- z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
-
- tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
-
- tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
- tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) (tmp22 + tmp12);
- wsptr[8*7] = (int) (tmp22 - tmp12);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 10 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 10; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 <<= CONST_BITS;
- z4 = (INT32) wsptr[4];
- z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
- z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
- tmp10 = z3 + z1;
- tmp11 = z3 - z2;
-
- tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
- tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
- tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
-
- tmp20 = tmp10 + tmp12;
- tmp24 = tmp10 - tmp12;
- tmp21 = tmp11 + tmp13;
- tmp23 = tmp11 - tmp13;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z3 <<= CONST_BITS;
- z4 = (INT32) wsptr[7];
-
- tmp11 = z2 + z4;
- tmp13 = z2 - z4;
-
- tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
-
- z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
- z4 = z3 + tmp12;
-
- tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
- tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
-
- z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
- z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
-
- tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
-
- tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
- tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 11x11 output block.
- *
- * Optimized algorithm with 24 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/22).
- */
-
-GLOBAL(void)
-jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*11]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp10 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
- tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
- z4 = z1 + z3;
- tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
- z4 -= z2;
- tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
- tmp21 = tmp20 + tmp23 + tmp25 -
- MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
- tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
- tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
- tmp24 += tmp25;
- tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
- tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
- MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
- tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = z1 + z2;
- tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
- tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
- tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
- tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
- z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
- tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
- tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
- z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
- tmp11 += z1;
- tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
- tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
- MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
- MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 11 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 11; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp10 <<= CONST_BITS;
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[4];
- z3 = (INT32) wsptr[6];
-
- tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
- tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
- z4 = z1 + z3;
- tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
- z4 -= z2;
- tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
- tmp21 = tmp20 + tmp23 + tmp25 -
- MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
- tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
- tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
- tmp24 += tmp25;
- tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
- tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
- MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
- tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- tmp11 = z1 + z2;
- tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
- tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
- tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
- tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
- z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
- tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
- tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
- z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
- tmp11 += z1;
- tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
- tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
- MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
- MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 12x12 output block.
- *
- * Optimized algorithm with 15 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/24).
- */
-
-GLOBAL(void)
-jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*12]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z3 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
-
- tmp10 = z3 + z4;
- tmp11 = z3 - z4;
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
- z1 <<= CONST_BITS;
- z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
- z2 <<= CONST_BITS;
-
- tmp12 = z1 - z2;
-
- tmp21 = z3 + tmp12;
- tmp24 = z3 - tmp12;
-
- tmp12 = z4 + z2;
-
- tmp20 = tmp10 + tmp12;
- tmp25 = tmp10 - tmp12;
-
- tmp12 = z4 - z1 - z2;
-
- tmp22 = tmp11 + tmp12;
- tmp23 = tmp11 - tmp12;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
- tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
-
- tmp10 = z1 + z3;
- tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
- tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
- tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
- tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
- tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
- tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
- tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
- MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
-
- z1 -= z4;
- z2 -= z3;
- z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
- tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
- tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 12 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 12; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 <<= CONST_BITS;
-
- z4 = (INT32) wsptr[4];
- z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
-
- tmp10 = z3 + z4;
- tmp11 = z3 - z4;
-
- z1 = (INT32) wsptr[2];
- z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
- z1 <<= CONST_BITS;
- z2 = (INT32) wsptr[6];
- z2 <<= CONST_BITS;
-
- tmp12 = z1 - z2;
-
- tmp21 = z3 + tmp12;
- tmp24 = z3 - tmp12;
-
- tmp12 = z4 + z2;
-
- tmp20 = tmp10 + tmp12;
- tmp25 = tmp10 - tmp12;
-
- tmp12 = z4 - z1 - z2;
-
- tmp22 = tmp11 + tmp12;
- tmp23 = tmp11 - tmp12;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
- tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
-
- tmp10 = z1 + z3;
- tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
- tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
- tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
- tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
- tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
- tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
- tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
- MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
-
- z1 -= z4;
- z2 -= z3;
- z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
- tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
- tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 13x13 output block.
- *
- * Optimized algorithm with 29 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/26).
- */
-
-GLOBAL(void)
-jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*13]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z1 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = z3 + z4;
- tmp11 = z3 - z4;
-
- tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
- tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
-
- tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
- tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
-
- tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
- tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
-
- tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
- tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
-
- tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
- tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
-
- tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
- tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
-
- tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
- tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
- tmp15 = z1 + z4;
- tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
- tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
- tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
- tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
- tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
- tmp11 += tmp14;
- tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
- tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
- tmp12 += tmp14;
- tmp13 += tmp14;
- tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
- tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
- MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
- z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
- tmp14 += z1;
- tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
- MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 13 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 13; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z1 <<= CONST_BITS;
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[4];
- z4 = (INT32) wsptr[6];
-
- tmp10 = z3 + z4;
- tmp11 = z3 - z4;
-
- tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
- tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
-
- tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
- tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
-
- tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
- tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
-
- tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
- tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
-
- tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
- tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
-
- tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
- tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
-
- tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
- tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
- tmp15 = z1 + z4;
- tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
- tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
- tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
- tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
- tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
- tmp11 += tmp14;
- tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
- tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
- tmp12 += tmp14;
- tmp13 += tmp14;
- tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
- tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
- MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
- z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
- tmp14 += z1;
- tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
- MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 14x14 output block.
- *
- * Optimized algorithm with 20 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/28).
- */
-
-GLOBAL(void)
-jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*14]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z1 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
- z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
- z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
-
- tmp10 = z1 + z2;
- tmp11 = z1 + z3;
- tmp12 = z1 - z4;
-
- tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
- CONST_BITS-PASS1_BITS);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
-
- tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
- tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
- tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
- MULTIPLY(z2, FIX(1.378756276)); /* c2 */
-
- tmp20 = tmp10 + tmp13;
- tmp26 = tmp10 - tmp13;
- tmp21 = tmp11 + tmp14;
- tmp25 = tmp11 - tmp14;
- tmp22 = tmp12 + tmp15;
- tmp24 = tmp12 - tmp15;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp13 = z4 << CONST_BITS;
-
- tmp14 = z1 + z3;
- tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
- tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
- tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
- tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
- tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
- z1 -= z2;
- tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
- tmp16 += tmp15;
- z1 += z4;
- z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
- tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
- tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
- z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
- tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
- tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
-
- tmp13 = (z1 - z3) << PASS1_BITS;
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) (tmp23 + tmp13);
- wsptr[8*10] = (int) (tmp23 - tmp13);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 14 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 14; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z1 <<= CONST_BITS;
- z4 = (INT32) wsptr[4];
- z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
- z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
- z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
-
- tmp10 = z1 + z2;
- tmp11 = z1 + z3;
- tmp12 = z1 - z4;
-
- tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[6];
-
- z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
-
- tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
- tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
- tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
- MULTIPLY(z2, FIX(1.378756276)); /* c2 */
-
- tmp20 = tmp10 + tmp13;
- tmp26 = tmp10 - tmp13;
- tmp21 = tmp11 + tmp14;
- tmp25 = tmp11 - tmp14;
- tmp22 = tmp12 + tmp15;
- tmp24 = tmp12 - tmp15;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
- z4 <<= CONST_BITS;
-
- tmp14 = z1 + z3;
- tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
- tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
- tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
- tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
- tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
- z1 -= z2;
- tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
- tmp16 += tmp15;
- tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
- tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
- tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
- tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
- tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
- tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
-
- tmp13 = ((z1 - z3) << CONST_BITS) + z4;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 15x15 output block.
- *
- * Optimized algorithm with 22 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/30).
- */
-
-GLOBAL(void)
-jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*15]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z1 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
- tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
-
- tmp12 = z1 - tmp10;
- tmp13 = z1 + tmp11;
- z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
-
- z4 = z2 - z3;
- z3 += z2;
- tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
- tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
- z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
-
- tmp20 = tmp13 + tmp10 + tmp11;
- tmp23 = tmp12 - tmp10 + tmp11 + z2;
-
- tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
- tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
-
- tmp25 = tmp13 - tmp10 - tmp11;
- tmp26 = tmp12 + tmp10 - tmp11 - z2;
-
- tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
- tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
-
- tmp21 = tmp12 + tmp10 + tmp11;
- tmp24 = tmp13 - tmp10 + tmp11;
- tmp11 += tmp11;
- tmp22 = z1 + tmp11; /* c10 = c6-c12 */
- tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp13 = z2 - z4;
- tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
- tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
- tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
-
- tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
- tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
- z2 = z1 - z4;
- tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
-
- tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
- tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
- tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
- z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
- tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
- tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 15 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 15; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z1 <<= CONST_BITS;
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[4];
- z4 = (INT32) wsptr[6];
-
- tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
- tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
-
- tmp12 = z1 - tmp10;
- tmp13 = z1 + tmp11;
- z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
-
- z4 = z2 - z3;
- z3 += z2;
- tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
- tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
- z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
-
- tmp20 = tmp13 + tmp10 + tmp11;
- tmp23 = tmp12 - tmp10 + tmp11 + z2;
-
- tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
- tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
-
- tmp25 = tmp13 - tmp10 - tmp11;
- tmp26 = tmp12 + tmp10 - tmp11 - z2;
-
- tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
- tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
-
- tmp21 = tmp12 + tmp10 + tmp11;
- tmp24 = tmp13 - tmp10 + tmp11;
- tmp11 += tmp11;
- tmp22 = z1 + tmp11; /* c10 = c6-c12 */
- tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z4 = (INT32) wsptr[5];
- z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
- z4 = (INT32) wsptr[7];
-
- tmp13 = z2 - z4;
- tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
- tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
- tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
-
- tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
- tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
- z2 = z1 - z4;
- tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
-
- tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
- tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
- tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
- z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
- tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
- tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 16x16 output block.
- *
- * Optimized algorithm with 28 multiplications in the 1-D kernel.
- * cK represents sqrt(2) * cos(K*pi/32).
- */
-
-GLOBAL(void)
-jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*16]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
- tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
- z3 = z1 - z2;
- z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
- z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
- tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
- tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
- tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
-
- tmp20 = tmp10 + tmp0;
- tmp27 = tmp10 - tmp0;
- tmp21 = tmp12 + tmp1;
- tmp26 = tmp12 - tmp1;
- tmp22 = tmp13 + tmp2;
- tmp25 = tmp13 - tmp2;
- tmp23 = tmp11 + tmp3;
- tmp24 = tmp11 - tmp3;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = z1 + z3;
-
- tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
- tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
- tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
- tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
- tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
- tmp13 = tmp10 + tmp11 + tmp12 -
- MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
- z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
- tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
- tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
- z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
- tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
- tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
- z2 += z4;
- z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
- tmp1 += z1;
- tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
- z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
- tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
- tmp12 += z2;
- z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
- tmp2 += z2;
- tmp3 += z2;
- z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
- tmp10 += z2;
- tmp11 += z2;
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 16 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 16; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
-
- z1 = (INT32) wsptr[4];
- tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
- tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[6];
- z3 = z1 - z2;
- z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
- z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
- tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
- tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
- tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
-
- tmp20 = tmp10 + tmp0;
- tmp27 = tmp10 - tmp0;
- tmp21 = tmp12 + tmp1;
- tmp26 = tmp12 - tmp1;
- tmp22 = tmp13 + tmp2;
- tmp25 = tmp13 - tmp2;
- tmp23 = tmp11 + tmp3;
- tmp24 = tmp11 - tmp3;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- tmp11 = z1 + z3;
-
- tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
- tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
- tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
- tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
- tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
- tmp13 = tmp10 + tmp11 + tmp12 -
- MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
- z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
- tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
- tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
- z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
- tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
- tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
- z2 += z4;
- z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
- tmp1 += z1;
- tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
- z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
- tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
- tmp12 += z2;
- z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
- tmp2 += z2;
- tmp3 += z2;
- z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
- tmp10 += z2;
- tmp11 += z2;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 16x8 output block.
- *
- * 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*8]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z2 <<= CONST_BITS;
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z2 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- tmp0 = z2 + z3;
- tmp1 = z2 - z3;
-
- tmp10 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
- tmp11 = tmp1 + tmp3;
- tmp12 = tmp1 - tmp3;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- z2 = tmp0 + tmp2;
- z3 = tmp1 + tmp3;
-
- z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
- z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
- z2 += z1;
- z3 += z1;
-
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- tmp0 += z1 + z2;
- tmp3 += z1 + z3;
-
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp1 += z1 + z3;
- tmp2 += z1 + z2;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process 8 rows from work array, store into output array.
- * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
-
- z1 = (INT32) wsptr[4];
- tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
- tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[6];
- z3 = z1 - z2;
- z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
- z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
- tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
- tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
- tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
-
- tmp20 = tmp10 + tmp0;
- tmp27 = tmp10 - tmp0;
- tmp21 = tmp12 + tmp1;
- tmp26 = tmp12 - tmp1;
- tmp22 = tmp13 + tmp2;
- tmp25 = tmp13 - tmp2;
- tmp23 = tmp11 + tmp3;
- tmp24 = tmp11 - tmp3;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- tmp11 = z1 + z3;
-
- tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
- tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
- tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
- tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
- tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
- tmp13 = tmp10 + tmp11 + tmp12 -
- MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
- z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
- tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
- tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
- z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
- tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
- tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
- z2 += z4;
- z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
- tmp1 += z1;
- tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
- z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
- tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
- tmp12 += z2;
- z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
- tmp2 += z2;
- tmp3 += z2;
- z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
- tmp10 += z2;
- tmp11 += z2;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 14x7 output block.
- *
- * 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*7]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp23 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp23 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
- tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
- tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
- tmp10 = z1 + z3;
- z2 -= tmp10;
- tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
- tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
- tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
- tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-
- tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp10 = tmp11 - tmp12;
- tmp11 += tmp12;
- tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
- tmp11 += tmp12;
- z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
- tmp10 += z2;
- tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 7 rows from work array, store into output array.
- * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 7; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z1 <<= CONST_BITS;
- z4 = (INT32) wsptr[4];
- z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
- z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
- z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
-
- tmp10 = z1 + z2;
- tmp11 = z1 + z3;
- tmp12 = z1 - z4;
-
- tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[6];
-
- z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
-
- tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
- tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
- tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
- MULTIPLY(z2, FIX(1.378756276)); /* c2 */
-
- tmp20 = tmp10 + tmp13;
- tmp26 = tmp10 - tmp13;
- tmp21 = tmp11 + tmp14;
- tmp25 = tmp11 - tmp14;
- tmp22 = tmp12 + tmp15;
- tmp24 = tmp12 - tmp15;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
- z4 <<= CONST_BITS;
-
- tmp14 = z1 + z3;
- tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
- tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
- tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
- tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
- tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
- z1 -= z2;
- tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
- tmp16 += tmp15;
- tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
- tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
- tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
- tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
- tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
- tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
-
- tmp13 = ((z1 - z3) << CONST_BITS) + z4;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 12x6 output block.
- *
- * 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*6]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp10 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
- tmp11 = tmp10 + tmp20;
- tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS);
- tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
- tmp20 = tmp11 + tmp10;
- tmp22 = tmp11 - tmp10;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
- tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
- tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
- tmp11 = (z1 - z2 - z3) << PASS1_BITS;
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) (tmp21 + tmp11);
- wsptr[8*4] = (int) (tmp21 - tmp11);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 6 rows from work array, store into output array.
- * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 <<= CONST_BITS;
-
- z4 = (INT32) wsptr[4];
- z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
-
- tmp10 = z3 + z4;
- tmp11 = z3 - z4;
-
- z1 = (INT32) wsptr[2];
- z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
- z1 <<= CONST_BITS;
- z2 = (INT32) wsptr[6];
- z2 <<= CONST_BITS;
-
- tmp12 = z1 - z2;
-
- tmp21 = z3 + tmp12;
- tmp24 = z3 - tmp12;
-
- tmp12 = z4 + z2;
-
- tmp20 = tmp10 + tmp12;
- tmp25 = tmp10 - tmp12;
-
- tmp12 = z4 - z1 - z2;
-
- tmp22 = tmp11 + tmp12;
- tmp23 = tmp11 - tmp12;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z4 = (INT32) wsptr[7];
-
- tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
- tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
-
- tmp10 = z1 + z3;
- tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
- tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
- tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
- tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
- tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
- tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
- tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
- MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
-
- z1 -= z4;
- z2 -= z3;
- z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
- tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
- tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 10x5 output block.
- *
- * 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*5]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp12 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
- z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
- z3 = tmp12 + z2;
- tmp10 = z3 + z1;
- tmp11 = z3 - z1;
- tmp12 -= z2 << 2;
-
- /* Odd part */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
- tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
- tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 5 rows from work array, store into output array.
- * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 5; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 <<= CONST_BITS;
- z4 = (INT32) wsptr[4];
- z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
- z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
- tmp10 = z3 + z1;
- tmp11 = z3 - z2;
-
- tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
- tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
- tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
-
- tmp20 = tmp10 + tmp12;
- tmp24 = tmp10 - tmp12;
- tmp21 = tmp11 + tmp13;
- tmp23 = tmp11 - tmp13;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- z3 <<= CONST_BITS;
- z4 = (INT32) wsptr[7];
-
- tmp11 = z2 + z4;
- tmp13 = z2 - z4;
-
- tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
-
- z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
- z4 = z3 + tmp12;
-
- tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
- tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
-
- z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
- z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
-
- tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
-
- tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
- tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 8; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 8x4 output block.
- *
- * 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*4]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-
- tmp10 = (tmp0 + tmp2) << PASS1_BITS;
- tmp12 = (tmp0 - tmp2) << PASS1_BITS;
-
- /* Odd part */
- /* Same rotation as in the even part of the 8x8 LL&M IDCT */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS);
- tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS);
-
- /* Final output stage */
-
- wsptr[8*0] = (int) (tmp10 + tmp0);
- wsptr[8*3] = (int) (tmp10 - tmp0);
- wsptr[8*1] = (int) (tmp12 + tmp2);
- wsptr[8*2] = (int) (tmp12 - tmp2);
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
-
- /* Add fudge factor here for final descale. */
- z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 = (INT32) wsptr[4];
-
- tmp0 = (z2 + z3) << CONST_BITS;
- tmp1 = (z2 - z3) << CONST_BITS;
-
- tmp10 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
- tmp11 = tmp1 + tmp3;
- tmp12 = tmp1 - tmp3;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) wsptr[7];
- tmp1 = (INT32) wsptr[5];
- tmp2 = (INT32) wsptr[3];
- tmp3 = (INT32) wsptr[1];
-
- z2 = tmp0 + tmp2;
- z3 = tmp1 + tmp3;
-
- z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
- z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
- z2 += z1;
- z3 += z1;
-
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- tmp0 += z1 + z2;
- tmp3 += z1 + z3;
-
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp1 += z1 + z3;
- tmp2 += z1 + z2;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 6x3 output block.
- *
- * 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[6*3]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
- tmp10 = tmp0 + tmp12;
- tmp2 = tmp0 - tmp12 - tmp12;
-
- /* Odd part */
-
- tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
-
- /* Final output stage */
-
- wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 3 rows from work array, store into output array.
- * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 3; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
- tmp2 = (INT32) wsptr[4];
- tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
- tmp1 = tmp0 + tmp10;
- tmp11 = tmp0 - tmp10 - tmp10;
- tmp10 = (INT32) wsptr[2];
- tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
- tmp10 = tmp1 + tmp0;
- tmp12 = tmp1 - tmp0;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
- tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
- tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
- tmp1 = (z1 - z2 - z3) << CONST_BITS;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 6; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 4x2 output block.
- *
- * 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp2, tmp10, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- INT32 * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- INT32 workspace[4*2]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-
- /* Odd part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- /* Final output stage */
-
- wsptr[4*0] = tmp10 + tmp0;
- wsptr[4*1] = tmp10 - tmp0;
- }
-
- /* Pass 2: process 2 rows from work array, store into output array.
- * 4-point IDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 2; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = wsptr[0] + (ONE << 2);
- tmp2 = wsptr[2];
-
- tmp10 = (tmp0 + tmp2) << CONST_BITS;
- tmp12 = (tmp0 - tmp2) << CONST_BITS;
-
- /* Odd part */
- /* Same rotation as in the even part of the 8x8 LL&M IDCT */
-
- z2 = wsptr[1];
- z3 = wsptr[3];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
- tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+3)
- & RANGE_MASK];
-
- wsptr += 4; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 2x1 output block.
- *
- * 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp10;
- ISLOW_MULT_TYPE * quantptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- SHIFT_TEMPS
-
- /* Pass 1: empty. */
-
- /* Pass 2: process 1 row from input, store into output array. */
-
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- outptr = output_buf[0] + output_col;
-
- /* Even part */
-
- tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]);
- /* Add fudge factor here for final descale. */
- tmp10 += ONE << 2;
-
- /* Odd part */
-
- tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]);
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK];
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 8x16 output block.
- *
- * 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[8*16]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
- tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
-
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
- z3 = z1 - z2;
- z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
- z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
-
- tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
- tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
- tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
- tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
-
- tmp20 = tmp10 + tmp0;
- tmp27 = tmp10 - tmp0;
- tmp21 = tmp12 + tmp1;
- tmp26 = tmp12 - tmp1;
- tmp22 = tmp13 + tmp2;
- tmp25 = tmp13 - tmp2;
- tmp23 = tmp11 + tmp3;
- tmp24 = tmp11 - tmp3;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = z1 + z3;
-
- tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
- tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
- tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
- tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
- tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
- tmp13 = tmp10 + tmp11 + tmp12 -
- MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
- z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
- tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
- tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
- z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
- tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
- tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
- z2 += z4;
- z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
- tmp1 += z1;
- tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
- z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
- tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
- tmp12 += z2;
- z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
- tmp2 += z2;
- tmp3 += z2;
- z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
- tmp10 += z2;
- tmp11 += z2;
-
- /* Final output stage */
-
- wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 16; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
-
- /* Add fudge factor here for final descale. */
- z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- z3 = (INT32) wsptr[4];
-
- tmp0 = (z2 + z3) << CONST_BITS;
- tmp1 = (z2 - z3) << CONST_BITS;
-
- tmp10 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
- tmp11 = tmp1 + tmp3;
- tmp12 = tmp1 - tmp3;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) wsptr[7];
- tmp1 = (INT32) wsptr[5];
- tmp2 = (INT32) wsptr[3];
- tmp3 = (INT32) wsptr[1];
-
- z2 = tmp0 + tmp2;
- z3 = tmp1 + tmp3;
-
- z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
- z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
- z2 += z1;
- z3 += z1;
-
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- tmp0 += z1 + z2;
- tmp3 += z1 + z3;
-
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp1 += z1 + z3;
- tmp2 += z1 + z2;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 7x14 output block.
- *
- * 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[7*14]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z1 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
- z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
- z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
-
- tmp10 = z1 + z2;
- tmp11 = z1 + z3;
- tmp12 = z1 - z4;
-
- tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
- CONST_BITS-PASS1_BITS);
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
-
- tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
- tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
- tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
- MULTIPLY(z2, FIX(1.378756276)); /* c2 */
-
- tmp20 = tmp10 + tmp13;
- tmp26 = tmp10 - tmp13;
- tmp21 = tmp11 + tmp14;
- tmp25 = tmp11 - tmp14;
- tmp22 = tmp12 + tmp15;
- tmp24 = tmp12 - tmp15;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp13 = z4 << CONST_BITS;
-
- tmp14 = z1 + z3;
- tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
- tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
- tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
- tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
- tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
- z1 -= z2;
- tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
- tmp16 += tmp15;
- z1 += z4;
- z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
- tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
- tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
- z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
- tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
- tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
-
- tmp13 = (z1 - z3) << PASS1_BITS;
-
- /* Final output stage */
-
- wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[7*3] = (int) (tmp23 + tmp13);
- wsptr[7*10] = (int) (tmp23 - tmp13);
- wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
- wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
- wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
- wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 14 rows from work array, store into output array.
- * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 14; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp23 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp23 <<= CONST_BITS;
-
- z1 = (INT32) wsptr[2];
- z2 = (INT32) wsptr[4];
- z3 = (INT32) wsptr[6];
-
- tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
- tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
- tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
- tmp10 = z1 + z3;
- z2 -= tmp10;
- tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
- tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
- tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
- tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
-
- tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp10 = tmp11 - tmp12;
- tmp11 += tmp12;
- tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
- tmp11 += tmp12;
- z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
- tmp10 += z2;
- tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 7; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 6x12 output block.
