summaryrefslogtreecommitdiff
path: root/src/renderergl2/tr_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/renderergl2/tr_main.c')
-rw-r--r--src/renderergl2/tr_main.c2882
1 files changed, 2882 insertions, 0 deletions
diff --git a/src/renderergl2/tr_main.c b/src/renderergl2/tr_main.c
new file mode 100644
index 00000000..0935dce7
--- /dev/null
+++ b/src/renderergl2/tr_main.c
@@ -0,0 +1,2882 @@
+/*
+===========================================================================
+Copyright (C) 1999-2005 Id Software, Inc.
+
+This file is part of Quake III Arena source code.
+
+Quake III Arena source code is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 2 of the License,
+or (at your option) any later version.
+
+Quake III Arena source code is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Quake III Arena source code; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+===========================================================================
+*/
+// tr_main.c -- main control flow for each frame
+
+#include "tr_local.h"
+
+#include <string.h> // memcpy
+
+trGlobals_t tr;
+
+static float s_flipMatrix[16] = {
+ // convert from our coordinate system (looking down X)
+ // to OpenGL's coordinate system (looking down -Z)
+ 0, 0, -1, 0,
+ -1, 0, 0, 0,
+ 0, 1, 0, 0,
+ 0, 0, 0, 1
+};
+
+
+refimport_t ri;
+
+// entities that will have procedurally generated surfaces will just
+// point at this for their sorting surface
+surfaceType_t entitySurface = SF_ENTITY;
+
+/*
+================
+R_CompareVert
+================
+*/
+qboolean R_CompareVert(srfVert_t * v1, srfVert_t * v2, qboolean checkST)
+{
+ int i;
+
+ for(i = 0; i < 3; i++)
+ {
+ if(floor(v1->xyz[i] + 0.1) != floor(v2->xyz[i] + 0.1))
+ {
+ return qfalse;
+ }
+
+ if(checkST && ((v1->st[0] != v2->st[0]) || (v1->st[1] != v2->st[1])))
+ {
+ return qfalse;
+ }
+ }
+
+ return qtrue;
+}
+
+/*
+=============
+R_CalcNormalForTriangle
+=============
+*/
+void R_CalcNormalForTriangle(vec3_t normal, const vec3_t v0, const vec3_t v1, const vec3_t v2)
+{
+ vec3_t udir, vdir;
+
+ // compute the face normal based on vertex points
+ VectorSubtract(v2, v0, udir);
+ VectorSubtract(v1, v0, vdir);
+ CrossProduct(udir, vdir, normal);
+
+ VectorNormalize(normal);
+}
+
+/*
+=============
+R_CalcTangentsForTriangle
+http://members.rogers.com/deseric/tangentspace.htm
+=============
+*/
+void R_CalcTangentsForTriangle(vec3_t tangent, vec3_t bitangent,
+ const vec3_t v0, const vec3_t v1, const vec3_t v2,
+ const vec2_t t0, const vec2_t t1, const vec2_t t2)
+{
+ int i;
+ vec3_t planes[3];
+ vec3_t u, v;
+
+ for(i = 0; i < 3; i++)
+ {
+ VectorSet(u, v1[i] - v0[i], t1[0] - t0[0], t1[1] - t0[1]);
+ VectorSet(v, v2[i] - v0[i], t2[0] - t0[0], t2[1] - t0[1]);
+
+ VectorNormalize(u);
+ VectorNormalize(v);
+
+ CrossProduct(u, v, planes[i]);
+ }
+
+ //So your tangent space will be defined by this :
+ //Normal = Normal of the triangle or Tangent X Bitangent (careful with the cross product,
+ // you have to make sure the normal points in the right direction)
+ //Tangent = ( dp(Fx(s,t)) / ds, dp(Fy(s,t)) / ds, dp(Fz(s,t)) / ds ) or ( -Bx/Ax, -By/Ay, - Bz/Az )
+ //Bitangent = ( dp(Fx(s,t)) / dt, dp(Fy(s,t)) / dt, dp(Fz(s,t)) / dt ) or ( -Cx/Ax, -Cy/Ay, -Cz/Az )
+
+ // tangent...
+ tangent[0] = -planes[0][1] / planes[0][0];
+ tangent[1] = -planes[1][1] / planes[1][0];
+ tangent[2] = -planes[2][1] / planes[2][0];
+ VectorNormalize(tangent);
+
+ // bitangent...
+ bitangent[0] = -planes[0][2] / planes[0][0];
+ bitangent[1] = -planes[1][2] / planes[1][0];
+ bitangent[2] = -planes[2][2] / planes[2][0];
+ VectorNormalize(bitangent);
+}
+
+
+
+
+/*
+=============
+R_CalcTangentSpace
+=============
+*/
+void R_CalcTangentSpace(vec3_t tangent, vec3_t bitangent, vec3_t normal,
+ const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2)
+{
+ vec3_t cp, u, v;
+ vec3_t faceNormal;
+
+ VectorSet(u, v1[0] - v0[0], t1[0] - t0[0], t1[1] - t0[1]);
+ VectorSet(v, v2[0] - v0[0], t2[0] - t0[0], t2[1] - t0[1]);
+
+ CrossProduct(u, v, cp);
+ if(fabs(cp[0]) > 10e-6)
+ {
+ tangent[0] = -cp[1] / cp[0];
+ bitangent[0] = -cp[2] / cp[0];
+ }
+
+ u[0] = v1[1] - v0[1];
+ v[0] = v2[1] - v0[1];
+
+ CrossProduct(u, v, cp);
+ if(fabs(cp[0]) > 10e-6)
+ {
+ tangent[1] = -cp[1] / cp[0];
+ bitangent[1] = -cp[2] / cp[0];
+ }
+
+ u[0] = v1[2] - v0[2];
+ v[0] = v2[2] - v0[2];
+
+ CrossProduct(u, v, cp);
+ if(fabs(cp[0]) > 10e-6)
+ {
+ tangent[2] = -cp[1] / cp[0];
+ bitangent[2] = -cp[2] / cp[0];
+ }
+
+ VectorNormalize(tangent);
+ VectorNormalize(bitangent);
+
+ // compute the face normal based on vertex points
+ if ( normal[0] == 0.0f && normal[1] == 0.0f && normal[2] == 0.0f )
+ {
+ VectorSubtract(v2, v0, u);
+ VectorSubtract(v1, v0, v);
+ CrossProduct(u, v, faceNormal);
+ }
+ else
+ {
+ VectorCopy(normal, faceNormal);
+ }
+
+ VectorNormalize(faceNormal);
+
+#if 1
+ // Gram-Schmidt orthogonalize
+ //tangent[a] = (t - n * Dot(n, t)).Normalize();
+ VectorMA(tangent, -DotProduct(faceNormal, tangent), faceNormal, tangent);
+ VectorNormalize(tangent);
+
+ // compute the cross product B=NxT
+ //CrossProduct(normal, tangent, bitangent);
+#else
+ // normal, compute the cross product N=TxB
+ CrossProduct(tangent, bitangent, normal);
+ VectorNormalize(normal);
+
+ if(DotProduct(normal, faceNormal) < 0)
+ {
+ //VectorInverse(normal);
+ //VectorInverse(tangent);
+ //VectorInverse(bitangent);
+
+ // compute the cross product T=BxN
+ CrossProduct(bitangent, faceNormal, tangent);
+
+ // compute the cross product B=NxT
+ //CrossProduct(normal, tangent, bitangent);
+ }
+#endif
+
+ VectorCopy(faceNormal, normal);
+}
+
+void R_CalcTangentSpaceFast(vec3_t tangent, vec3_t bitangent, vec3_t normal,
+ const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2)
+{
+ vec3_t cp, u, v;
+ vec3_t faceNormal;
+
+ VectorSet(u, v1[0] - v0[0], t1[0] - t0[0], t1[1] - t0[1]);
+ VectorSet(v, v2[0] - v0[0], t2[0] - t0[0], t2[1] - t0[1]);
+
+ CrossProduct(u, v, cp);
+ if(fabs(cp[0]) > 10e-6)
+ {
+ tangent[0] = -cp[1] / cp[0];
+ bitangent[0] = -cp[2] / cp[0];
+ }
+
+ u[0] = v1[1] - v0[1];
+ v[0] = v2[1] - v0[1];
+
+ CrossProduct(u, v, cp);
+ if(fabs(cp[0]) > 10e-6)
+ {
+ tangent[1] = -cp[1] / cp[0];
+ bitangent[1] = -cp[2] / cp[0];
+ }
+
+ u[0] = v1[2] - v0[2];
+ v[0] = v2[2] - v0[2];
+
+ CrossProduct(u, v, cp);
+ if(fabs(cp[0]) > 10e-6)
+ {
+ tangent[2] = -cp[1] / cp[0];
+ bitangent[2] = -cp[2] / cp[0];
+ }
+
+ VectorNormalizeFast(tangent);
+ VectorNormalizeFast(bitangent);
+
+ // compute the face normal based on vertex points
+ VectorSubtract(v2, v0, u);
+ VectorSubtract(v1, v0, v);
+ CrossProduct(u, v, faceNormal);
+
+ VectorNormalizeFast(faceNormal);
+
+#if 0
+ // normal, compute the cross product N=TxB
+ CrossProduct(tangent, bitangent, normal);
+ VectorNormalizeFast(normal);
+
+ if(DotProduct(normal, faceNormal) < 0)
+ {
+ VectorInverse(normal);
+ //VectorInverse(tangent);
+ //VectorInverse(bitangent);
+
+ CrossProduct(normal, tangent, bitangent);
+ }
+
+ VectorCopy(faceNormal, normal);
+#else
+ // Gram-Schmidt orthogonalize
+ //tangent[a] = (t - n * Dot(n, t)).Normalize();
+ VectorMA(tangent, -DotProduct(faceNormal, tangent), faceNormal, tangent);
+ VectorNormalizeFast(tangent);
+#endif
+
+ VectorCopy(faceNormal, normal);
+}
+
+/*
+http://www.terathon.com/code/tangent.html
+*/
+void R_CalcTBN(vec3_t tangent, vec3_t bitangent, vec3_t normal,
+ const vec3_t v1, const vec3_t v2, const vec3_t v3, const vec2_t w1, const vec2_t w2, const vec2_t w3)
+{
+ vec3_t u, v;
+ float x1, x2, y1, y2, z1, z2;
+ float s1, s2, t1, t2;
+ float r, dot;
+
+ x1 = v2[0] - v1[0];
+ x2 = v3[0] - v1[0];
+ y1 = v2[1] - v1[1];
+ y2 = v3[1] - v1[1];
+ z1 = v2[2] - v1[2];
+ z2 = v3[2] - v1[2];
+
+ s1 = w2[0] - w1[0];
+ s2 = w3[0] - w1[0];
+ t1 = w2[1] - w1[1];
+ t2 = w3[1] - w1[1];
+
+ r = 1.0f / (s1 * t2 - s2 * t1);
+
+ VectorSet(tangent, (t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r);
+ VectorSet(bitangent, (s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r);
+
+ // compute the face normal based on vertex points
+ VectorSubtract(v3, v1, u);
+ VectorSubtract(v2, v1, v);
+ CrossProduct(u, v, normal);
+
+ VectorNormalize(normal);
+
+ // Gram-Schmidt orthogonalize
+ //tangent[a] = (t - n * Dot(n, t)).Normalize();
+ dot = DotProduct(normal, tangent);
+ VectorMA(tangent, -dot, normal, tangent);
+ VectorNormalize(tangent);
+
+ // B=NxT
+ //CrossProduct(normal, tangent, bitangent);
+}
+
+void R_CalcTBN2(vec3_t tangent, vec3_t bitangent, vec3_t normal,
+ const vec3_t v1, const vec3_t v2, const vec3_t v3, const vec2_t t1, const vec2_t t2, const vec2_t t3)
+{
+ vec3_t v2v1;
+ vec3_t v3v1;
+
+ float c2c1_T;
+ float c2c1_B;
+
+ float c3c1_T;
+ float c3c1_B;
+
+ float denominator;
+ float scale1, scale2;
+
+ vec3_t T, B, N, C;
+
+
+ // Calculate the tangent basis for each vertex of the triangle
+ // UPDATE: In the 3rd edition of the accompanying article, the for-loop located here has
+ // been removed as it was redundant (the entire TBN matrix was calculated three times
+ // instead of just one).
