summaryrefslogtreecommitdiff
path: root/src/libspeex/lsp.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libspeex/lsp.c')
-rw-r--r--src/libspeex/lsp.c656
1 files changed, 0 insertions, 656 deletions
diff --git a/src/libspeex/lsp.c b/src/libspeex/lsp.c
deleted file mode 100644
index a73d8835..00000000
--- a/src/libspeex/lsp.c
+++ /dev/null
@@ -1,656 +0,0 @@
-/*---------------------------------------------------------------------------*\
-Original copyright
- FILE........: lsp.c
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
-
-Heavily modified by Jean-Marc Valin (c) 2002-2006 (fixed-point,
- optimizations, additional functions, ...)
-
- This file contains functions for converting Linear Prediction
- Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
- LSP coefficients are not in radians format but in the x domain of the
- unit circle.
-
- Speex License:
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- - Neither the name of the Xiph.org Foundation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-
-/*---------------------------------------------------------------------------*\
-
- Introduction to Line Spectrum Pairs (LSPs)
- ------------------------------------------
-
- LSPs are used to encode the LPC filter coefficients {ak} for
- transmission over the channel. LSPs have several properties (like
- less sensitivity to quantisation noise) that make them superior to
- direct quantisation of {ak}.
-
- A(z) is a polynomial of order lpcrdr with {ak} as the coefficients.
-
- A(z) is transformed to P(z) and Q(z) (using a substitution and some
- algebra), to obtain something like:
-
- A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1)
-
- As you can imagine A(z) has complex zeros all over the z-plane. P(z)
- and Q(z) have the very neat property of only having zeros _on_ the
- unit circle. So to find them we take a test point z=exp(jw) and
- evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0
- and pi.
-
- The zeros (roots) of P(z) also happen to alternate, which is why we
- swap coefficients as we find roots. So the process of finding the
- LSP frequencies is basically finding the roots of 5th order
- polynomials.
-
- The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence
- the name Line Spectrum Pairs (LSPs).
-
- To convert back to ak we just evaluate (1), "clocking" an impulse
- thru it lpcrdr times gives us the impulse response of A(z) which is
- {ak}.
-
-\*---------------------------------------------------------------------------*/
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <math.h>
-#include "lsp.h"
-#include "stack_alloc.h"
-#include "math_approx.h"
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846 /* pi */
-#endif
-
-#ifndef NULL
-#define NULL 0
-#endif
-
-#ifdef FIXED_POINT
-
-#define FREQ_SCALE 16384
-
-/*#define ANGLE2X(a) (32768*cos(((a)/8192.)))*/
-#define ANGLE2X(a) (SHL16(spx_cos(a),2))
-
-/*#define X2ANGLE(x) (acos(.00006103515625*(x))*LSP_SCALING)*/
-#define X2ANGLE(x) (spx_acos(x))
-
-#ifdef BFIN_ASM
-#include "lsp_bfin.h"
-#endif
-
-#else
-
-/*#define C1 0.99940307
-#define C2 -0.49558072
-#define C3 0.03679168*/
-
-#define FREQ_SCALE 1.