- *
- * 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[6*12]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z3 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
-
- tmp10 = z3 + z4;
- tmp11 = z3 - z4;
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
- z1 <<= CONST_BITS;
- z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
- z2 <<= CONST_BITS;
-
- tmp12 = z1 - z2;
-
- tmp21 = z3 + tmp12;
- tmp24 = z3 - tmp12;
-
- tmp12 = z4 + z2;
-
- tmp20 = tmp10 + tmp12;
- tmp25 = tmp10 - tmp12;
-
- tmp12 = z4 - z1 - z2;
-
- tmp22 = tmp11 + tmp12;
- tmp23 = tmp11 - tmp12;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
- tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
-
- tmp10 = z1 + z3;
- tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
- tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
- tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
- tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
- tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
- tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
- tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
- MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
-
- z1 -= z4;
- z2 -= z3;
- z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
- tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
- tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
-
- /* Final output stage */
-
- wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
- wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
- wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
- wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 12 rows from work array, store into output array.
- * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 12; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp10 <<= CONST_BITS;
- tmp12 = (INT32) wsptr[4];
- tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
- tmp11 = tmp10 + tmp20;
- tmp21 = tmp10 - tmp20 - tmp20;
- tmp20 = (INT32) wsptr[2];
- tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
- tmp20 = tmp11 + tmp10;
- tmp22 = tmp11 - tmp10;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[1];
- z2 = (INT32) wsptr[3];
- z3 = (INT32) wsptr[5];
- tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
- tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
- tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
- tmp11 = (z1 - z2 - z3) << CONST_BITS;
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 6; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 5x10 output block.
- *
- * 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
- INT32 z1, z2, z3, z4, z5;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[5*10]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z3 += ONE << (CONST_BITS-PASS1_BITS-1);
- z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
- z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
- tmp10 = z3 + z1;
- tmp11 = z3 - z2;
-
- tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
- CONST_BITS-PASS1_BITS);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
- tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
- tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
-
- tmp20 = tmp10 + tmp12;
- tmp24 = tmp10 - tmp12;
- tmp21 = tmp11 + tmp13;
- tmp23 = tmp11 - tmp13;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- tmp11 = z2 + z4;
- tmp13 = z2 - z4;
-
- tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
- z5 = z3 << CONST_BITS;
-
- z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
- z4 = z5 + tmp12;
-
- tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
- tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
-
- z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
- z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
-
- tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
-
- tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
- tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
-
- /* Final output stage */
-
- wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
- wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
- wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
- wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
- wsptr[5*2] = (int) (tmp22 + tmp12);
- wsptr[5*7] = (int) (tmp22 - tmp12);
- wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
- wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
- wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
- wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 10 rows from work array, store into output array.
- * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 10; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp12 <<= CONST_BITS;
- tmp13 = (INT32) wsptr[2];
- tmp14 = (INT32) wsptr[4];
- z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
- z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
- z3 = tmp12 + z2;
- tmp10 = z3 + z1;
- tmp11 = z3 - z1;
- tmp12 -= z2 << 2;
-
- /* Odd part */
-
- z2 = (INT32) wsptr[1];
- z3 = (INT32) wsptr[3];
-
- z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
- tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
- tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 5; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 4x8 output block.
- *
- * 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[4*8]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 4; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-
- wsptr[4*0] = dcval;
- wsptr[4*1] = dcval;
- wsptr[4*2] = dcval;
- wsptr[4*3] = dcval;
- wsptr[4*4] = dcval;
- wsptr[4*5] = dcval;
- wsptr[4*6] = dcval;
- wsptr[4*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- z2 <<= CONST_BITS;
- z3 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- z2 += ONE << (CONST_BITS-PASS1_BITS-1);
-
- tmp0 = z2 + z3;
- tmp1 = z2 - z3;
-
- tmp10 = tmp0 + tmp2;
- tmp13 = tmp0 - tmp2;
- tmp11 = tmp1 + tmp3;
- tmp12 = tmp1 - tmp3;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- z2 = tmp0 + tmp2;
- z3 = tmp1 + tmp3;
-
- z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
- z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
- z2 += z1;
- z3 += z1;
-
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- tmp0 += z1 + z2;
- tmp3 += z1 + z3;
-
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp1 += z1 + z3;
- tmp2 += z1 + z2;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process 8 rows from work array, store into output array.
- * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 8; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp2 = (INT32) wsptr[2];
-
- tmp10 = (tmp0 + tmp2) << CONST_BITS;
- tmp12 = (tmp0 - tmp2) << CONST_BITS;
-
- /* Odd part */
- /* Same rotation as in the even part of the 8x8 LL&M IDCT */
-
- z2 = (INT32) wsptr[1];
- z3 = (INT32) wsptr[3];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
- tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 4; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 3x6 output block.
- *
- * 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[3*6]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= CONST_BITS;
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
- tmp1 = tmp0 + tmp10;
- tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
- tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
- tmp10 = tmp1 + tmp0;
- tmp12 = tmp1 - tmp0;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
- tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
- tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
- tmp1 = (z1 - z2 - z3) << PASS1_BITS;
-
- /* Final output stage */
-
- wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
- wsptr[3*1] = (int) (tmp11 + tmp1);
- wsptr[3*4] = (int) (tmp11 - tmp1);
- wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
- }
-
- /* Pass 2: process 6 rows from work array, store into output array.
- * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
- */
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
- tmp0 <<= CONST_BITS;
- tmp2 = (INT32) wsptr[2];
- tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
- tmp10 = tmp0 + tmp12;
- tmp2 = tmp0 - tmp12 - tmp12;
-
- /* Odd part */
-
- tmp12 = (INT32) wsptr[1];
- tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += 3; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 2x4 output block.
- *
- * 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp2, tmp10, tmp12;
- INT32 z1, z2, z3;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- INT32 * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- INT32 workspace[2*4]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array.
- * 4-point IDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
- */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) {
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-
- tmp10 = (tmp0 + tmp2) << CONST_BITS;
- tmp12 = (tmp0 - tmp2) << CONST_BITS;
-
- /* Odd part */
- /* Same rotation as in the even part of the 8x8 LL&M IDCT */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
- tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
-
- /* Final output stage */
-
- wsptr[2*0] = tmp10 + tmp0;
- wsptr[2*3] = tmp10 - tmp0;
- wsptr[2*1] = tmp12 + tmp2;
- wsptr[2*2] = tmp12 - tmp2;
- }
-
- /* Pass 2: process 4 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++) {
- outptr = output_buf[ctr] + output_col;
-
- /* Even part */
-
- /* Add fudge factor here for final descale. */
- tmp10 = wsptr[0] + (ONE << (CONST_BITS+2));
-
- /* Odd part */
-
- tmp0 = wsptr[1];
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3)
- & RANGE_MASK];
-
- wsptr += 2; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a 1x2 output block.
- *
- * 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows).
- */
-
-GLOBAL(void)
-jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp10;
- ISLOW_MULT_TYPE * quantptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- SHIFT_TEMPS
-
- /* Process 1 column from input, store into output array. */
-
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
-
- /* Even part */
-
- tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
- /* Add fudge factor here for final descale. */
- tmp10 += ONE << 2;
-
- /* Odd part */
-
- tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- /* Final output stage */
-
- output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3)
- & RANGE_MASK];
- output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3)
- & RANGE_MASK];
-}
-
-#endif /* IDCT_SCALING_SUPPORTED */
-#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/src/jpeg-8c/jinclude.h b/src/jpeg-8c/jinclude.h
deleted file mode 100644
index 0a4f1514..00000000
--- a/src/jpeg-8c/jinclude.h
+++ /dev/null
@@ -1,91 +0,0 @@
-/*
- * jinclude.h
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file exists to provide a single place to fix any problems with
- * including the wrong system include files. (Common problems are taken
- * care of by the standard jconfig symbols, but on really weird systems
- * you may have to edit this file.)
- *
- * NOTE: this file is NOT intended to be included by applications using the
- * JPEG library. Most applications need only include jpeglib.h.
- */
-
-
-/* Include auto-config file to find out which system include files we need. */
-
-#include "jconfig.h" /* auto configuration options */
-#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
-
-/*
- * We need the NULL macro and size_t typedef.
- * On an ANSI-conforming system it is sufficient to include <stddef.h>.
- * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
- * pull in <sys/types.h> as well.
- * Note that the core JPEG library does not require <stdio.h>;
- * only the default error handler and data source/destination modules do.
- * But we must pull it in because of the references to FILE in jpeglib.h.
- * You can remove those references if you want to compile without <stdio.h>.
- */
-
-#ifdef HAVE_STDDEF_H
-#include <stddef.h>
-#endif
-
-#ifdef HAVE_STDLIB_H
-#include <stdlib.h>
-#endif
-
-#ifdef NEED_SYS_TYPES_H
-#include <sys/types.h>
-#endif
-
-#include <stdio.h>
-
-/*
- * We need memory copying and zeroing functions, plus strncpy().
- * ANSI and System V implementations declare these in <string.h>.
- * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
- * Some systems may declare memset and memcpy in <memory.h>.
- *
- * NOTE: we assume the size parameters to these functions are of type size_t.
- * Change the casts in these macros if not!
- */
-
-#ifdef NEED_BSD_STRINGS
-
-#include <strings.h>
-#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
-#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
-
-#else /* not BSD, assume ANSI/SysV string lib */
-
-#include <string.h>
-#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
-#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
-
-#endif
-
-/*
- * In ANSI C, and indeed any rational implementation, size_t is also the
- * type returned by sizeof(). However, it seems there are some irrational
- * implementations out there, in which sizeof() returns an int even though
- * size_t is defined as long or unsigned long. To ensure consistent results
- * we always use this SIZEOF() macro in place of using sizeof() directly.
- */
-
-#define SIZEOF(object) ((size_t) sizeof(object))
-
-/*
- * The modules that use fread() and fwrite() always invoke them through
- * these macros. On some systems you may need to twiddle the argument casts.
- * CAUTION: argument order is different from underlying functions!
- */
-
-#define JFREAD(file,buf,sizeofbuf) \
- ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
-#define JFWRITE(file,buf,sizeofbuf) \
- ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
diff --git a/src/jpeg-8c/jmemmgr.c b/src/jpeg-8c/jmemmgr.c
deleted file mode 100644
index d801b322..00000000
--- a/src/jpeg-8c/jmemmgr.c
+++ /dev/null
@@ -1,1118 +0,0 @@
-/*
- * jmemmgr.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the JPEG system-independent memory management
- * routines. This code is usable across a wide variety of machines; most
- * of the system dependencies have been isolated in a separate file.
- * The major functions provided here are:
- * * pool-based allocation and freeing of memory;
- * * policy decisions about how to divide available memory among the
- * virtual arrays;
- * * control logic for swapping virtual arrays between main memory and
- * backing storage.
- * The separate system-dependent file provides the actual backing-storage
- * access code, and it contains the policy decision about how much total
- * main memory to use.
- * This file is system-dependent in the sense that some of its functions
- * are unnecessary in some systems. For example, if there is enough virtual
- * memory so that backing storage will never be used, much of the virtual
- * array control logic could be removed. (Of course, if you have that much
- * memory then you shouldn't care about a little bit of unused code...)
- */
-
-#define JPEG_INTERNALS
-#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jmemsys.h" /* import the system-dependent declarations */
-
-#ifndef NO_GETENV
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
-extern char * getenv JPP((const char * name));
-#endif
-#endif
-
-
-/*
- * Some important notes:
- * The allocation routines provided here must never return NULL.
- * They should exit to error_exit if unsuccessful.
- *
- * It's not a good idea to try to merge the sarray and barray routines,
- * even though they are textually almost the same, because samples are
- * usually stored as bytes while coefficients are shorts or ints. Thus,
- * in machines where byte pointers have a different representation from
- * word pointers, the resulting machine code could not be the same.
- */
-
-
-/*
- * Many machines require storage alignment: longs must start on 4-byte
- * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
- * always returns pointers that are multiples of the worst-case alignment
- * requirement, and we had better do so too.
- * There isn't any really portable way to determine the worst-case alignment
- * requirement. This module assumes that the alignment requirement is
- * multiples of sizeof(ALIGN_TYPE).
- * By default, we define ALIGN_TYPE as double. This is necessary on some
- * workstations (where doubles really do need 8-byte alignment) and will work
- * fine on nearly everything. If your machine has lesser alignment needs,
- * you can save a few bytes by making ALIGN_TYPE smaller.
- * The only place I know of where this will NOT work is certain Macintosh
- * 680x0 compilers that define double as a 10-byte IEEE extended float.
- * Doing 10-byte alignment is counterproductive because longwords won't be
- * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
- * such a compiler.
- */
-
-#ifndef ALIGN_TYPE /* so can override from jconfig.h */
-#define ALIGN_TYPE double
-#endif
-
-
-/*
- * We allocate objects from "pools", where each pool is gotten with a single
- * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
- * overhead within a pool, except for alignment padding. Each pool has a
- * header with a link to the next pool of the same class.
- * Small and large pool headers are identical except that the latter's
- * link pointer must be FAR on 80x86 machines.
- * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
- * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
- * of the alignment requirement of ALIGN_TYPE.
- */
-
-typedef union small_pool_struct * small_pool_ptr;
-
-typedef union small_pool_struct {
- struct {
- small_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
-} small_pool_hdr;
-
-typedef union large_pool_struct FAR * large_pool_ptr;
-
-typedef union large_pool_struct {
- struct {
- large_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
-} large_pool_hdr;
-
-
-/*
- * Here is the full definition of a memory manager object.
- */
-
-typedef struct {
- struct jpeg_memory_mgr pub; /* public fields */
-
- /* Each pool identifier (lifetime class) names a linked list of pools. */
- small_pool_ptr small_list[JPOOL_NUMPOOLS];
- large_pool_ptr large_list[JPOOL_NUMPOOLS];
-
- /* Since we only have one lifetime class of virtual arrays, only one
- * linked list is necessary (for each datatype). Note that the virtual
- * array control blocks being linked together are actually stored somewhere
- * in the small-pool list.
- */
- jvirt_sarray_ptr virt_sarray_list;
- jvirt_barray_ptr virt_barray_list;
-
- /* This counts total space obtained from jpeg_get_small/large */
- long total_space_allocated;
-
- /* alloc_sarray and alloc_barray set this value for use by virtual
- * array routines.
- */
- JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
-} my_memory_mgr;
-
-typedef my_memory_mgr * my_mem_ptr;
-
-
-/*
- * The control blocks for virtual arrays.
- * Note that these blocks are allocated in the "small" pool area.
- * System-dependent info for the associated backing store (if any) is hidden
- * inside the backing_store_info struct.
- */
-
-struct jvirt_sarray_control {
- JSAMPARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
- JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- JDIMENSION first_undef_row; /* row # of first uninitialized row */
- boolean pre_zero; /* pre-zero mode requested? */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_sarray_ptr next; /* link to next virtual sarray control block */
- backing_store_info b_s_info; /* System-dependent control info */
-};
-
-struct jvirt_barray_control {
- JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
- JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- JDIMENSION first_undef_row; /* row # of first uninitialized row */
- boolean pre_zero; /* pre-zero mode requested? */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_barray_ptr next; /* link to next virtual barray control block */
- backing_store_info b_s_info; /* System-dependent control info */
-};
-
-
-#ifdef MEM_STATS /* optional extra stuff for statistics */
-
-LOCAL(void)
-print_mem_stats (j_common_ptr cinfo, int pool_id)
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
-
- /* Since this is only a debugging stub, we can cheat a little by using
- * fprintf directly rather than going through the trace message code.
- * This is helpful because message parm array can't handle longs.
- */
- fprintf(stderr, "Freeing pool %d, total space = %ld\n",
- pool_id, mem->total_space_allocated);
-
- for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
- lhdr_ptr = lhdr_ptr->hdr.next) {
- fprintf(stderr, " Large chunk used %ld\n",
- (long) lhdr_ptr->hdr.bytes_used);
- }
-
- for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
- shdr_ptr = shdr_ptr->hdr.next) {
- fprintf(stderr, " Small chunk used %ld free %ld\n",
- (long) shdr_ptr->hdr.bytes_used,
- (long) shdr_ptr->hdr.bytes_left);
- }
-}
-
-#endif /* MEM_STATS */
-
-
-LOCAL(void)
-out_of_memory (j_common_ptr cinfo, int which)
-/* Report an out-of-memory error and stop execution */
-/* If we compiled MEM_STATS support, report alloc requests before dying */
-{
-#ifdef MEM_STATS
- cinfo->err->trace_level = 2; /* force self_destruct to report stats */
-#endif
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
-}
-
-
-/*
- * Allocation of "small" objects.
- *
- * For these, we use pooled storage. When a new pool must be created,
- * we try to get enough space for the current request plus a "slop" factor,
- * where the slop will be the amount of leftover space in the new pool.
- * The speed vs. space tradeoff is largely determined by the slop values.
- * A different slop value is provided for each pool class (lifetime),
- * and we also distinguish the first pool of a class from later ones.
- * NOTE: the values given work fairly well on both 16- and 32-bit-int
- * machines, but may be too small if longs are 64 bits or more.
- */
-
-static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
-{
- 1600, /* first PERMANENT pool */
- 16000 /* first IMAGE pool */
-};
-
-static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
-{
- 0, /* additional PERMANENT pools */
- 5000 /* additional IMAGE pools */
-};
-
-#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
-
-
-METHODDEF(void *)
-alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
-/* Allocate a "small" object */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr hdr_ptr, prev_hdr_ptr;
- char * data_ptr;
- size_t odd_bytes, min_request, slop;
-
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
- out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
-
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
-
- /* See if space is available in any existing pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- prev_hdr_ptr = NULL;
- hdr_ptr = mem->small_list[pool_id];
- while (hdr_ptr != NULL) {
- if (hdr_ptr->hdr.bytes_left >= sizeofobject)
- break; /* found pool with enough space */
- prev_hdr_ptr = hdr_ptr;
- hdr_ptr = hdr_ptr->hdr.next;
- }
-
- /* Time to make a new pool? */
- if (hdr_ptr == NULL) {
- /* min_request is what we need now, slop is what will be leftover */
- min_request = sizeofobject + SIZEOF(small_pool_hdr);
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- slop = first_pool_slop[pool_id];
- else
- slop = extra_pool_slop[pool_id];
- /* Don't ask for more than MAX_ALLOC_CHUNK */
- if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
- slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
- /* Try to get space, if fail reduce slop and try again */
- for (;;) {
- hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
- if (hdr_ptr != NULL)
- break;
- slop /= 2;
- if (slop < MIN_SLOP) /* give up when it gets real small */
- out_of_memory(cinfo, 2); /* jpeg_get_small failed */
- }
- mem->total_space_allocated += min_request + slop;
- /* Success, initialize the new pool header and add to end of list */
- hdr_ptr->hdr.next = NULL;
- hdr_ptr->hdr.bytes_used = 0;
- hdr_ptr->hdr.bytes_left = sizeofobject + slop;
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- mem->small_list[pool_id] = hdr_ptr;
- else
- prev_hdr_ptr->hdr.next = hdr_ptr;
- }
-
- /* OK, allocate the object from the current pool */
- data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
- data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
- hdr_ptr->hdr.bytes_used += sizeofobject;
- hdr_ptr->hdr.bytes_left -= sizeofobject;
-
- return (void *) data_ptr;
-}
-
-
-/*
- * Allocation of "large" objects.
- *
- * The external semantics of these are the same as "small" objects,
- * except that FAR pointers are used on 80x86. However the pool
- * management heuristics are quite different. We assume that each
- * request is large enough that it may as well be passed directly to
- * jpeg_get_large; the pool management just links everything together
- * so that we can free it all on demand.
- * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
- * structures. The routines that create these structures (see below)
- * deliberately bunch rows together to ensure a large request size.
- */
-
-METHODDEF(void FAR *)
-alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
-/* Allocate a "large" object */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- large_pool_ptr hdr_ptr;
- size_t odd_bytes;
-
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
- out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
-
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
-
- /* Always make a new pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
- SIZEOF(large_pool_hdr));
- if (hdr_ptr == NULL)
- out_of_memory(cinfo, 4); /* jpeg_get_large failed */
- mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
-
- /* Success, initialize the new pool header and add to list */
- hdr_ptr->hdr.next = mem->large_list[pool_id];
- /* We maintain space counts in each pool header for statistical purposes,
- * even though they are not needed for allocation.
- */
- hdr_ptr->hdr.bytes_used = sizeofobject;
- hdr_ptr->hdr.bytes_left = 0;
- mem->large_list[pool_id] = hdr_ptr;
-
- return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
-}
-
-
-/*
- * Creation of 2-D sample arrays.
- * The pointers are in near heap, the samples themselves in FAR heap.
- *
- * To minimize allocation overhead and to allow I/O of large contiguous
- * blocks, we allocate the sample rows in groups of as many rows as possible
- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
- * NB: the virtual array control routines, later in this file, know about
- * this chunking of rows. The rowsperchunk value is left in the mem manager
- * object so that it can be saved away if this sarray is the workspace for
- * a virtual array.
- */
-
-METHODDEF(JSAMPARRAY)
-alloc_sarray (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow, JDIMENSION numrows)
-/* Allocate a 2-D sample array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JSAMPARRAY result;
- JSAMPROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
-
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) samplesperrow * SIZEOF(JSAMPLE));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
-
- /* Get space for row pointers (small object) */
- result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JSAMPROW)));
-
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
- * SIZEOF(JSAMPLE)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += samplesperrow;
- }
- }
-
- return result;
-}
-
-
-/*
- * Creation of 2-D coefficient-block arrays.
- * This is essentially the same as the code for sample arrays, above.
- */
-
-METHODDEF(JBLOCKARRAY)
-alloc_barray (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow, JDIMENSION numrows)
-/* Allocate a 2-D coefficient-block array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JBLOCKARRAY result;
- JBLOCKROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
-
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) blocksperrow * SIZEOF(JBLOCK));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
-
- /* Get space for row pointers (small object) */
- result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JBLOCKROW)));
-
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
- * SIZEOF(JBLOCK)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += blocksperrow;
- }
- }
-
- return result;
-}
-
-
-/*
- * About virtual array management:
- *
- * The above "normal" array routines are only used to allocate strip buffers
- * (as wide as the image, but just a few rows high). Full-image-sized buffers
- * are handled as "virtual" arrays. The array is still accessed a strip at a
- * time, but the memory manager must save the whole array for repeated
- * accesses. The intended implementation is that there is a strip buffer in
- * memory (as high as is possible given the desired memory limit), plus a
- * backing file that holds the rest of the array.
- *
- * The request_virt_array routines are told the total size of the image and
- * the maximum number of rows that will be accessed at once. The in-memory
- * buffer must be at least as large as the maxaccess value.
- *
- * The request routines create control blocks but not the in-memory buffers.
- * That is postponed until realize_virt_arrays is called. At that time the
- * total amount of space needed is known (approximately, anyway), so free
- * memory can be divided up fairly.
- *
- * The access_virt_array routines are responsible for making a specific strip
- * area accessible (after reading or writing the backing file, if necessary).
- * Note that the access routines are told whether the caller intends to modify
- * the accessed strip; during a read-only pass this saves having to rewrite
- * data to disk. The access routines are also responsible for pre-zeroing
- * any newly accessed rows, if pre-zeroing was requested.
- *
- * In current usage, the access requests are usually for nonoverlapping
- * strips; that is, successive access start_row numbers differ by exactly
- * num_rows = maxaccess. This means we can get good performance with simple
- * buffer dump/reload logic, by making the in-memory buffer be a multiple
- * of the access height; then there will never be accesses across bufferload
- * boundaries. The code will still work with overlapping access requests,
- * but it doesn't handle bufferload overlaps very efficiently.
- */
-
-
-METHODDEF(jvirt_sarray_ptr)
-request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
- JDIMENSION samplesperrow, JDIMENSION numrows,
- JDIMENSION maxaccess)
-/* Request a virtual 2-D sample array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_sarray_ptr result;
-
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- /* get control block */
- result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_sarray_control));
-
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->samplesperrow = samplesperrow;
- result->maxaccess = maxaccess;
- result->pre_zero = pre_zero;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
- mem->virt_sarray_list = result;
-
- return result;
-}
-
-
-METHODDEF(jvirt_barray_ptr)
-request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
- JDIMENSION blocksperrow, JDIMENSION numrows,
- JDIMENSION maxaccess)
-/* Request a virtual 2-D coefficient-block array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_barray_ptr result;
-
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- /* get control block */
- result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_barray_control));
-
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->blocksperrow = blocksperrow;
- result->maxaccess = maxaccess;
- result->pre_zero = pre_zero;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_barray_list; /* add to list of virtual arrays */
- mem->virt_barray_list = result;
-
- return result;
-}
-
-
-METHODDEF(void)
-realize_virt_arrays (j_common_ptr cinfo)
-/* Allocate the in-memory buffers for any unrealized virtual arrays */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- long space_per_minheight, maximum_space, avail_mem;
- long minheights, max_minheights;
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
-
- /* Compute the minimum space needed (maxaccess rows in each buffer)
- * and the maximum space needed (full image height in each buffer).
- * These may be of use to the system-dependent jpeg_mem_available routine.