+ //
+ // Please note, that this function relies on the fact that the input geometry are triangles
+ // and the tangent basis for each vertex thus is identical!
+ //
+
+ // Calculate the vectors from the current vertex to the two other vertices in the triangle
+ VectorSubtract(v2, v1, v2v1);
+ VectorSubtract(v3, v1, v3v1);
+
+ // The equation presented in the article states that:
+ // c2c1_T = V2.texcoord.x - V1.texcoord.x
+ // c2c1_B = V2.texcoord.y - V1.texcoord.y
+ // c3c1_T = V3.texcoord.x - V1.texcoord.x
+ // c3c1_B = V3.texcoord.y - V1.texcoord.y
+
+ // Calculate c2c1_T and c2c1_B
+ c2c1_T = t2[0] - t1[0];
+ c2c1_B = t2[1] - t2[1];
+
+ // Calculate c3c1_T and c3c1_B
+ c3c1_T = t3[0] - t1[0];
+ c3c1_B = t3[1] - t1[1];
+
+ denominator = c2c1_T * c3c1_B - c3c1_T * c2c1_B;
+ //if(ROUNDOFF(fDenominator) == 0.0f)
+ if(denominator == 0.0f)
+ {
+ // We won't risk a divide by zero, so set the tangent matrix to the identity matrix
+ VectorSet(tangent, 1, 0, 0);
+ VectorSet(bitangent, 0, 1, 0);
+ VectorSet(normal, 0, 0, 1);
+ }
+ else
+ {
+ // Calculate the reciprocal value once and for all (to achieve speed)
+ scale1 = 1.0f / denominator;
+
+ // T and B are calculated just as the equation in the article states
+ VectorSet(T, (c3c1_B * v2v1[0] - c2c1_B * v3v1[0]) * scale1,
+ (c3c1_B * v2v1[1] - c2c1_B * v3v1[1]) * scale1,
+ (c3c1_B * v2v1[2] - c2c1_B * v3v1[2]) * scale1);
+
+ VectorSet(B, (-c3c1_T * v2v1[0] + c2c1_T * v3v1[0]) * scale1,
+ (-c3c1_T * v2v1[1] + c2c1_T * v3v1[1]) * scale1,
+ (-c3c1_T * v2v1[2] + c2c1_T * v3v1[2]) * scale1);
+
+ // The normal N is calculated as the cross product between T and B
+ CrossProduct(T, B, N);
+
+#if 0
+ VectorCopy(T, tangent);
+ VectorCopy(B, bitangent);
+ VectorCopy(N, normal);
+#else
+ // Calculate the reciprocal value once and for all (to achieve speed)
+ scale2 = 1.0f / ((T[0] * B[1] * N[2] - T[2] * B[1] * N[0]) +
+ (B[0] * N[1] * T[2] - B[2] * N[1] * T[0]) +
+ (N[0] * T[1] * B[2] - N[2] * T[1] * B[0]));
+
+ // Calculate the inverse if the TBN matrix using the formula described in the article.
+ // We store the basis vectors directly in the provided TBN matrix: pvTBNMatrix
+ CrossProduct(B, N, C); tangent[0] = C[0] * scale2;
+ CrossProduct(N, T, C); tangent[1] = -C[0] * scale2;
+ CrossProduct(T, B, C); tangent[2] = C[0] * scale2;
+ VectorNormalize(tangent);
+
+ CrossProduct(B, N, C); bitangent[0] = -C[1] * scale2;
+ CrossProduct(N, T, C); bitangent[1] = C[1] * scale2;
+ CrossProduct(T, B, C); bitangent[2] = -C[1] * scale2;
+ VectorNormalize(bitangent);
+
+ CrossProduct(B, N, C); normal[0] = C[2] * scale2;
+ CrossProduct(N, T, C); normal[1] = -C[2] * scale2;
+ CrossProduct(T, B, C); normal[2] = C[2] * scale2;
+ VectorNormalize(normal);
+#endif
+ }
+}
+
+
+#ifdef USE_VERT_TANGENT_SPACE
+qboolean R_CalcTangentVectors(srfVert_t * dv[3])
+{
+ int i;
+ float bb, s, t;
+ vec3_t bary;
+
+
+ /* calculate barycentric basis for the triangle */
+ bb = (dv[1]->st[0] - dv[0]->st[0]) * (dv[2]->st[1] - dv[0]->st[1]) - (dv[2]->st[0] - dv[0]->st[0]) * (dv[1]->st[1] - dv[0]->st[1]);
+ if(fabs(bb) < 0.00000001f)
+ return qfalse;
+
+ /* do each vertex */
+ for(i = 0; i < 3; i++)
+ {
+ // calculate s tangent vector
+ s = dv[i]->st[0] + 10.0f;
+ t = dv[i]->st[1];
+ bary[0] = ((dv[1]->st[0] - s) * (dv[2]->st[1] - t) - (dv[2]->st[0] - s) * (dv[1]->st[1] - t)) / bb;
+ bary[1] = ((dv[2]->st[0] - s) * (dv[0]->st[1] - t) - (dv[0]->st[0] - s) * (dv[2]->st[1] - t)) / bb;
+ bary[2] = ((dv[0]->st[0] - s) * (dv[1]->st[1] - t) - (dv[1]->st[0] - s) * (dv[0]->st[1] - t)) / bb;
+
+ dv[i]->tangent[0] = bary[0] * dv[0]->xyz[0] + bary[1] * dv[1]->xyz[0] + bary[2] * dv[2]->xyz[0];
+ dv[i]->tangent[1] = bary[0] * dv[0]->xyz[1] + bary[1] * dv[1]->xyz[1] + bary[2] * dv[2]->xyz[1];
+ dv[i]->tangent[2] = bary[0] * dv[0]->xyz[2] + bary[1] * dv[1]->xyz[2] + bary[2] * dv[2]->xyz[2];
+
+ VectorSubtract(dv[i]->tangent, dv[i]->xyz, dv[i]->tangent);
+ VectorNormalize(dv[i]->tangent);
+
+ // calculate t tangent vector
+ s = dv[i]->st[0];
+ t = dv[i]->st[1] + 10.0f;
+ bary[0] = ((dv[1]->st[0] - s) * (dv[2]->st[1] - t) - (dv[2]->st[0] - s) * (dv[1]->st[1] - t)) / bb;
+ bary[1] = ((dv[2]->st[0] - s) * (dv[0]->st[1] - t) - (dv[0]->st[0] - s) * (dv[2]->st[1] - t)) / bb;
+ bary[2] = ((dv[0]->st[0] - s) * (dv[1]->st[1] - t) - (dv[1]->st[0] - s) * (dv[0]->st[1] - t)) / bb;
+
+ dv[i]->bitangent[0] = bary[0] * dv[0]->xyz[0] + bary[1] * dv[1]->xyz[0] + bary[2] * dv[2]->xyz[0];
+ dv[i]->bitangent[1] = bary[0] * dv[0]->xyz[1] + bary[1] * dv[1]->xyz[1] + bary[2] * dv[2]->xyz[1];
+ dv[i]->bitangent[2] = bary[0] * dv[0]->xyz[2] + bary[1] * dv[1]->xyz[2] + bary[2] * dv[2]->xyz[2];
+
+ VectorSubtract(dv[i]->bitangent, dv[i]->xyz, dv[i]->bitangent);
+ VectorNormalize(dv[i]->bitangent);
+
+ // debug code
+ //% Sys_FPrintf( SYS_VRB, "%d S: (%f %f %f) T: (%f %f %f)\n", i,
+ //% stv[ i ][ 0 ], stv[ i ][ 1 ], stv[ i ][ 2 ], ttv[ i ][ 0 ], ttv[ i ][ 1 ], ttv[ i ][ 2 ] );
+ }
+
+ return qtrue;
+}
+#endif
+
+
+/*
+=================
+R_FindSurfaceTriangleWithEdge
+Tr3B - recoded from Q2E
+=================
+*/
+static int R_FindSurfaceTriangleWithEdge(int numTriangles, srfTriangle_t * triangles, int start, int end, int ignore)
+{
+ srfTriangle_t *tri;
+ int count, match;
+ int i;
+
+ count = 0;
+ match = -1;
+
+ for(i = 0, tri = triangles; i < numTriangles; i++, tri++)
+ {
+ if((tri->indexes[0] == start && tri->indexes[1] == end) ||
+ (tri->indexes[1] == start && tri->indexes[2] == end) || (tri->indexes[2] == start && tri->indexes[0] == end))
+ {
+ if(i != ignore)
+ {
+ match = i;
+ }
+
+ count++;
+ }
+ else if((tri->indexes[1] == start && tri->indexes[0] == end) ||
+ (tri->indexes[2] == start && tri->indexes[1] == end) || (tri->indexes[0] == start && tri->indexes[2] == end))
+ {
+ count++;
+ }
+ }
+
+ // detect edges shared by three triangles and make them seams
+ if(count > 2)
+ {
+ match = -1;
+ }
+
+ return match;
+}
+
+
+/*
+=================
+R_CalcSurfaceTriangleNeighbors
+Tr3B - recoded from Q2E
+=================
+*/
+void R_CalcSurfaceTriangleNeighbors(int numTriangles, srfTriangle_t * triangles)
+{
+ int i;
+ srfTriangle_t *tri;
+
+ for(i = 0, tri = triangles; i < numTriangles; i++, tri++)
+ {
+ tri->neighbors[0] = R_FindSurfaceTriangleWithEdge(numTriangles, triangles, tri->indexes[1], tri->indexes[0], i);
+ tri->neighbors[1] = R_FindSurfaceTriangleWithEdge(numTriangles, triangles, tri->indexes[2], tri->indexes[1], i);
+ tri->neighbors[2] = R_FindSurfaceTriangleWithEdge(numTriangles, triangles, tri->indexes[0], tri->indexes[2], i);
+ }
+}
+
+/*
+=================
+R_CalcSurfaceTrianglePlanes
+=================
+*/
+void R_CalcSurfaceTrianglePlanes(int numTriangles, srfTriangle_t * triangles, srfVert_t * verts)
+{
+ int i;
+ srfTriangle_t *tri;
+
+ for(i = 0, tri = triangles; i < numTriangles; i++, tri++)
+ {
+ float *v1, *v2, *v3;
+ vec3_t d1, d2;
+
+ v1 = verts[tri->indexes[0]].xyz;
+ v2 = verts[tri->indexes[1]].xyz;
+ v3 = verts[tri->indexes[2]].xyz;
+
+ VectorSubtract(v2, v1, d1);
+ VectorSubtract(v3, v1, d2);
+
+ CrossProduct(d2, d1, tri->plane);
+ tri->plane[3] = DotProduct(tri->plane, v1);
+ }
+}
+
+
+/*
+=================
+R_CullLocalBox
+
+Returns CULL_IN, CULL_CLIP, or CULL_OUT
+=================
+*/
+int R_CullLocalBox(vec3_t localBounds[2]) {
+#if 0
+ int i, j;
