diff options
Diffstat (limited to 'src/opus-1.1/celt/celt_encoder.c')
-rw-r--r-- | src/opus-1.1/celt/celt_encoder.c | 2353 |
1 files changed, 2353 insertions, 0 deletions
diff --git a/src/opus-1.1/celt/celt_encoder.c b/src/opus-1.1/celt/celt_encoder.c new file mode 100644 index 00000000..ffff0775 --- /dev/null +++ b/src/opus-1.1/celt/celt_encoder.c @@ -0,0 +1,2353 @@ +/* Copyright (c) 2007-2008 CSIRO + Copyright (c) 2007-2010 Xiph.Org Foundation + Copyright (c) 2008 Gregory Maxwell + Written by Jean-Marc Valin and Gregory Maxwell */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#define CELT_ENCODER_C + +#include "cpu_support.h" +#include "os_support.h" +#include "mdct.h" +#include <math.h> +#include "celt.h" +#include "pitch.h" +#include "bands.h" +#include "modes.h" +#include "entcode.h" +#include "quant_bands.h" +#include "rate.h" +#include "stack_alloc.h" +#include "mathops.h" +#include "float_cast.h" +#include <stdarg.h> +#include "celt_lpc.h" +#include "vq.h" + + +/** Encoder state + @brief Encoder state + */ +struct OpusCustomEncoder { + const OpusCustomMode *mode; /**< Mode used by the encoder */ + int overlap; + int channels; + int stream_channels; + + int force_intra; + int clip; + int disable_pf; + int complexity; + int upsample; + int start, end; + + opus_int32 bitrate; + int vbr; + int signalling; + int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */ + int loss_rate; + int lsb_depth; + int variable_duration; + int lfe; + int arch; + + /* Everything beyond this point gets cleared on a reset */ +#define ENCODER_RESET_START rng + + opus_uint32 rng; + int spread_decision; + opus_val32 delayedIntra; + int tonal_average; + int lastCodedBands; + int hf_average; + int tapset_decision; + + int prefilter_period; + opus_val16 prefilter_gain; + int prefilter_tapset; +#ifdef RESYNTH + int prefilter_period_old; + opus_val16 prefilter_gain_old; + int prefilter_tapset_old; +#endif + int consec_transient; + AnalysisInfo analysis; + + opus_val32 preemph_memE[2]; + opus_val32 preemph_memD[2]; + + /* VBR-related parameters */ + opus_int32 vbr_reservoir; + opus_int32 vbr_drift; + opus_int32 vbr_offset; + opus_int32 vbr_count; + opus_val32 overlap_max; + opus_val16 stereo_saving; + int intensity; + opus_val16 *energy_mask; + opus_val16 spec_avg; + +#ifdef RESYNTH + /* +MAX_PERIOD/2 to make space for overlap */ + celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2]; +#endif + + celt_sig in_mem[1]; /* Size = channels*mode->overlap */ + /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */ + /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */ + /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */ + /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */ +}; + +int celt_encoder_get_size(int channels) +{ + CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); + return opus_custom_encoder_get_size(mode, channels); +} + +OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels) +{ + int size = sizeof(struct CELTEncoder) + + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */ + + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ + + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */ + /* opus_val16 oldLogE[channels*mode->nbEBands]; */ + /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ + return size; +} + +#ifdef CUSTOM_MODES +CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error) +{ + int ret; + CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); + /* init will handle the NULL case */ + ret = opus_custom_encoder_init(st, mode, channels); + if (ret != OPUS_OK) + { + opus_custom_encoder_destroy(st); + st = NULL; + } + if (error) + *error = ret; + return st; +} +#endif /* CUSTOM_MODES */ + +static int opus_custom_encoder_init_arch(CELTEncoder *st, const CELTMode *mode, + int channels, int arch) +{ + if (channels < 0 || channels > 2) + return OPUS_BAD_ARG; + + if (st==NULL || mode==NULL) + return OPUS_ALLOC_FAIL; + + OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); + + st->mode = mode; + st->overlap = mode->overlap; + st->stream_channels = st->channels = channels; + + st->upsample = 1; + st->start = 0; + st->end = st->mode->effEBands; + st->signalling = 1; + + st->arch = arch; + + st->constrained_vbr = 1; + st->clip = 1; + + st->bitrate = OPUS_BITRATE_MAX; + st->vbr = 0; + st->force_intra = 0; + st->complexity = 5; + st->lsb_depth=24; + + opus_custom_encoder_ctl(st, OPUS_RESET_STATE); + + return OPUS_OK; +} + +#ifdef CUSTOM_MODES +int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels) +{ + return opus_custom_encoder_init_arch(st, mode, channels, opus_select_arch()); +} +#endif + +int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels, + int arch) +{ + int ret; + ret = opus_custom_encoder_init_arch(st, + opus_custom_mode_create(48000, 960, NULL), channels, arch); + if (ret != OPUS_OK) + return ret; + st->upsample = resampling_factor(sampling_rate); + return OPUS_OK; +} + +#ifdef CUSTOM_MODES +void opus_custom_encoder_destroy(CELTEncoder *st) +{ + opus_free(st); +} +#endif /* CUSTOM_MODES */ + + +static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, + opus_val16 *tf_estimate, int *tf_chan) +{ + int i; + VARDECL(opus_val16, tmp); + opus_val32 mem0,mem1; + int is_transient = 0; + opus_int32 mask_metric = 0; + int c; + opus_val16 tf_max; + int len2; + /* Table of 6*64/x, trained on real data to minimize the average error */ + static const unsigned char inv_table[128] = { + 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, + 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, + 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, + 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, + }; + SAVE_STACK; + ALLOC(tmp, len, opus_val16); + + len2=len/2; + for (c=0;c<C;c++) + { + opus_val32 mean; + opus_int32 unmask=0; + opus_val32 norm; + opus_val16 maxE; + mem0=0; + mem1=0; + /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ + for (i=0;i<len;i++) + { + opus_val32 x,y; + x = SHR32(in[i+c*len],SIG_SHIFT); + y = ADD32(mem0, x); +#ifdef FIXED_POINT + mem0 = mem1 + y - SHL32(x,1); + mem1 = x - SHR32(y,1); +#else + mem0 = mem1 + y - 2*x; + mem1 = x - .5f*y; +#endif + tmp[i] = EXTRACT16(SHR32(y,2)); + /*printf("%f ", tmp[i]);*/ + } + /*printf("\n");*/ + /* First few samples are bad because we don't propagate the memory */ + for (i=0;i<12;i++) + tmp[i] = 0; + +#ifdef FIXED_POINT + /* Normalize tmp to max range */ + { + int shift=0; + shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); + if (shift!=0) + { + for (i=0;i<len;i++) + tmp[i] = SHL16(tmp[i], shift); + } + } +#endif + + mean=0; + mem0=0; + /* Grouping by two to reduce complexity */ + /* Forward pass to compute the post-echo threshold*/ + for (i=0;i<len2;i++) + { + opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16); + mean += x2; +#ifdef FIXED_POINT + /* FIXME: Use PSHR16() instead */ + tmp[i] = mem0 + PSHR32(x2-mem0,4); +#else + tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); +#endif + mem0 = tmp[i]; + } + + mem0=0; + maxE=0; + /* Backward pass to compute the pre-echo threshold */ + for (i=len2-1;i>=0;i--) + { +#ifdef FIXED_POINT + /* FIXME: Use PSHR16() instead */ + tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); +#else + tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0); +#endif + mem0 = tmp[i]; + maxE = MAX16(maxE, mem0); + } + /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ + + /* Compute the ratio of the "frame energy" over the harmonic mean of the energy. + This essentially corresponds to a bitrate-normalized temporal noise-to-mask + ratio */ + + /* As a compromise with the old transient detector, frame energy is the + geometric mean of the energy and half the max */ +#ifdef FIXED_POINT + /* Costs two sqrt() to avoid overflows */ + mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1))); +#else + mean = celt_sqrt(mean * maxE*.5*len2); +#endif + /* Inverse of the mean energy in Q15+6 */ + norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1)); + /* Compute harmonic mean discarding the unreliable boundaries + The data is smooth, so we only take 1/4th of the samples */ + unmask=0; + for (i=12;i<len2-5;i+=4) + { + int id; +#ifdef FIXED_POINT + id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */ +#else + id = IMAX(0,IMIN(127,(int)floor(64*norm*tmp[i]))); /* Do not round to nearest */ +#endif + unmask += inv_table[id]; + } + /*printf("%d\n", unmask);*/ + /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ + unmask = 64*unmask*4/(6*(len2-17)); + if (unmask>mask_metric) + { + *tf_chan = c; + mask_metric = unmask; + } + } + is_transient = mask_metric>200; + + /* Arbitrary metric for VBR boost */ + tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); + /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ + *tf_estimate = celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28))); + /*printf("%d %f\n", tf_max, mask_metric);*/ + RESTORE_STACK; +#ifdef FUZZING + is_transient = rand()&0x1; +#endif + /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ + return is_transient; +} + +/* Looks for sudden increases of energy to decide whether we need to patch + the transient decision */ +int patch_transient_decision(opus_val16 *newE, opus_val16 *oldE, int nbEBands, + int end, int C) +{ + int i, c; + opus_val32 mean_diff=0; + opus_val16 spread_old[26]; + /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to + avoid false detection caused by irrelevant bands */ + if (C==1) + { + spread_old[0] = oldE[0]; + for (i=1;i<end;i++) + spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), oldE[i]); + } else { + spread_old[0] = MAX16(oldE[0],oldE[nbEBands]); + for (i=1;i<end;i++) + spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), + MAX16(oldE[i],oldE[i+nbEBands])); + } + for (i=end-2;i>=0;i--) + spread_old[i] = MAX16(spread_old[i], spread_old[i+1]-QCONST16(1.0f, DB_SHIFT)); + /* Compute mean increase */ + c=0; do { + for (i=2;i<end-1;i++) + { + opus_val16 x1, x2; + x1 = MAX16(0, newE[i]); + x2 = MAX16(0, spread_old[i]); + mean_diff = ADD32(mean_diff, EXTEND32(MAX16(0, SUB16(x1, x2)))); + } + } while (++c<C); + mean_diff = DIV32(mean_diff, C*(end-3)); + /*printf("%f %f %d\n", mean_diff, max_diff, count);*/ + return mean_diff > QCONST16(1.f, DB_SHIFT); +} + +/** Apply window and compute the MDCT for all sub-frames and + all channels in a frame */ +static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, + celt_sig * OPUS_RESTRICT out, int C, int CC, int LM, int upsample) +{ + const int overlap = OVERLAP(mode); + int N; + int B; + int shift; + int i, b, c; + if (shortBlocks) + { + B = shortBlocks; + N = mode->shortMdctSize; + shift = mode->maxLM; + } else { + B = 1; + N = mode->shortMdctSize<<LM; + shift = mode->maxLM-LM; + } + c=0; do { + for (b=0;b<B;b++) + { + /* Interleaving the sub-frames while doing the MDCTs */ + clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B); + } + } while (++c<CC); + if (CC==2&&C==1) + { + for (i=0;i<B*N;i++) + out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i])); + } + if (upsample != 1) + { + c=0; do + { + int bound = B*N/upsample; + for (i=0;i<bound;i++) + out[c*B*N+i] *= upsample; + for (;i<B*N;i++) + out[c*B*N+i] = 0; + } while (++c<C); + } +} + + +void celt_preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, + int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) +{ + int i; + opus_val16 coef0; + celt_sig m; + int Nu; + + coef0 = coef[0]; + + + Nu = N/upsample; + if (upsample!=1) + { + for (i=0;i<N;i++) + inp[i] = 0; + } + for (i=0;i<Nu;i++) + { + celt_sig x; + + x = SCALEIN(pcmp[CC*i]); +#ifndef FIXED_POINT + /* Replace NaNs with zeros */ + if (!(x==x)) + x = 0; +#endif + inp[i*upsample] = x; + } + +#ifndef FIXED_POINT + if (clip) + { + /* Clip input to avoid encoding non-portable files */ + for (i=0;i<Nu;i++) + inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample])); + } +#else + (void)clip; /* Avoids a warning about clip being unused. */ +#endif + m = *mem; +#ifdef CUSTOM_MODES + if (coef[1] != 0) + { + opus_val16 coef1 = coef[1]; + opus_val16 coef2 = coef[2]; + for (i=0;i<N;i++) + { + celt_sig x, tmp; + x = inp[i]; + /* Apply pre-emphasis */ + tmp = MULT16_16(coef2, x); + inp[i] = tmp + m; + m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp); + } + } else +#endif + { + for (i=0;i<N;i++) + { + celt_sig x; + x = SHL32(inp[i], SIG_SHIFT); + /* Apply pre-emphasis */ + inp[i] = x + m; + m = - MULT16_32_Q15(coef0, x); + } + } + *mem = m; +} + + + +static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) +{ + int i; + opus_val32 L1; + L1 = 0; + for (i=0;i<N;i++) + L1 += EXTEND32(ABS16(tmp[i])); + /* When in doubt, prefer good freq resolution */ + L1 = MAC16_32_Q15(L1, LM*bias, L1); + return L1; + +} + +static int tf_analysis(const CELTMode *m, int len, int isTransient, + int *tf_res, int lambda, celt_norm *X, int N0, int LM, + int *tf_sum, opus_val16 tf_estimate, int tf_chan) +{ + int i; + VARDECL(int, metric); + int cost0; + int cost1; + VARDECL(int, path0); + VARDECL(int, path1); + VARDECL(celt_norm, tmp); + VARDECL(celt_norm, tmp_1); + int sel; + int selcost[2]; + int tf_select=0; + opus_val16 bias; + + SAVE_STACK; + bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate)); + /*printf("%f ", bias);*/ + + ALLOC(metric, len, int); + ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); + ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); + ALLOC(path0, len, int); + ALLOC(path1, len, int); + + *tf_sum = 0; + for (i=0;i<len;i++) + { + int j, k, N; + int narrow; + opus_val32 L1, best_L1; + int best_level=0; + N = (m->eBands[i+1]-m->eBands[i])<<LM; + /* band is too narrow to be split down to LM=-1 */ + narrow = (m->eBands[i+1]-m->eBands[i])==1; + for (j=0;j<N;j++) + tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)]; + /* Just add the right channel if we're in stereo */ + /*if (C==2) + for (j=0;j<N;j++) + tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ + L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); + best_L1 = L1; + /* Check the -1 case for transients */ + if (isTransient && !narrow) + { + for (j=0;j<N;j++) + tmp_1[j] = tmp[j]; + haar1(tmp_1, N>>LM, 1<<LM); + L1 = l1_metric(tmp_1, N, LM+1, bias); + if (L1<best_L1) + { + best_L1 = L1; + best_level = -1; + } + } + /*printf ("%f ", L1);*/ + for (k=0;k<LM+!(isTransient||narrow);k++) + { + int B; + + if (isTransient) + B = (LM-k-1); + else + B = k+1; + + haar1(tmp, N>>k, 1<<k); + + L1 = l1_metric(tmp, N, B, bias); + + if (L1 < best_L1) + { + best_L1 = L1; + best_level = k+1; + } + } + /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ + /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ + if (isTransient) + metric[i] = 2*best_level; + else + metric[i] = -2*best_level; + *tf_sum += (isTransient ? LM : 0) - metric[i]/2; + /* For bands that can't be split to -1, set the metric to the half-way point to avoid + biasing the decision */ + if (narrow && (metric[i]==0 || metric[i]==-2*LM)) + metric[i]-=1; + /*printf("%d ", metric[i]);*/ + } + /*printf("\n");*/ + /* Search for the optimal tf resolution, including tf_select */ + tf_select = 0; + for (sel=0;sel<2;sel++) + { + cost0 = 0; + cost1 = isTransient ? 0 : lambda; + for (i=1;i<len;i++) + { + int curr0, curr1; + curr0 = IMIN(cost0, cost1 + lambda); + curr1 = IMIN(cost0 + lambda, cost1); + cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); + cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); + } + cost0 = IMIN(cost0, cost1); + selcost[sel]=cost0; + } + /* For now, we're conservative and only allow tf_select=1 for transients. + * If tests confirm it's useful for non-transients, we could allow it. */ + if (selcost[1]<selcost[0] && isTransient) + tf_select=1; + cost0 = 0; + cost1 = isTransient ? 