- */
- space_per_minheight = 0;
- maximum_space = 0;
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_minheight += (long) sptr->maxaccess *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- maximum_space += (long) sptr->rows_in_array *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- }
- }
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_minheight += (long) bptr->maxaccess *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- maximum_space += (long) bptr->rows_in_array *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- }
- }
-
- if (space_per_minheight <= 0)
- return; /* no unrealized arrays, no work */
-
- /* Determine amount of memory to actually use; this is system-dependent. */
- avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
- mem->total_space_allocated);
-
- /* If the maximum space needed is available, make all the buffers full
- * height; otherwise parcel it out with the same number of minheights
- * in each buffer.
- */
- if (avail_mem >= maximum_space)
- max_minheights = 1000000000L;
- else {
- max_minheights = avail_mem / space_per_minheight;
- /* If there doesn't seem to be enough space, try to get the minimum
- * anyway. This allows a "stub" implementation of jpeg_mem_available().
- */
- if (max_minheights <= 0)
- max_minheights = 1;
- }
-
- /* Allocate the in-memory buffers and initialize backing store as needed. */
-
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
- if (minheights <= max_minheights) {
- /* This buffer fits in memory */
- sptr->rows_in_mem = sptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
- jpeg_open_backing_store(cinfo, & sptr->b_s_info,
- (long) sptr->rows_in_array *
- (long) sptr->samplesperrow *
- (long) SIZEOF(JSAMPLE));
- sptr->b_s_open = TRUE;
- }
- sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
- sptr->samplesperrow, sptr->rows_in_mem);
- sptr->rowsperchunk = mem->last_rowsperchunk;
- sptr->cur_start_row = 0;
- sptr->first_undef_row = 0;
- sptr->dirty = FALSE;
- }
- }
-
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
- if (minheights <= max_minheights) {
- /* This buffer fits in memory */
- bptr->rows_in_mem = bptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
- jpeg_open_backing_store(cinfo, & bptr->b_s_info,
- (long) bptr->rows_in_array *
- (long) bptr->blocksperrow *
- (long) SIZEOF(JBLOCK));
- bptr->b_s_open = TRUE;
- }
- bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
- bptr->blocksperrow, bptr->rows_in_mem);
- bptr->rowsperchunk = mem->last_rowsperchunk;
- bptr->cur_start_row = 0;
- bptr->first_undef_row = 0;
- bptr->dirty = FALSE;
- }
- }
-}
-
-
-LOCAL(void)
-do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
-/* Do backing store read or write of a virtual sample array */
-{
- long bytesperrow, file_offset, byte_count, rows, thisrow, i;
-
- bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than is currently defined */
- thisrow = (long) ptr->cur_start_row + i;
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
-}
-
-
-LOCAL(void)
-do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
-/* Do backing store read or write of a virtual coefficient-block array */
-{
- long bytesperrow, file_offset, byte_count, rows, thisrow, i;
-
- bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than is currently defined */
- thisrow = (long) ptr->cur_start_row + i;
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
-}
-
-
-METHODDEF(JSAMPARRAY)
-access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
- JDIMENSION start_row, JDIMENSION num_rows,
- boolean writable)
-/* Access the part of a virtual sample array starting at start_row */
-/* and extending for num_rows rows. writable is true if */
-/* caller intends to modify the accessed area. */
-{
- JDIMENSION end_row = start_row + num_rows;
- JDIMENSION undef_row;
-
- /* debugging check */
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
- ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- end_row > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_sarray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
-
- ltemp = (long) end_row - (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* Read in the selected part of the array.
- * During the initial write pass, we will do no actual read
- * because the selected part is all undefined.
- */
- do_sarray_io(cinfo, ptr, FALSE);
- }
- /* Ensure the accessed part of the array is defined; prezero if needed.
- * To improve locality of access, we only prezero the part of the array
- * that the caller is about to access, not the entire in-memory array.
- */
- if (ptr->first_undef_row < end_row) {
- if (ptr->first_undef_row < start_row) {
- if (writable) /* writer skipped over a section of array */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- undef_row = start_row; /* but reader is allowed to read ahead */
- } else {
- undef_row = ptr->first_undef_row;
- }
- if (writable)
- ptr->first_undef_row = end_row;
- if (ptr->pre_zero) {
- size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
- end_row -= ptr->cur_start_row;
- while (undef_row < end_row) {
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
- undef_row++;
- }
- } else {
- if (! writable) /* reader looking at undefined data */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
-}
-
-
-METHODDEF(JBLOCKARRAY)
-access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
- JDIMENSION start_row, JDIMENSION num_rows,
- boolean writable)
-/* Access the part of a virtual block array starting at start_row */
-/* and extending for num_rows rows. writable is true if */
-/* caller intends to modify the accessed area. */
-{
- JDIMENSION end_row = start_row + num_rows;
- JDIMENSION undef_row;
-
- /* debugging check */
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
- ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- end_row > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_barray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
-
- ltemp = (long) end_row - (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* Read in the selected part of the array.
- * During the initial write pass, we will do no actual read
- * because the selected part is all undefined.
- */
- do_barray_io(cinfo, ptr, FALSE);
- }
- /* Ensure the accessed part of the array is defined; prezero if needed.
- * To improve locality of access, we only prezero the part of the array
- * that the caller is about to access, not the entire in-memory array.
- */
- if (ptr->first_undef_row < end_row) {
- if (ptr->first_undef_row < start_row) {
- if (writable) /* writer skipped over a section of array */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- undef_row = start_row; /* but reader is allowed to read ahead */
- } else {
- undef_row = ptr->first_undef_row;
- }
- if (writable)
- ptr->first_undef_row = end_row;
- if (ptr->pre_zero) {
- size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
- end_row -= ptr->cur_start_row;
- while (undef_row < end_row) {
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
- undef_row++;
- }
- } else {
- if (! writable) /* reader looking at undefined data */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
-}
-
-
-/*
- * Release all objects belonging to a specified pool.
- */
-
-METHODDEF(void)
-free_pool (j_common_ptr cinfo, int pool_id)
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
- size_t space_freed;
-
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
-#ifdef MEM_STATS
- if (cinfo->err->trace_level > 1)
- print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
-#endif
-
- /* If freeing IMAGE pool, close any virtual arrays first */
- if (pool_id == JPOOL_IMAGE) {
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
-
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->b_s_open) { /* there may be no backing store */
- sptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
- }
- }
- mem->virt_sarray_list = NULL;
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->b_s_open) { /* there may be no backing store */
- bptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
- }
- }
- mem->virt_barray_list = NULL;
- }
-
- /* Release large objects */
- lhdr_ptr = mem->large_list[pool_id];
- mem->large_list[pool_id] = NULL;
-
- while (lhdr_ptr != NULL) {
- large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
- space_freed = lhdr_ptr->hdr.bytes_used +
- lhdr_ptr->hdr.bytes_left +
- SIZEOF(large_pool_hdr);
- jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- lhdr_ptr = next_lhdr_ptr;
- }
-
- /* Release small objects */
- shdr_ptr = mem->small_list[pool_id];
- mem->small_list[pool_id] = NULL;
-
- while (shdr_ptr != NULL) {
- small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
- space_freed = shdr_ptr->hdr.bytes_used +
- shdr_ptr->hdr.bytes_left +
- SIZEOF(small_pool_hdr);
- jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- shdr_ptr = next_shdr_ptr;
- }
-}
-
-
-/*
- * Close up shop entirely.
- * Note that this cannot be called unless cinfo->mem is non-NULL.
- */
-
-METHODDEF(void)
-self_destruct (j_common_ptr cinfo)
-{
- int pool;
-
- /* Close all backing store, release all memory.
- * Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- free_pool(cinfo, pool);
- }
-
- /* Release the memory manager control block too. */
- jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
- cinfo->mem = NULL; /* ensures I will be called only once */
-
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
-}
-
-
-/*
- * Memory manager initialization.
- * When this is called, only the error manager pointer is valid in cinfo!
- */
-
-GLOBAL(void)
-jinit_memory_mgr (j_common_ptr cinfo)
-{
- my_mem_ptr mem;
- long max_to_use;
- int pool;
- size_t test_mac;
-
- cinfo->mem = NULL; /* for safety if init fails */
-
- /* Check for configuration errors.
- * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
- * doesn't reflect any real hardware alignment requirement.
- * The test is a little tricky: for X>0, X and X-1 have no one-bits
- * in common if and only if X is a power of 2, ie has only one one-bit.
- * Some compilers may give an "unreachable code" warning here; ignore it.
- */
- if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
- /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
- * a multiple of SIZEOF(ALIGN_TYPE).
- * Again, an "unreachable code" warning may be ignored here.
- * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
- */
- test_mac = (size_t) MAX_ALLOC_CHUNK;
- if ((long) test_mac != MAX_ALLOC_CHUNK ||
- (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
-
- max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
-
- /* Attempt to allocate memory manager's control block */
- mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
-
- if (mem == NULL) {
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
- }
-
- /* OK, fill in the method pointers */
- mem->pub.alloc_small = alloc_small;
- mem->pub.alloc_large = alloc_large;
- mem->pub.alloc_sarray = alloc_sarray;
- mem->pub.alloc_barray = alloc_barray;
- mem->pub.request_virt_sarray = request_virt_sarray;
- mem->pub.request_virt_barray = request_virt_barray;
- mem->pub.realize_virt_arrays = realize_virt_arrays;
- mem->pub.access_virt_sarray = access_virt_sarray;
- mem->pub.access_virt_barray = access_virt_barray;
- mem->pub.free_pool = free_pool;
- mem->pub.self_destruct = self_destruct;
-
- /* Make MAX_ALLOC_CHUNK accessible to other modules */
- mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
-
- /* Initialize working state */
- mem->pub.max_memory_to_use = max_to_use;
-
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- mem->small_list[pool] = NULL;
- mem->large_list[pool] = NULL;
- }
- mem->virt_sarray_list = NULL;
- mem->virt_barray_list = NULL;
-
- mem->total_space_allocated = SIZEOF(my_memory_mgr);
-
- /* Declare ourselves open for business */
- cinfo->mem = & mem->pub;
-
- /* Check for an environment variable JPEGMEM; if found, override the
- * default max_memory setting from jpeg_mem_init. Note that the
- * surrounding application may again override this value.
- * If your system doesn't support getenv(), define NO_GETENV to disable
- * this feature.
- */
-#ifndef NO_GETENV
- { char * memenv;
-
- if ((memenv = getenv("JPEGMEM")) != NULL) {
- char ch = 'x';
-
- if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
- if (ch == 'm' || ch == 'M')
- max_to_use *= 1000L;
- mem->pub.max_memory_to_use = max_to_use * 1000L;
- }
- }
- }
-#endif
-
-}
diff --git a/src/jpeg-8c/jmemnobs.c b/src/jpeg-8c/jmemnobs.c
deleted file mode 100644
index eb8c3377..00000000
--- a/src/jpeg-8c/jmemnobs.c
+++ /dev/null
@@ -1,109 +0,0 @@
-/*
- * jmemnobs.c
- *
- * Copyright (C) 1992-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides a really simple implementation of the system-
- * dependent portion of the JPEG memory manager. This implementation
- * assumes that no backing-store files are needed: all required space
- * can be obtained from malloc().
- * This is very portable in the sense that it'll compile on almost anything,
- * but you'd better have lots of main memory (or virtual memory) if you want
- * to process big images.
- * Note that the max_memory_to_use option is ignored by this implementation.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jmemsys.h" /* import the system-dependent declarations */
-
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
-extern void * malloc JPP((size_t size));
-extern void free JPP((void *ptr));
-#endif
-
-
-/*
- * Memory allocation and freeing are controlled by the regular library
- * routines malloc() and free().
- */
-
-GLOBAL(void *)
-jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
-{
- return (void *) malloc(sizeofobject);
-}
-
-GLOBAL(void)
-jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
-{
- free(object);
-}
-
-
-/*
- * "Large" objects are treated the same as "small" ones.
- * NB: although we include FAR keywords in the routine declarations,
- * this file won't actually work in 80x86 small/medium model; at least,
- * you probably won't be able to process useful-size images in only 64KB.
- */
-
-GLOBAL(void FAR *)
-jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
-{
- return (void FAR *) malloc(sizeofobject);
-}
-
-GLOBAL(void)
-jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
-{
- free(object);
-}
-
-
-/*
- * This routine computes the total memory space available for allocation.
- * Here we always say, "we got all you want bud!"
- */
-
-GLOBAL(long)
-jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
- long max_bytes_needed, long already_allocated)
-{
- return max_bytes_needed;
-}
-
-
-/*
- * Backing store (temporary file) management.
- * Since jpeg_mem_available always promised the moon,
- * this should never be called and we can just error out.
- */
-
-GLOBAL(void)
-jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
- long total_bytes_needed)
-{
- ERREXIT(cinfo, JERR_NO_BACKING_STORE);
-}
-
-
-/*
- * These routines take care of any system-dependent initialization and
- * cleanup required. Here, there isn't any.
- */
-
-GLOBAL(long)
-jpeg_mem_init (j_common_ptr cinfo)
-{
- return 0; /* just set max_memory_to_use to 0 */
-}
-
-GLOBAL(void)
-jpeg_mem_term (j_common_ptr cinfo)
-{
- /* no work */
-}
diff --git a/src/jpeg-8c/jmemsys.h b/src/jpeg-8c/jmemsys.h
deleted file mode 100644
index 6c3c6d34..00000000
--- a/src/jpeg-8c/jmemsys.h
+++ /dev/null
@@ -1,198 +0,0 @@
-/*
- * jmemsys.h
- *
- * Copyright (C) 1992-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file defines the interface between the system-independent
- * and system-dependent portions of the JPEG memory manager. No other
- * modules need include it. (The system-independent portion is jmemmgr.c;
- * there are several different versions of the system-dependent portion.)
- *
- * This file works as-is for the system-dependent memory managers supplied
- * in the IJG distribution. You may need to modify it if you write a
- * custom memory manager. If system-dependent changes are needed in
- * this file, the best method is to #ifdef them based on a configuration
- * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
- * and USE_MAC_MEMMGR.
- */
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_get_small jGetSmall
-#define jpeg_free_small jFreeSmall
-#define jpeg_get_large jGetLarge
-#define jpeg_free_large jFreeLarge
-#define jpeg_mem_available jMemAvail
-#define jpeg_open_backing_store jOpenBackStore
-#define jpeg_mem_init jMemInit
-#define jpeg_mem_term jMemTerm
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/*
- * These two functions are used to allocate and release small chunks of
- * memory. (Typically the total amount requested through jpeg_get_small is
- * no more than 20K or so; this will be requested in chunks of a few K each.)
- * Behavior should be the same as for the standard library functions malloc
- * and free; in particular, jpeg_get_small must return NULL on failure.
- * On most systems, these ARE malloc and free. jpeg_free_small is passed the
- * size of the object being freed, just in case it's needed.
- * On an 80x86 machine using small-data memory model, these manage near heap.
- */
-
-EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
-EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
- size_t sizeofobject));
-
-/*
- * These two functions are used to allocate and release large chunks of
- * memory (up to the total free space designated by jpeg_mem_available).
- * The interface is the same as above, except that on an 80x86 machine,
- * far pointers are used. On most other machines these are identical to
- * the jpeg_get/free_small routines; but we keep them separate anyway,
- * in case a different allocation strategy is desirable for large chunks.
- */
-
-EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
- size_t sizeofobject));
-EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
- size_t sizeofobject));
-
-/*
- * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
- * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
- * matter, but that case should never come into play). This macro is needed
- * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
- * On those machines, we expect that jconfig.h will provide a proper value.
- * On machines with 32-bit flat address spaces, any large constant may be used.
- *
- * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
- * size_t and will be a multiple of sizeof(align_type).
- */
-
-#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
-#define MAX_ALLOC_CHUNK 1000000000L
-#endif
-
-/*
- * This routine computes the total space still available for allocation by
- * jpeg_get_large. If more space than this is needed, backing store will be
- * used. NOTE: any memory already allocated must not be counted.
- *
- * There is a minimum space requirement, corresponding to the minimum
- * feasible buffer sizes; jmemmgr.c will request that much space even if
- * jpeg_mem_available returns zero. The maximum space needed, enough to hold
- * all working storage in memory, is also passed in case it is useful.
- * Finally, the total space already allocated is passed. If no better
- * method is available, cinfo->mem->max_memory_to_use - already_allocated
- * is often a suitable calculation.
- *
- * It is OK for jpeg_mem_available to underestimate the space available
- * (that'll just lead to more backing-store access than is really necessary).
- * However, an overestimate will lead to failure. Hence it's wise to subtract
- * a slop factor from the true available space. 5% should be enough.
- *
- * On machines with lots of virtual memory, any large constant may be returned.
- * Conversely, zero may be returned to always use the minimum amount of memory.
- */
-
-EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
- long min_bytes_needed,
- long max_bytes_needed,
- long already_allocated));
-
-
-/*
- * This structure holds whatever state is needed to access a single
- * backing-store object. The read/write/close method pointers are called
- * by jmemmgr.c to manipulate the backing-store object; all other fields
- * are private to the system-dependent backing store routines.
- */
-
-#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
-
-
-#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
-
-typedef unsigned short XMSH; /* type of extended-memory handles */
-typedef unsigned short EMSH; /* type of expanded-memory handles */
-
-typedef union {
- short file_handle; /* DOS file handle if it's a temp file */
- XMSH xms_handle; /* handle if it's a chunk of XMS */
- EMSH ems_handle; /* handle if it's a chunk of EMS */
-} handle_union;
-
-#endif /* USE_MSDOS_MEMMGR */
-
-#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
-#include <Files.h>
-#endif /* USE_MAC_MEMMGR */
-
-
-typedef struct backing_store_struct * backing_store_ptr;
-
-typedef struct backing_store_struct {
- /* Methods for reading/writing/closing this backing-store object */
- JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info,
- void FAR * buffer_address,
- long file_offset, long byte_count));
- JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info,
- void FAR * buffer_address,
- long file_offset, long byte_count));
- JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info));
-
- /* Private fields for system-dependent backing-store management */
-#ifdef USE_MSDOS_MEMMGR
- /* For the MS-DOS manager (jmemdos.c), we need: */
- handle_union handle; /* reference to backing-store storage object */
- char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
-#else
-#ifdef USE_MAC_MEMMGR
- /* For the Mac manager (jmemmac.c), we need: */
- short temp_file; /* file reference number to temp file */
- FSSpec tempSpec; /* the FSSpec for the temp file */
- char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
-#else
- /* For a typical implementation with temp files, we need: */
- FILE * temp_file; /* stdio reference to temp file */
- char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
-#endif
-#endif
-} backing_store_info;
-
-
-/*
- * Initial opening of a backing-store object. This must fill in the
- * read/write/close pointers in the object. The read/write routines
- * may take an error exit if the specified maximum file size is exceeded.
- * (If jpeg_mem_available always returns a large value, this routine can
- * just take an error exit.)
- */
-
-EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
- backing_store_ptr info,
- long total_bytes_needed));
-
-
-/*
- * These routines take care of any system-dependent initialization and
- * cleanup required. jpeg_mem_init will be called before anything is
- * allocated (and, therefore, nothing in cinfo is of use except the error
- * manager pointer). It should return a suitable default value for
- * max_memory_to_use; this may subsequently be overridden by the surrounding
- * application. (Note that max_memory_to_use is only important if
- * jpeg_mem_available chooses to consult it ... no one else will.)
- * jpeg_mem_term may assume that all requested memory has been freed and that
- * all opened backing-store objects have been closed.
- */
-
-EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
-EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
diff --git a/src/jpeg-8c/jmorecfg.h b/src/jpeg-8c/jmorecfg.h
deleted file mode 100644
index 928d052c..00000000
--- a/src/jpeg-8c/jmorecfg.h
+++ /dev/null
@@ -1,371 +0,0 @@
-/*
- * jmorecfg.h
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 1997-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains additional configuration options that customize the
- * JPEG software for special applications or support machine-dependent
- * optimizations. Most users will not need to touch this file.
- */
-
-
-/*
- * Define BITS_IN_JSAMPLE as either
- * 8 for 8-bit sample values (the usual setting)
- * 12 for 12-bit sample values
- * Only 8 and 12 are legal data precisions for lossy JPEG according to the
- * JPEG standard, and the IJG code does not support anything else!
- * We do not support run-time selection of data precision, sorry.
- */
-
-#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
-
-
-/*
- * Maximum number of components (color channels) allowed in JPEG image.
- * To meet the letter of the JPEG spec, set this to 255. However, darn
- * few applications need more than 4 channels (maybe 5 for CMYK + alpha
- * mask). We recommend 10 as a reasonable compromise; use 4 if you are
- * really short on memory. (Each allowed component costs a hundred or so
- * bytes of storage, whether actually used in an image or not.)
- */
-
-#define MAX_COMPONENTS 10 /* maximum number of image components */
-
-
-/*
- * Basic data types.
- * You may need to change these if you have a machine with unusual data
- * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
- * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
- * but it had better be at least 16.
- */
-
-/* Representation of a single sample (pixel element value).
- * We frequently allocate large arrays of these, so it's important to keep
- * them small. But if you have memory to burn and access to char or short
- * arrays is very slow on your hardware, you might want to change these.
- */
-
-#if BITS_IN_JSAMPLE == 8
-/* JSAMPLE should be the smallest type that will hold the values 0..255.
- * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
- */
-
-#ifdef HAVE_UNSIGNED_CHAR
-
-typedef unsigned char JSAMPLE;
-#define GETJSAMPLE(value) ((int) (value))
-
-#else /* not HAVE_UNSIGNED_CHAR */
-
-typedef char JSAMPLE;
-#ifdef CHAR_IS_UNSIGNED
-#define GETJSAMPLE(value) ((int) (value))
-#else
-#define GETJSAMPLE(value) ((int) (value) & 0xFF)
-#endif /* CHAR_IS_UNSIGNED */
-
-#endif /* HAVE_UNSIGNED_CHAR */
-
-#define MAXJSAMPLE 255
-#define CENTERJSAMPLE 128
-
-#endif /* BITS_IN_JSAMPLE == 8 */
-
-
-#if BITS_IN_JSAMPLE == 12
-/* JSAMPLE should be the smallest type that will hold the values 0..4095.
- * On nearly all machines "short" will do nicely.
- */
-
-typedef short JSAMPLE;
-#define GETJSAMPLE(value) ((int) (value))
-
-#define MAXJSAMPLE 4095
-#define CENTERJSAMPLE 2048
-
-#endif /* BITS_IN_JSAMPLE == 12 */
-
-
-/* Representation of a DCT frequency coefficient.
- * This should be a signed value of at least 16 bits; "short" is usually OK.
- * Again, we allocate large arrays of these, but you can change to int
- * if you have memory to burn and "short" is really slow.
- */
-
-typedef short JCOEF;
-
-
-/* Compressed datastreams are represented as arrays of JOCTET.
- * These must be EXACTLY 8 bits wide, at least once they are written to
- * external storage. Note that when using the stdio data source/destination
- * managers, this is also the data type passed to fread/fwrite.
- */
-
-#ifdef HAVE_UNSIGNED_CHAR
-
-typedef unsigned char JOCTET;
-#define GETJOCTET(value) (value)
-
-#else /* not HAVE_UNSIGNED_CHAR */
-
-typedef char JOCTET;
-#ifdef CHAR_IS_UNSIGNED
-#define GETJOCTET(value) (value)
-#else
-#define GETJOCTET(value) ((value) & 0xFF)
-#endif /* CHAR_IS_UNSIGNED */
-
-#endif /* HAVE_UNSIGNED_CHAR */
-
-
-/* These typedefs are used for various table entries and so forth.
- * They must be at least as wide as specified; but making them too big
- * won't cost a huge amount of memory, so we don't provide special
- * extraction code like we did for JSAMPLE. (In other words, these
- * typedefs live at a different point on the speed/space tradeoff curve.)
- */
-
-/* UINT8 must hold at least the values 0..255. */
-
-#ifdef HAVE_UNSIGNED_CHAR
-typedef unsigned char UINT8;
-#else /* not HAVE_UNSIGNED_CHAR */
-#ifdef CHAR_IS_UNSIGNED
-typedef char UINT8;
-#else /* not CHAR_IS_UNSIGNED */
-typedef short UINT8;
-#endif /* CHAR_IS_UNSIGNED */
-#endif /* HAVE_UNSIGNED_CHAR */
-
-/* UINT16 must hold at least the values 0..65535. */
-
-#ifdef HAVE_UNSIGNED_SHORT
-typedef unsigned short UINT16;
-#else /* not HAVE_UNSIGNED_SHORT */
-typedef unsigned int UINT16;
-#endif /* HAVE_UNSIGNED_SHORT */
-
-/* INT16 must hold at least the values -32768..32767. */
-
-#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
-typedef short INT16;
-#endif
-
-/* INT32 must hold at least signed 32-bit values. */
-
-#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
-#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
-#ifndef _BASETSD_H /* MinGW is slightly different */
-#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
-typedef long INT32;
-#endif
-#endif
-#endif
-#endif
-
-/* Datatype used for image dimensions. The JPEG standard only supports
- * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
- * "unsigned int" is sufficient on all machines. However, if you need to
- * handle larger images and you don't mind deviating from the spec, you
- * can change this datatype.