+ vec3_t transformed[8];
+ float dists[8];
+ vec3_t v;
+ cplane_t *frust;
+ int anyBack;
+ int front, back;
+
+ if ( r_nocull->integer ) {
+ return CULL_CLIP;
+ }
+
+ // transform into world space
+ for (i = 0 ; i < 8 ; i++) {
+ v[0] = bounds[i&1][0];
+ v[1] = bounds[(i>>1)&1][1];
+ v[2] = bounds[(i>>2)&1][2];
+
+ VectorCopy( tr.or.origin, transformed[i] );
+ VectorMA( transformed[i], v[0], tr.or.axis[0], transformed[i] );
+ VectorMA( transformed[i], v[1], tr.or.axis[1], transformed[i] );
+ VectorMA( transformed[i], v[2], tr.or.axis[2], transformed[i] );
+ }
+
+ // check against frustum planes
+ anyBack = 0;
+ for (i = 0 ; i < 4 ; i++) {
+ frust = &tr.viewParms.frustum[i];
+
+ front = back = 0;
+ for (j = 0 ; j < 8 ; j++) {
+ dists[j] = DotProduct(transformed[j], frust->normal);
+ if ( dists[j] > frust->dist ) {
+ front = 1;
+ if ( back ) {
+ break; // a point is in front
+ }
+ } else {
+ back = 1;
+ }
+ }
+ if ( !front ) {
+ // all points were behind one of the planes
+ return CULL_OUT;
+ }
+ anyBack |= back;
+ }
+
+ if ( !anyBack ) {
+ return CULL_IN; // completely inside frustum
+ }
+
+ return CULL_CLIP; // partially clipped
+#else
+ int j;
+ vec3_t transformed;
+ vec3_t v;
+ vec3_t worldBounds[2];
+
+ if(r_nocull->integer)
+ {
+ return CULL_CLIP;
+ }
+
+ // transform into world space
+ ClearBounds(worldBounds[0], worldBounds[1]);
+
+ for(j = 0; j < 8; j++)
+ {
+ v[0] = localBounds[j & 1][0];
+ v[1] = localBounds[(j >> 1) & 1][1];
+ v[2] = localBounds[(j >> 2) & 1][2];
+
+ R_LocalPointToWorld(v, transformed);
+
+ AddPointToBounds(transformed, worldBounds[0], worldBounds[1]);
+ }
+
+ return R_CullBox(worldBounds);
+#endif
+}
+
+/*
+=================
+R_CullBox
+
+Returns CULL_IN, CULL_CLIP, or CULL_OUT
+=================
+*/
+int R_CullBox(vec3_t worldBounds[2]) {
+ int i;
+ cplane_t *frust;
+ qboolean anyClip;
+ int r, numPlanes;
+
+ numPlanes = (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 5 : 4;
+
+ // check against frustum planes
+ anyClip = qfalse;
+ for(i = 0; i < numPlanes; i++)
+ {
+ frust = &tr.viewParms.frustum[i];
+
+ r = BoxOnPlaneSide(worldBounds[0], worldBounds[1], frust);
+
+ if(r == 2)
+ {
+ // completely outside frustum
+ return CULL_OUT;
+ }
+ if(r == 3)
+ {
+ anyClip = qtrue;
+ }
+ }
+
+ if(!anyClip)
+ {
+ // completely inside frustum
+ return CULL_IN;
+ }
+
+ // partially clipped
+ return CULL_CLIP;
+}
+
+/*
+** R_CullLocalPointAndRadius
+*/
+int R_CullLocalPointAndRadius( const vec3_t pt, float radius )
+{
+ vec3_t transformed;
+
+ R_LocalPointToWorld( pt, transformed );
+
+ return R_CullPointAndRadius( transformed, radius );
+}
+
+/*
+** R_CullPointAndRadius
+*/
+int R_CullPointAndRadiusEx( const vec3_t pt, float radius, const cplane_t* frustum, int numPlanes )
+{
+ int i;
+ float dist;
+ const cplane_t *frust;
+ qboolean mightBeClipped = qfalse;
+
+ if ( r_nocull->integer ) {
+ return CULL_CLIP;
+ }
+
+ // check against frustum planes
+ for (i = 0 ; i < numPlanes ; i++)
+ {
+ frust = &frustum[i];
+
+ dist = DotProduct( pt, frust->normal) - frust->dist;
+ if ( dist < -radius )
+ {
+ return CULL_OUT;
+ }
+ else if ( dist <= radius )
+ {
+ mightBeClipped = qtrue;
+ }
+ }
+
+ if ( mightBeClipped )
+ {
+ return CULL_CLIP;
+ }
+
+ return CULL_IN; // completely inside frustum
+}
+
+/*
+** R_CullPointAndRadius
+*/
+int R_CullPointAndRadius( const vec3_t pt, float radius )
+{
+ return R_CullPointAndRadiusEx(pt, radius, tr.viewParms.frustum, (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 5 : 4);
+}
+
+/*
+=================
+R_LocalNormalToWorld
+
+=================
+*/
+void R_LocalNormalToWorld (const vec3_t local, vec3_t world) {
+ world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0];
+ world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1];
+ world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2];
+}
+
+/*
+=================
+R_LocalPointToWorld
+
+=================
+*/
+void R_LocalPointToWorld (const vec3_t local, vec3_t world) {
+ world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0] + tr.or.origin[0];
+ world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1] + tr.or.origin[1];
+ world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2] + tr.or.origin[2];
+}
+
+/*
+=================
+R_WorldToLocal
+
+=================
+*/
+void R_WorldToLocal (const vec3_t world, vec3_t local) {
+ local[0] = DotProduct(world, tr.or.axis[0]);
+ local[1] = DotProduct(world, tr.or.axis[1]);
+ local[2] = DotProduct(world, tr.or.axis[2]);
+}
+
+/*
+==========================
+R_TransformModelToClip
+
+==========================
+*/
+void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
+ vec4_t eye, vec4_t dst ) {
+ int i;
+
+ for ( i = 0 ; i < 4 ; i++ ) {
+ eye[i] =
+ src[0] * modelMatrix[ i + 0 * 4 ] +
+ src[1] * modelMatrix[ i + 1 * 4 ] +
+ src[2] * modelMatrix[ i + 2 * 4 ] +
+ 1 * modelMatrix[ i + 3 * 4 ];
+ }
+
+ for ( i = 0 ; i < 4 ; i++ ) {
+ dst[i] =
+ eye[0] * projectionMatrix[ i + 0 * 4 ] +
+ eye[1] * projectionMatrix[ i + 1 * 4 ] +
+ eye[2] * projectionMatrix[ i + 2 * 4 ] +
+ eye[3] * projectionMatrix[ i + 3 * 4 ];
+ }
+}
+
+/*
+==========================
+R_TransformClipToWindow
+
+==========================
+*/
+void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
+ normalized[0] = clip[0] / clip[3];
+ normalized[1] = clip[1] / clip[3];
+ normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );
+
+ window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth;
+ window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight;
+ window[2] = normalized[2];
+
+ window[0] = (int) ( window[0] + 0.5 );
+ window[1] = (int) ( window[1] + 0.5 );
+}
+
+
+/*
+==========================
+myGlMultMatrix
+
+==========================
+*/
+void myGlMultMatrix( const float *a, const float *b, float *out ) {
+ int i, j;
+
+ for ( i = 0 ; i < 4 ; i++ ) {
+ for ( j = 0 ; j < 4 ; j++ ) {
+ out[ i * 4 + j ] =
+ a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
+ + a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
+ + a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
+ + a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
+ }
+ }
+}
+
+/*
+=================
+R_RotateForEntity
+
+Generates an orientation for an entity and viewParms
+Does NOT produce any GL calls
+Called by both the front end and the back end
+=================
+*/
+void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
+ orientationr_t *or ) {
+ float glMatrix[16];
+ vec3_t delta;
+ float axisLength;
+
+ if ( ent->e.reType != RT_MODEL ) {
+ *or = viewParms->world;
+ return;
+ }
+
+ VectorCopy( ent->e.origin, or->origin );
+
+ VectorCopy( ent->e.axis[0], or->axis[0] );
+ VectorCopy( ent->e.axis[1], or->axis[1] );
+ VectorCopy( ent->e.axis[2], or->axis[2] );
+
+ glMatrix[0] = or->axis[0][0];
+ glMatrix[4] = or->axis[1][0];
+ glMatrix[8] = or->axis[2][0];
+ glMatrix[12] = or->origin[0];
+
+ glMatrix[1] = or->axis[0][1];
+ glMatrix[5] = or->axis[1][1];
+ glMatrix[9] = or->axis[2][1];
+ glMatrix[13] = or->origin[1];
+
+ glMatrix[2] = or->axis[0][2];
+ glMatrix[6] = or->axis[1][2];
+ glMatrix[10] = or->axis[2][2];
+ glMatrix[14] = or->origin[2];
+
+ glMatrix[3] = 0;
+ glMatrix[7] = 0;
+ glMatrix[11] = 0;
+ glMatrix[15] = 1;
+
+ Matrix16Copy(glMatrix, or->transformMatrix);