-#define ANGLE2X(a) (spx_cos(a))
-#define X2ANGLE(x) (acos(x))
-
-#endif
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: cheb_poly_eva()
-
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
-
- This function evaluates a series of Chebyshev polynomials
-
-\*---------------------------------------------------------------------------*/
-
-#ifdef FIXED_POINT
-
-#ifndef OVERRIDE_CHEB_POLY_EVA
-static inline spx_word32_t cheb_poly_eva(
- spx_word16_t *coef, /* P or Q coefs in Q13 format */
- spx_word16_t x, /* cos of freq (-1.0 to 1.0) in Q14 format */
- int m, /* LPC order/2 */
- char *stack
-)
-{
- int i;
- spx_word16_t b0, b1;
- spx_word32_t sum;
-
- /*Prevents overflows*/
- if (x>16383)
- x = 16383;
- if (x<-16383)
- x = -16383;
-
- /* Initialise values */
- b1=16384;
- b0=x;
-
- /* Evaluate Chebyshev series formulation usin g iterative approach */
- sum = ADD32(EXTEND32(coef[m]), EXTEND32(MULT16_16_P14(coef[m-1],x)));
- for(i=2;i<=m;i++)
- {
- spx_word16_t tmp=b0;
- b0 = SUB16(MULT16_16_Q13(x,b0), b1);
- b1 = tmp;
- sum = ADD32(sum, EXTEND32(MULT16_16_P14(coef[m-i],b0)));
- }
-
- return sum;
-}
-#endif
-
-#else
-
-static float cheb_poly_eva(spx_word32_t *coef, spx_word16_t x, int m, char *stack)
-{
- int k;
- float b0, b1, tmp;
-
- /* Initial conditions */
- b0=0; /* b_(m+1) */
- b1=0; /* b_(m+2) */
-
- x*=2;
-
- /* Calculate the b_(k) */
- for(k=m;k>0;k--)
- {
- tmp=b0; /* tmp holds the previous value of b0 */
- b0=x*b0-b1+coef[m-k]; /* b0 holds its new value based on b0 and b1 */
- b1=tmp; /* b1 holds the previous value of b0 */
- }
-
- return(-b1+.5*x*b0+coef[m]);
-}
-#endif
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: lpc_to_lsp()
-
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
-
- This function converts LPC coefficients to LSP
- coefficients.
-
-\*---------------------------------------------------------------------------*/
-
-#ifdef FIXED_POINT
-#define SIGN_CHANGE(a,b) (((a)&0x70000000)^((b)&0x70000000)||(b==0))
-#else
-#define SIGN_CHANGE(a,b) (((a)*(b))<0.0)
-#endif
-
-
-int lpc_to_lsp (spx_coef_t *a,int lpcrdr,spx_lsp_t *freq,int nb,spx_word16_t delta, char *stack)
-/* float *a lpc coefficients */
-/* int lpcrdr order of LPC coefficients (10) */
-/* float *freq LSP frequencies in the x domain */
-/* int nb number of sub-intervals (4) */
-/* float delta grid spacing interval (0.02) */
-
-
-{
- spx_word16_t temp_xr,xl,xr,xm=0;
- spx_word32_t psuml,psumr,psumm,temp_psumr/*,temp_qsumr*/;
- int i,j,m,flag,k;
- VARDECL(spx_word32_t *Q); /* ptrs for memory allocation */
- VARDECL(spx_word32_t *P);
- VARDECL(spx_word16_t *Q16); /* ptrs for memory allocation */
- VARDECL(spx_word16_t *P16);
- spx_word32_t *px; /* ptrs of respective P'(z) & Q'(z) */
- spx_word32_t *qx;
- spx_word32_t *p;
- spx_word32_t *q;
- spx_word16_t *pt; /* ptr used for cheb_poly_eval()
- whether P' or Q' */
- int roots=0; /* DR 8/2/94: number of roots found */
- flag = 1; /* program is searching for a root when,
- 1 else has found one */
- m = lpcrdr/2; /* order of P'(z) & Q'(z) polynomials */
-
- /* Allocate memory space for polynomials */
- ALLOC(Q, (m+1), spx_word32_t);
- ALLOC(P, (m+1), spx_word32_t);
-
- /* determine P'(z)'s and Q'(z)'s coefficients where
- P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
-
- px = P; /* initialise ptrs */