- */
-
-typedef unsigned int JDIMENSION;
-
-#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
-
-
-/* These macros are used in all function definitions and extern declarations.
- * You could modify them if you need to change function linkage conventions;
- * in particular, you'll need to do that to make the library a Windows DLL.
- * Another application is to make all functions global for use with debuggers
- * or code profilers that require it.
- */
-
-/* a function called through method pointers: */
-#define METHODDEF(type) static type
-/* a function used only in its module: */
-#define LOCAL(type) static type
-/* a function referenced thru EXTERNs: */
-#define GLOBAL(type) type
-/* a reference to a GLOBAL function: */
-#define EXTERN(type) extern type
-
-
-/* This macro is used to declare a "method", that is, a function pointer.
- * We want to supply prototype parameters if the compiler can cope.
- * Note that the arglist parameter must be parenthesized!
- * Again, you can customize this if you need special linkage keywords.
- */
-
-#ifdef HAVE_PROTOTYPES
-#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
-#else
-#define JMETHOD(type,methodname,arglist) type (*methodname) ()
-#endif
-
-
-/* Here is the pseudo-keyword for declaring pointers that must be "far"
- * on 80x86 machines. Most of the specialized coding for 80x86 is handled
- * by just saying "FAR *" where such a pointer is needed. In a few places
- * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
- */
-
-#ifndef FAR
-#ifdef NEED_FAR_POINTERS
-#define FAR far
-#else
-#define FAR
-#endif
-#endif
-
-
-/*
- * On a few systems, type boolean and/or its values FALSE, TRUE may appear
- * in standard header files. Or you may have conflicts with application-
- * specific header files that you want to include together with these files.
- * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
- */
-
-#ifndef HAVE_BOOLEAN
-typedef int boolean;
-#endif
-#ifndef FALSE /* in case these macros already exist */
-#define FALSE 0 /* values of boolean */
-#endif
-#ifndef TRUE
-#define TRUE 1
-#endif
-
-
-/*
- * The remaining options affect code selection within the JPEG library,
- * but they don't need to be visible to most applications using the library.
- * To minimize application namespace pollution, the symbols won't be
- * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
- */
-
-#ifdef JPEG_INTERNALS
-#define JPEG_INTERNAL_OPTIONS
-#endif
-
-#ifdef JPEG_INTERNAL_OPTIONS
-
-
-/*
- * These defines indicate whether to include various optional functions.
- * Undefining some of these symbols will produce a smaller but less capable
- * library. Note that you can leave certain source files out of the
- * compilation/linking process if you've #undef'd the corresponding symbols.
- * (You may HAVE to do that if your compiler doesn't like null source files.)
- */
-
-/* Capability options common to encoder and decoder: */
-
-#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
-#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
-#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
-
-/* Encoder capability options: */
-
-#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
-#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/
-#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
-/* Note: if you selected 12-bit data precision, it is dangerous to turn off
- * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
- * precision, so jchuff.c normally uses entropy optimization to compute
- * usable tables for higher precision. If you don't want to do optimization,
- * you'll have to supply different default Huffman tables.
- * The exact same statements apply for progressive JPEG: the default tables
- * don't work for progressive mode. (This may get fixed, however.)
- */
-#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
-
-/* Decoder capability options: */
-
-#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
-#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
-#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
-#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
-#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
-#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
-#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
-#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
-
-/* more capability options later, no doubt */
-
-
-/*
- * Ordering of RGB data in scanlines passed to or from the application.
- * If your application wants to deal with data in the order B,G,R, just
- * change these macros. You can also deal with formats such as R,G,B,X
- * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
- * the offsets will also change the order in which colormap data is organized.
- * RESTRICTIONS:
- * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
- * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
- * useful if you are using JPEG color spaces other than YCbCr or grayscale.
- * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
- * is not 3 (they don't understand about dummy color components!). So you
- * can't use color quantization if you change that value.
- */
-
-#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
-#define RGB_GREEN 1 /* Offset of Green */
-#define RGB_BLUE 2 /* Offset of Blue */
-#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
-
-
-/* Definitions for speed-related optimizations. */
-
-
-/* If your compiler supports inline functions, define INLINE
- * as the inline keyword; otherwise define it as empty.
- */
-
-#ifndef INLINE
-#ifdef __GNUC__ /* for instance, GNU C knows about inline */
-#define INLINE __inline__
-#endif
-#ifndef INLINE
-#define INLINE /* default is to define it as empty */
-#endif
-#endif
-
-
-/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
- * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
- * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
- */
-
-#ifndef MULTIPLIER
-#define MULTIPLIER int /* type for fastest integer multiply */
-#endif
-
-
-/* FAST_FLOAT should be either float or double, whichever is done faster
- * by your compiler. (Note that this type is only used in the floating point
- * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
- * Typically, float is faster in ANSI C compilers, while double is faster in
- * pre-ANSI compilers (because they insist on converting to double anyway).
- * The code below therefore chooses float if we have ANSI-style prototypes.
- */
-
-#ifndef FAST_FLOAT
-#ifdef HAVE_PROTOTYPES
-#define FAST_FLOAT float
-#else
-#define FAST_FLOAT double
-#endif
-#endif
-
-#endif /* JPEG_INTERNAL_OPTIONS */
diff --git a/src/jpeg-8c/jpegint.h b/src/jpeg-8c/jpegint.h
deleted file mode 100644
index 0c27a4e4..00000000
--- a/src/jpeg-8c/jpegint.h
+++ /dev/null
@@ -1,407 +0,0 @@
-/*
- * jpegint.h
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 1997-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides common declarations for the various JPEG modules.
- * These declarations are considered internal to the JPEG library; most
- * applications using the library shouldn't need to include this file.
- */
-
-
-/* Declarations for both compression & decompression */
-
-typedef enum { /* Operating modes for buffer controllers */
- JBUF_PASS_THRU, /* Plain stripwise operation */
- /* Remaining modes require a full-image buffer to have been created */
- JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
- JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
- JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
-} J_BUF_MODE;
-
-/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
-#define CSTATE_START 100 /* after create_compress */
-#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
-#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
-#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
-#define DSTATE_START 200 /* after create_decompress */
-#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
-#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
-#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
-#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
-#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
-#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
-#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
-#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
-#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
-#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
-
-
-/* Declarations for compression modules */
-
-/* Master control module */
-struct jpeg_comp_master {
- JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
- JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
- JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean call_pass_startup; /* True if pass_startup must be called */
- boolean is_last_pass; /* True during last pass */
-};
-
-/* Main buffer control (downsampled-data buffer) */
-struct jpeg_c_main_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, process_data, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail));
-};
-
-/* Compression preprocessing (downsampling input buffer control) */
-struct jpeg_c_prep_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf,
- JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail));
-};
-
-/* Coefficient buffer control */
-struct jpeg_c_coef_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf));
-};
-
-/* Colorspace conversion */
-struct jpeg_color_converter {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- JMETHOD(void, color_convert, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows));
-};
-
-/* Downsampling */
-struct jpeg_downsampler {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- JMETHOD(void, downsample, (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_index,
- JSAMPIMAGE output_buf,
- JDIMENSION out_row_group_index));
-
- boolean need_context_rows; /* TRUE if need rows above & below */
-};
-
-/* Forward DCT (also controls coefficient quantization) */
-typedef JMETHOD(void, forward_DCT_ptr,
- (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks));
-
-struct jpeg_forward_dct {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- /* It is useful to allow each component to have a separate FDCT method. */
- forward_DCT_ptr forward_DCT[MAX_COMPONENTS];
-};
-
-/* Entropy encoding */
-struct jpeg_entropy_encoder {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
- JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
- JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
-};
-
-/* Marker writing */
-struct jpeg_marker_writer {
- JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
- JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
- /* These routines are exported to allow insertion of extra markers */
- /* Probably only COM and APPn markers should be written this way */
- JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
- unsigned int datalen));
- JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
-};
-
-
-/* Declarations for decompression modules */
-
-/* Master control module */
-struct jpeg_decomp_master {
- JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
-};
-
-/* Input control module */
-struct jpeg_input_controller {
- JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
- JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
- JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean has_multiple_scans; /* True if file has multiple scans */
- boolean eoi_reached; /* True when EOI has been consumed */
-};
-
-/* Main buffer control (downsampled-data buffer) */
-struct jpeg_d_main_controller {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, process_data, (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-};
-
-/* Coefficient buffer control */
-struct jpeg_d_coef_controller {
- JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
- JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
- JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
- JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
- JSAMPIMAGE output_buf));
- /* Pointer to array of coefficient virtual arrays, or NULL if none */
- jvirt_barray_ptr *coef_arrays;
-};
-
-/* Decompression postprocessing (color quantization buffer control) */
-struct jpeg_d_post_controller {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf,
- JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-};
-
-/* Marker reading & parsing */
-struct jpeg_marker_reader {
- JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
- /* Read markers until SOS or EOI.
- * Returns same codes as are defined for jpeg_consume_input:
- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- */
- JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
- /* Read a restart marker --- exported for use by entropy decoder only */
- jpeg_marker_parser_method read_restart_marker;
-
- /* State of marker reader --- nominally internal, but applications
- * supplying COM or APPn handlers might like to know the state.
- */
- boolean saw_SOI; /* found SOI? */
- boolean saw_SOF; /* found SOF? */
- int next_restart_num; /* next restart number expected (0-7) */
- unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
-};
-
-/* Entropy decoding */
-struct jpeg_entropy_decoder {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-};
-
-/* Inverse DCT (also performs dequantization) */
-typedef JMETHOD(void, inverse_DCT_method_ptr,
- (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col));
-
-struct jpeg_inverse_dct {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- /* It is useful to allow each component to have a separate IDCT method. */
- inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
-};
-
-/* Upsampling (note that upsampler must also call color converter) */
-struct jpeg_upsampler {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, upsample, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf,
- JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-
- boolean need_context_rows; /* TRUE if need rows above & below */
-};
-
-/* Colorspace conversion */
-struct jpeg_color_deconverter {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows));
-};
-
-/* Color quantization or color precision reduction */
-struct jpeg_color_quantizer {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
- JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf,
- int num_rows));
- JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
-};
-
-
-/* Miscellaneous useful macros */
-
-#undef MAX
-#define MAX(a,b) ((a) > (b) ? (a) : (b))
-#undef MIN
-#define MIN(a,b) ((a) < (b) ? (a) : (b))
-
-
-/* We assume that right shift corresponds to signed division by 2 with
- * rounding towards minus infinity. This is correct for typical "arithmetic
- * shift" instructions that shift in copies of the sign bit. But some
- * C compilers implement >> with an unsigned shift. For these machines you
- * must define RIGHT_SHIFT_IS_UNSIGNED.
- * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
- * It is only applied with constant shift counts. SHIFT_TEMPS must be
- * included in the variables of any routine using RIGHT_SHIFT.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define SHIFT_TEMPS INT32 shift_temp;
-#define RIGHT_SHIFT(x,shft) \
- ((shift_temp = (x)) < 0 ? \
- (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
- (shift_temp >> (shft)))
-#else
-#define SHIFT_TEMPS
-#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jinit_compress_master jICompress
-#define jinit_c_master_control jICMaster
-#define jinit_c_main_controller jICMainC
-#define jinit_c_prep_controller jICPrepC
-#define jinit_c_coef_controller jICCoefC
-#define jinit_color_converter jICColor
-#define jinit_downsampler jIDownsampler
-#define jinit_forward_dct jIFDCT
-#define jinit_huff_encoder jIHEncoder
-#define jinit_arith_encoder jIAEncoder
-#define jinit_marker_writer jIMWriter
-#define jinit_master_decompress jIDMaster
-#define jinit_d_main_controller jIDMainC
-#define jinit_d_coef_controller jIDCoefC
-#define jinit_d_post_controller jIDPostC
-#define jinit_input_controller jIInCtlr
-#define jinit_marker_reader jIMReader
-#define jinit_huff_decoder jIHDecoder
-#define jinit_arith_decoder jIADecoder
-#define jinit_inverse_dct jIIDCT
-#define jinit_upsampler jIUpsampler
-#define jinit_color_deconverter jIDColor
-#define jinit_1pass_quantizer jI1Quant
-#define jinit_2pass_quantizer jI2Quant
-#define jinit_merged_upsampler jIMUpsampler
-#define jinit_memory_mgr jIMemMgr
-#define jdiv_round_up jDivRound
-#define jround_up jRound
-#define jcopy_sample_rows jCopySamples
-#define jcopy_block_row jCopyBlocks
-#define jzero_far jZeroFar
-#define jpeg_zigzag_order jZIGTable
-#define jpeg_natural_order jZAGTable
-#define jpeg_natural_order7 jZAGTable7
-#define jpeg_natural_order6 jZAGTable6
-#define jpeg_natural_order5 jZAGTable5
-#define jpeg_natural_order4 jZAGTable4
-#define jpeg_natural_order3 jZAGTable3
-#define jpeg_natural_order2 jZAGTable2
-#define jpeg_aritab jAriTab
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Compression module initialization routines */
-EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
- boolean transcode_only));
-EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
-/* Decompression module initialization routines */
-EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
-/* Memory manager initialization */
-EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
-
-/* Utility routines in jutils.c */
-EXTERN(long) jdiv_round_up JPP((long a, long b));
-EXTERN(long) jround_up JPP((long a, long b));
-EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
- JSAMPARRAY output_array, int dest_row,
- int num_rows, JDIMENSION num_cols));
-EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
- JDIMENSION num_blocks));
-EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
-/* Constant tables in jutils.c */
-#if 0 /* This table is not actually needed in v6a */
-extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
-#endif
-extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
-extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */
-extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */
-extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */
-extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */
-extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */
-extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */
-
-/* Arithmetic coding probability estimation tables in jaricom.c */
-extern const INT32 jpeg_aritab[];
-
-/* Suppress undefined-structure complaints if necessary. */
-
-#ifdef INCOMPLETE_TYPES_BROKEN
-#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
-struct jvirt_sarray_control { long dummy; };
-struct jvirt_barray_control { long dummy; };
-#endif
-#endif /* INCOMPLETE_TYPES_BROKEN */
diff --git a/src/jpeg-8c/jpeglib.h b/src/jpeg-8c/jpeglib.h
deleted file mode 100644
index 1eb1fac0..00000000
--- a/src/jpeg-8c/jpeglib.h
+++ /dev/null
@@ -1,1160 +0,0 @@
-/*
- * jpeglib.h
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * Modified 2002-2010 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file defines the application interface for the JPEG library.
- * Most applications using the library need only include this file,
- * and perhaps jerror.h if they want to know the exact error codes.
- */
-
-#ifndef JPEGLIB_H
-#define JPEGLIB_H
-
-/*
- * First we include the configuration files that record how this
- * installation of the JPEG library is set up. jconfig.h can be
- * generated automatically for many systems. jmorecfg.h contains
- * manual configuration options that most people need not worry about.
- */
-
-#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
-#include "jconfig.h" /* widely used configuration options */
-#endif
-#include "jmorecfg.h" /* seldom changed options */
-
-
-#ifdef __cplusplus
-#ifndef DONT_USE_EXTERN_C
-extern "C" {
-#endif
-#endif
-
-/* Version IDs for the JPEG library.
- * Might be useful for tests like "#if JPEG_LIB_VERSION >= 80".
- */
-
-#define JPEG_LIB_VERSION 80 /* Compatibility version 8.0 */
-#define JPEG_LIB_VERSION_MAJOR 8
-#define JPEG_LIB_VERSION_MINOR 3
-
-
-/* Various constants determining the sizes of things.
- * All of these are specified by the JPEG standard, so don't change them
- * if you want to be compatible.
- */
-
-#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
-#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
-#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
-#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
-#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
-#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
-#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
-/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
- * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
- * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
- * to handle it. We even let you do this from the jconfig.h file. However,
- * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
- * sometimes emits noncompliant files doesn't mean you should too.
- */
-#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
-#ifndef D_MAX_BLOCKS_IN_MCU
-#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
-#endif
-
-
-/* Data structures for images (arrays of samples and of DCT coefficients).
- * On 80x86 machines, the image arrays are too big for near pointers,
- * but the pointer arrays can fit in near memory.
- */
-
-typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
-typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
-typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
-
-typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
-typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
-typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
-typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
-
-typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
-
-
-/* Types for JPEG compression parameters and working tables. */
-
-
-/* DCT coefficient quantization tables. */
-
-typedef struct {
- /* This array gives the coefficient quantizers in natural array order
- * (not the zigzag order in which they are stored in a JPEG DQT marker).
- * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
- */
- UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
- /* This field is used only during compression. It's initialized FALSE when
- * the table is created, and set TRUE when it's been output to the file.
- * You could suppress output of a table by setting this to TRUE.
- * (See jpeg_suppress_tables for an example.)
- */
- boolean sent_table; /* TRUE when table has been output */
-} JQUANT_TBL;
-
-
-/* Huffman coding tables. */
-
-typedef struct {
- /* These two fields directly represent the contents of a JPEG DHT marker */
- UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
- /* length k bits; bits[0] is unused */
- UINT8 huffval[256]; /* The symbols, in order of incr code length */
- /* This field is used only during compression. It's initialized FALSE when
- * the table is created, and set TRUE when it's been output to the file.
- * You could suppress output of a table by setting this to TRUE.
- * (See jpeg_suppress_tables for an example.)
- */
- boolean sent_table; /* TRUE when table has been output */
-} JHUFF_TBL;
-
-
-/* Basic info about one component (color channel). */
-
-typedef struct {
- /* These values are fixed over the whole image. */
- /* For compression, they must be supplied by parameter setup; */
- /* for decompression, they are read from the SOF marker. */
- int component_id; /* identifier for this component (0..255) */
- int component_index; /* its index in SOF or cinfo->comp_info[] */
- int h_samp_factor; /* horizontal sampling factor (1..4) */
- int v_samp_factor; /* vertical sampling factor (1..4) */
- int quant_tbl_no; /* quantization table selector (0..3) */
- /* These values may vary between scans. */
- /* For compression, they must be supplied by parameter setup; */
- /* for decompression, they are read from the SOS marker. */
- /* The decompressor output side may not use these variables. */
- int dc_tbl_no; /* DC entropy table selector (0..3) */
- int ac_tbl_no; /* AC entropy table selector (0..3) */
-
- /* Remaining fields should be treated as private by applications. */
-
- /* These values are computed during compression or decompression startup: */
- /* Component's size in DCT blocks.
- * Any dummy blocks added to complete an MCU are not counted; therefore
- * these values do not depend on whether a scan is interleaved or not.
- */
- JDIMENSION width_in_blocks;
- JDIMENSION height_in_blocks;
- /* Size of a DCT block in samples,
- * reflecting any scaling we choose to apply during the DCT step.
- * Values from 1 to 16 are supported.
- * Note that different components may receive different DCT scalings.
- */
- int DCT_h_scaled_size;
- int DCT_v_scaled_size;
- /* The downsampled dimensions are the component's actual, unpadded number
- * of samples at the main buffer (preprocessing/compression interface);
- * DCT scaling is included, so
- * downsampled_width = ceil(image_width * Hi/Hmax * DCT_h_scaled_size/DCTSIZE)
- * and similarly for height.
- */
- JDIMENSION downsampled_width; /* actual width in samples */
- JDIMENSION downsampled_height; /* actual height in samples */
- /* This flag is used only for decompression. In cases where some of the
- * components will be ignored (eg grayscale output from YCbCr image),
- * we can skip most computations for the unused components.
- */
- boolean component_needed; /* do we need the value of this component? */
-
- /* These values are computed before starting a scan of the component. */
- /* The decompressor output side may not use these variables. */
- int MCU_width; /* number of blocks per MCU, horizontally */
- int MCU_height; /* number of blocks per MCU, vertically */
- int MCU_blocks; /* MCU_width * MCU_height */
- int MCU_sample_width; /* MCU width in samples: MCU_width * DCT_h_scaled_size */
- int last_col_width; /* # of non-dummy blocks across in last MCU */
- int last_row_height; /* # of non-dummy blocks down in last MCU */
-
- /* Saved quantization table for component; NULL if none yet saved.
- * See jdinput.c comments about the need for this information.
- * This field is currently used only for decompression.
- */
- JQUANT_TBL * quant_table;
-
- /* Private per-component storage for DCT or IDCT subsystem. */
- void * dct_table;
-} jpeg_component_info;
-
-
-/* The script for encoding a multiple-scan file is an array of these: */
-
-typedef struct {
- int comps_in_scan; /* number of components encoded in this scan */
- int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
- int Ss, Se; /* progressive JPEG spectral selection parms */
- int Ah, Al; /* progressive JPEG successive approx. parms */
-} jpeg_scan_info;
-
-/* The decompressor can save APPn and COM markers in a list of these: */
-
-typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
-
-struct jpeg_marker_struct {
- jpeg_saved_marker_ptr next; /* next in list, or NULL */
- UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
- unsigned int original_length; /* # bytes of data in the file */
- unsigned int data_length; /* # bytes of data saved at data[] */
- JOCTET FAR * data; /* the data contained in the marker */
- /* the marker length word is not counted in data_length or original_length */
-};
-
-/* Known color spaces. */
-
-typedef enum {
- JCS_UNKNOWN, /* error/unspecified */
- JCS_GRAYSCALE, /* monochrome */
- JCS_RGB, /* red/green/blue */
- JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
- JCS_CMYK, /* C/M/Y/K */
- JCS_YCCK /* Y/Cb/Cr/K */
-} J_COLOR_SPACE;
-
-/* DCT/IDCT algorithm options. */
-
-typedef enum {
- JDCT_ISLOW, /* slow but accurate integer algorithm */
- JDCT_IFAST, /* faster, less accurate integer method */
- JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
-} J_DCT_METHOD;
-
-#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
-#define JDCT_DEFAULT JDCT_ISLOW
-#endif
-#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
-#define JDCT_FASTEST JDCT_IFAST
-#endif
-
-/* Dithering options for decompression. */
-
-typedef enum {
- JDITHER_NONE, /* no dithering */
- JDITHER_ORDERED, /* simple ordered dither */
- JDITHER_FS /* Floyd-Steinberg error diffusion dither */
-} J_DITHER_MODE;
-
-
-/* Common fields between JPEG compression and decompression master structs. */
-
-#define jpeg_common_fields \
- struct jpeg_error_mgr * err; /* Error handler module */\
- struct jpeg_memory_mgr * mem; /* Memory manager module */\
- struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
- void * client_data; /* Available for use by application */\
- boolean is_decompressor; /* So common code can tell which is which */\
- int global_state /* For checking call sequence validity */
-
-/* Routines that are to be used by both halves of the library are declared
- * to receive a pointer to this structure. There are no actual instances of
- * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
- */
-struct jpeg_common_struct {
- jpeg_common_fields; /* Fields common to both master struct types */
- /* Additional fields follow in an actual jpeg_compress_struct or
- * jpeg_decompress_struct. All three structs must agree on these
- * initial fields! (This would be a lot cleaner in C++.)
- */
-};
-
-typedef struct jpeg_common_struct * j_common_ptr;
-typedef struct jpeg_compress_struct * j_compress_ptr;
-typedef struct jpeg_decompress_struct * j_decompress_ptr;
-
-
-/* Master record for a compression instance */
-
-struct jpeg_compress_struct {
- jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
-
- /* Destination for compressed data */
- struct jpeg_destination_mgr * dest;
-
- /* Description of source image --- these fields must be filled in by
- * outer application before starting compression. in_color_space must
- * be correct before you can even call jpeg_set_defaults().
- */
-
- JDIMENSION image_width; /* input image width */
- JDIMENSION image_height; /* input image height */
- int input_components; /* # of color components in input image */
- J_COLOR_SPACE in_color_space; /* colorspace of input image */
-
- double input_gamma; /* image gamma of input image */
-
- /* Compression parameters --- these fields must be set before calling
- * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
- * initialize everything to reasonable defaults, then changing anything
- * the application specifically wants to change. That way you won't get
- * burnt when new parameters are added. Also note that there are several
- * helper routines to simplify changing parameters.
- */
-
- unsigned int scale_num, scale_denom; /* fraction by which to scale image */
-
- JDIMENSION jpeg_width; /* scaled JPEG image width */
- JDIMENSION jpeg_height; /* scaled JPEG image height */
- /* Dimensions of actual JPEG image that will be written to file,
- * derived from input dimensions by scaling factors above.
- * These fields are computed by jpeg_start_compress().
- * You can also use jpeg_calc_jpeg_dimensions() to determine these values
- * in advance of calling jpeg_start_compress().