+ myGlMultMatrix( glMatrix, viewParms->world.modelMatrix, or->modelMatrix );
+
+ // calculate the viewer origin in the model's space
+ // needed for fog, specular, and environment mapping
+ VectorSubtract( viewParms->or.origin, or->origin, delta );
+
+ // compensate for scale in the axes if necessary
+ if ( ent->e.nonNormalizedAxes ) {
+ axisLength = VectorLength( ent->e.axis[0] );
+ if ( !axisLength ) {
+ axisLength = 0;
+ } else {
+ axisLength = 1.0f / axisLength;
+ }
+ } else {
+ axisLength = 1.0f;
+ }
+
+ or->viewOrigin[0] = DotProduct( delta, or->axis[0] ) * axisLength;
+ or->viewOrigin[1] = DotProduct( delta, or->axis[1] ) * axisLength;
+ or->viewOrigin[2] = DotProduct( delta, or->axis[2] ) * axisLength;
+}
+
+/*
+=================
+R_RotateForViewer
+
+Sets up the modelview matrix for a given viewParm
+=================
+*/
+void R_RotateForViewer (void)
+{
+ float viewerMatrix[16];
+ vec3_t origin;
+
+ Com_Memset (&tr.or, 0, sizeof(tr.or));
+ tr.or.axis[0][0] = 1;
+ tr.or.axis[1][1] = 1;
+ tr.or.axis[2][2] = 1;
+ VectorCopy (tr.viewParms.or.origin, tr.or.viewOrigin);
+
+ // transform by the camera placement
+ VectorCopy( tr.viewParms.or.origin, origin );
+
+ viewerMatrix[0] = tr.viewParms.or.axis[0][0];
+ viewerMatrix[4] = tr.viewParms.or.axis[0][1];
+ viewerMatrix[8] = tr.viewParms.or.axis[0][2];
+ viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8];
+
+ viewerMatrix[1] = tr.viewParms.or.axis[1][0];
+ viewerMatrix[5] = tr.viewParms.or.axis[1][1];
+ viewerMatrix[9] = tr.viewParms.or.axis[1][2];
+ viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9];
+
+ viewerMatrix[2] = tr.viewParms.or.axis[2][0];
+ viewerMatrix[6] = tr.viewParms.or.axis[2][1];
+ viewerMatrix[10] = tr.viewParms.or.axis[2][2];
+ viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10];
+
+ viewerMatrix[3] = 0;
+ viewerMatrix[7] = 0;
+ viewerMatrix[11] = 0;
+ viewerMatrix[15] = 1;
+
+ // convert from our coordinate system (looking down X)
+ // to OpenGL's coordinate system (looking down -Z)
+ myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.or.modelMatrix );
+
+ tr.viewParms.world = tr.or;
+
+}
+
+/*
+** SetFarClip
+*/
+static void R_SetFarClip( void )
+{
+ float farthestCornerDistance = 0;
+ int i;
+
+ // if not rendering the world (icons, menus, etc)
+ // set a 2k far clip plane
+ if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
+ tr.viewParms.zFar = 2048;
+ return;
+ }
+
+ //
+ // set far clipping planes dynamically
+ //
+ farthestCornerDistance = 0;
+ for ( i = 0; i < 8; i++ )
+ {
+ vec3_t v;
+ vec3_t vecTo;
+ float distance;
+
+ if ( i & 1 )
+ {
+ v[0] = tr.viewParms.visBounds[0][0];
+ }
+ else
+ {
+ v[0] = tr.viewParms.visBounds[1][0];
+ }
+
+ if ( i & 2 )
+ {
+ v[1] = tr.viewParms.visBounds[0][1];
+ }
+ else
+ {
+ v[1] = tr.viewParms.visBounds[1][1];
+ }
+
+ if ( i & 4 )
+ {
+ v[2] = tr.viewParms.visBounds[0][2];
+ }
+ else
+ {
+ v[2] = tr.viewParms.visBounds[1][2];
+ }
+
+ VectorSubtract( v, tr.viewParms.or.origin, vecTo );
+
+ distance = vecTo[0] * vecTo[0] + vecTo[1] * vecTo[1] + vecTo[2] * vecTo[2];
+
+ if ( distance > farthestCornerDistance )
+ {
+ farthestCornerDistance = distance;
+ }
+ }
+ tr.viewParms.zFar = sqrt( farthestCornerDistance );
+}
+
+/*
+=================
+R_SetupFrustum
+
+Set up the culling frustum planes for the current view using the results we got from computing the first two rows of
+the projection matrix.
+=================
+*/
+void R_SetupFrustum (viewParms_t *dest, float xmin, float xmax, float ymax, float zProj, float zFar, float stereoSep)
+{
+ vec3_t ofsorigin;
+ float oppleg, adjleg, length;
+ int i;
+
+ if(stereoSep == 0 && xmin == -xmax)
+ {
+ // symmetric case can be simplified
+ VectorCopy(dest->or.origin, ofsorigin);
+
+ length = sqrt(xmax * xmax + zProj * zProj);
+ oppleg = xmax / length;
+ adjleg = zProj / length;
+
+ VectorScale(dest->or.axis[0], oppleg, dest->frustum[0].normal);
+ VectorMA(dest->frustum[0].normal, adjleg, dest->or.axis[1], dest->frustum[0].normal);
+
+ VectorScale(dest->or.axis[0], oppleg, dest->frustum[1].normal);
+ VectorMA(dest->frustum[1].normal, -adjleg, dest->or.axis[1], dest->frustum[1].normal);
+ }
+ else
+ {
+ // In stereo rendering, due to the modification of the projection matrix, dest->or.origin is not the
+ // actual origin that we're rendering so offset the tip of the view pyramid.
+ VectorMA(dest->or.origin, stereoSep, dest->or.axis[1], ofsorigin);
+
+ oppleg = xmax + stereoSep;
+ length = sqrt(oppleg * oppleg + zProj * zProj);
+ VectorScale(dest->or.axis[0], oppleg / length, dest->frustum[0].normal);
+ VectorMA(dest->frustum[0].normal, zProj / length, dest->or.axis[1], dest->frustum[0].normal);
+
+ oppleg = xmin + stereoSep;
+ length = sqrt(oppleg * oppleg + zProj * zProj);
+ VectorScale(dest->or.axis[0], -oppleg / length, dest->frustum[1].normal);
+ VectorMA(dest->frustum[1].normal, -zProj / length, dest->or.axis[1], dest->frustum[1].normal);
+ }
+
+ length = sqrt(ymax * ymax + zProj * zProj);
+ oppleg = ymax / length;
+ adjleg = zProj / length;
+
+ VectorScale(dest->or.axis[0], oppleg, dest->frustum[2].normal);
+ VectorMA(dest->frustum[2].normal, adjleg, dest->or.axis[2], dest->frustum[2].normal);
+
+ VectorScale(dest->or.axis[0], oppleg, dest->frustum[3].normal);
+ VectorMA(dest->frustum[3].normal, -adjleg, dest->or.axis[2], dest->frustum[3].normal);
+
+ for (i=0 ; i<4 ; i++) {
+ dest->frustum[i].type = PLANE_NON_AXIAL;
+ dest->frustum[i].dist = DotProduct (ofsorigin, dest->frustum[i].normal);
+ SetPlaneSignbits( &dest->frustum[i] );
+ }
+
+ if (zFar != 0.0f)
+ {
+ vec3_t farpoint;
+
+ VectorMA(ofsorigin, zFar, dest->or.axis[0], farpoint);
+ VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal);
+
+ dest->frustum[4].type = PLANE_NON_AXIAL;
+ dest->frustum[4].dist = DotProduct (farpoint, dest->frustum[4].normal);
+ SetPlaneSignbits( &dest->frustum[4] );
+ dest->flags |= VPF_FARPLANEFRUSTUM;
+ }
+}
+
+/*
+===============
+R_SetupProjection
+===============
+*/
+void R_SetupProjection(viewParms_t *dest, float zProj, float zFar, qboolean computeFrustum)
+{
+ float xmin, xmax, ymin, ymax;
+ float width, height, stereoSep = r_stereoSeparation->value;
+
+ /*
+ * offset the view origin of the viewer for stereo rendering
+ * by setting the projection matrix appropriately.
+ */
+
+ if(stereoSep != 0)
+ {
+ if(dest->stereoFrame == STEREO_LEFT)
+ stereoSep = zProj / stereoSep;
+ else if(dest->stereoFrame == STEREO_RIGHT)
+ stereoSep = zProj / -stereoSep;
+ else
+ stereoSep = 0;
+ }
+
+ ymax = zProj * tan(dest->fovY * M_PI / 360.0f);
+ ymin = -ymax;
+
+ xmax = zProj * tan(dest->fovX * M_PI / 360.0f);
+ xmin = -xmax;
+
+ width = xmax - xmin;
+ height = ymax - ymin;
+
+ dest->projectionMatrix[0] = 2 * zProj / width;
+ dest->projectionMatrix[4] = 0;
+ dest->projectionMatrix[8] = (xmax + xmin + 2 * stereoSep) / width;
+ dest->projectionMatrix[12] = 2 * zProj * stereoSep / width;
+
+ dest->projectionMatrix[1] = 0;
+ dest->projectionMatrix[5] = 2 * zProj / height;
+ dest->projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
+ dest->projectionMatrix[13] = 0;
+
+ dest->projectionMatrix[3] = 0;
+ dest->projectionMatrix[7] = 0;
+ dest->projectionMatrix[11] = -1;
+ dest->projectionMatrix[15] = 0;
+
+ // Now that we have all the data for the projection matrix we can also setup the view frustum.