0 : lambda; + /* Viterbi forward pass */ + for (i=1;i<len;i++) + { + int curr0, curr1; + int from0, from1; + + from0 = cost0; + from1 = cost1 + lambda; + if (from0 < from1) + { + curr0 = from0; + path0[i]= 0; + } else { + curr0 = from1; + path0[i]= 1; + } + + from0 = cost0 + lambda; + from1 = cost1; + if (from0 < from1) + { + curr1 = from0; + path1[i]= 0; + } else { + curr1 = from1; + path1[i]= 1; + } + cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); + cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); + } + tf_res[len-1] = cost0 < cost1 ? 0 : 1; + /* Viterbi backward pass to check the decisions */ + for (i=len-2;i>=0;i--) + { + if (tf_res[i+1] == 1) + tf_res[i] = path1[i+1]; + else + tf_res[i] = path0[i+1]; + } + /*printf("%d %f\n", *tf_sum, tf_estimate);*/ + RESTORE_STACK; +#ifdef FUZZING + tf_select = rand()&0x1; + tf_res[0] = rand()&0x1; + for (i=1;i<len;i++) + tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); +#endif + return tf_select; +} + +static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) +{ + int curr, i; + int tf_select_rsv; + int tf_changed; + int logp; + opus_uint32 budget; + opus_uint32 tell; + budget = enc->storage*8; + tell = ec_tell(enc); + logp = isTransient ? 2 : 4; + /* Reserve space to code the tf_select decision. */ + tf_select_rsv = LM>0 && tell+logp+1 <= budget; + budget -= tf_select_rsv; + curr = tf_changed = 0; + for (i=start;i<end;i++) + { + if (tell+logp<=budget) + { + ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); + tell = ec_tell(enc); + curr = tf_res[i]; + tf_changed |= curr; + } + else + tf_res[i] = curr; + logp = isTransient ? 4 : 5; + } + /* Only code tf_select if it would actually make a difference. */ + if (tf_select_rsv && + tf_select_table[LM][4*isTransient+0+tf_changed]!= + tf_select_table[LM][4*isTransient+2+tf_changed]) + ec_enc_bit_logp(enc, tf_select, 1); + else + tf_select = 0; + for (i=start;i<end;i++) + tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; + /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ +} + + +static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, + const opus_val16 *bandLogE, int end, int LM, int C, int N0, + AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, + int intensity, opus_val16 surround_trim) +{ + int i; + opus_val32 diff=0; + int c; + int trim_index = 5; + opus_val16 trim = QCONST16(5.f, 8); + opus_val16 logXC, logXC2; + if (C==2) + { + opus_val16 sum = 0; /* Q10 */ + opus_val16 minXC; /* Q10 */ + /* Compute inter-channel correlation for low frequencies */ + for (i=0;i<8;i++) + { + int j; + opus_val32 partial = 0; + for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) + partial = MAC16_16(partial, X[j], X[N0+j]); + sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); + } + sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); + sum = MIN16(QCONST16(1.f, 10), ABS16(sum)); + minXC = sum; + for (i=8;i<intensity;i++) + { + int j; + opus_val32 partial = 0; + for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) + partial = MAC16_16(partial, X[j], X[N0+j]); + minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18)))); + } + minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC)); + /*printf ("%f\n", sum);*/ + if (sum > QCONST16(.995f,10)) + trim_index-=4; + else if (sum > QCONST16(.92f,10)) + trim_index-=3; + else if (sum > QCONST16(.85f,10)) + trim_index-=2; + else if (sum > QCONST16(.8f,10)) + trim_index-=1; + /* mid-side savings estimations based on the LF average*/ + logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum)); + /* mid-side savings estimations based on min correlation */ + logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC))); +#ifdef FIXED_POINT + /* Compensate for Q20 vs Q14 input and convert output to Q8 */ + logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); + logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); +#endif + + trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC)); + *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2)); + } + + /* Estimate spectral tilt */ + c=0; do { + for (i=0;i<end-1;i++) + { + diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end); + } + } while (++c<C); + diff /= C*(end-1); + /*printf("%f\n", diff);*/ + if (diff > QCONST16(2.f, DB_SHIFT)) + trim_index--; + if (diff > QCONST16(8.f, DB_SHIFT)) + trim_index--; + if (diff < -QCONST16(4.f, DB_SHIFT)) + trim_index++; + if (diff < -QCONST16(10.f, DB_SHIFT)) + trim_index++; + trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); + trim -= SHR16(surround_trim, DB_SHIFT-8); + trim -= 2*SHR16(tf_estimate, 14-8); +#ifndef DISABLE_FLOAT_API + if (analysis->valid) + { + trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), + (opus_val16)(QCONST16(2.f, 8)*(analysis->tonality_slope+.05f)))); + } +#endif + +#ifdef FIXED_POINT + trim_index = PSHR32(trim, 8); +#else + trim_index = (int)floor(.5f+trim); +#endif + if (trim_index<0) + trim_index = 0; + if (trim_index>10) + trim_index = 10; + /*printf("%d\n", trim_index);*/ +#ifdef FUZZING + trim_index = rand()%11; +#endif + return trim_index; +} + +static int stereo_analysis(const CELTMode *m, const celt_norm *X, + int LM, int N0) +{ + int i; + int thetas; + opus_val32 sumLR = EPSILON, sumMS = EPSILON; + + /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ + for (i=0;i<13;i++) + { + int j; + for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) + { + opus_val32 L, R, M, S; + /* We cast to 32-bit first because of the -32768 case */ + L = EXTEND32(X[j]); + R = EXTEND32(X[N0+j]); + M = ADD32(L, R); + S = SUB32(L, R); + sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); + sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); + } + } + sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); + thetas = 13; + /* We don't need thetas for lower bands with LM<=1 */ + if (LM<=1) + thetas -= 8; + return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) + > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); +} + +static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, + int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, + int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, + int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc) +{ + int i, c; + opus_int32 tot_boost=0; + opus_val16 maxDepth; + VARDECL(opus_val16, follower); + VARDECL(opus_val16, noise_floor); + SAVE_STACK; + ALLOC(follower, C*nbEBands, opus_val16); + ALLOC(noise_floor, C*nbEBands, opus_val16); + for (i=0;i<nbEBands;i++) + offsets[i] = 0; + /* Dynamic allocation code */ + maxDepth=-QCONST16(31.9f, DB_SHIFT); + for (i=0;i<end;i++) + { + /* Noise floor must take into account eMeans, the depth, the width of the bands + and the preemphasis filter (approx. square of bark band ID) */ + noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i]) + +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6) + +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5)); + } + c=0;do + { + for (i=0;i<end;i++) + maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); + } while (++c<C); + /* Make sure that dynamic allocation can't make us bust the budget */ + if (effectiveBytes > 50 && LM>=1 && !lfe) + { + int last=0; + c=0;do + { + follower[c*nbEBands] = bandLogE2[c*nbEBands]; + for (i=1;i<end;i++) + { + /* The last band to be at least 3 dB higher than the previous one + is the last we'll consider. Otherwise, we run into problems on + bandlimited signals. */ + if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT)) + last=i; + follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]); + } + for (i=last-1;i>=0;i--) + follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i])); + for (i=0;i<end;i++) + follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor[i]); + } while (++c<C); + if (C==2) + { + for (i=start;i<end;i++) + { + /* Consider 24 dB "cross-talk" */ + follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[ i]-QCONST16(4.f,DB_SHIFT)); + follower[ i] = MAX16(follower[ i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT)); + follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i])); + } + } else { + for (i=start;i<end;i++) + { + follower[i] = MAX16(0, bandLogE[i]-follower[i]); + } + } + for (i=start;i<end;i++) + follower[i] = MAX16(follower[i], surround_dynalloc[i]); + /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ + if ((!vbr || constrained_vbr)&&!isTransient) + { + for (i=start;i<end;i++) + follower[i] = HALF16(follower[i]); + } + for (i=start;i<end;i++) + { + int width; + int boost; + int boost_bits; + + if (i<8) + follower[i] *= 2; + if (i>=12) + follower[i] = HALF16(follower[i]); + follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); + + width = C*(eBands[i+1]-eBands[i])<<LM; + if (width<6) + { + boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT); + boost_bits = boost*width<<BITRES; + } else if (width > 48) { + boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT); + boost_bits = (boost*width<<BITRES)/8; + } else { + boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); + boost_bits = boost*6<<BITRES; + } + /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ + if ((!vbr || (constrained_vbr&&!isTransient)) + && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) + { + opus_int32 cap = ((effectiveBytes/4)<<BITRES<<3); + offsets[i] = cap-tot_boost; + tot_boost = cap; + break; + } else { + offsets[i] = boost; + tot_boost += boost_bits; + } + } + } + *tot_boost_ = tot_boost; + RESTORE_STACK; + return maxDepth; +} + + +static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, + int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) +{ + int c; + VARDECL(celt_sig, _pre); + celt_sig *pre[2]; + const CELTMode *mode; + int pitch_index; + opus_val16 gain1; + opus_val16 pf_threshold; + int pf_on; + int qg; + SAVE_STACK; + + mode = st->mode; + ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); + + pre[0] = _pre; + pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); + + + c=0; do { + OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD); + OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N); + } while (++c<CC); + + if (enabled) + { + VARDECL(opus_val16, pitch_buf); + ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); + + pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC, st->arch); + /* Don't search for the fir last 1.5 octave of the range because + there's too many false-positives due to short-term correlation */ + pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, + COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index, + st->arch); + pitch_index = COMBFILTER_MAXPERIOD-pitch_index; + + gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD, + N, &pitch_index, st->prefilter_period, st->prefilter_gain); + if (pitch_index > COMBFILTER_MAXPERIOD-2) + pitch_index = COMBFILTER_MAXPERIOD-2; + gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); + /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ + if (st->loss_rate>2) + gain1 = HALF32(gain1); + if (st->loss_rate>4) + gain1 = HALF32(gain1); + if (st->loss_rate>8) + gain1 = 0; + } else { + gain1 = 0; + pitch_index = COMBFILTER_MINPERIOD; + } + + /* Gain threshold for enabling the prefilter/postfilter */ + pf_threshold = QCONST16(.2f,15); + + /* Adjusting the threshold based on rate and continuity */ + if (abs(pitch_index-st->prefilter_period)*10>pitch_index) + pf_threshold += QCONST16(.2f,15); + if (nbAvailableBytes<25) + pf_threshold += QCONST16(.1f,15); + if (nbAvailableBytes<35) + pf_threshold += QCONST16(.1f,15); + if (st->prefilter_gain > QCONST16(.4f,15)) + pf_threshold -= QCONST16(.1f,15); + if (st->prefilter_gain > QCONST16(.55f,15)) + pf_threshold -= QCONST16(.1f,15); + + /* Hard threshold at 0.2 */ + pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); + if (gain1<pf_threshold) + { + gain1 = 0; + pf_on = 0; + qg = 0; + } else { + /*This block is not gated by a total bits check only because + of the nbAvailableBytes check above.*/ + if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) + gain1=st->prefilter_gain; + +#ifdef FIXED_POINT + qg = ((gain1+1536)>>10)/3-1; +#else + qg = (int)floor(.5f+gain1*32/3)-1; +#endif + qg = IMAX(0, IMIN(7, qg)); + gain1 = QCONST16(0.09375f,15)*(qg+1); + pf_on = 1; + } + /*printf("%d %f\n", pitch_index, gain1);*/ + + c=0; do { + int offset = mode->shortMdctSize-st->overlap; + st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); + OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap); + if (offset) + comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD, + st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, + st->prefilter_tapset, st->prefilter_tapset, NULL, 0); + + comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset, + st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, + st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap); + OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap); + + if (N>COMBFILTER_MAXPERIOD) + { + OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD); + } else { + OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); + OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N); + } + } while (++c<CC); + + RESTORE_STACK; + *gain = gain1; + *pitch = pitch_index; + *qgain = qg; + return pf_on; +} + +static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 base_target, + int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity, + int constrained_vbr, opus_val16 stereo_saving, int tot_boost, + opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth, + int variable_duration, int lfe, int has_surround_mask, opus_val16 surround_masking, + opus_val16 temporal_vbr) +{ + /* The target rate in 8th bits per frame */ + opus_int32 target; + int coded_bins; + int coded_bands; + opus_val16 tf_calibration; + int nbEBands; + const opus_int16 *eBands; + + nbEBands = mode->nbEBands; + eBands = mode->eBands; + + coded_bands = lastCodedBands ? lastCodedBands : nbEBands; + coded_bins = eBands[coded_bands]<<LM; + if (C==2) + coded_bins += eBands[IMIN(intensity, coded_bands)]<<LM; + + target = base_target; + + /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ +#ifndef DISABLE_FLOAT_API + if (analysis->valid && analysis->activity<.4) + target -= (opus_int32)((coded_bins<<BITRES)*(.4f-analysis->activity)); +#endif + /* Stereo savings */ + if (C==2) + { + int coded_stereo_bands; + int coded_stereo_dof; + opus_val16 max_frac; + coded_stereo_bands = IMIN(intensity, coded_bands); + coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; + /* Maximum fraction of the bits we can save if the signal is mono. */ + max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins); + stereo_saving = MIN16(stereo_saving, QCONST16(1.f, 8)); + /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ + target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target), + SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); + } + /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ + target += tot_boost-(16<<LM); + /* Apply transient boost, compensating for average boost. */ + tf_calibration = variable_duration==OPUS_FRAMESIZE_VARIABLE ? + QCONST16(0.02f,14) : QCONST16(0.04f,14); + target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1); + +#ifndef DISABLE_FLOAT_API + /* Apply tonality boost */ + if (analysis->valid && !lfe) + { + opus_int32 tonal_target; + float tonal; + + /* Tonality boost (compensating for the average). */ + tonal = MAX16(0.f,analysis->tonality-.15f)-0.09f; + tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); + if (pitch_change) + tonal_target += (opus_int32)((coded_bins<<BITRES)*.8f); + /*printf("%f %f ", analysis->tonality, tonal);*/ + target = tonal_target; + } +#endif + + if (has_surround_mask&&!lfe) + { + opus_int32 surround_target = target + (opus_int32)SHR32(MULT16_16(surround_masking,coded_bins<<BITRES), DB_SHIFT); + /*printf("%f %d %d %d %d %d %d ", surround_masking, coded_bins, st->end, st->intensity, surround_target, target, st->bitrate);*/ + target = IMAX(target/4, surround_target); + } + + { + opus_int32 floor_depth; + int bins; + bins = eBands[nbEBands-2]<<LM; + /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ + floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT); + floor_depth = IMAX(floor_depth, target>>2); + target = IMIN(target, floor_depth); + /*printf("%f %d\n", maxDepth, floor_depth);*/ + } + + if ((!has_surround_mask||lfe) && (constrained_vbr || bitrate<64000)) + { + opus_val16 rate_factor; +#ifdef FIXED_POINT + rate_factor = MAX16(0,(bitrate-32000)); +#else + rate_factor = MAX16(0,(1.f/32768)*(bitrate-32000)); +#endif + if (constrained_vbr) + rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); + target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); + + } + + if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14)) + { + opus_val16 amount; + opus_val16 tvbr_factor; + amount = MULT16_16_Q15(QCONST16(.0000031f, 30), IMAX(0, IMIN(32000, 96000-bitrate))); + tvbr_factor = SHR32(MULT16_16(temporal_vbr, amount), DB_SHIFT); + target += (opus_int32)MULT16_32_Q15(tvbr_factor, target); + } + + /* Don't allow more than doubling the rate */ + target = IMIN(2*base_target, target); + + return target; +} + +int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) +{ + int i, c, N; + opus_int32 bits; + ec_enc _enc; + VARDECL(celt_sig, in); + VARDECL(celt_sig, freq); + VARDECL(celt_norm, X); + VARDECL(celt_ener, bandE); + VARDECL(opus_val16, bandLogE); + VARDECL(opus_val16, bandLogE2); + VARDECL(int, fine_quant); + VARDECL(opus_val16, error); + VARDECL(int, pulses); + VARDECL(int, cap); + VARDECL(int, offsets); + VARDECL(int, fine_priority); + VARDECL(int, tf_res); + VARDECL(unsigned char, collapse_masks); + celt_sig *prefilter_mem; + opus_val16 *oldBandE, *oldLogE, *oldLogE2; + int shortBlocks=0; + int isTransient=0; + const int CC = st->channels; + const int C = st->stream_channels; + int LM, M; + int tf_select; + int nbFilledBytes, nbAvailableBytes; + int effEnd; + int codedBands; + int tf_sum; + int alloc_trim; + int pitch_index=COMBFILTER_MINPERIOD; + opus_val16 gain1 = 0; + int dual_stereo=0; + int effectiveBytes; + int dynalloc_logp; + opus_int32 vbr_rate; + opus_int32 total_bits; + opus_int32 total_boost; + opus_int32 balance; + opus_int32 tell; + int prefilter_tapset=0; + int pf_on; + int anti_collapse_rsv; + int anti_collapse_on=0; + int silence=0; + int tf_chan = 0; + opus_val16 tf_estimate; + int pitch_change=0; + opus_int32 tot_boost; + opus_val32 sample_max; + opus_val16 maxDepth; + const OpusCustomMode *mode; + int nbEBands; + int overlap; + const opus_int16 *eBands; + int secondMdct; + int signalBandwidth; + int transient_got_disabled=0; + opus_val16 surround_masking=0; + opus_val16 temporal_vbr=0; + opus_val16 surround_trim = 0; + opus_int32 equiv_rate = 510000; + VARDECL(opus_val16, surround_dynalloc); + ALLOC_STACK; + + mode = st->mode; + nbEBands = mode->nbEBands; + overlap = mode->overlap; + eBands = mode->eBands; + tf_estimate = 0; + if (nbCompressedBytes<2 || pcm==NULL) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } + + frame_size *= st->upsample; + for (LM=0;LM<=mode->maxLM;LM++) + if (mode->shortMdctSize<<LM==frame_size) + break; + if (LM>mode->maxLM) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } + M=1<<LM; + N = M*mode->shortMdctSize; + + prefilter_mem = st->in_mem+CC*(st->overlap); + oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD)); + oldLogE = oldBandE + CC*nbEBands; + oldLogE2 = oldLogE + CC*nbEBands; + + if (enc==NULL) + { + tell=1; + nbFilledBytes=0; + } else { + tell=ec_tell(enc); + nbFilledBytes=(tell+4)>>3; + } + +#ifdef CUSTOM_MODES + if (st->signalling && enc==NULL) + { + int tmp = (mode->effEBands-st->end)>>1; + st->end = IMAX(1, mode->effEBands-tmp); + compressed[0] = tmp<<5; + compressed[0] |= LM<<3; + compressed[0] |= (C==2)<<2; + /* Convert "standard mode" to Opus header */ + if (mode->Fs==48000 && mode->shortMdctSize==120) + { + int c0 = toOpus(compressed[0]); + if (c0<0) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } + compressed[0] = c0; + } + compressed++; + nbCompressedBytes--; + } +#else + celt_assert(st->signalling==0); +#endif + + /* Can't produce more than 1275 output bytes */ + nbCompressedBytes = IMIN(nbCompressedBytes,1275); + nbAvailableBytes = nbCompressedBytes - nbFilledBytes; + + if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) + { + opus_int32 den=mode->Fs>>BITRES; + vbr_rate=(st->bitrate*frame_size+(den>>1))/den; +#ifdef CUSTOM_MODES + if (st->signalling) + vbr_rate -= 8<<BITRES; +#endif + effectiveBytes = vbr_rate>>(3+BITRES); + } else { + opus_int32 tmp; + vbr_rate = 0; + tmp = st->bitrate*frame_size; + if (tell>1) + tmp += tell; + if (st->bitrate!=OPUS_BITRATE_MAX) + nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, + (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); + effectiveBytes = nbCompressedBytes; + } + if (st->bitrate != OPUS_BITRATE_MAX) + equiv_rate = st->bitrate - (40*C+20)*((400>>LM) - 50); + + if (enc==NULL) + { + ec_enc_init(&_enc, compressed, nbCompressedBytes); + enc = &_enc; + } + + if (vbr_rate>0) + { + /* Computes the max bit-rate allowed in VBR mode to avoid violating the + target rate and buffering. + We must do this up front so that bust-prevention logic triggers + correctly if we don't have enough bits. */ + if (st->constrained_vbr) + { + opus_int32 vbr_bound; + opus_int32 max_allowed; + /* We could use any multiple of vbr_rate as bound (depending on the + delay). + This is clamped to ensure we use at least two bytes if the encoder + was entirely empty, but to allow 0 in hybrid mode. */ + vbr_bound = vbr_rate; + max_allowed = IMIN(IMAX(tell==1?2:0, + (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), + nbAvailableBytes); + if(max_allowed < nbAvailableBytes) + { + nbCompressedBytes = nbFilledBytes+max_allowed; + nbAvailableBytes = max_allowed; + ec_enc_shrink(enc, nbCompressedBytes); + } + } + } + total_bits = nbCompressedBytes*8; + + effEnd = st->end; + if (effEnd > mode->effEBands) + effEnd = mode->effEBands; + + ALLOC(in, CC*(N+st->overlap), celt_sig); + + sample_max=MAX32(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample)); + st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); + sample_max=MAX32(sample_max, st->overlap_max); +#ifdef FIXED_POINT + silence = (sample_max==0); +#else + silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); +#endif +#ifdef FUZZING + if ((rand()&0x3F)==0) + silence = 1; +#endif + if (tell==1) + ec_enc_bit_logp(enc, silence, 15); + else + silence=0; + if (silence) + { + /*In VBR mode there is no need to send more than the minimum. */ + if (vbr_rate>0) + { + effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2); + total_bits=nbCompressedBytes*8; + nbAvailableBytes=2; + ec_enc_shrink(enc, nbCompressedBytes); + } + /* Pretend we've filled all the remaining bits with zeros + (that's what the initialiser did anyway) */ + tell = nbCompressedBytes*8; + enc->nbits_total+=tell-ec_tell(enc); + } + c=0; do { + celt_preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample, + mode->preemph, st->preemph_memE+c, st->clip); + } while (++c<CC); + + + + /* Find pitch period and gain */ + { + int enabled; + int qg; + enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && st->start==0 && !silence && !st->disable_pf + && st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration==OPUS_FRAMESIZE_VARIABLE); + + prefilter_tapset = st->tapset_decision; + pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); + if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3) + && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) + pitch_change = 1; + if (pf_on==0) + { + if(st->start==0 && tell+16<=total_bits) + ec_enc_bit_logp(enc, 0, 1); + } else { + /*This block is not gated by a total bits check only because + of the nbAvailableBytes check above.