- */
-
- int data_precision; /* bits of precision in image data */
-
- int num_components; /* # of color components in JPEG image */
- J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
-
- jpeg_component_info * comp_info;
- /* comp_info[i] describes component that appears i'th in SOF */
-
- JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
- int q_scale_factor[NUM_QUANT_TBLS];
- /* ptrs to coefficient quantization tables, or NULL if not defined,
- * and corresponding scale factors (percentage, initialized 100).
- */
-
- JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
- JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
- /* ptrs to Huffman coding tables, or NULL if not defined */
-
- UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
- UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
- UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
-
- int num_scans; /* # of entries in scan_info array */
- const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
- /* The default value of scan_info is NULL, which causes a single-scan
- * sequential JPEG file to be emitted. To create a multi-scan file,
- * set num_scans and scan_info to point to an array of scan definitions.
- */
-
- boolean raw_data_in; /* TRUE=caller supplies downsampled data */
- boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
- boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
- boolean CCIR601_sampling; /* TRUE=first samples are cosited */
- boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */
- int smoothing_factor; /* 1..100, or 0 for no input smoothing */
- J_DCT_METHOD dct_method; /* DCT algorithm selector */
-
- /* The restart interval can be specified in absolute MCUs by setting
- * restart_interval, or in MCU rows by setting restart_in_rows
- * (in which case the correct restart_interval will be figured
- * for each scan).
- */
- unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
- int restart_in_rows; /* if > 0, MCU rows per restart interval */
-
- /* Parameters controlling emission of special markers. */
-
- boolean write_JFIF_header; /* should a JFIF marker be written? */
- UINT8 JFIF_major_version; /* What to write for the JFIF version number */
- UINT8 JFIF_minor_version;
- /* These three values are not used by the JPEG code, merely copied */
- /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
- /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
- /* ratio is defined by X_density/Y_density even when density_unit=0. */
- UINT8 density_unit; /* JFIF code for pixel size units */
- UINT16 X_density; /* Horizontal pixel density */
- UINT16 Y_density; /* Vertical pixel density */
- boolean write_Adobe_marker; /* should an Adobe marker be written? */
-
- /* State variable: index of next scanline to be written to
- * jpeg_write_scanlines(). Application may use this to control its
- * processing loop, e.g., "while (next_scanline < image_height)".
- */
-
- JDIMENSION next_scanline; /* 0 .. image_height-1 */
-
- /* Remaining fields are known throughout compressor, but generally
- * should not be touched by a surrounding application.
- */
-
- /*
- * These fields are computed during compression startup
- */
- boolean progressive_mode; /* TRUE if scan script uses progressive mode */
- int max_h_samp_factor; /* largest h_samp_factor */
- int max_v_samp_factor; /* largest v_samp_factor */
-
- int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */
- int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */
-
- JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
- /* The coefficient controller receives data in units of MCU rows as defined
- * for fully interleaved scans (whether the JPEG file is interleaved or not).
- * There are v_samp_factor * DCTSIZE sample rows of each component in an
- * "iMCU" (interleaved MCU) row.
- */
-
- /*
- * These fields are valid during any one scan.
- * They describe the components and MCUs actually appearing in the scan.
- */
- int comps_in_scan; /* # of JPEG components in this scan */
- jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
- /* *cur_comp_info[i] describes component that appears i'th in SOS */
-
- JDIMENSION MCUs_per_row; /* # of MCUs across the image */
- JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
-
- int blocks_in_MCU; /* # of DCT blocks per MCU */
- int MCU_membership[C_MAX_BLOCKS_IN_MCU];
- /* MCU_membership[i] is index in cur_comp_info of component owning */
- /* i'th block in an MCU */
-
- int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
-
- int block_size; /* the basic DCT block size: 1..16 */
- const int * natural_order; /* natural-order position array */
- int lim_Se; /* min( Se, DCTSIZE2-1 ) */
-
- /*
- * Links to compression subobjects (methods and private variables of modules)
- */
- struct jpeg_comp_master * master;
- struct jpeg_c_main_controller * main;
- struct jpeg_c_prep_controller * prep;
- struct jpeg_c_coef_controller * coef;
- struct jpeg_marker_writer * marker;
- struct jpeg_color_converter * cconvert;
- struct jpeg_downsampler * downsample;
- struct jpeg_forward_dct * fdct;
- struct jpeg_entropy_encoder * entropy;
- jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
- int script_space_size;
-};
-
-
-/* Master record for a decompression instance */
-
-struct jpeg_decompress_struct {
- jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
-
- /* Source of compressed data */
- struct jpeg_source_mgr * src;
-
- /* Basic description of image --- filled in by jpeg_read_header(). */
- /* Application may inspect these values to decide how to process image. */
-
- JDIMENSION image_width; /* nominal image width (from SOF marker) */
- JDIMENSION image_height; /* nominal image height */
- int num_components; /* # of color components in JPEG image */
- J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
-
- /* Decompression processing parameters --- these fields must be set before
- * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
- * them to default values.
- */
-
- J_COLOR_SPACE out_color_space; /* colorspace for output */
-
- unsigned int scale_num, scale_denom; /* fraction by which to scale image */
-
- double output_gamma; /* image gamma wanted in output */
-
- boolean buffered_image; /* TRUE=multiple output passes */
- boolean raw_data_out; /* TRUE=downsampled data wanted */
-
- J_DCT_METHOD dct_method; /* IDCT algorithm selector */
- boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
- boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
-
- boolean quantize_colors; /* TRUE=colormapped output wanted */
- /* the following are ignored if not quantize_colors: */
- J_DITHER_MODE dither_mode; /* type of color dithering to use */
- boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
- int desired_number_of_colors; /* max # colors to use in created colormap */
- /* these are significant only in buffered-image mode: */
- boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */
- boolean enable_external_quant;/* enable future use of external colormap */
- boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */
-
- /* Description of actual output image that will be returned to application.
- * These fields are computed by jpeg_start_decompress().
- * You can also use jpeg_calc_output_dimensions() to determine these values
- * in advance of calling jpeg_start_decompress().
- */
-
- JDIMENSION output_width; /* scaled image width */
- JDIMENSION output_height; /* scaled image height */
- int out_color_components; /* # of color components in out_color_space */
- int output_components; /* # of color components returned */
- /* output_components is 1 (a colormap index) when quantizing colors;
- * otherwise it equals out_color_components.
- */
- int rec_outbuf_height; /* min recommended height of scanline buffer */
- /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
- * high, space and time will be wasted due to unnecessary data copying.
- * Usually rec_outbuf_height will be 1 or 2, at most 4.
- */
-
- /* When quantizing colors, the output colormap is described by these fields.
- * The application can supply a colormap by setting colormap non-NULL before
- * calling jpeg_start_decompress; otherwise a colormap is created during
- * jpeg_start_decompress or jpeg_start_output.
- * The map has out_color_components rows and actual_number_of_colors columns.
- */
- int actual_number_of_colors; /* number of entries in use */
- JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
-
- /* State variables: these variables indicate the progress of decompression.
- * The application may examine these but must not modify them.
- */
-
- /* Row index of next scanline to be read from jpeg_read_scanlines().
- * Application may use this to control its processing loop, e.g.,
- * "while (output_scanline < output_height)".
- */
- JDIMENSION output_scanline; /* 0 .. output_height-1 */
-
- /* Current input scan number and number of iMCU rows completed in scan.
- * These indicate the progress of the decompressor input side.
- */
- int input_scan_number; /* Number of SOS markers seen so far */
- JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
-
- /* The "output scan number" is the notional scan being displayed by the
- * output side. The decompressor will not allow output scan/row number
- * to get ahead of input scan/row, but it can fall arbitrarily far behind.
- */
- int output_scan_number; /* Nominal scan number being displayed */
- JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
-
- /* Current progression status. coef_bits[c][i] indicates the precision
- * with which component c's DCT coefficient i (in zigzag order) is known.
- * It is -1 when no data has yet been received, otherwise it is the point
- * transform (shift) value for the most recent scan of the coefficient
- * (thus, 0 at completion of the progression).
- * This pointer is NULL when reading a non-progressive file.
- */
- int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
-
- /* Internal JPEG parameters --- the application usually need not look at
- * these fields. Note that the decompressor output side may not use
- * any parameters that can change between scans.
- */
-
- /* Quantization and Huffman tables are carried forward across input
- * datastreams when processing abbreviated JPEG datastreams.
- */
-
- JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
- /* ptrs to coefficient quantization tables, or NULL if not defined */
-
- JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
- JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
- /* ptrs to Huffman coding tables, or NULL if not defined */
-
- /* These parameters are never carried across datastreams, since they
- * are given in SOF/SOS markers or defined to be reset by SOI.
- */
-
- int data_precision; /* bits of precision in image data */
-
- jpeg_component_info * comp_info;
- /* comp_info[i] describes component that appears i'th in SOF */
-
- boolean is_baseline; /* TRUE if Baseline SOF0 encountered */
- boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
- boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
-
- UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
- UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
- UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
-
- unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
-
- /* These fields record data obtained from optional markers recognized by
- * the JPEG library.
- */
- boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
- /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
- UINT8 JFIF_major_version; /* JFIF version number */
- UINT8 JFIF_minor_version;
- UINT8 density_unit; /* JFIF code for pixel size units */
- UINT16 X_density; /* Horizontal pixel density */
- UINT16 Y_density; /* Vertical pixel density */
- boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
- UINT8 Adobe_transform; /* Color transform code from Adobe marker */
-
- boolean CCIR601_sampling; /* TRUE=first samples are cosited */
-
- /* Aside from the specific data retained from APPn markers known to the
- * library, the uninterpreted contents of any or all APPn and COM markers
- * can be saved in a list for examination by the application.
- */
- jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
-
- /* Remaining fields are known throughout decompressor, but generally
- * should not be touched by a surrounding application.
- */
-
- /*
- * These fields are computed during decompression startup
- */
- int max_h_samp_factor; /* largest h_samp_factor */
- int max_v_samp_factor; /* largest v_samp_factor */
-
- int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */
- int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */
-
- JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
- /* The coefficient controller's input and output progress is measured in
- * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
- * in fully interleaved JPEG scans, but are used whether the scan is
- * interleaved or not. We define an iMCU row as v_samp_factor DCT block
- * rows of each component. Therefore, the IDCT output contains
- * v_samp_factor*DCT_v_scaled_size sample rows of a component per iMCU row.
- */
-
- JSAMPLE * sample_range_limit; /* table for fast range-limiting */
-
- /*
- * These fields are valid during any one scan.
- * They describe the components and MCUs actually appearing in the scan.
- * Note that the decompressor output side must not use these fields.
- */
- int comps_in_scan; /* # of JPEG components in this scan */
- jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
- /* *cur_comp_info[i] describes component that appears i'th in SOS */
-
- JDIMENSION MCUs_per_row; /* # of MCUs across the image */
- JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
-
- int blocks_in_MCU; /* # of DCT blocks per MCU */
- int MCU_membership[D_MAX_BLOCKS_IN_MCU];
- /* MCU_membership[i] is index in cur_comp_info of component owning */
- /* i'th block in an MCU */
-
- int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
-
- /* These fields are derived from Se of first SOS marker.
- */
- int block_size; /* the basic DCT block size: 1..16 */
- const int * natural_order; /* natural-order position array for entropy decode */
- int lim_Se; /* min( Se, DCTSIZE2-1 ) for entropy decode */
-
- /* This field is shared between entropy decoder and marker parser.
- * It is either zero or the code of a JPEG marker that has been
- * read from the data source, but has not yet been processed.
- */
- int unread_marker;
-
- /*
- * Links to decompression subobjects (methods, private variables of modules)
- */
- struct jpeg_decomp_master * master;
- struct jpeg_d_main_controller * main;
- struct jpeg_d_coef_controller * coef;
- struct jpeg_d_post_controller * post;
- struct jpeg_input_controller * inputctl;
- struct jpeg_marker_reader * marker;
- struct jpeg_entropy_decoder * entropy;
- struct jpeg_inverse_dct * idct;
- struct jpeg_upsampler * upsample;
- struct jpeg_color_deconverter * cconvert;
- struct jpeg_color_quantizer * cquantize;
-};
-
-
-/* "Object" declarations for JPEG modules that may be supplied or called
- * directly by the surrounding application.
- * As with all objects in the JPEG library, these structs only define the
- * publicly visible methods and state variables of a module. Additional
- * private fields may exist after the public ones.
- */
-
-
-/* Error handler object */
-
-struct jpeg_error_mgr {
- /* Error exit handler: does not return to caller */
- JMETHOD(void, error_exit, (j_common_ptr cinfo));
- /* Conditionally emit a trace or warning message */
- JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
- /* Routine that actually outputs a trace or error message */
- JMETHOD(void, output_message, (j_common_ptr cinfo));
- /* Format a message string for the most recent JPEG error or message */
- JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
-#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
- /* Reset error state variables at start of a new image */
- JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
-
- /* The message ID code and any parameters are saved here.
- * A message can have one string parameter or up to 8 int parameters.
- */
- int msg_code;
-#define JMSG_STR_PARM_MAX 80
- union {
- int i[8];
- char s[JMSG_STR_PARM_MAX];
- } msg_parm;
-
- /* Standard state variables for error facility */
-
- int trace_level; /* max msg_level that will be displayed */
-
- /* For recoverable corrupt-data errors, we emit a warning message,
- * but keep going unless emit_message chooses to abort. emit_message
- * should count warnings in num_warnings. The surrounding application
- * can check for bad data by seeing if num_warnings is nonzero at the
- * end of processing.
- */
- long num_warnings; /* number of corrupt-data warnings */
-
- /* These fields point to the table(s) of error message strings.
- * An application can change the table pointer to switch to a different
- * message list (typically, to change the language in which errors are
- * reported). Some applications may wish to add additional error codes
- * that will be handled by the JPEG library error mechanism; the second
- * table pointer is used for this purpose.
- *
- * First table includes all errors generated by JPEG library itself.
- * Error code 0 is reserved for a "no such error string" message.
- */
- const char * const * jpeg_message_table; /* Library errors */
- int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
- /* Second table can be added by application (see cjpeg/djpeg for example).
- * It contains strings numbered first_addon_message..last_addon_message.
- */
- const char * const * addon_message_table; /* Non-library errors */
- int first_addon_message; /* code for first string in addon table */
- int last_addon_message; /* code for last string in addon table */
-};
-
-
-/* Progress monitor object */
-
-struct jpeg_progress_mgr {
- JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
-
- long pass_counter; /* work units completed in this pass */
- long pass_limit; /* total number of work units in this pass */
- int completed_passes; /* passes completed so far */
- int total_passes; /* total number of passes expected */
-};
-
-
-/* Data destination object for compression */
-
-struct jpeg_destination_mgr {
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
-
- JMETHOD(void, init_destination, (j_compress_ptr cinfo));
- JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
- JMETHOD(void, term_destination, (j_compress_ptr cinfo));
-};
-
-
-/* Data source object for decompression */
-
-struct jpeg_source_mgr {
- const JOCTET * next_input_byte; /* => next byte to read from buffer */
- size_t bytes_in_buffer; /* # of bytes remaining in buffer */
-
- JMETHOD(void, init_source, (j_decompress_ptr cinfo));
- JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
- JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
- JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
- JMETHOD(void, term_source, (j_decompress_ptr cinfo));
-};
-
-
-/* Memory manager object.
- * Allocates "small" objects (a few K total), "large" objects (tens of K),
- * and "really big" objects (virtual arrays with backing store if needed).
- * The memory manager does not allow individual objects to be freed; rather,
- * each created object is assigned to a pool, and whole pools can be freed
- * at once. This is faster and more convenient than remembering exactly what
- * to free, especially where malloc()/free() are not too speedy.
- * NB: alloc routines never return NULL. They exit to error_exit if not
- * successful.
- */
-
-#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
-#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
-#define JPOOL_NUMPOOLS 2
-
-typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
-typedef struct jvirt_barray_control * jvirt_barray_ptr;
-
-
-struct jpeg_memory_mgr {
- /* Method pointers */
- JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
- size_t sizeofobject));
- JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
- size_t sizeofobject));
- JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow,
- JDIMENSION numrows));
- JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow,
- JDIMENSION numrows));
- JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
- int pool_id,
- boolean pre_zero,
- JDIMENSION samplesperrow,
- JDIMENSION numrows,
- JDIMENSION maxaccess));
- JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
- int pool_id,
- boolean pre_zero,
- JDIMENSION blocksperrow,
- JDIMENSION numrows,
- JDIMENSION maxaccess));
- JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
- JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
- jvirt_sarray_ptr ptr,
- JDIMENSION start_row,
- JDIMENSION num_rows,
- boolean writable));
- JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
- jvirt_barray_ptr ptr,
- JDIMENSION start_row,
- JDIMENSION num_rows,
- boolean writable));
- JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
- JMETHOD(void, self_destruct, (j_common_ptr cinfo));
-
- /* Limit on memory allocation for this JPEG object. (Note that this is
- * merely advisory, not a guaranteed maximum; it only affects the space
- * used for virtual-array buffers.) May be changed by outer application
- * after creating the JPEG object.
- */
- long max_memory_to_use;
-
- /* Maximum allocation request accepted by alloc_large. */
- long max_alloc_chunk;
-};
-
-
-/* Routine signature for application-supplied marker processing methods.
- * Need not pass marker code since it is stored in cinfo->unread_marker.
- */
-typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
-
-
-/* Declarations for routines called by application.
- * The JPP macro hides prototype parameters from compilers that can't cope.
- * Note JPP requires double parentheses.
- */
-
-#ifdef HAVE_PROTOTYPES
-#define JPP(arglist) arglist
-#else
-#define JPP(arglist) ()
-#endif
-
-
-/* Short forms of external names for systems with brain-damaged linkers.
- * We shorten external names to be unique in the first six letters, which
- * is good enough for all known systems.
- * (If your compiler itself needs names to be unique in less than 15
- * characters, you are out of luck. Get a better compiler.)
- */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_std_error jStdError
-#define jpeg_CreateCompress jCreaCompress
-#define jpeg_CreateDecompress jCreaDecompress
-#define jpeg_destroy_compress jDestCompress
-#define jpeg_destroy_decompress jDestDecompress
-#define jpeg_stdio_dest jStdDest
-#define jpeg_stdio_src jStdSrc
-#define jpeg_mem_dest jMemDest
-#define jpeg_mem_src jMemSrc
-#define jpeg_set_defaults jSetDefaults
-#define jpeg_set_colorspace jSetColorspace
-#define jpeg_default_colorspace jDefColorspace
-#define jpeg_set_quality jSetQuality
-#define jpeg_set_linear_quality jSetLQuality
-#define jpeg_default_qtables jDefQTables
-#define jpeg_add_quant_table jAddQuantTable
-#define jpeg_quality_scaling jQualityScaling
-#define jpeg_simple_progression jSimProgress
-#define jpeg_suppress_tables jSuppressTables
-#define jpeg_alloc_quant_table jAlcQTable
-#define jpeg_alloc_huff_table jAlcHTable
-#define jpeg_start_compress jStrtCompress
-#define jpeg_write_scanlines jWrtScanlines
-#define jpeg_finish_compress jFinCompress
-#define jpeg_calc_jpeg_dimensions jCjpegDimensions
-#define jpeg_write_raw_data jWrtRawData
-#define jpeg_write_marker jWrtMarker
-#define jpeg_write_m_header jWrtMHeader
-#define jpeg_write_m_byte jWrtMByte
-#define jpeg_write_tables jWrtTables
-#define jpeg_read_header jReadHeader
-#define jpeg_start_decompress jStrtDecompress
-#define jpeg_read_scanlines jReadScanlines
-#define jpeg_finish_decompress jFinDecompress
-#define jpeg_read_raw_data jReadRawData
-#define jpeg_has_multiple_scans jHasMultScn
-#define jpeg_start_output jStrtOutput
-#define jpeg_finish_output jFinOutput
-#define jpeg_input_complete jInComplete
-#define jpeg_new_colormap jNewCMap
-#define jpeg_consume_input jConsumeInput
-#define jpeg_core_output_dimensions jCoreDimensions
-#define jpeg_calc_output_dimensions jCalcDimensions
-#define jpeg_save_markers jSaveMarkers
-#define jpeg_set_marker_processor jSetMarker
-#define jpeg_read_coefficients jReadCoefs
-#define jpeg_write_coefficients jWrtCoefs
-#define jpeg_copy_critical_parameters jCopyCrit
-#define jpeg_abort_compress jAbrtCompress
-#define jpeg_abort_decompress jAbrtDecompress
-#define jpeg_abort jAbort
-#define jpeg_destroy jDestroy
-#define jpeg_resync_to_restart jResyncRestart
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Default error-management setup */
-EXTERN(struct jpeg_error_mgr *) jpeg_std_error
- JPP((struct jpeg_error_mgr * err));
-
-/* Initialization of JPEG compression objects.
- * jpeg_create_compress() and jpeg_create_decompress() are the exported
- * names that applications should call. These expand to calls on
- * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
- * passed for version mismatch checking.
- * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
- */
-#define jpeg_create_compress(cinfo) \
- jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
- (size_t) sizeof(struct jpeg_compress_struct))
-#define jpeg_create_decompress(cinfo) \
- jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
- (size_t) sizeof(struct jpeg_decompress_struct))
-EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
- int version, size_t structsize));
-EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
- int version, size_t structsize));
-/* Destruction of JPEG compression objects */
-EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
-
-/* Standard data source and destination managers: stdio streams. */
-/* Caller is responsible for opening the file before and closing after. */
-EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
-EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
-
-/* Data source and destination managers: memory buffers. */
-EXTERN(void) jpeg_mem_dest JPP((j_compress_ptr cinfo,
- unsigned char ** outbuffer,
- unsigned long * outsize));
-EXTERN(void) jpeg_mem_src JPP((j_decompress_ptr cinfo,
- unsigned char * inbuffer,
- unsigned long insize));
-
-/* Default parameter setup for compression */
-EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
-/* Compression parameter setup aids */
-EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
- J_COLOR_SPACE colorspace));
-EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
- boolean force_baseline));
-EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
- int scale_factor,
- boolean force_baseline));
-EXTERN(void) jpeg_default_qtables JPP((j_compress_ptr cinfo,
- boolean force_baseline));
-EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
- const unsigned int *basic_table,
- int scale_factor,
- boolean force_baseline));
-EXTERN(int) jpeg_quality_scaling JPP((int quality));
-EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
- boolean suppress));
-EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
-EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
-
-/* Main entry points for compression */
-EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
- boolean write_all_tables));
-EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
- JSAMPARRAY scanlines,
- JDIMENSION num_lines));
-EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
-
-/* Precalculate JPEG dimensions for current compression parameters. */
-EXTERN(void) jpeg_calc_jpeg_dimensions JPP((j_compress_ptr cinfo));
-
-/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
-EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
- JSAMPIMAGE data,
- JDIMENSION num_lines));
-
-/* Write a special marker. See libjpeg.txt concerning safe usage. */
-EXTERN(void) jpeg_write_marker
- JPP((j_compress_ptr cinfo, int marker,
- const JOCTET * dataptr, unsigned int datalen));
-/* Same, but piecemeal. */
-EXTERN(void) jpeg_write_m_header
- JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
-EXTERN(void) jpeg_write_m_byte
- JPP((j_compress_ptr cinfo, int val));
-
-/* Alternate compression function: just write an abbreviated table file */
-EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
-
-/* Decompression startup: read start of JPEG datastream to see what's there */
-EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
- boolean require_image));
-/* Return value is one of: */
-#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
-#define JPEG_HEADER_OK 1 /* Found valid image datastream */
-#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
-/* If you pass require_image = TRUE (normal case), you need not check for
- * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
- * JPEG_SUSPENDED is only possible if you use a data source module that can
- * give a suspension return (the stdio source module doesn't).
- */
-
-/* Main entry points for decompression */
-EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
-EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
- JSAMPARRAY scanlines,
- JDIMENSION max_lines));
-EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
-
-/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
-EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE data,
- JDIMENSION max_lines));
-
-/* Additional entry points for buffered-image mode. */
-EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
-EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
- int scan_number));
-EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
-EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
-EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
-EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
-/* Return value is one of: */
-/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
-#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
-#define JPEG_REACHED_EOI 2 /* Reached end of image */
-#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
-#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
-
-/* Precalculate output dimensions for current decompression parameters. */
-EXTERN(void) jpeg_core_output_dimensions JPP((j_decompress_ptr cinfo));
-EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
-
-/* Control saving of COM and APPn markers into marker_list. */
-EXTERN(void) jpeg_save_markers
- JPP((j_decompress_ptr cinfo, int marker_code,
- unsigned int length_limit));
-
-/* Install a special processing method for COM or APPn markers. */
-EXTERN(void) jpeg_set_marker_processor
- JPP((j_decompress_ptr cinfo, int marker_code,
- jpeg_marker_parser_method routine));
-
-/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
-EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
-EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
- jvirt_barray_ptr * coef_arrays));
-EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
- j_compress_ptr dstinfo));
-
-/* If you choose to abort compression or decompression before completing
- * jpeg_finish_(de)compress, then you need to clean up to release memory,
- * temporary files, etc. You can just call jpeg_destroy_(de)compress
- * if you're done with the JPEG object, but if you want to clean it up and
- * reuse it, call this:
- */
-EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
-
-/* Generic versions of jpeg_abort and jpeg_destroy that work on either
- * flavor of JPEG object. These may be more convenient in some places.