+ if(computeFrustum)
+ R_SetupFrustum(dest, xmin, xmax, ymax, zProj, zFar, stereoSep);
+}
+
+/*
+===============
+R_SetupProjectionZ
+
+Sets the z-component transformation part in the projection matrix
+===============
+*/
+void R_SetupProjectionZ(viewParms_t *dest)
+{
+ float zNear, zFar, depth;
+
+ zNear = r_znear->value;
+ zFar = dest->zFar;
+
+ depth = zFar - zNear;
+
+ dest->projectionMatrix[2] = 0;
+ dest->projectionMatrix[6] = 0;
+ dest->projectionMatrix[10] = -( zFar + zNear ) / depth;
+ dest->projectionMatrix[14] = -2 * zFar * zNear / depth;
+
+ if (dest->isPortal)
+ {
+ float plane[4];
+ float plane2[4];
+ vec4_t q, c;
+
+ // transform portal plane into camera space
+ plane[0] = dest->portalPlane.normal[0];
+ plane[1] = dest->portalPlane.normal[1];
+ plane[2] = dest->portalPlane.normal[2];
+ plane[3] = dest->portalPlane.dist;
+
+ plane2[0] = -DotProduct (dest->or.axis[1], plane);
+ plane2[1] = DotProduct (dest->or.axis[2], plane);
+ plane2[2] = -DotProduct (dest->or.axis[0], plane);
+ plane2[3] = DotProduct (plane, dest->or.origin) - plane[3];
+
+ // Lengyel, Eric. "Modifying the Projection Matrix to Perform Oblique Near-plane Clipping".
+ // Terathon Software 3D Graphics Library, 2004. http://www.terathon.com/code/oblique.html
+ q[0] = (SGN(plane2[0]) + dest->projectionMatrix[8]) / dest->projectionMatrix[0];
+ q[1] = (SGN(plane2[1]) + dest->projectionMatrix[9]) / dest->projectionMatrix[5];
+ q[2] = -1.0f;
+ q[3] = (1.0f + dest->projectionMatrix[10]) / dest->projectionMatrix[14];
+
+ VectorScale4(plane2, 2.0f / DotProduct4(plane2, q), c);
+
+ dest->projectionMatrix[2] = c[0];
+ dest->projectionMatrix[6] = c[1];
+ dest->projectionMatrix[10] = c[2] + 1.0f;
+ dest->projectionMatrix[14] = c[3];
+
+ }
+
+}
+
+/*
+===============
+R_SetupProjectionOrtho
+===============
+*/
+void R_SetupProjectionOrtho(viewParms_t *dest, vec3_t viewBounds[2])
+{
+ float xmin, xmax, ymin, ymax, znear, zfar;
+ //viewParms_t *dest = &tr.viewParms;
+ int i;
+ vec3_t pop;
+
+ // Quake3: Projection:
+ //
+ // Z X Y Z
+ // | / | /
+ // |/ |/
+ // Y--+ +--X
+
+ xmin = viewBounds[0][1];
+ xmax = viewBounds[1][1];
+ ymin = -viewBounds[1][2];
+ ymax = -viewBounds[0][2];
+ znear = viewBounds[0][0];
+ zfar = viewBounds[1][0];
+
+ dest->projectionMatrix[0] = 2 / (xmax - xmin);
+ dest->projectionMatrix[4] = 0;
+ dest->projectionMatrix[8] = 0;
+ dest->projectionMatrix[12] = (xmax + xmin) / (xmax - xmin);
+
+ dest->projectionMatrix[1] = 0;
+ dest->projectionMatrix[5] = 2 / (ymax - ymin);
+ dest->projectionMatrix[9] = 0;
+ dest->projectionMatrix[13] = (ymax + ymin) / (ymax - ymin);
+
+ dest->projectionMatrix[2] = 0;
+ dest->projectionMatrix[6] = 0;
+ dest->projectionMatrix[10] = -2 / (zfar - znear);
+ dest->projectionMatrix[14] = -(zfar + znear) / (zfar - znear);
+
+ dest->projectionMatrix[3] = 0;
+ dest->projectionMatrix[7] = 0;
+ dest->projectionMatrix[11] = 0;
+ dest->projectionMatrix[15] = 1;
+
+ VectorScale(dest->or.axis[1], 1.0f, dest->frustum[0].normal);
+ VectorMA(dest->or.origin, viewBounds[0][1], dest->frustum[0].normal, pop);
+ dest->frustum[0].dist = DotProduct(pop, dest->frustum[0].normal);
+
+ VectorScale(dest->or.axis[1], -1.0f, dest->frustum[1].normal);
+ VectorMA(dest->or.origin, -viewBounds[1][1], dest->frustum[1].normal, pop);
+ dest->frustum[1].dist = DotProduct(pop, dest->frustum[1].normal);
+
+ VectorScale(dest->or.axis[2], 1.0f, dest->frustum[2].normal);
+ VectorMA(dest->or.origin, viewBounds[0][2], dest->frustum[2].normal, pop);
+ dest->frustum[2].dist = DotProduct(pop, dest->frustum[2].normal);
+
+ VectorScale(dest->or.axis[2], -1.0f, dest->frustum[3].normal);
+ VectorMA(dest->or.origin, -viewBounds[1][2], dest->frustum[3].normal, pop);
+ dest->frustum[3].dist = DotProduct(pop, dest->frustum[3].normal);
+
+ VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal);
+ VectorMA(dest->or.origin, -viewBounds[1][0], dest->frustum[4].normal, pop);
+ dest->frustum[4].dist = DotProduct(pop, dest->frustum[4].normal);
+
+ for (i = 0; i < 5; i++)
+ {
+ dest->frustum[i].type = PLANE_NON_AXIAL;
+ SetPlaneSignbits (&dest->frustum[i]);
+ }
+
+ dest->flags |= VPF_FARPLANEFRUSTUM;
+}
+
+/*
+=================
+R_MirrorPoint
+=================
+*/
+void R_MirrorPoint (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
+ int i;
+ vec3_t local;
+ vec3_t transformed;
+ float d;
+
+ VectorSubtract( in, surface->origin, local );
+
+ VectorClear( transformed );
+ for ( i = 0 ; i < 3 ; i++ ) {
+ d = DotProduct(local, surface->axis[i]);
+ VectorMA( transformed, d, camera->axis[i], transformed );
+ }
+
+ VectorAdd( transformed, camera->origin, out );
+}
+
+void R_MirrorVector (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
+ int i;
+ float d;
+
+ VectorClear( out );
+ for ( i = 0 ; i < 3 ; i++ ) {
+ d = DotProduct(in, surface->axis[i]);
+ VectorMA( out, d, camera->axis[i], out );
+ }
+}
+
+
+/*
+=============
+R_PlaneForSurface
+=============
+*/
+void R_PlaneForSurface (surfaceType_t *surfType, cplane_t *plane) {
+ srfTriangles_t *tri;
+ srfPoly_t *poly;
+ srfVert_t *v1, *v2, *v3;
+ vec4_t plane4;
+
+ if (!surfType) {
+ Com_Memset (plane, 0, sizeof(*plane));
+ plane->normal[0] = 1;
+ return;
+ }
+ switch (*surfType) {
+ case SF_FACE:
+ *plane = ((srfSurfaceFace_t *)surfType)->plane;
+ return;
+ case SF_TRIANGLES:
+ tri = (srfTriangles_t *)surfType;
+ v1 = tri->verts + tri->triangles[0].indexes[0];
+ v2 = tri->verts + tri->triangles[0].indexes[1];
+ v3 = tri->verts + tri->triangles[0].indexes[2];
+ PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
+ VectorCopy( plane4, plane->normal );
+ plane->dist = plane4[3];
+ return;
+ case SF_POLY:
+ poly = (srfPoly_t *)surfType;
+ PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
+ VectorCopy( plane4, plane->normal );
+ plane->dist = plane4[3];
+ return;
+ default:
+ Com_Memset (plane, 0, sizeof(*plane));
+ plane->normal[0] = 1;
+ return;
+ }
+}
+
+/*
+=================
+R_GetPortalOrientation
+
+entityNum is the entity that the portal surface is a part of, which may
+be moving and rotating.
+
+Returns qtrue if it should be mirrored
+=================
+*/
+qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum,
+ orientation_t *surface, orientation_t *camera,
+ vec3_t pvsOrigin, qboolean *mirror ) {
+ int i;
+ cplane_t originalPlane, plane;
+ trRefEntity_t *e;
+ float d;
+ vec3_t transformed;
+
+ // create plane axis for the portal we are seeing
+ R_PlaneForSurface( drawSurf->surface, &originalPlane );
+
+ // rotate the plane if necessary
+ if ( entityNum != REFENTITYNUM_WORLD ) {
+ tr.currentEntityNum = entityNum;
+ tr.currentEntity = &tr.refdef.entities[entityNum];
+
+ // get the orientation of the entity
+ R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
+
+ // rotate the plane, but keep the non-rotated version for matching
+ // against the portalSurface entities
+ R_LocalNormalToWorld( originalPlane.normal, plane.normal );
+ plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
+
+ // translate the original plane
+ originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
+ } else {
+ plane = originalPlane;
+ }
+
+ VectorCopy( plane.normal, surface->axis[0] );
+ PerpendicularVector( surface->axis[1], surface->axis[0] );
+ CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );
+
+ // locate the portal entity closest to this plane.
+ // origin will be the origin of the portal, origin2 will be
+ // the origin of the camera
+ for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
+ e = &tr.refdef.entities[i];
+ if ( e->e.reType != RT_PORTALSURFACE ) {
+ continue;
+ }
+
+ d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
+ if ( d > 64 || d < -64) {
+ continue;
+ }
+
+ // get the pvsOrigin from the entity
+ VectorCopy( e->e.oldorigin, pvsOrigin );
+
+ // if the entity is just a mirror, don't use as a camera point
+ if ( e->e.oldorigin[0] == e->e.origin[0] &&
+ e->e.oldorigin[1] == e->e.origin[1] &&
+ e->e.oldorigin[2] == e->e.origin[2] ) {
+ VectorScale( plane.normal, plane.dist, surface->origin );
+ VectorCopy( surface->origin, camera->origin );
+ VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
+ VectorCopy( surface->axis[1], camera->axis[1] );
+ VectorCopy( surface->axis[2], camera->axis[2] );
+
+ *mirror = qtrue;
+ return qtrue;
+ }
+
+ // project the origin onto the surface plane to get
+ // an origin point we can rotate around
+ d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
+ VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );
+
+ // now get the camera origin and orientation
+ VectorCopy( e->e.oldorigin, camera->origin );
+ AxisCopy( e->e.axis, camera->axis );
+ VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
+ VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );
+
+ // optionally rotate
+ if ( e->e.oldframe ) {
+ // if a speed is specified
+ if ( e->e.frame ) {
+ // continuous rotate
+ d = (tr.refdef.time/1000.0f) * e->e.frame;
+ VectorCopy( camera->axis[1], transformed );
+ RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
+ CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
+ } else {
+ // bobbing rotate, with skinNum being the rotation offset
+ d = sin( tr.refdef.time * 0.003f );
+ d = e->e.skinNum + d * 4;
+ VectorCopy( camera->axis[1], transformed );
+ RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
+ CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
+ }
+ }
+ else if ( e->e.skinNum ) {
+ d = e->e.skinNum;
+ VectorCopy( camera->axis[1], transformed );
+ RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
+ CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
+ }
+ *mirror = qfalse;
+ return qtrue;
+ }
+
+ // if we didn't locate a portal entity, don't render anything.