*/ + int octave; + ec_enc_bit_logp(enc, 1, 1); + pitch_index += 1; + octave = EC_ILOG(pitch_index)-5; + ec_enc_uint(enc, octave, 6); + ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); + pitch_index -= 1; + ec_enc_bits(enc, qg, 3); + ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); + } + } + + isTransient = 0; + shortBlocks = 0; + if (st->complexity >= 1 && !st->lfe) + { + isTransient = transient_analysis(in, N+st->overlap, CC, + &tf_estimate, &tf_chan); + } + if (LM>0 && ec_tell(enc)+3<=total_bits) + { + if (isTransient) + shortBlocks = M; + } else { + isTransient = 0; + transient_got_disabled=1; + } + + ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ + ALLOC(bandE,nbEBands*CC, celt_ener); + ALLOC(bandLogE,nbEBands*CC, opus_val16); + + secondMdct = shortBlocks && st->complexity>=8; + ALLOC(bandLogE2, C*nbEBands, opus_val16); + if (secondMdct) + { + compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample); + compute_band_energies(mode, freq, bandE, effEnd, C, M); + amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C); + for (i=0;i<C*nbEBands;i++) + bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); + } + + compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); + if (CC==2&&C==1) + tf_chan = 0; + compute_band_energies(mode, freq, bandE, effEnd, C, M); + + if (st->lfe) + { + for (i=2;i<st->end;i++) + { + bandE[i] = IMIN(bandE[i], MULT16_32_Q15(QCONST16(1e-4f,15),bandE[0])); + bandE[i] = MAX32(bandE[i], EPSILON); + } + } + amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); + + ALLOC(surround_dynalloc, C*nbEBands, opus_val16); + for(i=0;i<st->end;i++) + surround_dynalloc[i] = 0; + /* This computes how much masking takes place between surround channels */ + if (st->start==0&&st->energy_mask&&!st->lfe) + { + int mask_end; + int midband; + int count_dynalloc; + opus_val32 mask_avg=0; + opus_val32 diff=0; + int count=0; + mask_end = IMAX(2,st->lastCodedBands); + for (c=0;c<C;c++) + { + for(i=0;i<mask_end;i++) + { + opus_val16 mask; + mask = MAX16(MIN16(st->energy_mask[nbEBands*c+i], + QCONST16(.25f, DB_SHIFT)), -QCONST16(2.0f, DB_SHIFT)); + if (mask > 0) + mask = HALF16(mask); + mask_avg += MULT16_16(mask, eBands[i+1]-eBands[i]); + count += eBands[i+1]-eBands[i]; + diff += MULT16_16(mask, 1+2*i-mask_end); + } + } + mask_avg = DIV32_16(mask_avg,count); + mask_avg += QCONST16(.2f, DB_SHIFT); + diff = diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end); + /* Again, being conservative */ + diff = HALF32(diff); + diff = MAX32(MIN32(diff, QCONST32(.031f, DB_SHIFT)), -QCONST32(.031f, DB_SHIFT)); + /* Find the band that's in the middle of the coded spectrum */ + for (midband=0;eBands[midband+1] < eBands[mask_end]/2;midband++); + count_dynalloc=0; + for(i=0;i<mask_end;i++) + { + opus_val32 lin; + opus_val16 unmask; + lin = mask_avg + diff*(i-midband); + if (C==2) + unmask = MAX16(st->energy_mask[i], st->energy_mask[nbEBands+i]); + else + unmask = st->energy_mask[i]; + unmask = MIN16(unmask, QCONST16(.0f, DB_SHIFT)); + unmask -= lin; + if (unmask > QCONST16(.25f, DB_SHIFT)) + { + surround_dynalloc[i] = unmask - QCONST16(.25f, DB_SHIFT); + count_dynalloc++; + } + } + if (count_dynalloc>=3) + { + /* If we need dynalloc in many bands, it's probably because our + initial masking rate was too low. */ + mask_avg += QCONST16(.25f, DB_SHIFT); + if (mask_avg>0) + { + /* Something went really wrong in the original calculations, + disabling masking. */ + mask_avg = 0; + diff = 0; + for(i=0;i<mask_end;i++) + surround_dynalloc[i] = 0; + } else { + for(i=0;i<mask_end;i++) + surround_dynalloc[i] = MAX16(0, surround_dynalloc[i]-QCONST16(.25f, DB_SHIFT)); + } + } + mask_avg += QCONST16(.2f, DB_SHIFT); + /* Convert to 1/64th units used for the trim */ + surround_trim = 64*diff; + /*printf("%d %d ", mask_avg, surround_trim);*/ + surround_masking = mask_avg; + } + /* Temporal VBR (but not for LFE) */ + if (!st->lfe) + { + opus_val16 follow=-QCONST16(10.0f,DB_SHIFT); + opus_val32 frame_avg=0; + opus_val16 offset = shortBlocks?HALF16(SHL16(LM, DB_SHIFT)):0; + for(i=st->start;i<st->end;i++) + { + follow = MAX16(follow-QCONST16(1.f, DB_SHIFT), bandLogE[i]-offset); + if (C==2) + follow = MAX16(follow, bandLogE[i+nbEBands]-offset); + frame_avg += follow; + } + frame_avg /= (st->end-st->start); + temporal_vbr = SUB16(frame_avg,st->spec_avg); + temporal_vbr = MIN16(QCONST16(3.f, DB_SHIFT), MAX16(-QCONST16(1.5f, DB_SHIFT), temporal_vbr)); + st->spec_avg += MULT16_16_Q15(QCONST16(.02f, 15), temporal_vbr); + } + /*for (i=0;i<21;i++) + printf("%f ", bandLogE[i]); + printf("\n");*/ + + if (!secondMdct) + { + for (i=0;i<C*nbEBands;i++) + bandLogE2[i] = bandLogE[i]; + } + + /* Last chance to catch any transient we might have missed in the + time-domain analysis */ + if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe) + { + if (patch_transient_decision(bandLogE, oldBandE, nbEBands, st->end, C)) + { + isTransient = 1; + shortBlocks = M; + compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); + compute_band_energies(mode, freq, bandE, effEnd, C, M); + amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); + /* Compensate for the scaling of short vs long mdcts */ + for (i=0;i<C*nbEBands;i++) + bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); + tf_estimate = QCONST16(.2f,14); + } + } + + if (LM>0 && ec_tell(enc)+3<=total_bits) + ec_enc_bit_logp(enc, isTransient, 3); + + ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ + + /* Band normalisation */ + normalise_bands(mode, freq, X, bandE, effEnd, C, M); + + ALLOC(tf_res, nbEBands, int); + /* Disable variable tf resolution for hybrid and at very low bitrate */ + if (effectiveBytes>=15*C && st->start==0 && st->complexity>=2 && !st->lfe) + { + int lambda; + if (effectiveBytes<40) + lambda = 12; + else if (effectiveBytes<60) + lambda = 6; + else if (effectiveBytes<100) + lambda = 4; + else + lambda = 3; + lambda*=2; + tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); + for (i=effEnd;i<st->end;i++) + tf_res[i] = tf_res[effEnd-1]; + } else { + tf_sum = 0; + for (i=0;i<st->end;i++) + tf_res[i] = isTransient; + tf_select=0; + } + + ALLOC(error, C*nbEBands, opus_val16); + quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE, + oldBandE, total_bits, error, enc, + C, LM, nbAvailableBytes, st->force_intra, + &st->delayedIntra, st->complexity >= 4, st->loss_rate, st->lfe); + + tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); + + if (ec_tell(enc)+4<=total_bits) + { + if (st->lfe) + { + st->tapset_decision = 0; + st->spread_decision = SPREAD_NORMAL; + } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || st->start != 0) + { + if (st->complexity == 0) + st->spread_decision = SPREAD_NONE; + else + st->spread_decision = SPREAD_NORMAL; + } else { + /* Disable new spreading+tapset estimator until we can show it works + better than the old one. So far it seems like spreading_decision() + works best. */ +#if 0 + if (st->analysis.valid) + { + static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)}; + static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)}; + static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)}; + static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)}; + st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); + st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); + } else +#endif + { + st->spread_decision = spreading_decision(mode, X, + &st->tonal_average, st->spread_decision, &st->hf_average, + &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); + } + /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ + /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ + } + ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); + } + + ALLOC(offsets, nbEBands, int); + + maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, st->start, st->end, C, offsets, + st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, + eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc); + /* For LFE, everything interesting is in the first band */ + if (st->lfe) + offsets[0] = IMIN(8, effectiveBytes/3); + ALLOC(cap, nbEBands, int); + init_caps(mode,cap,LM,C); + + dynalloc_logp = 6; + total_bits<<=BITRES; + total_boost = 0; + tell = ec_tell_frac(enc); + for (i=st->start;i<st->end;i++) + { + int width, quanta; + int dynalloc_loop_logp; + int boost; + int j; + width = C*(eBands[i+1]-eBands[i])<<LM; + /* quanta is 6 bits, but no more than 1 bit/sample + and no less than 1/8 bit/sample */ + quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); + dynalloc_loop_logp = dynalloc_logp; + boost = 0; + for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost + && boost < cap[i]; j++) + { + int flag; + flag = j<offsets[i]; + ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); + tell = ec_tell_frac(enc); + if (!flag) + break; + boost += quanta; + total_boost += quanta; + dynalloc_loop_logp = 1; + } + /* Making dynalloc more likely */ + if (j) + dynalloc_logp = IMAX(2, dynalloc_logp-1); + offsets[i] = boost; + } + + if (C==2) + { + static const opus_val16 intensity_thresholds[21]= + /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/ + { 1, 2, 3, 4, 5, 6, 7, 8,16,24,36,44,50,56,62,67,72,79,88,106,134}; + static const opus_val16 intensity_histeresis[21]= + { 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6, 8, 8}; + + /* Always use MS for 2.5 ms frames until we can do a better analysis */ + if (LM!=0) + dual_stereo = stereo_analysis(mode, X, LM, N); + + st->intensity = hysteresis_decision((opus_val16)(equiv_rate/1000), + intensity_thresholds, intensity_histeresis, 21, st->intensity); + st->intensity = IMIN(st->end,IMAX(st->start, st->intensity)); + } + + alloc_trim = 5; + if (tell+(6<<BITRES) <= total_bits - total_boost) + { + if (st->lfe) + alloc_trim = 5; + else + alloc_trim = alloc_trim_analysis(mode, X, bandLogE, + st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity, surround_trim); + ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); + tell = ec_tell_frac(enc); + } + + /* Variable bitrate */ + if (vbr_rate>0) + { + opus_val16 alpha; + opus_int32 delta; + /* The target rate in 8th bits per frame */ + opus_int32 target, base_target; + opus_int32 min_allowed; + int lm_diff = mode->maxLM - LM; + + /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. + The CELT allocator will just not be able to use more than that anyway. */ + nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); + base_target = vbr_rate - ((40*C+20)<<BITRES); + + if (st->constrained_vbr) + base_target += (st->vbr_offset>>lm_diff); + + target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate, + st->lastCodedBands, C, st->intensity, st->constrained_vbr, + st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth, + st->variable_duration, st->lfe, st->energy_mask!=NULL, surround_masking, + temporal_vbr); + + /* The current offset is removed from the target and the space used + so far is added*/ + target=target+tell; + /* In VBR mode the frame size must not be reduced so much that it would + result in the encoder running out of bits. + The margin of 2 bytes ensures that none of the bust-prevention logic + in the decoder will have triggered so far. */ + min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; + + nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); + nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); + nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; + + /* By how much did we "miss" the target on that frame */ + delta = target - vbr_rate; + + target=nbAvailableBytes<<(BITRES+3); + + /*If the frame is silent we don't adjust our drift, otherwise + the encoder will shoot to very high rates after hitting a + span of silence, but we do allow the bitres to refill. + This means that we'll undershoot our target in CVBR/VBR modes + on files with lots of silence. */ + if(silence) + { + nbAvailableBytes = 2; + target = 2*8<<BITRES; + delta = 0; + } + + if (st->vbr_count < 970) + { + st->vbr_count++; + alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); + } else + alpha = QCONST16(.001f,15); + /* How many bits have we used in excess of what we're allowed */ + if (st->constrained_vbr) + st->vbr_reservoir += target - vbr_rate; + /*printf ("%d\n", st->vbr_reservoir);*/ + + /* Compute the offset we need to apply in order to reach the target */ + if (st->constrained_vbr) + { + st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift); + st->vbr_offset = -st->vbr_drift; + } + /*printf ("%d\n", st->vbr_drift);*/ + + if (st->constrained_vbr && st->vbr_reservoir < 0) + { + /* We're under the min value -- increase rate */ + int adjust = (-st->vbr_reservoir)/(8<<BITRES); + /* Unless we're just coding silence */ + nbAvailableBytes += silence?0:adjust; + st->vbr_reservoir = 0; + /*printf ("+%d\n", adjust);*/ + } + nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); + /*printf("%d\n", nbCompressedBytes*50*8);*/ + /* This moves the raw bits to take into account the new compressed size */ + ec_enc_shrink(enc, nbCompressedBytes); + } + + /* Bit allocation */ + ALLOC(fine_quant, nbEBands, int); + ALLOC(pulses, nbEBands, int); + ALLOC(fine_priority, nbEBands, int); + + /* bits = packet size - where we are - safety*/ + bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; + anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; + bits -= anti_collapse_rsv; + signalBandwidth = st->end-1; +#ifndef DISABLE_FLOAT_API + if (st->analysis.valid) + { + int min_bandwidth; + if (equiv_rate < (opus_int32)32000*C) + min_bandwidth = 13; + else if (equiv_rate < (opus_int32)48000*C) + min_bandwidth = 16; + else if (equiv_rate < (opus_int32)60000*C) + min_bandwidth = 18; + else if (equiv_rate < (opus_int32)80000*C) + min_bandwidth = 19; + else + min_bandwidth = 20; + signalBandwidth = IMAX(st->analysis.bandwidth, min_bandwidth); + } +#endif + if (st->lfe) + signalBandwidth = 1; + codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, + alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, + fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); + if (st->lastCodedBands) + st->lastCodedBands = IMIN(st->lastCodedBands+1,IMAX(st->lastCodedBands-1,codedBands)); + else + st->lastCodedBands = codedBands; + + quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C); + + /* Residual quantisation */ + ALLOC(collapse_masks, C*nbEBands, unsigned char); + quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, + bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, + nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng); + + if (anti_collapse_rsv > 0) + { + anti_collapse_on = st->consec_transient<2; +#ifdef FUZZING + anti_collapse_on = rand()&0x1; +#endif + ec_enc_bits(enc, anti_collapse_on, 1); + } + quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); + + if (silence) + { + for (i=0;i<C*nbEBands;i++) + oldBandE[i] = -QCONST16(28.f,DB_SHIFT); + } + +#ifdef RESYNTH + /* Re-synthesis of the coded audio if required */ + { + celt_sig *out_mem[2]; + + if (anti_collapse_on) + { + anti_collapse(mode, X, collapse_masks, LM, C, N, + st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); + } + + if (silence) + { + for (i=0;i<C*N;i++) + freq[i] = 0; + } else { + /* Synthesis */ + denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M); + } + + c=0; do { + OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2); + } while (++c<CC); + + if (CC==2&&C==1) + { + for (i=0;i<N;i++) + freq[N+i] = freq[i]; + } + + c=0; do { + out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N; + } while (++c<CC); + + compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM); + + c=0; do { + st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); + st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD); + comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, + st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, + mode->window, st->overlap); + if (LM!