- qx = Q;
- p = px;
- q = qx;
-
-#ifdef FIXED_POINT
- *px++ = LPC_SCALING;
- *qx++ = LPC_SCALING;
- for(i=0;i<m;i++){
- *px++ = SUB32(ADD32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *p++);
- *qx++ = ADD32(SUB32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *q++);
- }
- px = P;
- qx = Q;
- for(i=0;i<m;i++)
- {
- /*if (fabs(*px)>=32768)
- speex_warning_int("px", *px);
- if (fabs(*qx)>=32768)
- speex_warning_int("qx", *qx);*/
- *px = PSHR32(*px,2);
- *qx = PSHR32(*qx,2);
- px++;
- qx++;
- }
- /* The reason for this lies in the way cheb_poly_eva() is implemented for fixed-point */
- P[m] = PSHR32(P[m],3);
- Q[m] = PSHR32(Q[m],3);
-#else
- *px++ = LPC_SCALING;
- *qx++ = LPC_SCALING;
- for(i=0;i<m;i++){
- *px++ = (a[i]+a[lpcrdr-1-i]) - *p++;
- *qx++ = (a[i]-a[lpcrdr-1-i]) + *q++;
- }
- px = P;
- qx = Q;
- for(i=0;i<m;i++){
- *px = 2**px;
- *qx = 2**qx;
- px++;
- qx++;
- }
-#endif
-
- px = P; /* re-initialise ptrs */
- qx = Q;
-
- /* now that we have computed P and Q convert to 16 bits to
- speed up cheb_poly_eval */
-
- ALLOC(P16, m+1, spx_word16_t);
- ALLOC(Q16, m+1, spx_word16_t);
-
- for (i=0;i<m+1;i++)
- {
- P16[i] = P[i];
- Q16[i] = Q[i];
- }
-
- /* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
- Keep alternating between the two polynomials as each zero is found */
-
- xr = 0; /* initialise xr to zero */
- xl = FREQ_SCALE; /* start at point xl = 1 */
-
- for(j=0;j<lpcrdr;j++){
- if(j&1) /* determines whether P' or Q' is eval. */
- pt = Q16;
- else
- pt = P16;
-
- psuml = cheb_poly_eva(pt,xl,m,stack); /* evals poly. at xl */
- flag = 1;
- while(flag && (xr >= -FREQ_SCALE)){
- spx_word16_t dd;
- /* Modified by JMV to provide smaller steps around x=+-1 */
-#ifdef FIXED_POINT
- dd = MULT16_16_Q15(delta,SUB16(FREQ_SCALE, MULT16_16_Q14(MULT16_16_Q14(xl,xl),14000)));
- if (psuml<512 && psuml>-512)
- dd = PSHR16(dd,1);
-#else
- dd=delta*(1-.9*xl*xl);
- if (fabs(psuml)<.2)
- dd *= .5;
-#endif
- xr = SUB16(xl, dd); /* interval spacing */
- psumr = cheb_poly_eva(pt,xr,m,stack);/* poly(xl-delta_x) */
- temp_psumr = psumr;
- temp_xr = xr;
-
- /* if no sign change increment xr and re-evaluate poly(xr). Repeat til
- sign change.
- if a sign change has occurred the interval is bisected and then
- checked again for a sign change which determines in which
- interval the zero lies in.
- If there is no sign change between poly(xm) and poly(xl) set interval
- between xm and xr else set interval between xl and xr and repeat till
- root is located within the specified limits */
-
- if(SIGN_CHANGE(psumr,psuml))
- {
- roots++;
-
- psumm=psuml;
- for(k=0;k<=nb;k++){
-#ifdef FIXED_POINT
- xm = ADD16(PSHR16(xl,1),PSHR16(xr,1)); /* bisect the interval */
-#else
- xm = .5*(xl+xr); /* bisect the interval */
-#endif
- psumm=cheb_poly_eva(pt,xm,m,stack);
- /*if(psumm*psuml>0.)*/
- if(!SIGN_CHANGE(psumm,psuml))
- {
- psuml=psumm;
- xl=xm;
- } else {
- psumr=psumm;
- xr=xm;
- }
- }
-
- /* once zero is found, reset initial interval to xr */
- freq[j] = X2ANGLE(xm);
- xl = xm;
- flag = 0; /* reset flag for next search */
- }
- else{
- psuml=temp_psumr;
- xl=temp_xr;
- }
- }
- }
- return(roots);
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: lsp_to_lpc()
-
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
-
- Converts LSP coefficients to LPC coefficients.