+ // We don't want to just treat it as a mirror, because without a
+ // portal entity the server won't have communicated a proper entity set
+ // in the snapshot
+
+ // unfortunately, with local movement prediction it is easily possible
+ // to see a surface before the server has communicated the matching
+ // portal surface entity, so we don't want to print anything here...
+
+ //ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" );
+
+ return qfalse;
+}
+
+static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum )
+{
+ int i;
+ cplane_t originalPlane, plane;
+ trRefEntity_t *e;
+ float d;
+
+ // create plane axis for the portal we are seeing
+ R_PlaneForSurface( drawSurf->surface, &originalPlane );
+
+ // rotate the plane if necessary
+ if ( entityNum != REFENTITYNUM_WORLD )
+ {
+ tr.currentEntityNum = entityNum;
+ tr.currentEntity = &tr.refdef.entities[entityNum];
+
+ // get the orientation of the entity
+ R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
+
+ // rotate the plane, but keep the non-rotated version for matching
+ // against the portalSurface entities
+ R_LocalNormalToWorld( originalPlane.normal, plane.normal );
+ plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
+
+ // translate the original plane
+ originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
+ }
+ else
+ {
+ plane = originalPlane;
+ }
+
+ // locate the portal entity closest to this plane.
+ // origin will be the origin of the portal, origin2 will be
+ // the origin of the camera
+ for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
+ {
+ e = &tr.refdef.entities[i];
+ if ( e->e.reType != RT_PORTALSURFACE ) {
+ continue;
+ }
+
+ d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
+ if ( d > 64 || d < -64) {
+ continue;
+ }
+
+ // if the entity is just a mirror, don't use as a camera point
+ if ( e->e.oldorigin[0] == e->e.origin[0] &&
+ e->e.oldorigin[1] == e->e.origin[1] &&
+ e->e.oldorigin[2] == e->e.origin[2] )
+ {
+ return qtrue;
+ }
+
+ return qfalse;
+ }
+ return qfalse;
+}
+
+/*
+** SurfIsOffscreen
+**
+** Determines if a surface is completely offscreen.
+*/
+static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) {
+ float shortest = 100000000;
+ int entityNum;
+ int numTriangles;
+ shader_t *shader;
+ int fogNum;
+ int dlighted;
+ int pshadowed;
+ vec4_t clip, eye;
+ int i;
+ unsigned int pointOr = 0;
+ unsigned int pointAnd = (unsigned int)~0;
+
+ R_RotateForViewer();
+
+ R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
+ RB_BeginSurface( shader, fogNum );
+ rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
+
+ assert( tess.numVertexes < 128 );
+
+ for ( i = 0; i < tess.numVertexes; i++ )
+ {
+ int j;
+ unsigned int pointFlags = 0;
+
+ R_TransformModelToClip( tess.xyz[i], tr.or.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );
+
+ for ( j = 0; j < 3; j++ )
+ {
+ if ( clip[j] >= clip[3] )
+ {
+ pointFlags |= (1 << (j*2));
+ }
+ else if ( clip[j] <= -clip[3] )
+ {
+ pointFlags |= ( 1 << (j*2+1));
+ }
+ }
+ pointAnd &= pointFlags;
+ pointOr |= pointFlags;
+ }
+
+ // trivially reject
+ if ( pointAnd )
+ {
+ return qtrue;
+ }
+
+ // determine if this surface is backfaced and also determine the distance
+ // to the nearest vertex so we can cull based on portal range. Culling
+ // based on vertex distance isn't 100% correct (we should be checking for
+ // range to the surface), but it's good enough for the types of portals
+ // we have in the game right now.
+ numTriangles = tess.numIndexes / 3;
+
+ for ( i = 0; i < tess.numIndexes; i += 3 )
+ {
+ vec3_t normal;
+ float len;
+
+ VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.or.origin, normal );
+
+ len = VectorLengthSquared( normal ); // lose the sqrt
+ if ( len < shortest )
+ {
+ shortest = len;
+ }
+
+ if ( DotProduct( normal, tess.normal[tess.indexes[i]] ) >= 0 )
+ {
+ numTriangles--;
+ }
+ }
+ if ( !numTriangles )
+ {
+ return qtrue;
+ }
+
+ // mirrors can early out at this point, since we don't do a fade over distance
+ // with them (although we could)
+ if ( IsMirror( drawSurf, entityNum ) )
+ {
+ return qfalse;
+ }
+
+ if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) )
+ {
+ return qtrue;
+ }
+
+ return qfalse;
+}
+
+/*
+========================
+R_MirrorViewBySurface
+
+Returns qtrue if another view has been rendered
+========================
+*/
+qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) {
+ vec4_t clipDest[128];
+ viewParms_t newParms;
+ viewParms_t oldParms;
+ orientation_t surface, camera;
+
+ // don't recursively mirror
+ if (tr.viewParms.isPortal) {
+ ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
+ return qfalse;
+ }
+
+ if ( r_noportals->integer || (r_fastsky->integer == 1) ) {
+ return qfalse;
+ }
+
+ // trivially reject portal/mirror
+ if ( SurfIsOffscreen( drawSurf, clipDest ) ) {
+ return qfalse;
+ }
+
+ // save old viewParms so we can return to it after the mirror view
+ oldParms = tr.viewParms;
+
+ newParms = tr.viewParms;
+ newParms.isPortal = qtrue;
+ newParms.zFar = 0.0f;
+ newParms.flags &= ~VPF_FARPLANEFRUSTUM;
+ if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
+ newParms.pvsOrigin, &newParms.isMirror ) ) {
+ return qfalse; // bad portal, no portalentity
+ }
+
+ R_MirrorPoint (oldParms.or.origin, &surface, &camera, newParms.or.origin );
+
+ VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
+ newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
+
+ R_MirrorVector (oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0]);
+ R_MirrorVector (oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1]);
+ R_MirrorVector (oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2]);
+
+ // OPTIMIZE: restrict the viewport on the mirrored view
+
+ // render the mirror view
+ R_RenderView (&newParms);
+
+ tr.viewParms = oldParms;
+
+ return qtrue;
+}
+
+/*
+=================
+R_SpriteFogNum
+
+See if a sprite is inside a fog volume
+=================
+*/
+int R_SpriteFogNum( trRefEntity_t *ent ) {
+ int i, j;
+ fog_t *fog;
+
+ if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
+ return 0;
+ }
+
+ for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
+ fog = &tr.world->fogs[i];
+ for ( j = 0 ; j < 3 ; j++ ) {
+ if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) {
+ break;
+ }
+ if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) {
+ break;
+ }
+ }
+ if ( j == 3 ) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+/*
+==========================================================================================
+
+DRAWSURF SORTING
+
+==========================================================================================
+*/
+
+/*
+===============
+R_Radix
+===============
+*/
+static ID_INLINE void R_Radix( int byte, int size, drawSurf_t *source, drawSurf_t *dest )
+{
+ int count[ 256 ] = { 0 };
+ int index[ 256 ];
+ int i;
+ unsigned char *sortKey = NULL;
+ unsigned char *end = NULL;
+
+ sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
+ end = sortKey + ( size * sizeof( drawSurf_t ) );
+ for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) )
+ ++count[ *sortKey ];
+
+ index[ 0 ] = 0;
+
+ for( i = 1; i < 256; ++i )
+ index[ i ] = index[ i - 1 ] + count[ i - 1 ];
+
+ sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
+ for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) )
+ dest[ index[ *sortKey ]++ ] = source[ i ];
+}
+
+/*
+===============
+R_RadixSort
+
+Radix sort with 4 byte size buckets
+===============
+*/
+static void R_RadixSort( drawSurf_t *source, int size )
+{
+ static drawSurf_t scratch[ MAX_DRAWSURFS ];
+#ifdef Q3_LITTLE_ENDIAN
+ R_Radix( 0, size, source, scratch );
+ R_Radix( 1, size, scratch, source );
+ R_Radix( 2, size, source, scratch );
+ R_Radix( 3, size, scratch, source );
+#else
+ R_Radix( 3, size, source, scratch );
+ R_Radix( 2, size, scratch, source );
+ R_Radix( 1, size, source, scratch );
+ R_Radix( 0, size, scratch, source );
+#endif //Q3_LITTLE_ENDIAN
+}
+
+//==========================================================================================
+
+/*
+=================
+R_AddDrawSurf
+=================
+*/
+void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
+ int fogIndex, int dlightMap, int pshadowMap ) {
+ int index;
+
+ // instead of checking for overflow, we just mask the index
+ // so it wraps around
+ index = tr.refdef.numDrawSurfs & DRAWSURF_MASK;
+ // the sort data is packed into a single 32 bit value so it can be
+ // compared quickly during the qsorting process
+ tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
+ | tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT )
+ | ((int)pshadowMap << QSORT_PSHADOW_SHIFT) | (int)dlightMap;
+ tr.refdef.drawSurfs[index].surface = surface;
+ tr.refdef.numDrawSurfs++;
+}
+
+/*
+=================
+R_DecomposeSort
+=================
+*/
+void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader,
+ int *fogNum, int *dlightMap, int *pshadowMap ) {