=0) + comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, + st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, + mode->window, overlap); + } while (++c<CC); + + /* We reuse freq[] as scratch space for the de-emphasis */ + deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq); + st->prefilter_period_old = st->prefilter_period; + st->prefilter_gain_old = st->prefilter_gain; + st->prefilter_tapset_old = st->prefilter_tapset; + } +#endif + + st->prefilter_period = pitch_index; + st->prefilter_gain = gain1; + st->prefilter_tapset = prefilter_tapset; +#ifdef RESYNTH + if (LM!=0) + { + st->prefilter_period_old = st->prefilter_period; + st->prefilter_gain_old = st->prefilter_gain; + st->prefilter_tapset_old = st->prefilter_tapset; + } +#endif + + if (CC==2&&C==1) { + for (i=0;i<nbEBands;i++) + oldBandE[nbEBands+i]=oldBandE[i]; + } + + if (!isTransient) + { + for (i=0;i<CC*nbEBands;i++) + oldLogE2[i] = oldLogE[i]; + for (i=0;i<CC*nbEBands;i++) + oldLogE[i] = oldBandE[i]; + } else { + for (i=0;i<CC*nbEBands;i++) + oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); + } + /* In case start or end were to change */ + c=0; do + { + for (i=0;i<st->start;i++) + { + oldBandE[c*nbEBands+i]=0; + oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); + } + for (i=st->end;i<nbEBands;i++) + { + oldBandE[c*nbEBands+i]=0; + oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); + } + } while (++c<CC); + + if (isTransient || transient_got_disabled) + st->consec_transient++; + else + st->consec_transient=0; + st->rng = enc->rng; + + /* If there's any room left (can only happen for very high rates), + it's already filled with zeros */ + ec_enc_done(enc); + +#ifdef CUSTOM_MODES + if (st->signalling) + nbCompressedBytes++; +#endif + + RESTORE_STACK; + if (ec_get_error(enc)) + return OPUS_INTERNAL_ERROR; + else + return nbCompressedBytes; +} + + +#ifdef CUSTOM_MODES + +#ifdef FIXED_POINT +int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) +{ + return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); +} + +#ifndef DISABLE_FLOAT_API +int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) +{ + int j, ret, C, N; + VARDECL(opus_int16, in); + ALLOC_STACK; + + if (pcm==NULL) + return OPUS_BAD_ARG; + + C = st->channels; + N = frame_size; + ALLOC(in, C*N, opus_int16); + + for (j=0;j<C*N;j++) + in[j] = FLOAT2INT16(pcm[j]); + + ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); +#ifdef RESYNTH + for (j=0;j<C*N;j++) + ((float*)pcm)[j]=in[j]*(1.f/32768.f); +#endif + RESTORE_STACK; + return ret; +} +#endif /* DISABLE_FLOAT_API */ +#else + +int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) +{ + int j, ret, C, N; + VARDECL(celt_sig, in); + ALLOC_STACK; + + if (pcm==NULL) + return OPUS_BAD_ARG; + + C=st->channels; + N=frame_size; + ALLOC(in, C*N, celt_sig); + for (j=0;j<C*N;j++) { + in[j] = SCALEOUT(pcm[j]); + } + + ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); +#ifdef RESYNTH + for (j=0;j<C*N;j++) + ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); +#endif + RESTORE_STACK; + return ret; +} + +int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) +{ + return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); +} + +#endif + +#endif /* CUSTOM_MODES */ + +int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) +{ + va_list ap; + + va_start(ap, request); + switch (request) + { + case OPUS_SET_COMPLEXITY_REQUEST: + { + int value = va_arg(ap, opus_int32); + if (value<0 || value>10) + goto bad_arg; + st->complexity = value; + } + break; + case CELT_SET_START_BAND_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if (value<0 || value>=st->mode->nbEBands) + goto bad_arg; + st->start = value; + } + break; + case CELT_SET_END_BAND_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if (value<1 || value>st->mode->nbEBands) + goto bad_arg; + st->end = value; + } + break; + case CELT_SET_PREDICTION_REQUEST: + { + int value = va_arg(ap, opus_int32); + if (value<0 || value>2) + goto bad_arg; + st->disable_pf = value<=1; + st->force_intra = value==0; + } + break; + case OPUS_SET_PACKET_LOSS_PERC_REQUEST: + { + int value = va_arg(ap, opus_int32); + if (value<0 || value>100) + goto bad_arg; + st->loss_rate = value; + } + break; + case OPUS_SET_VBR_CONSTRAINT_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + st->constrained_vbr = value; + } + break; + case OPUS_SET_VBR_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + st->vbr = value; + } + break; + case OPUS_SET_BITRATE_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if (value<=500 && value!=OPUS_BITRATE_MAX) + goto bad_arg; + value = IMIN(value, 260000*st->channels); + st->bitrate = value; + } + break; + case CELT_SET_CHANNELS_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if (value<1 || value>2) + goto bad_arg; + st->stream_channels = value; + } + break; + case OPUS_SET_LSB_DEPTH_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if (value<8 || value>24) + goto bad_arg; + st->lsb_depth=value; + } + break; + case OPUS_GET_LSB_DEPTH_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + *value=st->lsb_depth; + } + break; + case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + st->variable_duration = value; + } + break; + case OPUS_RESET_STATE: + { + int i; + opus_val16 *oldBandE, *oldLogE, *oldLogE2; + oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD)); + oldLogE = oldBandE + st->channels*st->mode->nbEBands; + oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; + OPUS_CLEAR((char*)&st->ENCODER_RESET_START, + opus_custom_encoder_get_size(st->mode, st->channels)- + ((char*)&st->ENCODER_RESET_START - (char*)st)); + for (i=0;i<st->channels*st->mode->nbEBands;i++) + oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); + st->vbr_offset = 0; + st->delayedIntra = 1; + st->spread_decision = SPREAD_NORMAL; + st->tonal_average = 256; + st->hf_average = 0; + st->tapset_decision = 0; + } + break; +#ifdef CUSTOM_MODES + case CELT_SET_INPUT_CLIPPING_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + st->clip = value; + } + break; +#endif + case CELT_SET_SIGNALLING_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + st->signalling = value; + } + break; + case CELT_SET_ANALYSIS_REQUEST: + { + AnalysisInfo *info = va_arg(ap, AnalysisInfo *); + if (info) + OPUS_COPY(&st->analysis, info, 1); + } + break; + case CELT_GET_MODE_REQUEST: + { + const CELTMode ** value = va_arg(ap, const CELTMode**); + if (value==0) + goto bad_arg; + *value=st->mode; + } + break; + case OPUS_GET_FINAL_RANGE_REQUEST: + { + opus_uint32 * value = va_arg(ap, opus_uint32 *); + if (value==0) + goto bad_arg; + *value=st->rng; + } + break; + case OPUS_SET_LFE_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + st->lfe = value; + } + break; + case OPUS_SET_ENERGY_MASK_REQUEST: + { + opus_val16 *value = va_arg(ap, opus_val16*); + st->energy_mask = value; + } + break; + default: + goto bad_request; + } + va_end(ap); + return OPUS_OK; +bad_arg: + va_end(ap); + return OPUS_BAD_ARG; +bad_request: + va_end(ap); + return OPUS_UNIMPLEMENTED; +} |