-
-\*---------------------------------------------------------------------------*/
-
-#ifdef FIXED_POINT
-
-void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
-/* float *freq array of LSP frequencies in the x domain */
-/* float *ak array of LPC coefficients */
-/* int lpcrdr order of LPC coefficients */
-{
- int i,j;
- spx_word32_t xout1,xout2,xin;
- spx_word32_t mult, a;
- VARDECL(spx_word16_t *freqn);
- VARDECL(spx_word32_t **xp);
- VARDECL(spx_word32_t *xpmem);
- VARDECL(spx_word32_t **xq);
- VARDECL(spx_word32_t *xqmem);
- int m = lpcrdr>>1;
-
- /*
-
- Reconstruct P(z) and Q(z) by cascading second order polynomials
- in form 1 - 2cos(w)z(-1) + z(-2), where w is the LSP frequency.
- In the time domain this is:
-
- y(n) = x(n) - 2cos(w)x(n-1) + x(n-2)
-
- This is what the ALLOCS below are trying to do:
-
- int xp[m+1][lpcrdr+1+2]; // P matrix in QIMP
- int xq[m+1][lpcrdr+1+2]; // Q matrix in QIMP
-
- These matrices store the output of each stage on each row. The
- final (m-th) row has the output of the final (m-th) cascaded
- 2nd order filter. The first row is the impulse input to the
- system (not written as it is known).
-
- The version below takes advantage of the fact that a lot of the
- outputs are zero or known, for example if we put an inpulse
- into the first section the "clock" it 10 times only the first 3
- outputs samples are non-zero (it's an FIR filter).
- */
-
- ALLOC(xp, (m+1), spx_word32_t*);
- ALLOC(xpmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
-
- ALLOC(xq, (m+1), spx_word32_t*);
- ALLOC(xqmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
-
- for(i=0; i<=m; i++) {
- xp[i] = xpmem + i*(lpcrdr+1+2);
- xq[i] = xqmem + i*(lpcrdr+1+2);
- }
-
- /* work out 2cos terms in Q14 */
-
- ALLOC(freqn, lpcrdr, spx_word16_t);
- for (i=0;i<lpcrdr;i++)
- freqn[i] = ANGLE2X(freq[i]);
-
- #define QIMP 21 /* scaling for impulse */
-
- xin = SHL32(EXTEND32(1), (QIMP-1)); /* 0.5 in QIMP format */
-
- /* first col and last non-zero values of each row are trivial */
-
- for(i=0;i<=m;i++) {
- xp[i][1] = 0;
- xp[i][2] = xin;
- xp[i][2+2*i] = xin;
- xq[i][1] = 0;
- xq[i][2] = xin;
- xq[i][2+2*i] = xin;
- }
-
- /* 2nd row (first output row) is trivial */
-
- xp[1][3] = -MULT16_32_Q14(freqn[0],xp[0][2]);
- xq[1][3] = -MULT16_32_Q14(freqn[1],xq[0][2]);
-
- xout1 = xout2 = 0;
-
- /* now generate remaining rows */
-
- for(i=1;i<m;i++) {
-
- for(j=1;j<2*(i+1)-1;j++) {
- mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
- xp[i+1][j+2] = ADD32(SUB32(xp[i][j+2], mult), xp[i][j]);
- mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
- xq[i+1][j+2] = ADD32(SUB32(xq[i][j+2], mult), xq[i][j]);
- }
-
- /* for last col xp[i][j+2] = xq[i][j+2] = 0 */
-
- mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
- xp[i+1][j+2] = SUB32(xp[i][j], mult);
- mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
- xq[i+1][j+2] = SUB32(xq[i][j], mult);
- }
-
- /* process last row to extra a{k} */
-
- for(j=1;j<=lpcrdr;j++) {
- int shift = QIMP-13;
-