+ *fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31;
+ *shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ];
+ *entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK;
+ *pshadowMap = (sort >> QSORT_PSHADOW_SHIFT ) & 1;
+ *dlightMap = sort & 1;
+}
+
+/*
+=================
+R_SortDrawSurfs
+=================
+*/
+void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) {
+ shader_t *shader;
+ int fogNum;
+ int entityNum;
+ int dlighted;
+ int pshadowed;
+ int i;
+
+ //ri.Printf(PRINT_ALL, "firstDrawSurf %d numDrawSurfs %d\n", (int)(drawSurfs - tr.refdef.drawSurfs), numDrawSurfs);
+
+ // it is possible for some views to not have any surfaces
+ if ( numDrawSurfs < 1 ) {
+ // we still need to add it for hyperspace cases
+ R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
+ return;
+ }
+
+ // if we overflowed MAX_DRAWSURFS, the drawsurfs
+ // wrapped around in the buffer and we will be missing
+ // the first surfaces, not the last ones
+ if ( numDrawSurfs > MAX_DRAWSURFS ) {
+ numDrawSurfs = MAX_DRAWSURFS;
+ }
+
+ // sort the drawsurfs by sort type, then orientation, then shader
+ R_RadixSort( drawSurfs, numDrawSurfs );
+
+ // skip pass through drawing if rendering a shadow map
+ if (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW))
+ {
+ R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
+ return;
+ }
+
+ // check for any pass through drawing, which
+ // may cause another view to be rendered first
+ for ( i = 0 ; i < numDrawSurfs ; i++ ) {
+ R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
+
+ if ( shader->sort > SS_PORTAL ) {
+ break;
+ }
+
+ // no shader should ever have this sort type
+ if ( shader->sort == SS_BAD ) {
+ ri.Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name );
+ }
+
+ // if the mirror was completely clipped away, we may need to check another surface
+ if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) {
+ // this is a debug option to see exactly what is being mirrored
+ if ( r_portalOnly->integer ) {
+ return;
+ }
+ break; // only one mirror view at a time
+ }
+ }
+
+ R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
+}
+
+static void R_AddEntitySurface (int entityNum)
+{
+ trRefEntity_t *ent;
+ shader_t *shader;
+
+ tr.currentEntityNum = entityNum;
+
+ ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];
+
+ ent->needDlights = qfalse;
+
+ // preshift the value we are going to OR into the drawsurf sort
+ tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT;
+
+ //
+ // the weapon model must be handled special --
+ // we don't want the hacked weapon position showing in
+ // mirrors, because the true body position will already be drawn
+ //
+ if ( (ent->e.renderfx & RF_FIRST_PERSON) && (tr.viewParms.isPortal
+ || (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW))) ) {
+ return;
+ }
+
+ // simple generated models, like sprites and beams, are not culled
+ switch ( ent->e.reType ) {
+ case RT_PORTALSURFACE:
+ break; // don't draw anything
+ case RT_SPRITE:
+ case RT_BEAM:
+ case RT_LIGHTNING:
+ case RT_RAIL_CORE:
+ case RT_RAIL_RINGS:
+ // self blood sprites, talk balloons, etc should not be drawn in the primary
+ // view. We can't just do this check for all entities, because md3
+ // entities may still want to cast shadows from them
+ if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
+ return;
+ }
+ shader = R_GetShaderByHandle( ent->e.customShader );
+ R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0, 0 );
+ break;
+
+ case RT_MODEL:
+ // we must set up parts of tr.or for model culling
+ R_RotateForEntity( ent, &tr.viewParms, &tr.or );
+
+ tr.currentModel = R_GetModelByHandle( ent->e.hModel );
+ if (!tr.currentModel) {
+ R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0 );
+ } else {
+ switch ( tr.currentModel->type ) {
+ case MOD_MESH:
+ R_AddMD3Surfaces( ent );
+ break;
+ case MOD_MD4:
+ R_AddAnimSurfaces( ent );
+ break;
+#ifdef RAVENMD4
+ case MOD_MDR:
+ R_MDRAddAnimSurfaces( ent );
+ break;
+#endif
+ case MOD_IQM:
+ R_AddIQMSurfaces( ent );
+ break;
+ case MOD_BRUSH:
+ R_AddBrushModelSurfaces( ent );
+ break;
+ case MOD_BAD: // null model axis
+ if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
+ break;
+ }
+ R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0 );
+ break;
+ default:
+ ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
+ break;
+ }
+ }
+ break;
+ default:
+ ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
+ }
+}
+
+/*
+=============
+R_AddEntitySurfaces
+=============
+*/
+void R_AddEntitySurfaces (void) {
+ int i;
+
+ if ( !r_drawentities->integer ) {
+ return;
+ }
+
+ for ( i = 0; i < tr.refdef.num_entities; i++)
+ R_AddEntitySurface(i);
+}
+
+
+/*
+====================
+R_GenerateDrawSurfs
+====================
+*/
+void R_GenerateDrawSurfs( void ) {
+ R_AddWorldSurfaces ();
+
+ R_AddPolygonSurfaces();
+
+ // set the projection matrix with the minimum zfar
+ // now that we have the world bounded
+ // this needs to be done before entities are
+ // added, because they use the projection
+ // matrix for lod calculation
+
+ // dynamically compute far clip plane distance
+ if (!(tr.viewParms.flags & VPF_SHADOWMAP))
+ {
+ R_SetFarClip();
+ }
+
+ // we know the size of the clipping volume. Now set the rest of the projection matrix.
+ R_SetupProjectionZ (&tr.viewParms);
+
+ R_AddEntitySurfaces ();
+}
+
+/*
+================
+R_DebugPolygon
+================
+*/
+void R_DebugPolygon( int color, int numPoints, float *points ) {
+ // FIXME: implement this
+#if 0
+ int i;
+
+ GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
+
+ // draw solid shade
+
+ qglColor3f( color&1, (color>>1)&1, (color>>2)&1 );
+ qglBegin( GL_POLYGON );
+ for ( i = 0 ; i < numPoints ; i++ ) {
+ qglVertex3fv( points + i * 3 );
+ }
+ qglEnd();
+
+ // draw wireframe outline
+ GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
+ qglDepthRange( 0, 0 );
+ qglColor3f( 1, 1, 1 );
+ qglBegin( GL_POLYGON );
+ for ( i = 0 ; i < numPoints ; i++ ) {
+ qglVertex3fv( points + i * 3 );
+ }
+ qglEnd();
+ qglDepthRange( 0, 1 );
+#endif
+}
+
+/*
+====================
+R_DebugGraphics
+
+Visualization aid for movement clipping debugging
+====================
+*/
+void R_DebugGraphics( void ) {
+ if ( !r_debugSurface->integer ) {
+ return;
+ }
+
+ R_IssuePendingRenderCommands();
+
+ GL_Bind( tr.whiteImage);
+ GL_Cull( CT_FRONT_SIDED );
+ ri.CM_DrawDebugSurface( R_DebugPolygon );
+}
+
+
+/*
+================
+R_RenderView
+
+A view may be either the actual camera view,
+or a mirror / remote location
+================
+*/
+void R_RenderView (viewParms_t *parms) {
+ int firstDrawSurf;
+
+ if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) {
+ return;
+ }
+
+ tr.viewCount++;
+
+ tr.viewParms = *parms;
+ tr.viewParms.frameSceneNum = tr.frameSceneNum;
+ tr.viewParms.frameCount = tr.frameCount;
+
+ firstDrawSurf = tr.refdef.numDrawSurfs;
+
+ tr.viewCount++;
+
+ // set viewParms.world
+ R_RotateForViewer ();
+
+ R_SetupProjection(&tr.viewParms, r_zproj->value, tr.viewParms.zFar, qtrue);
+
+ R_GenerateDrawSurfs();
+
+ R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
+
+ // draw main system development information (surface outlines, etc)
+ R_DebugGraphics();
+}
+
+
+void R_RenderDlightCubemaps(const refdef_t *fd)
+{
+ int i;
+
+ for (i = 0; i < tr.refdef.num_dlights; i++)
+ {
+ viewParms_t shadowParms;
+ int j;
+
+ // use previous frame to determine visible dlights
+ if ((1 << i) & tr.refdef.dlightMask)
+ continue;
+
+ Com_Memset( &shadowParms, 0, sizeof( shadowParms ) );
+
+ shadowParms.viewportX = tr.refdef.x;
+ shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + PSHADOW_MAP_SIZE );
+ shadowParms.viewportWidth = PSHADOW_MAP_SIZE;
+ shadowParms.viewportHeight = PSHADOW_MAP_SIZE;
+ shadowParms.isPortal = qfalse;
+ shadowParms.isMirror = qtrue; // because it is
+
+ shadowParms.fovX = 90;
+ shadowParms.fovY = 90;
+
+ shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW;
+ shadowParms.zFar = tr.refdef.dlights[i].radius;
+
+ VectorCopy( tr.refdef.dlights[i].origin, shadowParms.or.origin );
+
+ for (j = 0; j < 6; j++)
+ {
+ switch(j)
+ {
+ case 0:
+ // -X
+ VectorSet( shadowParms.or.axis[0], -1, 0, 0);
+ VectorSet( shadowParms.or.axis[1], 0, 0, -1);
+ VectorSet( shadowParms.or.axis[2], 0, 1, 0);
+ break;
+ case 1:
+ // +X
+ VectorSet( shadowParms.or.axis[0], 1, 0, 0);
+ VectorSet( shadowParms.or.axis[1], 0, 0, 1);
+ VectorSet( shadowParms.or.axis[2], 0, 1, 0);
+ break;
+ case 2:
+ // -Y
+ VectorSet( shadowParms.or.axis[0], 0, -1, 0);
+ VectorSet( shadowParms.or.axis[1], 1, 0, 0);
+ VectorSet( shadowParms.or.axis[2], 0, 0, -1);
+ break;
+ case 3:
+ // +Y
+ VectorSet( shadowParms.or.axis[0], 0, 1, 0);
+ VectorSet( shadowParms.or.axis[1], 1, 0, 0);
+ VectorSet( shadowParms.or.axis[2], 0, 0, 1);
+ break;
+ case 4:
+ // -Z
+ VectorSet( shadowParms.or.axis[0], 0, 0, -1);
+ VectorSet( shadowParms.or.axis[1], 1, 0, 0);