- */
-EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
-EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
-
-/* Default restart-marker-resync procedure for use by data source modules */
-EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
- int desired));
-
-
-/* These marker codes are exported since applications and data source modules
- * are likely to want to use them.
- */
-
-#define JPEG_RST0 0xD0 /* RST0 marker code */
-#define JPEG_EOI 0xD9 /* EOI marker code */
-#define JPEG_APP0 0xE0 /* APP0 marker code */
-#define JPEG_COM 0xFE /* COM marker code */
-
-
-/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
- * for structure definitions that are never filled in, keep it quiet by
- * supplying dummy definitions for the various substructures.
- */
-
-#ifdef INCOMPLETE_TYPES_BROKEN
-#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
-struct jvirt_sarray_control { long dummy; };
-struct jvirt_barray_control { long dummy; };
-struct jpeg_comp_master { long dummy; };
-struct jpeg_c_main_controller { long dummy; };
-struct jpeg_c_prep_controller { long dummy; };
-struct jpeg_c_coef_controller { long dummy; };
-struct jpeg_marker_writer { long dummy; };
-struct jpeg_color_converter { long dummy; };
-struct jpeg_downsampler { long dummy; };
-struct jpeg_forward_dct { long dummy; };
-struct jpeg_entropy_encoder { long dummy; };
-struct jpeg_decomp_master { long dummy; };
-struct jpeg_d_main_controller { long dummy; };
-struct jpeg_d_coef_controller { long dummy; };
-struct jpeg_d_post_controller { long dummy; };
-struct jpeg_input_controller { long dummy; };
-struct jpeg_marker_reader { long dummy; };
-struct jpeg_entropy_decoder { long dummy; };
-struct jpeg_inverse_dct { long dummy; };
-struct jpeg_upsampler { long dummy; };
-struct jpeg_color_deconverter { long dummy; };
-struct jpeg_color_quantizer { long dummy; };
-#endif /* JPEG_INTERNALS */
-#endif /* INCOMPLETE_TYPES_BROKEN */
-
-
-/*
- * The JPEG library modules define JPEG_INTERNALS before including this file.
- * The internal structure declarations are read only when that is true.
- * Applications using the library should not include jpegint.h, but may wish
- * to include jerror.h.
- */
-
-#ifdef JPEG_INTERNALS
-#include "jpegint.h" /* fetch private declarations */
-#include "jerror.h" /* fetch error codes too */
-#endif
-
-#ifdef __cplusplus
-#ifndef DONT_USE_EXTERN_C
-}
-#endif
-#endif
-
-#endif /* JPEGLIB_H */
diff --git a/src/jpeg-8c/jquant1.c b/src/jpeg-8c/jquant1.c
deleted file mode 100644
index b2f96aa1..00000000
--- a/src/jpeg-8c/jquant1.c
+++ /dev/null
@@ -1,856 +0,0 @@
-/*
- * jquant1.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains 1-pass color quantization (color mapping) routines.
- * These routines provide mapping to a fixed color map using equally spaced
- * color values. Optional Floyd-Steinberg or ordered dithering is available.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef QUANT_1PASS_SUPPORTED
-
-
-/*
- * The main purpose of 1-pass quantization is to provide a fast, if not very
- * high quality, colormapped output capability. A 2-pass quantizer usually
- * gives better visual quality; however, for quantized grayscale output this
- * quantizer is perfectly adequate. Dithering is highly recommended with this
- * quantizer, though you can turn it off if you really want to.
- *
- * In 1-pass quantization the colormap must be chosen in advance of seeing the
- * image. We use a map consisting of all combinations of Ncolors[i] color
- * values for the i'th component. The Ncolors[] values are chosen so that
- * their product, the total number of colors, is no more than that requested.
- * (In most cases, the product will be somewhat less.)
- *
- * Since the colormap is orthogonal, the representative value for each color
- * component can be determined without considering the other components;
- * then these indexes can be combined into a colormap index by a standard
- * N-dimensional-array-subscript calculation. Most of the arithmetic involved
- * can be precalculated and stored in the lookup table colorindex[].
- * colorindex[i][j] maps pixel value j in component i to the nearest
- * representative value (grid plane) for that component; this index is
- * multiplied by the array stride for component i, so that the
- * index of the colormap entry closest to a given pixel value is just
- * sum( colorindex[component-number][pixel-component-value] )
- * Aside from being fast, this scheme allows for variable spacing between
- * representative values with no additional lookup cost.
- *
- * If gamma correction has been applied in color conversion, it might be wise
- * to adjust the color grid spacing so that the representative colors are
- * equidistant in linear space. At this writing, gamma correction is not
- * implemented by jdcolor, so nothing is done here.
- */
-
-
-/* Declarations for ordered dithering.
- *
- * We use a standard 16x16 ordered dither array. The basic concept of ordered
- * dithering is described in many references, for instance Dale Schumacher's
- * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
- * In place of Schumacher's comparisons against a "threshold" value, we add a
- * "dither" value to the input pixel and then round the result to the nearest
- * output value. The dither value is equivalent to (0.5 - threshold) times
- * the distance between output values. For ordered dithering, we assume that
- * the output colors are equally spaced; if not, results will probably be
- * worse, since the dither may be too much or too little at a given point.
- *
- * The normal calculation would be to form pixel value + dither, range-limit
- * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
- * We can skip the separate range-limiting step by extending the colorindex
- * table in both directions.
- */
-
-#define ODITHER_SIZE 16 /* dimension of dither matrix */
-/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
-#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
-#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
-
-typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
-typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
-
-static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
- /* Bayer's order-4 dither array. Generated by the code given in
- * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
- * The values in this array must range from 0 to ODITHER_CELLS-1.
- */
- { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
- { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
- { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
- { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
- { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
- { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
- { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
- { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
- { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
- { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
- { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
- { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
- { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
- { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
- { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
- { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
-};
-
-
-/* Declarations for Floyd-Steinberg dithering.
- *
- * Errors are accumulated into the array fserrors[], at a resolution of
- * 1/16th of a pixel count. The error at a given pixel is propagated
- * to its not-yet-processed neighbors using the standard F-S fractions,
- * ... (here) 7/16
- * 3/16 5/16 1/16
- * We work left-to-right on even rows, right-to-left on odd rows.
- *
- * We can get away with a single array (holding one row's worth of errors)
- * by using it to store the current row's errors at pixel columns not yet
- * processed, but the next row's errors at columns already processed. We
- * need only a few extra variables to hold the errors immediately around the
- * current column. (If we are lucky, those variables are in registers, but
- * even if not, they're probably cheaper to access than array elements are.)
- *
- * The fserrors[] array is indexed [component#][position].
- * We provide (#columns + 2) entries per component; the extra entry at each
- * end saves us from special-casing the first and last pixels.
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error array; so it is allocated with alloc_large.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef INT16 FSERROR; /* 16 bits should be enough */
-typedef int LOCFSERROR; /* use 'int' for calculation temps */
-#else
-typedef INT32 FSERROR; /* may need more than 16 bits */
-typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
-#endif
-
-typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
-
-
-/* Private subobject */
-
-#define MAX_Q_COMPS 4 /* max components I can handle */
-
-typedef struct {
- struct jpeg_color_quantizer pub; /* public fields */
-
- /* Initially allocated colormap is saved here */
- JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
- int sv_actual; /* number of entries in use */
-
- JSAMPARRAY colorindex; /* Precomputed mapping for speed */
- /* colorindex[i][j] = index of color closest to pixel value j in component i,
- * premultiplied as described above. Since colormap indexes must fit into
- * JSAMPLEs, the entries of this array will too.
- */
- boolean is_padded; /* is the colorindex padded for odither? */
-
- int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
-
- /* Variables for ordered dithering */
- int row_index; /* cur row's vertical index in dither matrix */
- ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
-
- /* Variables for Floyd-Steinberg dithering */
- FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
- boolean on_odd_row; /* flag to remember which row we are on */
-} my_cquantizer;
-
-typedef my_cquantizer * my_cquantize_ptr;
-
-
-/*
- * Policy-making subroutines for create_colormap and create_colorindex.
- * These routines determine the colormap to be used. The rest of the module
- * only assumes that the colormap is orthogonal.
- *
- * * select_ncolors decides how to divvy up the available colors
- * among the components.
- * * output_value defines the set of representative values for a component.
- * * largest_input_value defines the mapping from input values to
- * representative values for a component.
- * Note that the latter two routines may impose different policies for
- * different components, though this is not currently done.
- */
-
-
-LOCAL(int)
-select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
-/* Determine allocation of desired colors to components, */
-/* and fill in Ncolors[] array to indicate choice. */
-/* Return value is total number of colors (product of Ncolors[] values). */
-{
- int nc = cinfo->out_color_components; /* number of color components */
- int max_colors = cinfo->desired_number_of_colors;
- int total_colors, iroot, i, j;
- boolean changed;
- long temp;
- static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
-
- /* We can allocate at least the nc'th root of max_colors per component. */
- /* Compute floor(nc'th root of max_colors). */
- iroot = 1;
- do {
- iroot++;
- temp = iroot; /* set temp = iroot ** nc */
- for (i = 1; i < nc; i++)
- temp *= iroot;
- } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
- iroot--; /* now iroot = floor(root) */
-
- /* Must have at least 2 color values per component */
- if (iroot < 2)
- ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
-
- /* Initialize to iroot color values for each component */
- total_colors = 1;
- for (i = 0; i < nc; i++) {
- Ncolors[i] = iroot;
- total_colors *= iroot;
- }
- /* We may be able to increment the count for one or more components without
- * exceeding max_colors, though we know not all can be incremented.
- * Sometimes, the first component can be incremented more than once!
- * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
- * In RGB colorspace, try to increment G first, then R, then B.
- */
- do {
- changed = FALSE;
- for (i = 0; i < nc; i++) {
- j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
- /* calculate new total_colors if Ncolors[j] is incremented */
- temp = total_colors / Ncolors[j];
- temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
- if (temp > (long) max_colors)
- break; /* won't fit, done with this pass */
- Ncolors[j]++; /* OK, apply the increment */
- total_colors = (int) temp;
- changed = TRUE;
- }
- } while (changed);
-
- return total_colors;
-}
-
-
-LOCAL(int)
-output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
-/* Return j'th output value, where j will range from 0 to maxj */
-/* The output values must fall in 0..MAXJSAMPLE in increasing order */
-{
- /* We always provide values 0 and MAXJSAMPLE for each component;
- * any additional values are equally spaced between these limits.
- * (Forcing the upper and lower values to the limits ensures that
- * dithering can't produce a color outside the selected gamut.)
- */
- return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
-}
-
-
-LOCAL(int)
-largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
-/* Return largest input value that should map to j'th output value */
-/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
-{
- /* Breakpoints are halfway between values returned by output_value */
- return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
-}
-
-
-/*
- * Create the colormap.
- */
-
-LOCAL(void)
-create_colormap (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- JSAMPARRAY colormap; /* Created colormap */
- int total_colors; /* Number of distinct output colors */
- int i,j,k, nci, blksize, blkdist, ptr, val;
-
- /* Select number of colors for each component */
- total_colors = select_ncolors(cinfo, cquantize->Ncolors);
-
- /* Report selected color counts */
- if (cinfo->out_color_components == 3)
- TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
- total_colors, cquantize->Ncolors[0],
- cquantize->Ncolors[1], cquantize->Ncolors[2]);
- else
- TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
-
- /* Allocate and fill in the colormap. */
- /* The colors are ordered in the map in standard row-major order, */
- /* i.e. rightmost (highest-indexed) color changes most rapidly. */
-
- colormap = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
-
- /* blksize is number of adjacent repeated entries for a component */
- /* blkdist is distance between groups of identical entries for a component */
- blkdist = total_colors;
-
- for (i = 0; i < cinfo->out_color_components; i++) {
- /* fill in colormap entries for i'th color component */
- nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
- blksize = blkdist / nci;
- for (j = 0; j < nci; j++) {
- /* Compute j'th output value (out of nci) for component */
- val = output_value(cinfo, i, j, nci-1);
- /* Fill in all colormap entries that have this value of this component */
- for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
- /* fill in blksize entries beginning at ptr */
- for (k = 0; k < blksize; k++)
- colormap[i][ptr+k] = (JSAMPLE) val;
- }
- }
- blkdist = blksize; /* blksize of this color is blkdist of next */
- }
-
- /* Save the colormap in private storage,
- * where it will survive color quantization mode changes.
- */
- cquantize->sv_colormap = colormap;
- cquantize->sv_actual = total_colors;
-}
-
-
-/*
- * Create the color index table.
- */
-
-LOCAL(void)
-create_colorindex (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- JSAMPROW indexptr;
- int i,j,k, nci, blksize, val, pad;
-
- /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
- * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
- * This is not necessary in the other dithering modes. However, we
- * flag whether it was done in case user changes dithering mode.
- */
- if (cinfo->dither_mode == JDITHER_ORDERED) {
- pad = MAXJSAMPLE*2;
- cquantize->is_padded = TRUE;
- } else {
- pad = 0;
- cquantize->is_padded = FALSE;
- }
-
- cquantize->colorindex = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) (MAXJSAMPLE+1 + pad),
- (JDIMENSION) cinfo->out_color_components);
-
- /* blksize is number of adjacent repeated entries for a component */
- blksize = cquantize->sv_actual;
-
- for (i = 0; i < cinfo->out_color_components; i++) {
- /* fill in colorindex entries for i'th color component */
- nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
- blksize = blksize / nci;
-
- /* adjust colorindex pointers to provide padding at negative indexes. */
- if (pad)
- cquantize->colorindex[i] += MAXJSAMPLE;
-
- /* in loop, val = index of current output value, */
- /* and k = largest j that maps to current val */
- indexptr = cquantize->colorindex[i];
- val = 0;
- k = largest_input_value(cinfo, i, 0, nci-1);
- for (j = 0; j <= MAXJSAMPLE; j++) {
- while (j > k) /* advance val if past boundary */
- k = largest_input_value(cinfo, i, ++val, nci-1);
- /* premultiply so that no multiplication needed in main processing */
- indexptr[j] = (JSAMPLE) (val * blksize);
- }
- /* Pad at both ends if necessary */
- if (pad)
- for (j = 1; j <= MAXJSAMPLE; j++) {
- indexptr[-j] = indexptr[0];
- indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
- }
- }
-}
-
-
-/*
- * Create an ordered-dither array for a component having ncolors
- * distinct output values.
- */
-
-LOCAL(ODITHER_MATRIX_PTR)
-make_odither_array (j_decompress_ptr cinfo, int ncolors)
-{
- ODITHER_MATRIX_PTR odither;
- int j,k;
- INT32 num,den;
-
- odither = (ODITHER_MATRIX_PTR)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(ODITHER_MATRIX));
- /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
- * Hence the dither value for the matrix cell with fill order f
- * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
- * On 16-bit-int machine, be careful to avoid overflow.
- */
- den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
- for (j = 0; j < ODITHER_SIZE; j++) {
- for (k = 0; k < ODITHER_SIZE; k++) {
- num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
- * MAXJSAMPLE;
- /* Ensure round towards zero despite C's lack of consistency
- * about rounding negative values in integer division...
- */
- odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
- }
- }
- return odither;
-}
-
-
-/*
- * Create the ordered-dither tables.
- * Components having the same number of representative colors may
- * share a dither table.
- */
-
-LOCAL(void)
-create_odither_tables (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- ODITHER_MATRIX_PTR odither;
- int i, j, nci;
-
- for (i = 0; i < cinfo->out_color_components; i++) {
- nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
- odither = NULL; /* search for matching prior component */
- for (j = 0; j < i; j++) {
- if (nci == cquantize->Ncolors[j]) {
- odither = cquantize->odither[j];
- break;
- }
- }
- if (odither == NULL) /* need a new table? */
- odither = make_odither_array(cinfo, nci);
- cquantize->odither[i] = odither;
- }
-}
-
-
-/*
- * Map some rows of pixels to the output colormapped representation.
- */
-
-METHODDEF(void)
-color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
-/* General case, no dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- JSAMPARRAY colorindex = cquantize->colorindex;
- register int pixcode, ci;
- register JSAMPROW ptrin, ptrout;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
- register int nc = cinfo->out_color_components;
-
- for (row = 0; row < num_rows; row++) {
- ptrin = input_buf[row];
- ptrout = output_buf[row];
- for (col = width; col > 0; col--) {
- pixcode = 0;
- for (ci = 0; ci < nc; ci++) {
- pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
- }
- *ptrout++ = (JSAMPLE) pixcode;
- }
- }
-}
-
-
-METHODDEF(void)
-color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
-/* Fast path for out_color_components==3, no dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- register int pixcode;
- register JSAMPROW ptrin, ptrout;
- JSAMPROW colorindex0 = cquantize->colorindex[0];
- JSAMPROW colorindex1 = cquantize->colorindex[1];
- JSAMPROW colorindex2 = cquantize->colorindex[2];
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
-
- for (row = 0; row < num_rows; row++) {
- ptrin = input_buf[row];
- ptrout = output_buf[row];
- for (col = width; col > 0; col--) {
- pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
- pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
- pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
- *ptrout++ = (JSAMPLE) pixcode;
- }
- }
-}
-
-
-METHODDEF(void)
-quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
-/* General case, with ordered dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- register JSAMPROW input_ptr;
- register JSAMPROW output_ptr;
- JSAMPROW colorindex_ci;
- int * dither; /* points to active row of dither matrix */
- int row_index, col_index; /* current indexes into dither matrix */
- int nc = cinfo->out_color_components;
- int ci;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
-
- for (row = 0; row < num_rows; row++) {
- /* Initialize output values to 0 so can process components separately */
- jzero_far((void FAR *) output_buf[row],
- (size_t) (width * SIZEOF(JSAMPLE)));
- row_index = cquantize->row_index;
- for (ci = 0; ci < nc; ci++) {
- input_ptr = input_buf[row] + ci;
- output_ptr = output_buf[row];
- colorindex_ci = cquantize->colorindex[ci];
- dither = cquantize->odither[ci][row_index];
- col_index = 0;
-
- for (col = width; col > 0; col--) {
- /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
- * select output value, accumulate into output code for this pixel.
- * Range-limiting need not be done explicitly, as we have extended
- * the colorindex table to produce the right answers for out-of-range
- * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
- * required amount of padding.
- */
- *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
- input_ptr += nc;
- output_ptr++;
- col_index = (col_index + 1) & ODITHER_MASK;
- }
- }
- /* Advance row index for next row */
- row_index = (row_index + 1) & ODITHER_MASK;
- cquantize->row_index = row_index;
- }
-}
-
-
-METHODDEF(void)
-quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
-/* Fast path for out_color_components==3, with ordered dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- register int pixcode;
- register JSAMPROW input_ptr;
- register JSAMPROW output_ptr;
- JSAMPROW colorindex0 = cquantize->colorindex[0];
- JSAMPROW colorindex1 = cquantize->colorindex[1];
- JSAMPROW colorindex2 = cquantize->colorindex[2];
- int * dither0; /* points to active row of dither matrix */
- int * dither1;
- int * dither2;
- int row_index, col_index; /* current indexes into dither matrix */
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
-
- for (row = 0; row < num_rows; row++) {
- row_index = cquantize->row_index;
- input_ptr = input_buf[row];
- output_ptr = output_buf[row];
- dither0 = cquantize->odither[0][row_index];
- dither1 = cquantize->odither[1][row_index];
- dither2 = cquantize->odither[2][row_index];
- col_index = 0;
-
- for (col = width; col > 0; col--) {
- pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
- dither0[col_index]]);
- pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
- dither1[col_index]]);
- pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
- dither2[col_index]]);
- *output_ptr++ = (JSAMPLE) pixcode;
- col_index = (col_index + 1) & ODITHER_MASK;
- }
- row_index = (row_index + 1) & ODITHER_MASK;
- cquantize->row_index = row_index;
- }
-}
-
-
-METHODDEF(void)
-quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
-/* General case, with Floyd-Steinberg dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- register LOCFSERROR cur; /* current error or pixel value */
- LOCFSERROR belowerr; /* error for pixel below cur */
- LOCFSERROR bpreverr; /* error for below/prev col */
- LOCFSERROR bnexterr; /* error for below/next col */
- LOCFSERROR delta;
- register FSERRPTR errorptr; /* => fserrors[] at column before current */
- register JSAMPROW input_ptr;
- register JSAMPROW output_ptr;
- JSAMPROW colorindex_ci;
- JSAMPROW colormap_ci;
- int pixcode;
- int nc = cinfo->out_color_components;
- int dir; /* 1 for left-to-right, -1 for right-to-left */
- int dirnc; /* dir * nc */
- int ci;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
- JSAMPLE *range_limit = cinfo->sample_range_limit;
- SHIFT_TEMPS
-
- for (row = 0; row < num_rows; row++) {
- /* Initialize output values to 0 so can process components separately */
- jzero_far((void FAR *) output_buf[row],
- (size_t) (width * SIZEOF(JSAMPLE)));
- for (ci = 0; ci < nc; ci++) {
- input_ptr = input_buf[row] + ci;
- output_ptr = output_buf[row];
- if (cquantize->on_odd_row) {
- /* work right to left in this row */
- input_ptr += (width-1) * nc; /* so point to rightmost pixel */
- output_ptr += width-1;
- dir = -1;
- dirnc = -nc;
- errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
- } else {
- /* work left to right in this row */
- dir = 1;
- dirnc = nc;
- errorptr = cquantize->fserrors[ci]; /* => entry before first column */
- }
- colorindex_ci = cquantize->colorindex[ci];
- colormap_ci = cquantize->sv_colormap[ci];
- /* Preset error values: no error propagated to first pixel from left */
- cur = 0;
- /* and no error propagated to row below yet */
- belowerr = bpreverr = 0;
-
- for (col = width; col > 0; col--) {
- /* cur holds the error propagated from the previous pixel on the
- * current line. Add the error propagated from the previous line
- * to form the complete error correction term for this pixel, and
- * round the error term (which is expressed * 16) to an integer.
- * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
- * for either sign of the error value.
- * Note: errorptr points to *previous* column's array entry.
- */
- cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
- /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
- * The maximum error is +- MAXJSAMPLE; this sets the required size
- * of the range_limit array.
- */
- cur += GETJSAMPLE(*input_ptr);
- cur = GETJSAMPLE(range_limit[cur]);
- /* Select output value, accumulate into output code for this pixel */
- pixcode = GETJSAMPLE(colorindex_ci[cur]);
- *output_ptr += (JSAMPLE) pixcode;
- /* Compute actual representation error at this pixel */
- /* Note: we can do this even though we don't have the final */
- /* pixel code, because the colormap is orthogonal. */
- cur -= GETJSAMPLE(colormap_ci[pixcode]);
- /* Compute error fractions to be propagated to adjacent pixels.
- * Add these into the running sums, and simultaneously shift the
- * next-line error sums left by 1 column.
- */
- bnexterr = cur;
- delta = cur * 2;
- cur += delta; /* form error * 3 */
- errorptr[0] = (FSERROR) (bpreverr + cur);
- cur += delta; /* form error * 5 */
- bpreverr = belowerr + cur;
- belowerr = bnexterr;
- cur += delta; /* form error * 7 */
- /* At this point cur contains the 7/16 error value to be propagated
- * to the next pixel on the current line, and all the errors for the
- * next line have been shifted over. We are therefore ready to move on.
- */
- input_ptr += dirnc; /* advance input ptr to next column */
- output_ptr += dir; /* advance output ptr to next column */
- errorptr += dir; /* advance errorptr to current column */
- }
- /* Post-loop cleanup: we must unload the final error value into the
- * final fserrors[] entry. Note we need not unload belowerr because
- * it is for the dummy column before or after the actual array.
- */
- errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
- }
- cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
- }
-}
-
-
-/*
- * Allocate workspace for Floyd-Steinberg errors.
- */
-
-LOCAL(void)
-alloc_fs_workspace (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- size_t arraysize;
- int i;
-
- arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
- for (i = 0; i < cinfo->out_color_components; i++) {
- cquantize->fserrors[i] = (FSERRPTR)
- (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
- }
-}
-
-
-/*
- * Initialize for one-pass color quantization.
