diff options
Diffstat (limited to 'src/opus-1.0.2/silk/float/burg_modified_FLP.c')
-rw-r--r-- | src/opus-1.0.2/silk/float/burg_modified_FLP.c | 186 |
1 files changed, 186 insertions, 0 deletions
diff --git a/src/opus-1.0.2/silk/float/burg_modified_FLP.c b/src/opus-1.0.2/silk/float/burg_modified_FLP.c new file mode 100644 index 00000000..31c9b228 --- /dev/null +++ b/src/opus-1.0.2/silk/float/burg_modified_FLP.c @@ -0,0 +1,186 @@ +/*********************************************************************** +Copyright (c) 2006-2011, Skype Limited. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "SigProc_FLP.h" +#include "tuning_parameters.h" +#include "define.h" + +#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/ + +/* Compute reflection coefficients from input signal */ +silk_float silk_burg_modified_FLP( /* O returns residual energy */ + silk_float A[], /* O prediction coefficients (length order) */ + const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ + const silk_float minInvGain, /* I minimum inverse prediction gain */ + const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */ + const opus_int nb_subfr, /* I number of subframes stacked in x */ + const opus_int D /* I order */ +) +{ + opus_int k, n, s, reached_max_gain; + double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; + const silk_float *x_ptr; + double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; + double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; + double Af[ SILK_MAX_ORDER_LPC ]; + + silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); + + /* Compute autocorrelations, added over subframes */ + C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); + silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); + for( s = 0; s < nb_subfr; s++ ) { + x_ptr = x + s * subfr_length; + for( n = 1; n < D + 1; n++ ) { + C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n ); + } + } + silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); + + /* Initialize */ + CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f; + invGain = 1.0f; + reached_max_gain = 0; + for( n = 0; n < D; n++ ) { + /* Update first row of correlation matrix (without first element) */ + /* Update last row of correlation matrix (without last element, stored in reversed order) */ + /* Update C * Af */ + /* Update C * flipud(Af) (stored in reversed order) */ + for( s = 0; s < nb_subfr; s++ ) { + x_ptr = x + s * subfr_length; + tmp1 = x_ptr[ n ]; + tmp2 = x_ptr[ subfr_length - n - 1 ]; + for( k = 0; k < n; k++ ) { + C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; + C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; + Atmp = Af[ k ]; + tmp1 += x_ptr[ n - k - 1 ] * Atmp; + tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; + } + for( k = 0; k <= n; k++ ) { + CAf[ k ] -= tmp1 * x_ptr[ n - k ]; + CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; + } + } + tmp1 = C_first_row[ n ]; + tmp2 = C_last_row[ n ]; + for( k = 0; k < n; k++ ) { + Atmp = Af[ k ]; + tmp1 += C_last_row[ n - k - 1 ] * Atmp; + tmp2 += C_first_row[ n - k - 1 ] * Atmp; + } + CAf[ n + 1 ] = tmp1; + CAb[ n + 1 ] = tmp2; + + /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ + num = CAb[ n + 1 ]; + nrg_b = CAb[ 0 ]; + nrg_f = CAf[ 0 ]; + for( k = 0; k < n; k++ ) { + Atmp = Af[ k ]; + num += CAb[ n - k ] * Atmp; + nrg_b += CAb[ k + 1 ] * Atmp; + nrg_f += CAf[ k + 1 ] * Atmp; + } + silk_assert( nrg_f > 0.0 ); + silk_assert( nrg_b > 0.0 ); + + /* Calculate the next order reflection (parcor) coefficient */ + rc = -2.0 * num / ( nrg_f + nrg_b ); + silk_assert( rc > -1.0 && rc < 1.0 ); + + /* Update inverse prediction gain */ + tmp1 = invGain * ( 1.0 - rc * rc ); + if( tmp1 <= minInvGain ) { + /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ + rc = sqrt( 1.0 - minInvGain / invGain ); + if( num > 0 ) { + /* Ensure adjusted reflection coefficients has the original sign */ + rc = -rc; + } + invGain = minInvGain; + reached_max_gain = 1; + } else { + invGain = tmp1; + } + + /* Update the AR coefficients */ + for( k = 0; k < (n + 1) >> 1; k++ ) { + tmp1 = Af[ k ]; + tmp2 = Af[ n - k - 1 ]; + Af[ k ] = tmp1 + rc * tmp2; + Af[ n - k - 1 ] = tmp2 + rc * tmp1; + } + Af[ n ] = rc; + + if( reached_max_gain ) { + /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ + for( k = n + 1; k < D; k++ ) { + Af[ k ] = 0.0; + } + break; + } + + /* Update C * Af and C * Ab */ + for( k = 0; k <= n + 1; k++ ) { + tmp1 = CAf[ k ]; + CAf[ k ] += rc * CAb[ n - k + 1 ]; + CAb[ n - k + 1 ] += rc * tmp1; + } + } + + if( reached_max_gain ) { + /* Convert to silk_float */ + for( k = 0; k < D; k++ ) { + A[ k ] = (silk_float)( -Af[ k ] ); + } + /* Subtract energy of preceding samples from C0 */ + for( s = 0; s < nb_subfr; s++ ) { + C0 -= silk_energy_FLP( x + s * subfr_length, D ); + } + /* Approximate residual energy */ + nrg_f = C0 * invGain; + } else { + /* Compute residual energy and store coefficients as silk_float */ + nrg_f = CAf[ 0 ]; + tmp1 = 1.0; + for( k = 0; k < D; k++ ) { + Atmp = Af[ k ]; + nrg_f += CAf[ k + 1 ] * Atmp; + tmp1 += Atmp * Atmp; + A[ k ] = (silk_float)(-Atmp); + } + nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1; + } + + /* Return residual energy */ + return (silk_float)nrg_f; +} |