- /* final filter sections */
- a = PSHR32(xp[m][j+2] + xout1 + xq[m][j+2] - xout2, shift);
- xout1 = xp[m][j+2];
- xout2 = xq[m][j+2];
-
- /* hard limit ak's to +/- 32767 */
-
- if (a < -32767) a = -32767;
- if (a > 32767) a = 32767;
- ak[j-1] = (short)a;
-
- }
-
-}
-
-#else
-
-void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
-/* float *freq array of LSP frequencies in the x domain */
-/* float *ak array of LPC coefficients */
-/* int lpcrdr order of LPC coefficients */
-
-
-{
- int i,j;
- float xout1,xout2,xin1,xin2;
- VARDECL(float *Wp);
- float *pw,*n1,*n2,*n3,*n4=NULL;
- VARDECL(float *x_freq);
- int m = lpcrdr>>1;
-
- ALLOC(Wp, 4*m+2, float);
- pw = Wp;
-
- /* initialise contents of array */
-
- for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */
- *pw++ = 0.0;
- }
-
- /* Set pointers up */
-
- pw = Wp;
- xin1 = 1.0;
- xin2 = 1.0;
-
- ALLOC(x_freq, lpcrdr, float);
- for (i=0;i<lpcrdr;i++)
- x_freq[i] = ANGLE2X(freq[i]);
-
- /* reconstruct P(z) and Q(z) by cascading second order
- polynomials in form 1 - 2xz(-1) +z(-2), where x is the
- LSP coefficient */
-
- for(j=0;j<=lpcrdr;j++){
- int i2=0;
- for(i=0;i<m;i++,i2+=2){
- n1 = pw+(i*4);
- n2 = n1 + 1;
- n3 = n2 + 1;
- n4 = n3 + 1;
- xout1 = xin1 - 2.f*x_freq[i2] * *n1 + *n2;
- xout2 = xin2 - 2.f*x_freq[i2+1] * *n3 + *n4;
- *n2 = *n1;
- *n4 = *n3;
- *n1 = xin1;
- *n3 = xin2;
- xin1 = xout1;
- xin2 = xout2;
- }
- xout1 = xin1 + *(n4+1);
- xout2 = xin2 - *(n4+2);
- if (j>0)
- ak[j-1] = (xout1 + xout2)*0.5f;
- *(n4+1) = xin1;
- *(n4+2) = xin2;
-
- xin1 = 0.0;
- xin2 = 0.0;
- }
-
-}
-#endif
-
-
-#ifdef FIXED_POINT
-
-/*Makes sure the LSPs are stable*/
-void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin)
-{
- int i;
- spx_word16_t m = margin;
- spx_word16_t m2 = 25736-margin;
-
- if (lsp[0]<m)
- lsp[0]=m;
- if (lsp[len-1]>m2)
- lsp[len-1]=m2;
- for (i=1;i<len-1;i++)
- {
- if (lsp[i]<lsp[i-1]+m)
- lsp[i]=lsp[i-1]+m;
-
- if (lsp[i]>lsp[i+1]-m)
- lsp[i]= SHR16(lsp[i],1) + SHR16(lsp[i+1]-m,1);
- }
-}
-
-
-void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes)
-{
- int i;
- spx_word16_t tmp = DIV32_16(SHL32(EXTEND32(1 + subframe),14),nb_subframes);
- spx_word16_t tmp2 = 16384-tmp;
- for (i=0;i<len;i++)
- {
- interp_lsp[i] = MULT16_16_P14(tmp2,old_lsp[i]) + MULT16_16_P14(tmp,new_lsp[i]);
- }
-}
-
-#else
-
-/*Makes sure the LSPs are stable*/
-void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin)
-{
- int i;
- if (lsp[0]<LSP_SCALING*margin)
- lsp[0]=LSP_SCALING*margin;
- if (lsp[len-1]>LSP_SCALING*(M_PI-margin))
- lsp[len-1]=LSP_SCALING*(M_PI-margin);
- for (i=1;i<len-1;i++)
- {
- if (lsp[i]<lsp[i-1]+LSP_SCALING*margin)
- lsp[i]=lsp[i-1]+LSP_SCALING*margin;
-
- if (lsp[i]>lsp[i+1]-LSP_SCALING*margin)
- lsp[i]= .5f* (lsp[i] + lsp[i+1]-LSP_SCALING*margin);
- }
-}
-
-
-void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes)
-{
- int i;
- float tmp = (1.0f + subframe)/nb_subframes;
- for (i=0;i<len;i++)
- {
- interp_lsp[i] = (1-tmp)*old_lsp[i] + tmp*new_lsp[i];
- }
-}
-
-#endif