- */
-
-METHODDEF(void)
-start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- size_t arraysize;
- int i;
-
- /* Install my colormap. */
- cinfo->colormap = cquantize->sv_colormap;
- cinfo->actual_number_of_colors = cquantize->sv_actual;
-
- /* Initialize for desired dithering mode. */
- switch (cinfo->dither_mode) {
- case JDITHER_NONE:
- if (cinfo->out_color_components == 3)
- cquantize->pub.color_quantize = color_quantize3;
- else
- cquantize->pub.color_quantize = color_quantize;
- break;
- case JDITHER_ORDERED:
- if (cinfo->out_color_components == 3)
- cquantize->pub.color_quantize = quantize3_ord_dither;
- else
- cquantize->pub.color_quantize = quantize_ord_dither;
- cquantize->row_index = 0; /* initialize state for ordered dither */
- /* If user changed to ordered dither from another mode,
- * we must recreate the color index table with padding.
- * This will cost extra space, but probably isn't very likely.
- */
- if (! cquantize->is_padded)
- create_colorindex(cinfo);
- /* Create ordered-dither tables if we didn't already. */
- if (cquantize->odither[0] == NULL)
- create_odither_tables(cinfo);
- break;
- case JDITHER_FS:
- cquantize->pub.color_quantize = quantize_fs_dither;
- cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
- /* Allocate Floyd-Steinberg workspace if didn't already. */
- if (cquantize->fserrors[0] == NULL)
- alloc_fs_workspace(cinfo);
- /* Initialize the propagated errors to zero. */
- arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
- for (i = 0; i < cinfo->out_color_components; i++)
- jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
- break;
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
-}
-
-
-/*
- * Finish up at the end of the pass.
- */
-
-METHODDEF(void)
-finish_pass_1_quant (j_decompress_ptr cinfo)
-{
- /* no work in 1-pass case */
-}
-
-
-/*
- * Switch to a new external colormap between output passes.
- * Shouldn't get to this module!
- */
-
-METHODDEF(void)
-new_color_map_1_quant (j_decompress_ptr cinfo)
-{
- ERREXIT(cinfo, JERR_MODE_CHANGE);
-}
-
-
-/*
- * Module initialization routine for 1-pass color quantization.
- */
-
-GLOBAL(void)
-jinit_1pass_quantizer (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize;
-
- cquantize = (my_cquantize_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_cquantizer));
- cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
- cquantize->pub.start_pass = start_pass_1_quant;
- cquantize->pub.finish_pass = finish_pass_1_quant;
- cquantize->pub.new_color_map = new_color_map_1_quant;
- cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
- cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
-
- /* Make sure my internal arrays won't overflow */
- if (cinfo->out_color_components > MAX_Q_COMPS)
- ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
- /* Make sure colormap indexes can be represented by JSAMPLEs */
- if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
- ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
-
- /* Create the colormap and color index table. */
- create_colormap(cinfo);
- create_colorindex(cinfo);
-
- /* Allocate Floyd-Steinberg workspace now if requested.
- * We do this now since it is FAR storage and may affect the memory
- * manager's space calculations. If the user changes to FS dither
- * mode in a later pass, we will allocate the space then, and will
- * possibly overrun the max_memory_to_use setting.
- */
- if (cinfo->dither_mode == JDITHER_FS)
- alloc_fs_workspace(cinfo);
-}
-
-#endif /* QUANT_1PASS_SUPPORTED */
diff --git a/src/jpeg-8c/jquant2.c b/src/jpeg-8c/jquant2.c
deleted file mode 100644
index af601e33..00000000
--- a/src/jpeg-8c/jquant2.c
+++ /dev/null
@@ -1,1310 +0,0 @@
-/*
- * jquant2.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains 2-pass color quantization (color mapping) routines.
- * These routines provide selection of a custom color map for an image,
- * followed by mapping of the image to that color map, with optional
- * Floyd-Steinberg dithering.
- * It is also possible to use just the second pass to map to an arbitrary
- * externally-given color map.
- *
- * Note: ordered dithering is not supported, since there isn't any fast
- * way to compute intercolor distances; it's unclear that ordered dither's
- * fundamental assumptions even hold with an irregularly spaced color map.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-
-/*
- * This module implements the well-known Heckbert paradigm for color
- * quantization. Most of the ideas used here can be traced back to
- * Heckbert's seminal paper
- * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
- * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
- *
- * In the first pass over the image, we accumulate a histogram showing the
- * usage count of each possible color. To keep the histogram to a reasonable
- * size, we reduce the precision of the input; typical practice is to retain
- * 5 or 6 bits per color, so that 8 or 4 different input values are counted
- * in the same histogram cell.
- *
- * Next, the color-selection step begins with a box representing the whole
- * color space, and repeatedly splits the "largest" remaining box until we
- * have as many boxes as desired colors. Then the mean color in each
- * remaining box becomes one of the possible output colors.
- *
- * The second pass over the image maps each input pixel to the closest output
- * color (optionally after applying a Floyd-Steinberg dithering correction).
- * This mapping is logically trivial, but making it go fast enough requires
- * considerable care.
- *
- * Heckbert-style quantizers vary a good deal in their policies for choosing
- * the "largest" box and deciding where to cut it. The particular policies
- * used here have proved out well in experimental comparisons, but better ones
- * may yet be found.
- *
- * In earlier versions of the IJG code, this module quantized in YCbCr color
- * space, processing the raw upsampled data without a color conversion step.
- * This allowed the color conversion math to be done only once per colormap
- * entry, not once per pixel. However, that optimization precluded other
- * useful optimizations (such as merging color conversion with upsampling)
- * and it also interfered with desired capabilities such as quantizing to an
- * externally-supplied colormap. We have therefore abandoned that approach.
- * The present code works in the post-conversion color space, typically RGB.
- *
- * To improve the visual quality of the results, we actually work in scaled
- * RGB space, giving G distances more weight than R, and R in turn more than
- * B. To do everything in integer math, we must use integer scale factors.
- * The 2/3/1 scale factors used here correspond loosely to the relative
- * weights of the colors in the NTSC grayscale equation.
- * If you want to use this code to quantize a non-RGB color space, you'll
- * probably need to change these scale factors.
- */
-
-#define R_SCALE 2 /* scale R distances by this much */
-#define G_SCALE 3 /* scale G distances by this much */
-#define B_SCALE 1 /* and B by this much */
-
-/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
- * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
- * and B,G,R orders. If you define some other weird order in jmorecfg.h,
- * you'll get compile errors until you extend this logic. In that case
- * you'll probably want to tweak the histogram sizes too.
- */
-
-#if RGB_RED == 0
-#define C0_SCALE R_SCALE
-#endif
-#if RGB_BLUE == 0
-#define C0_SCALE B_SCALE
-#endif
-#if RGB_GREEN == 1
-#define C1_SCALE G_SCALE
-#endif
-#if RGB_RED == 2
-#define C2_SCALE R_SCALE
-#endif
-#if RGB_BLUE == 2
-#define C2_SCALE B_SCALE
-#endif
-
-
-/*
- * First we have the histogram data structure and routines for creating it.
- *
- * The number of bits of precision can be adjusted by changing these symbols.
- * We recommend keeping 6 bits for G and 5 each for R and B.
- * If you have plenty of memory and cycles, 6 bits all around gives marginally
- * better results; if you are short of memory, 5 bits all around will save
- * some space but degrade the results.
- * To maintain a fully accurate histogram, we'd need to allocate a "long"
- * (preferably unsigned long) for each cell. In practice this is overkill;
- * we can get by with 16 bits per cell. Few of the cell counts will overflow,
- * and clamping those that do overflow to the maximum value will give close-
- * enough results. This reduces the recommended histogram size from 256Kb
- * to 128Kb, which is a useful savings on PC-class machines.
- * (In the second pass the histogram space is re-used for pixel mapping data;
- * in that capacity, each cell must be able to store zero to the number of
- * desired colors. 16 bits/cell is plenty for that too.)
- * Since the JPEG code is intended to run in small memory model on 80x86
- * machines, we can't just allocate the histogram in one chunk. Instead
- * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
- * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
- * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
- * on 80x86 machines, the pointer row is in near memory but the actual
- * arrays are in far memory (same arrangement as we use for image arrays).
- */
-
-#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
-
-/* These will do the right thing for either R,G,B or B,G,R color order,
- * but you may not like the results for other color orders.
- */
-#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
-#define HIST_C1_BITS 6 /* bits of precision in G histogram */
-#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
-
-/* Number of elements along histogram axes. */
-#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
-#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
-#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
-
-/* These are the amounts to shift an input value to get a histogram index. */
-#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
-#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
-#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
-
-
-typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
-
-typedef histcell FAR * histptr; /* for pointers to histogram cells */
-
-typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
-typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
-typedef hist2d * hist3d; /* type for top-level pointer */
-
-
-/* Declarations for Floyd-Steinberg dithering.
- *
- * Errors are accumulated into the array fserrors[], at a resolution of
- * 1/16th of a pixel count. The error at a given pixel is propagated
- * to its not-yet-processed neighbors using the standard F-S fractions,
- * ... (here) 7/16
- * 3/16 5/16 1/16
- * We work left-to-right on even rows, right-to-left on odd rows.
- *
- * We can get away with a single array (holding one row's worth of errors)
- * by using it to store the current row's errors at pixel columns not yet
- * processed, but the next row's errors at columns already processed. We
- * need only a few extra variables to hold the errors immediately around the
- * current column. (If we are lucky, those variables are in registers, but
- * even if not, they're probably cheaper to access than array elements are.)
- *
- * The fserrors[] array has (#columns + 2) entries; the extra entry at
- * each end saves us from special-casing the first and last pixels.
- * Each entry is three values long, one value for each color component.
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error array; so it is allocated with alloc_large.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef INT16 FSERROR; /* 16 bits should be enough */
-typedef int LOCFSERROR; /* use 'int' for calculation temps */
-#else
-typedef INT32 FSERROR; /* may need more than 16 bits */
-typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
-#endif
-
-typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_color_quantizer pub; /* public fields */
-
- /* Space for the eventually created colormap is stashed here */
- JSAMPARRAY sv_colormap; /* colormap allocated at init time */
- int desired; /* desired # of colors = size of colormap */
-
- /* Variables for accumulating image statistics */
- hist3d histogram; /* pointer to the histogram */
-
- boolean needs_zeroed; /* TRUE if next pass must zero histogram */
-
- /* Variables for Floyd-Steinberg dithering */
- FSERRPTR fserrors; /* accumulated errors */
- boolean on_odd_row; /* flag to remember which row we are on */
- int * error_limiter; /* table for clamping the applied error */
-} my_cquantizer;
-
-typedef my_cquantizer * my_cquantize_ptr;
-
-
-/*
- * Prescan some rows of pixels.
- * In this module the prescan simply updates the histogram, which has been
- * initialized to zeroes by start_pass.
- * An output_buf parameter is required by the method signature, but no data
- * is actually output (in fact the buffer controller is probably passing a
- * NULL pointer).
- */
-
-METHODDEF(void)
-prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- register JSAMPROW ptr;
- register histptr histp;
- register hist3d histogram = cquantize->histogram;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
-
- for (row = 0; row < num_rows; row++) {
- ptr = input_buf[row];
- for (col = width; col > 0; col--) {
- /* get pixel value and index into the histogram */
- histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
- [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
- [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
- /* increment, check for overflow and undo increment if so. */
- if (++(*histp) <= 0)
- (*histp)--;
- ptr += 3;
- }
- }
-}
-
-
-/*
- * Next we have the really interesting routines: selection of a colormap
- * given the completed histogram.
- * These routines work with a list of "boxes", each representing a rectangular
- * subset of the input color space (to histogram precision).
- */
-
-typedef struct {
- /* The bounds of the box (inclusive); expressed as histogram indexes */
- int c0min, c0max;
- int c1min, c1max;
- int c2min, c2max;
- /* The volume (actually 2-norm) of the box */
- INT32 volume;
- /* The number of nonzero histogram cells within this box */
- long colorcount;
-} box;
-
-typedef box * boxptr;
-
-
-LOCAL(boxptr)
-find_biggest_color_pop (boxptr boxlist, int numboxes)
-/* Find the splittable box with the largest color population */
-/* Returns NULL if no splittable boxes remain */
-{
- register boxptr boxp;
- register int i;
- register long maxc = 0;
- boxptr which = NULL;
-
- for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
- if (boxp->colorcount > maxc && boxp->volume > 0) {
- which = boxp;
- maxc = boxp->colorcount;
- }
- }
- return which;
-}
-
-
-LOCAL(boxptr)
-find_biggest_volume (boxptr boxlist, int numboxes)
-/* Find the splittable box with the largest (scaled) volume */
-/* Returns NULL if no splittable boxes remain */
-{
- register boxptr boxp;
- register int i;
- register INT32 maxv = 0;
- boxptr which = NULL;
-
- for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
- if (boxp->volume > maxv) {
- which = boxp;
- maxv = boxp->volume;
- }
- }
- return which;
-}
-
-
-LOCAL(void)
-update_box (j_decompress_ptr cinfo, boxptr boxp)
-/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
-/* and recompute its volume and population */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- histptr histp;
- int c0,c1,c2;
- int c0min,c0max,c1min,c1max,c2min,c2max;
- INT32 dist0,dist1,dist2;
- long ccount;
-
- c0min = boxp->c0min; c0max = boxp->c0max;
- c1min = boxp->c1min; c1max = boxp->c1max;
- c2min = boxp->c2min; c2max = boxp->c2max;
-
- if (c0max > c0min)
- for (c0 = c0min; c0 <= c0max; c0++)
- for (c1 = c1min; c1 <= c1max; c1++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c0min = c0min = c0;
- goto have_c0min;
- }
- }
- have_c0min:
- if (c0max > c0min)
- for (c0 = c0max; c0 >= c0min; c0--)
- for (c1 = c1min; c1 <= c1max; c1++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c0max = c0max = c0;
- goto have_c0max;
- }
- }
- have_c0max:
- if (c1max > c1min)
- for (c1 = c1min; c1 <= c1max; c1++)
- for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c1min = c1min = c1;
- goto have_c1min;
- }
- }
- have_c1min:
- if (c1max > c1min)
- for (c1 = c1max; c1 >= c1min; c1--)
- for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0) {
- boxp->c1max = c1max = c1;
- goto have_c1max;
- }
- }
- have_c1max:
- if (c2max > c2min)
- for (c2 = c2min; c2 <= c2max; c2++)
- for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1min][c2];
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
- if (*histp != 0) {
- boxp->c2min = c2min = c2;
- goto have_c2min;
- }
- }
- have_c2min:
- if (c2max > c2min)
- for (c2 = c2max; c2 >= c2min; c2--)
- for (c0 = c0min; c0 <= c0max; c0++) {
- histp = & histogram[c0][c1min][c2];
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
- if (*histp != 0) {
- boxp->c2max = c2max = c2;
- goto have_c2max;
- }
- }
- have_c2max:
-
- /* Update box volume.
- * We use 2-norm rather than real volume here; this biases the method
- * against making long narrow boxes, and it has the side benefit that
- * a box is splittable iff norm > 0.
- * Since the differences are expressed in histogram-cell units,
- * we have to shift back to JSAMPLE units to get consistent distances;
- * after which, we scale according to the selected distance scale factors.
- */
- dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
- dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
- dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
- boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
-
- /* Now scan remaining volume of box and compute population */
- ccount = 0;
- for (c0 = c0min; c0 <= c0max; c0++)
- for (c1 = c1min; c1 <= c1max; c1++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++, histp++)
- if (*histp != 0) {
- ccount++;
- }
- }
- boxp->colorcount = ccount;
-}
-
-
-LOCAL(int)
-median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
- int desired_colors)
-/* Repeatedly select and split the largest box until we have enough boxes */
-{
- int n,lb;
- int c0,c1,c2,cmax;
- register boxptr b1,b2;
-
- while (numboxes < desired_colors) {
- /* Select box to split.
- * Current algorithm: by population for first half, then by volume.
- */
- if (numboxes*2 <= desired_colors) {
- b1 = find_biggest_color_pop(boxlist, numboxes);
- } else {
- b1 = find_biggest_volume(boxlist, numboxes);
- }
- if (b1 == NULL) /* no splittable boxes left! */
- break;
- b2 = &boxlist[numboxes]; /* where new box will go */
- /* Copy the color bounds to the new box. */
- b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
- b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
- /* Choose which axis to split the box on.
- * Current algorithm: longest scaled axis.
- * See notes in update_box about scaling distances.
- */
- c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
- c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
- c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
- /* We want to break any ties in favor of green, then red, blue last.
- * This code does the right thing for R,G,B or B,G,R color orders only.
- */
-#if RGB_RED == 0
- cmax = c1; n = 1;
- if (c0 > cmax) { cmax = c0; n = 0; }
- if (c2 > cmax) { n = 2; }
-#else
- cmax = c1; n = 1;
- if (c2 > cmax) { cmax = c2; n = 2; }
- if (c0 > cmax) { n = 0; }
-#endif
- /* Choose split point along selected axis, and update box bounds.
- * Current algorithm: split at halfway point.
- * (Since the box has been shrunk to minimum volume,
- * any split will produce two nonempty subboxes.)
- * Note that lb value is max for lower box, so must be < old max.
- */
- switch (n) {
- case 0:
- lb = (b1->c0max + b1->c0min) / 2;
- b1->c0max = lb;
- b2->c0min = lb+1;
- break;
- case 1:
- lb = (b1->c1max + b1->c1min) / 2;
- b1->c1max = lb;
- b2->c1min = lb+1;
- break;
- case 2:
- lb = (b1->c2max + b1->c2min) / 2;
- b1->c2max = lb;
- b2->c2min = lb+1;
- break;
- }
- /* Update stats for boxes */
- update_box(cinfo, b1);
- update_box(cinfo, b2);
- numboxes++;
- }
- return numboxes;
-}
-
-
-LOCAL(void)
-compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
-/* Compute representative color for a box, put it in colormap[icolor] */
-{
- /* Current algorithm: mean weighted by pixels (not colors) */
- /* Note it is important to get the rounding correct! */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- histptr histp;
- int c0,c1,c2;
- int c0min,c0max,c1min,c1max,c2min,c2max;
- long count;
- long total = 0;
- long c0total = 0;
- long c1total = 0;
- long c2total = 0;
-
- c0min = boxp->c0min; c0max = boxp->c0max;
- c1min = boxp->c1min; c1max = boxp->c1max;
- c2min = boxp->c2min; c2max = boxp->c2max;
-
- for (c0 = c0min; c0 <= c0max; c0++)
- for (c1 = c1min; c1 <= c1max; c1++) {
- histp = & histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++) {
- if ((count = *histp++) != 0) {
- total += count;
- c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
- c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
- c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
- }
- }
- }
-
- cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
- cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
- cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
-}
-
-
-LOCAL(void)
-select_colors (j_decompress_ptr cinfo, int desired_colors)
-/* Master routine for color selection */
-{
- boxptr boxlist;
- int numboxes;
- int i;
-
- /* Allocate workspace for box list */
- boxlist = (boxptr) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
- /* Initialize one box containing whole space */
- numboxes = 1;
- boxlist[0].c0min = 0;
- boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
- boxlist[0].c1min = 0;
- boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
- boxlist[0].c2min = 0;
- boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
- /* Shrink it to actually-used volume and set its statistics */
- update_box(cinfo, & boxlist[0]);
- /* Perform median-cut to produce final box list */
- numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
- /* Compute the representative color for each box, fill colormap */
- for (i = 0; i < numboxes; i++)
- compute_color(cinfo, & boxlist[i], i);
- cinfo->actual_number_of_colors = numboxes;
- TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
-}
-
-
-/*
- * These routines are concerned with the time-critical task of mapping input
- * colors to the nearest color in the selected colormap.
- *
- * We re-use the histogram space as an "inverse color map", essentially a
- * cache for the results of nearest-color searches. All colors within a
- * histogram cell will be mapped to the same colormap entry, namely the one
- * closest to the cell's center. This may not be quite the closest entry to
- * the actual input color, but it's almost as good. A zero in the cache
- * indicates we haven't found the nearest color for that cell yet; the array
- * is cleared to zeroes before starting the mapping pass. When we find the
- * nearest color for a cell, its colormap index plus one is recorded in the
- * cache for future use. The pass2 scanning routines call fill_inverse_cmap
- * when they need to use an unfilled entry in the cache.
- *
- * Our method of efficiently finding nearest colors is based on the "locally
- * sorted search" idea described by Heckbert and on the incremental distance
- * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
- * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
- * the distances from a given colormap entry to each cell of the histogram can
- * be computed quickly using an incremental method: the differences between
- * distances to adjacent cells themselves differ by a constant. This allows a
- * fairly fast implementation of the "brute force" approach of computing the
- * distance from every colormap entry to every histogram cell. Unfortunately,
- * it needs a work array to hold the best-distance-so-far for each histogram
- * cell (because the inner loop has to be over cells, not colormap entries).
- * The work array elements have to be INT32s, so the work array would need
- * 256Kb at our recommended precision. This is not feasible in DOS machines.
- *
- * To get around these problems, we apply Thomas' method to compute the
- * nearest colors for only the cells within a small subbox of the histogram.
- * The work array need be only as big as the subbox, so the memory usage
- * problem is solved. Furthermore, we need not fill subboxes that are never
- * referenced in pass2; many images use only part of the color gamut, so a
- * fair amount of work is saved. An additional advantage of this
- * approach is that we can apply Heckbert's locality criterion to quickly
- * eliminate colormap entries that are far away from the subbox; typically
- * three-fourths of the colormap entries are rejected by Heckbert's criterion,
- * and we need not compute their distances to individual cells in the subbox.
- * The speed of this approach is heavily influenced by the subbox size: too
- * small means too much overhead, too big loses because Heckbert's criterion
- * can't eliminate as many colormap entries. Empirically the best subbox
- * size seems to be about 1/512th of the histogram (1/8th in each direction).
- *
- * Thomas' article also describes a refined method which is asymptotically
- * faster than the brute-force method, but it is also far more complex and
- * cannot efficiently be applied to small subboxes. It is therefore not
- * useful for programs intended to be portable to DOS machines. On machines
- * with plenty of memory, filling the whole histogram in one shot with Thomas'
- * refined method might be faster than the present code --- but then again,
- * it might not be any faster, and it's certainly more complicated.
- */
-
-
-/* log2(histogram cells in update box) for each axis; this can be adjusted */
-#define BOX_C0_LOG (HIST_C0_BITS-3)
-#define BOX_C1_LOG (HIST_C1_BITS-3)
-#define BOX_C2_LOG (HIST_C2_BITS-3)
-
-#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
-#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
-#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
-
-#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
-#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
-#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
-
-
-/*
- * The next three routines implement inverse colormap filling. They could
- * all be folded into one big routine, but splitting them up this way saves
- * some stack space (the mindist[] and bestdist[] arrays need not coexist)
- * and may allow some compilers to produce better code by registerizing more
- * inner-loop variables.
- */
-
-LOCAL(int)
-find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
- JSAMPLE colorlist[])
-/* Locate the colormap entries close enough to an update box to be candidates
- * for the nearest entry to some cell(s) in the update box. The update box
- * is specified by the center coordinates of its first cell. The number of
- * candidate colormap entries is returned, and their colormap indexes are
- * placed in colorlist[].
- * This routine uses Heckbert's "locally sorted search" criterion to select
- * the colors that need further consideration.
- */
-{
- int numcolors = cinfo->actual_number_of_colors;
- int maxc0, maxc1, maxc2;
- int centerc0, centerc1, centerc2;
- int i, x, ncolors;
- INT32 minmaxdist, min_dist, max_dist, tdist;
- INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
-
- /* Compute true coordinates of update box's upper corner and center.
- * Actually we compute the coordinates of the center of the upper-corner
- * histogram cell, which are the upper bounds of the volume we care about.
- * Note that since ">>" rounds down, the "center" values may be closer to
- * min than to max; hence comparisons to them must be "<=", not "<".
- */
- maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
- centerc0 = (minc0 + maxc0) >> 1;
- maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
- centerc1 = (minc1 + maxc1) >> 1;
- maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
- centerc2 = (minc2 + maxc2) >> 1;
-
- /* For each color in colormap, find:
- * 1. its minimum squared-distance to any point in the update box
- * (zero if color is within update box);
- * 2. its maximum squared-distance to any point in the update box.
- * Both of these can be found by considering only the corners of the box.
- * We save the minimum distance for each color in mindist[];
- * only the smallest maximum distance is of interest.
- */
- minmaxdist = 0x7FFFFFFFL;
-
- for (i = 0; i < numcolors; i++) {
- /* We compute the squared-c0-distance term, then add in the other two. */
- x = GETJSAMPLE(cinfo->colormap[0][i]);
- if (x < minc0) {
- tdist = (x - minc0) * C0_SCALE;
- min_dist = tdist*tdist;
- tdist = (x - maxc0) * C0_SCALE;
- max_dist = tdist*tdist;
- } else if (x > maxc0) {
- tdist = (x - maxc0) * C0_SCALE;
- min_dist = tdist*tdist;
- tdist = (x - minc0) * C0_SCALE;
- max_dist = tdist*tdist;
- } else {
- /* within cell range so no contribution to min_dist */
- min_dist = 0;
- if (x <= centerc0) {
- tdist = (x - maxc0) * C0_SCALE;
- max_dist = tdist*tdist;
- } else {
- tdist = (x - minc0) * C0_SCALE;
- max_dist = tdist*tdist;
- }
- }
-
- x = GETJSAMPLE(cinfo->colormap[1][i]);
- if (x < minc1) {
- tdist = (x - minc1) * C1_SCALE;
- min_dist += tdist*tdist;
- tdist = (x - maxc1) * C1_SCALE;
- max_dist += tdist*tdist;
- } else if (x > maxc1) {
- tdist = (x - maxc1) * C1_SCALE;
- min_dist += tdist*tdist;
- tdist = (x - minc1) * C1_SCALE;
- max_dist += tdist*tdist;
- } else {
- /* within cell range so no contribution to min_dist */
- if (x <= centerc1) {
- tdist = (x - maxc1) * C1_SCALE;
- max_dist += tdist*tdist;
- } else {
- tdist = (x - minc1) * C1_SCALE;
- max_dist += tdist*tdist;
- }
- }
-
- x = GETJSAMPLE(cinfo->colormap[2][i]);
- if (x < minc2) {
- tdist = (x - minc2) * C2_SCALE;
- min_dist += tdist*tdist;
- tdist = (x - maxc2) * C2_SCALE;
- max_dist += tdist*tdist;
- } else if (x > maxc2) {
- tdist = (x - maxc2) * C2_SCALE;
- min_dist += tdist*tdist;
- tdist = (x - minc2) * C2_SCALE;
- max_dist += tdist*tdist;
- } else {
- /* within cell range so no contribution to min_dist */
- if (x <= centerc2) {
- tdist = (x - maxc2) * C2_SCALE;
- max_dist += tdist*tdist;
- } else {
- tdist = (x - minc2) * C2_SCALE;
- max_dist += tdist*tdist;
- }
- }
-
- mindist[i] = min_dist; /* save away the results */
- if (max_dist < minmaxdist)
- minmaxdist = max_dist;
- }
-
- /* Now we know that no cell in the update box is more than minmaxdist
- * away from some colormap entry. Therefore, only colors that are
- * within minmaxdist of some part of the box need be considered.
- */
- ncolors = 0;
- for (i = 0; i < numcolors; i++) {
- if (mindist[i] <= minmaxdist)
- colorlist[ncolors++] = (JSAMPLE) i;
- }
- return ncolors;
-}
-
-
-LOCAL(void)
-find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
- int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
-/* Find the closest colormap entry for each cell in the update box,
- * given the list of candidate colors prepared by find_nearby_colors.
- * Return the indexes of the closest entries in the bestcolor[] array.
- * This routine uses Thomas' incremental distance calculation method to
- * find the distance from a colormap entry to successive cells in the box.
- */
-{
- int ic0, ic1, ic2;
- int i, icolor;
- register INT32 * bptr; /* pointer into bestdist[] array */
- JSAMPLE * cptr; /* pointer into bestcolor[] array */
- INT32 dist0, dist1; /* initial distance values */
- register INT32 dist2; /* current distance in inner loop */
- INT32 xx0, xx1; /* distance increments */
- register INT32 xx2;
- INT32 inc0, inc1, inc2; /* initial values for increments */
- /* This array holds the distance to the nearest-so-far color for each cell */
- INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
-
- /* Initialize best-distance for each cell of the update box */
- bptr = bestdist;
- for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
- *bptr++ = 0x7FFFFFFFL;
-
- /* For each color selected by find_nearby_colors,
- * compute its distance to the center of each cell in the box.
- * If that's less than best-so-far, update best distance and color number.
- */
-
- /* Nominal steps between cell centers ("x" in Thomas article) */
-#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
-#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
-#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
-
- for (i = 0; i < numcolors; i++) {
- icolor = GETJSAMPLE(colorlist[i]);
- /* Compute (square of) distance from minc0/c1/c2 to this color */
- inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
- dist0 = inc0*inc0;
- inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
- dist0 += inc1*inc1;
- inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
- dist0 += inc2*inc2;
- /* Form the initial difference increments */
- inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
- inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
- inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
- /* Now loop over all cells in box, updating distance per Thomas method */
- bptr = bestdist;
- cptr = bestcolor;
- xx0 = inc0;
- for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
- dist1 = dist0;
- xx1 = inc1;
- for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
- dist2 = dist1;
- xx2 = inc2;
- for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
- if (dist2 < *bptr) {
- *bptr = dist2;
- *cptr = (JSAMPLE) icolor;
- }
- dist2 += xx2;
- xx2 += 2 * STEP_C2 * STEP_C2;
- bptr++;
- cptr++;
- }
- dist1 += xx1;
- xx1 += 2 * STEP_C1 * STEP_C1;
- }
- dist0 += xx0;
- xx0 += 2 * STEP_C0 * STEP_C0;
- }
- }
-}
-
-
-LOCAL(void)
-fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
-/* Fill the inverse-colormap entries in the update box that contains */
-/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
-/* we can fill as many others as we wish.) */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- int minc0, minc1, minc2; /* lower left corner of update box */
- int ic0, ic1, ic2;
- register JSAMPLE * cptr; /* pointer into bestcolor[] array */
- register histptr cachep; /* pointer into main cache array */
- /* This array lists the candidate colormap indexes. */
- JSAMPLE colorlist[MAXNUMCOLORS];
- int numcolors; /* number of candidate colors */
- /* This array holds the actually closest colormap index for each cell. */
- JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
-
- /* Convert cell coordinates to update box ID */
- c0 >>= BOX_C0_LOG;
- c1 >>= BOX_C1_LOG;
- c2 >>= BOX_C2_LOG;
-
- /* Compute true coordinates of update box's origin corner.
- * Actually we compute the coordinates of the center of the corner
- * histogram cell, which are the lower bounds of the volume we care about.
- */
- minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
- minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
- minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
-
- /* Determine which colormap entries are close enough to be candidates
- * for the nearest entry to some cell in the update box.
- */
- numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
-
- /* Determine the actually nearest colors. */
- find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
- bestcolor);
-
- /* Save the best color numbers (plus 1) in the main cache array */
- c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
- c1 <<= BOX_C1_LOG;
- c2 <<= BOX_C2_LOG;
- cptr = bestcolor;
- for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
- for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
- cachep = & histogram[c0+ic0][c1+ic1][c2];
- for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
- *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
- }
- }
- }
-}
-
-
-/*
- * Map some rows of pixels to the output colormapped representation.
- */
-
-METHODDEF(void)
-pass2_no_dither (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
-/* This version performs no dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- register JSAMPROW inptr, outptr;
- register histptr cachep;
- register int c0, c1, c2;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
-
- for (row = 0; row < num_rows; row++) {
- inptr = input_buf[row];
- outptr = output_buf[row];
- for (col = width; col > 0; col--) {
- /* get pixel value and index into the cache */
- c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
- c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
- c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
- cachep = & histogram[c0][c1][c2];
- /* If we have not seen this color before, find nearest colormap entry */
- /* and update the cache */
- if (*cachep == 0)
- fill_inverse_cmap(cinfo, c0,c1,c2);
- /* Now emit the colormap index for this cell */
- *outptr++ = (JSAMPLE) (*cachep - 1);
- }
- }
-}
-
-
-METHODDEF(void)
-pass2_fs_dither (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
-/* This version performs Floyd-Steinberg dithering */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
- LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
- LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
- register FSERRPTR errorptr; /* => fserrors[] at column before current */
- JSAMPROW inptr; /* => current input pixel */
- JSAMPROW outptr; /* => current output pixel */
- histptr cachep;
- int dir; /* +1 or -1 depending on direction */
- int dir3; /* 3*dir, for advancing inptr & errorptr */
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
- JSAMPLE *range_limit = cinfo->sample_range_limit;
- int *error_limit = cquantize->error_limiter;
- JSAMPROW colormap0 = cinfo->colormap[0];
- JSAMPROW colormap1 = cinfo->colormap[1];
- JSAMPROW colormap2 = cinfo->colormap[2];
- SHIFT_TEMPS
-
- for (row = 0; row < num_rows; row++) {
- inptr = input_buf[row];
- outptr = output_buf[row];
- if (cquantize->on_odd_row) {
- /* work right to left in this row */
- inptr += (width-1) * 3; /* so point to rightmost pixel */
- outptr += width-1;
- dir = -1;
- dir3 = -3;
- errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
- cquantize->on_odd_row = FALSE; /* flip for next time */
- } else {
- /* work left to right in this row */
- dir = 1;
- dir3 = 3;
- errorptr = cquantize->fserrors; /* => entry before first real column */
- cquantize->on_odd_row = TRUE; /* flip for next time */
- }
- /* Preset error values: no error propagated to first pixel from left */
- cur0 = cur1 = cur2 = 0;
- /* and no error propagated to row below yet */
- belowerr0 = belowerr1 = belowerr2 = 0;
- bpreverr0 = bpreverr1 = bpreverr2 = 0;
-
- for (col = width; col > 0; col--) {
- /* curN holds the error propagated from the previous pixel on the
- * current line. Add the error propagated from the previous line
- * to form the complete error correction term for this pixel, and
- * round the error term (which is expressed * 16) to an integer.
- * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
- * for either sign of the error value.
- * Note: errorptr points to *previous* column's array entry.
- */
- cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
- cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
- cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
- /* Limit the error using transfer function set by init_error_limit.
- * See comments with init_error_limit for rationale.
- */
- cur0 = error_limit[cur0];
- cur1 = error_limit[cur1];
- cur2 = error_limit[cur2];
- /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
- * The maximum error is +- MAXJSAMPLE (or less with error limiting);
- * this sets the required size of the range_limit array.
- */
- cur0 += GETJSAMPLE(inptr[0]);
- cur1 += GETJSAMPLE(inptr[1]);
- cur2 += GETJSAMPLE(inptr[2]);
- cur0 = GETJSAMPLE(range_limit[cur0]);
- cur1 = GETJSAMPLE(range_limit[cur1]);
- cur2 = GETJSAMPLE(range_limit[cur2]);
- /* Index into the cache with adjusted pixel value */
- cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
- /* If we have not seen this color before, find nearest colormap */
- /* entry and update the cache */
- if (*cachep == 0)
- fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
- /* Now emit the colormap index for this cell */
- { register int pixcode = *cachep - 1;
- *outptr = (JSAMPLE) pixcode;
- /* Compute representation error for this pixel */
- cur0 -= GETJSAMPLE(colormap0[pixcode]);
- cur1 -= GETJSAMPLE(colormap1[pixcode]);
- cur2 -= GETJSAMPLE(colormap2[pixcode]);
- }
- /* Compute error fractions to be propagated to adjacent pixels.
- * Add these into the running sums, and simultaneously shift the
- * next-line error sums left by 1 column.
- */
- { register LOCFSERROR bnexterr, delta;
-
- bnexterr = cur0; /* Process component 0 */
- delta = cur0 * 2;
- cur0 += delta; /* form error * 3 */
- errorptr[0] = (FSERROR) (bpreverr0 + cur0);
- cur0 += delta; /* form error * 5 */
- bpreverr0 = belowerr0 + cur0;
- belowerr0 = bnexterr;
- cur0 += delta; /* form error * 7 */
- bnexterr = cur1; /* Process component 1 */
- delta = cur1 * 2;
- cur1 += delta; /* form error * 3 */
- errorptr[1] = (FSERROR) (bpreverr1 + cur1);
- cur1 += delta; /* form error * 5 */
- bpreverr1 = belowerr1 + cur1;
- belowerr1 = bnexterr;
- cur1 += delta; /* form error * 7 */
- bnexterr = cur2; /* Process component 2 */
- delta = cur2 * 2;
- cur2 += delta; /* form error * 3 */
- errorptr[2] = (FSERROR) (bpreverr2 + cur2);
- cur2 += delta; /* form error * 5 */
- bpreverr2 = belowerr2 + cur2;
- belowerr2 = bnexterr;
- cur2 += delta; /* form error * 7 */
- }
- /* At this point curN contains the 7/16 error value to be propagated
- * to the next pixel on the current line, and all the errors for the
- * next line have been shifted over. We are therefore ready to move on.
- */
- inptr += dir3; /* Advance pixel pointers to next column */
- outptr += dir;
- errorptr += dir3; /* advance errorptr to current column */
- }
- /* Post-loop cleanup: we must unload the final error values into the
- * final fserrors[] entry. Note we need not unload belowerrN because
- * it is for the dummy column before or after the actual array.
- */
- errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
- errorptr[1] = (FSERROR) bpreverr1;
- errorptr[2] = (FSERROR) bpreverr2;
- }
-}
-
-
-/*
- * Initialize the error-limiting transfer function (lookup table).
- * The raw F-S error computation can potentially compute error values of up to
- * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
- * much less, otherwise obviously wrong pixels will be created. (Typical
- * effects include weird fringes at color-area boundaries, isolated bright
- * pixels in a dark area, etc.) The standard advice for avoiding this problem
- * is to ensure that the "corners" of the color cube are allocated as output
- * colors; then repeated errors in the same direction cannot cause cascading
- * error buildup. However, that only prevents the error from getting
- * completely out of hand; Aaron Giles reports that error limiting improves
- * the results even with corner colors allocated.
- * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
- * well, but the smoother transfer function used below is even better. Thanks
- * to Aaron Giles for this idea.
- */
-
-LOCAL(void)
-init_error_limit (j_decompress_ptr cinfo)
-/* Allocate and fill in the error_limiter table */
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- int * table;
- int in, out;
-
- table = (int *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
- table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
- cquantize->error_limiter = table;
-
-#define STEPSIZE ((MAXJSAMPLE+1)/16)
- /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
- out = 0;
- for (in = 0; in < STEPSIZE; in++, out++) {
- table[in] = out; table[-in] = -out;
- }
- /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
- for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
- table[in] = out; table[-in] = -out;
- }
- /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
- for (; in <= MAXJSAMPLE; in++) {
- table[in] = out; table[-in] = -out;
- }
-#undef STEPSIZE
-}
-
-
-/*
- * Finish up at the end of each pass.
- */
-
-METHODDEF(void)
-finish_pass1 (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-
- /* Select the representative colors and fill in cinfo->colormap */
- cinfo->colormap = cquantize->sv_colormap;
- select_colors(cinfo, cquantize->desired);
- /* Force next pass to zero the color index table */
- cquantize->needs_zeroed = TRUE;
-}
-
-
-METHODDEF(void)
-finish_pass2 (j_decompress_ptr cinfo)
-{
- /* no work */
-}
-
-
-/*
- * Initialize for each processing pass.
- */
-
-METHODDEF(void)
-start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- int i;
-
- /* Only F-S dithering or no dithering is supported. */
- /* If user asks for ordered dither, give him F-S. */
- if (cinfo->dither_mode != JDITHER_NONE)
- cinfo->dither_mode = JDITHER_FS;
-
- if (is_pre_scan) {
- /* Set up method pointers */
- cquantize->pub.color_quantize = prescan_quantize;
- cquantize->pub.finish_pass = finish_pass1;
- cquantize->needs_zeroed = TRUE; /* Always zero histogram */
- } else {
- /* Set up method pointers */
- if (cinfo->dither_mode == JDITHER_FS)
- cquantize->pub.color_quantize = pass2_fs_dither;
- else
- cquantize->pub.color_quantize = pass2_no_dither;
- cquantize->pub.finish_pass = finish_pass2;
-
- /* Make sure color count is acceptable */
- i = cinfo->actual_number_of_colors;
- if (i < 1)
- ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
- if (i > MAXNUMCOLORS)
- ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
-
- if (cinfo->dither_mode == JDITHER_FS) {
- size_t arraysize = (size_t) ((cinfo->output_width + 2) *
- (3 * SIZEOF(FSERROR)));
- /* Allocate Floyd-Steinberg workspace if we didn't already. */
- if (cquantize->fserrors == NULL)
- cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
- /* Initialize the propagated errors to zero. */
- jzero_far((void FAR *) cquantize->fserrors, arraysize);
- /* Make the error-limit table if we didn't already. */
- if (cquantize->error_limiter == NULL)
- init_error_limit(cinfo);
- cquantize->on_odd_row = FALSE;
- }
-
- }
- /* Zero the histogram or inverse color map, if necessary */
- if (cquantize->needs_zeroed) {
- for (i = 0; i < HIST_C0_ELEMS; i++) {
- jzero_far((void FAR *) histogram[i],
- HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
- }
- cquantize->needs_zeroed = FALSE;
- }
-}
-
-
-/*
- * Switch to a new external colormap between output passes.
- */
-
-METHODDEF(void)
-new_color_map_2_quant (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-
- /* Reset the inverse color map */
- cquantize->needs_zeroed = TRUE;
-}
-
-
-/*
- * Module initialization routine for 2-pass color quantization.
- */
-
-GLOBAL(void)
-jinit_2pass_quantizer (j_decompress_ptr cinfo)
-{
- my_cquantize_ptr cquantize;
- int i;
-
- cquantize = (my_cquantize_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_cquantizer));
- cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
- cquantize->pub.start_pass = start_pass_2_quant;
- cquantize->pub.new_color_map = new_color_map_2_quant;
- cquantize->fserrors = NULL; /* flag optional arrays not allocated */
- cquantize->error_limiter = NULL;
-
- /* Make sure jdmaster didn't give me a case I can't handle */
- if (cinfo->out_color_components != 3)
- ERREXIT(cinfo, JERR_NOTIMPL);
-
- /* Allocate the histogram/inverse colormap storage */
- cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
- for (i = 0; i < HIST_C0_ELEMS; i++) {
- cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
- }
- cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
-
- /* Allocate storage for the completed colormap, if required.
- * We do this now since it is FAR storage and may affect
- * the memory manager's space calculations.
- */
- if (cinfo->enable_2pass_quant) {
- /* Make sure color count is acceptable */
- int desired = cinfo->desired_number_of_colors;
- /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
- if (desired < 8)
- ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
- /* Make sure colormap indexes can be represented by JSAMPLEs */
- if (desired > MAXNUMCOLORS)
- ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
- cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
- cquantize->desired = desired;
- } else
- cquantize->sv_colormap = NULL;
-
- /* Only F-S dithering or no dithering is supported. */
- /* If user asks for ordered dither, give him F-S. */
- if (cinfo->dither_mode != JDITHER_NONE)
- cinfo->dither_mode = JDITHER_FS;
-
- /* Allocate Floyd-Steinberg workspace if necessary.
- * This isn't really needed until pass 2, but again it is FAR storage.
- * Although we will cope with a later change in dither_mode,
- * we do not promise to honor max_memory_to_use if dither_mode changes.
- */
- if (cinfo->dither_mode == JDITHER_FS) {
- cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
- /* Might as well create the error-limiting table too. */
- init_error_limit(cinfo);
- }
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
diff --git a/src/jpeg-8c/jutils.c b/src/jpeg-8c/jutils.c
deleted file mode 100644
index 04351797..00000000
--- a/src/jpeg-8c/jutils.c
+++ /dev/null
@@ -1,231 +0,0 @@
-/*
- * jutils.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * Modified 2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains tables and miscellaneous utility routines needed
- * for both compression and decompression.
- * Note we prefix all global names with "j" to minimize conflicts with
- * a surrounding application.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
- * of a DCT block read in natural order (left to right, top to bottom).
- */
-
-#if 0 /* This table is not actually needed in v6a */
-
-const int jpeg_zigzag_order[DCTSIZE2] = {
- 0, 1, 5, 6, 14, 15, 27, 28,
- 2, 4, 7, 13, 16, 26, 29, 42,
- 3, 8, 12, 17, 25, 30, 41, 43,
- 9, 11, 18, 24, 31, 40, 44, 53,
- 10, 19, 23, 32, 39, 45, 52, 54,
- 20, 22, 33, 38, 46, 51, 55, 60,
- 21, 34, 37, 47, 50, 56, 59, 61,
- 35, 36, 48, 49, 57, 58, 62, 63
-};
-
-#endif
-
-/*
- * jpeg_natural_order[i] is the natural-order position of the i'th element
- * of zigzag order.
- *
- * When reading corrupted data, the Huffman decoders could attempt
- * to reference an entry beyond the end of this array (if the decoded
- * zero run length reaches past the end of the block). To prevent
- * wild stores without adding an inner-loop test, we put some extra
- * "63"s after the real entries. This will cause the extra coefficient
- * to be stored in location 63 of the block, not somewhere random.
- * The worst case would be a run-length of 15, which means we need 16
- * fake entries.
- */
-
-const int jpeg_natural_order[DCTSIZE2+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-const int jpeg_natural_order7[7*7+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 14, 21, 28, 35,
- 42, 49, 50, 43, 36, 29, 22, 30,
- 37, 44, 51, 52, 45, 38, 46, 53,
- 54,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-const int jpeg_natural_order6[6*6+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 41, 34, 27,
- 20, 13, 21, 28, 35, 42, 43, 36,
- 29, 37, 44, 45,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-const int jpeg_natural_order5[5*5+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 12,
- 19, 26, 33, 34, 27, 20, 28, 35,
- 36,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-const int jpeg_natural_order4[4*4+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 25, 18, 11, 19, 26, 27,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-const int jpeg_natural_order3[3*3+16] = {
- 0, 1, 8, 16, 9, 2, 10, 17,
- 18,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-const int jpeg_natural_order2[2*2+16] = {
- 0, 1, 8, 9,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-
-/*
- * Arithmetic utilities
- */
-
-GLOBAL(long)
-jdiv_round_up (long a, long b)
-/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
-/* Assumes a >= 0, b > 0 */
-{
- return (a + b - 1L) / b;
-}
-
-
-GLOBAL(long)
-jround_up (long a, long b)
-/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
-/* Assumes a >= 0, b > 0 */
-{
- a += b - 1L;
- return a - (a % b);
-}
-
-
-/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
- * and coefficient-block arrays. This won't work on 80x86 because the arrays
- * are FAR and we're assuming a small-pointer memory model. However, some
- * DOS compilers provide far-pointer versions of memcpy() and memset() even
- * in the small-model libraries. These will be used if USE_FMEM is defined.
- * Otherwise, the routines below do it the hard way. (The performance cost
- * is not all that great, because these routines aren't very heavily used.)
- */
-
-#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
-#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
-#define FMEMZERO(target,size) MEMZERO(target,size)
-#else /* 80x86 case, define if we can */
-#ifdef USE_FMEM
-#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
-#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
-#endif
-#endif
-
-
-GLOBAL(void)
-jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
- JSAMPARRAY output_array, int dest_row,
- int num_rows, JDIMENSION num_cols)
-/* Copy some rows of samples from one place to another.
- * num_rows rows are copied from input_array[source_row++]
- * to output_array[dest_row++]; these areas may overlap for duplication.
- * The source and destination arrays must be at least as wide as num_cols.
- */
-{
- register JSAMPROW inptr, outptr;
-#ifdef FMEMCOPY
- register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
-#else
- register JDIMENSION count;
-#endif
- register int row;
-
- input_array += source_row;
- output_array += dest_row;
-
- for (row = num_rows; row > 0; row--) {
- inptr = *input_array++;
- outptr = *output_array++;
-#ifdef FMEMCOPY
- FMEMCOPY(outptr, inptr, count);
-#else
- for (count = num_cols; count > 0; count--)
- *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
-#endif
- }
-}
-
-
-GLOBAL(void)
-jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
- JDIMENSION num_blocks)
-/* Copy a row of coefficient blocks from one place to another. */
-{
-#ifdef FMEMCOPY
- FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
-#else
- register JCOEFPTR inptr, outptr;
- register long count;
-
- inptr = (JCOEFPTR) input_row;
- outptr = (JCOEFPTR) output_row;
- for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
- *outptr++ = *inptr++;
- }
-#endif
-}
-
-
-GLOBAL(void)
-jzero_far (void FAR * target, size_t bytestozero)
-/* Zero out a chunk of FAR memory. */
-/* This might be sample-array data, block-array data, or alloc_large data. */
-{
-#ifdef FMEMZERO
- FMEMZERO(target, bytestozero);
-#else
- register char FAR * ptr = (char FAR *) target;
- register size_t count;
-
- for (count = bytestozero; count > 0; count--) {
- *ptr++ = 0;
- }
-#endif
-}
diff --git a/src/jpeg-8c/jversion.h b/src/jpeg-8c/jversion.h
deleted file mode 100644
index e868538c..00000000
--- a/src/jpeg-8c/jversion.h
+++ /dev/null
@@ -1,14 +0,0 @@
-/*
- * jversion.h
- *
- * Copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains software version identification.
- */
-
-
-#define JVERSION "8c 16-Jan-2011"
-
-#define JCOPYRIGHT "Copyright (C) 2011, Thomas G. Lane, Guido Vollbeding"