+ VectorSet( shadowParms.or.axis[2], 0, 1, 0);
+ break;
+ case 5:
+ // +Z
+ VectorSet( shadowParms.or.axis[0], 0, 0, 1);
+ VectorSet( shadowParms.or.axis[1], -1, 0, 0);
+ VectorSet( shadowParms.or.axis[2], 0, 1, 0);
+ break;
+ }
+
+ R_RenderView(&shadowParms);
+ R_AddCapShadowmapCmd( i, j );
+ }
+ }
+}
+
+
+void R_RenderPshadowMaps(const refdef_t *fd)
+{
+ viewParms_t shadowParms;
+ int i;
+
+ // first, make a list of shadows
+ for ( i = 0; i < tr.refdef.num_entities; i++)
+ {
+ trRefEntity_t *ent = &tr.refdef.entities[i];
+
+ if((ent->e.renderfx & (RF_FIRST_PERSON | RF_NOSHADOW)))
+ continue;
+
+ //if((ent->e.renderfx & RF_THIRD_PERSON))
+ //continue;
+
+ if (ent->e.reType == RT_MODEL)
+ {
+ model_t *model = R_GetModelByHandle( ent->e.hModel );
+ pshadow_t shadow;
+ float radius = 0.0f;
+ float scale = 1.0f;
+ vec3_t diff;
+ int j;
+
+ if (!model)
+ continue;
+
+ if (ent->e.nonNormalizedAxes)
+ {
+ scale = VectorLength( ent->e.axis[0] );
+ }
+
+ switch (model->type)
+ {
+ case MOD_MESH:
+ {
+ mdvFrame_t *frame = &model->mdv[0]->frames[ent->e.frame];
+
+ radius = frame->radius * scale;
+ }
+ break;
+
+ case MOD_MD4:
+ {
+ // FIXME: actually calculate the radius and bounds, this is a horrible hack
+ radius = r_pshadowDist->value / 2.0f;
+ }
+ break;
+#ifdef RAVENMD4
+ case MOD_MDR:
+ {
+ // FIXME: never actually tested this
+ mdrHeader_t *header = model->modelData;
+ int frameSize = (size_t)( &((mdrFrame_t *)0)->bones[ header->numBones ] );
+ mdrFrame_t *frame = ( mdrFrame_t * ) ( ( byte * ) header + header->ofsFrames + frameSize * ent->e.frame);
+
+ radius = frame->radius;
+ }
+ break;
+#endif
+ case MOD_IQM:
+ {
+ // FIXME: never actually tested this
+ iqmData_t *data = model->modelData;
+ vec3_t diag;
+ float *framebounds;
+
+ framebounds = data->bounds + 6*ent->e.frame;
+ VectorSubtract( framebounds+3, framebounds, diag );
+ radius = 0.5f * VectorLength( diag );
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (!radius)
+ continue;
+
+ // Cull entities that are behind the viewer by more than lightRadius
+ VectorSubtract(ent->e.origin, fd->vieworg, diff);
+ if (DotProduct(diff, fd->viewaxis[0]) < -r_pshadowDist->value)
+ continue;
+
+ memset(&shadow, 0, sizeof(shadow));
+
+ shadow.numEntities = 1;
+ shadow.entityNums[0] = i;
+ shadow.viewRadius = radius;
+ shadow.lightRadius = r_pshadowDist->value;
+ VectorCopy(ent->e.origin, shadow.viewOrigin);
+ shadow.sort = DotProduct(diff, diff) / (radius * radius);
+ VectorCopy(ent->e.origin, shadow.entityOrigins[0]);
+ shadow.entityRadiuses[0] = radius;
+
+ for (j = 0; j < MAX_CALC_PSHADOWS; j++)
+ {
+ pshadow_t swap;
+
+ if (j + 1 > tr.refdef.num_pshadows)
+ {
+ tr.refdef.num_pshadows = j + 1;
+ tr.refdef.pshadows[j] = shadow;
+ break;
+ }
+
+ // sort shadows by distance from camera divided by radius
+ // FIXME: sort better
+ if (tr.refdef.pshadows[j].sort <= shadow.sort)
+ continue;
+
+ swap = tr.refdef.pshadows[j];
+ tr.refdef.pshadows[j] = shadow;
+ shadow = swap;
+ }
+ }
+ }
+
+ // next, merge touching pshadows
+ for ( i = 0; i < tr.refdef.num_pshadows; i++)
+ {
+ pshadow_t *ps1 = &tr.refdef.pshadows[i];
+ int j;
+
+ for (j = i + 1; j < tr.refdef.num_pshadows; j++)
+ {
+ pshadow_t *ps2 = &tr.refdef.pshadows[j];
+ int k;
+ qboolean touch;
+
+ if (ps1->numEntities == 8)
+ break;
+
+ touch = qfalse;
+ if (SpheresIntersect(ps1->viewOrigin, ps1->viewRadius, ps2->viewOrigin, ps2->viewRadius))
+ {
+ for (k = 0; k < ps1->numEntities; k++)
+ {
+ if (SpheresIntersect(ps1->entityOrigins[k], ps1->entityRadiuses[k], ps2->viewOrigin, ps2->viewRadius))
+ {
+ touch = qtrue;
+ break;
+ }
+ }
+ }
+
+ if (touch)
+ {
+ vec3_t newOrigin;
+ float newRadius;
+
+ BoundingSphereOfSpheres(ps1->viewOrigin, ps1->viewRadius, ps2->viewOrigin, ps2->viewRadius, newOrigin, &newRadius);
+ VectorCopy(newOrigin, ps1->viewOrigin);
+ ps1->viewRadius = newRadius;
+
+ ps1->entityNums[ps1->numEntities] = ps2->entityNums[0];
+ VectorCopy(ps2->viewOrigin, ps1->entityOrigins[ps1->numEntities]);
+ ps1->entityRadiuses[ps1->numEntities] = ps2->viewRadius;
+
+ ps1->numEntities++;
+
+ for (k = j; k < tr.refdef.num_pshadows - 1; k++)
+ {
+ tr.refdef.pshadows[k] = tr.refdef.pshadows[k + 1];
+ }
+
+ j--;
+ tr.refdef.num_pshadows--;
+ }
+ }
+ }
+
+ // cap number of drawn pshadows
+ if (tr.refdef.num_pshadows > MAX_DRAWN_PSHADOWS)
+ {
+ tr.refdef.num_pshadows = MAX_DRAWN_PSHADOWS;
+ }
+
+ // next, fill up the rest of the shadow info
+ for ( i = 0; i < tr.refdef.num_pshadows; i++)
+ {
+ pshadow_t *shadow = &tr.refdef.pshadows[i];
+ vec3_t up;
+ vec3_t ambientLight, directedLight, lightDir;
+
+ VectorSet(lightDir, 0.57735f, 0.57735f, 0.57735f);
+#if 1
+ R_LightForPoint(shadow->viewOrigin, ambientLight, directedLight, lightDir);
+
+ // sometimes there's no light
+ if (DotProduct(lightDir, lightDir) < 0.9f)
+ VectorSet(lightDir, 0.0f, 0.0f, 1.0f);
+#endif
+
+ if (shadow->viewRadius * 3.0f > shadow->lightRadius)
+ {
+ shadow->lightRadius = shadow->viewRadius * 3.0f;
+ }
+
+ VectorMA(shadow->viewOrigin, shadow->viewRadius, lightDir, shadow->lightOrigin);
+
+ // make up a projection, up doesn't matter
+ VectorScale(lightDir, -1.0f, shadow->lightViewAxis[0]);
+ VectorSet(up, 0, 0, -1);
+
+ if ( abs(DotProduct(up, shadow->lightViewAxis[0])) > 0.9f )
+ {
+ VectorSet(up, -1, 0, 0);
+ }
+
+ CrossProduct(shadow->lightViewAxis[0], up, shadow->lightViewAxis[1]);
+ VectorNormalize(shadow->lightViewAxis[1]);
+ CrossProduct(shadow->lightViewAxis[0], shadow->lightViewAxis[1], shadow->lightViewAxis[2]);
+
+ VectorCopy(shadow->lightViewAxis[0], shadow->cullPlane.normal);
+ shadow->cullPlane.dist = DotProduct(shadow->cullPlane.normal, shadow->lightOrigin);
+ shadow->cullPlane.type = PLANE_NON_AXIAL;
+ SetPlaneSignbits(&shadow->cullPlane);
+ }
+
+ // next, render shadowmaps
+ for ( i = 0; i < tr.refdef.num_pshadows; i++)
+ {
+ int firstDrawSurf;
+ pshadow_t *shadow = &tr.refdef.pshadows[i];
+ int j;
+
+ Com_Memset( &shadowParms, 0, sizeof( shadowParms ) );
+
+ if (glRefConfig.framebufferObject)
+ {
+ shadowParms.viewportX = 0;
+ shadowParms.viewportY = 0;
+ }
+ else
+ {
+ shadowParms.viewportX = tr.refdef.x;
+ shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + PSHADOW_MAP_SIZE );
+ }
+ shadowParms.viewportWidth = PSHADOW_MAP_SIZE;
+ shadowParms.viewportHeight = PSHADOW_MAP_SIZE;
+ shadowParms.isPortal = qfalse;
+ shadowParms.isMirror = qfalse;
+
+ shadowParms.fovX = 90;
+ shadowParms.fovY = 90;
+
+ if (glRefConfig.framebufferObject)
+ shadowParms.targetFbo = tr.pshadowFbos[i];
+
+ shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW;
+ shadowParms.zFar = shadow->lightRadius;
+
+ VectorCopy(shadow->lightOrigin, shadowParms.or.origin);
+
+ VectorCopy(shadow->lightViewAxis[0], shadowParms.or.axis[0]);
+ VectorCopy(shadow->lightViewAxis[1], shadowParms.or.axis[1]);
+ VectorCopy(shadow->lightViewAxis[2], shadowParms.or.axis[2]);
+
+ {
+ tr.viewCount++;
+
+ tr.viewParms = shadowParms;
+ tr.viewParms.frameSceneNum = tr.frameSceneNum;
+ tr.viewParms.frameCount = tr.frameCount;
+
+ firstDrawSurf = tr.refdef.numDrawSurfs;
+
+ tr.viewCount++;
+
+ // set viewParms.world
+ R_RotateForViewer ();
+
+ {
+ float xmin, xmax, ymin, ymax, znear, zfar;
+ viewParms_t *dest = &tr.viewParms;
+ vec3_t pop;
+
+ xmin = ymin = -shadow->viewRadius;
+ xmax = ymax = shadow->viewRadius;
+ znear = 0;
+ zfar = shadow->lightRadius;
+
+ dest->projectionMatrix[0] = 2 / (xmax - xmin);
+ dest->projectionMatrix[4] = 0;
+ dest->projectionMatrix[8] = (xmax + xmin) / (xmax - xmin);
+ dest->projectionMatrix[12] =0;
+
+ dest->projectionMatrix[1] = 0;
+ dest->projectionMatrix[5] = 2 / (ymax - ymin);
+ dest->projectionMatrix[9] = ( ymax + ymin ) / (ymax - ymin); // normally 0
+ dest->projectionMatrix[13] = 0;
+
+ dest->projectionMatrix[2] = 0;
+ dest->projectionMatrix[6] = 0;
+ dest->projectionMatrix[10] = 2 / (zfar - znear);
+ dest->projectionMatrix[14] = 0;
+
+ dest->projectionMatrix[3] = 0;
+ dest->projectionMatrix[7] = 0;
+ dest->projectionMatrix[11] = 0;
+ dest->projectionMatrix[15] = 1;
+
+ VectorScale(dest->or.axis[1], 1.0f, dest->frustum[0].normal);
+ VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[0].normal, pop);
+ dest->frustum[0].dist = DotProduct(pop, dest->frustum[0].normal);
+
+ VectorScale(dest->or.axis[1], -1.0f, dest->frustum[1].normal);
+ VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[1].normal, pop);
+ dest->frustum[1].dist = DotProduct(pop, dest->frustum[1].normal);
+
+ VectorScale(dest->or.axis[2], 1.0f, dest->frustum[2].normal);
+ VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[2].normal, pop);
+ dest->frustum[2].dist = DotProduct(pop, dest->frustum[2].normal);
+
+ VectorScale(dest->or.axis[2], -1.0f, dest->frustum[3].normal);
+ VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[3].normal, pop);
+ dest->frustum[3].dist = DotProduct(pop, dest->frustum[3].normal);
+
+ VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal);
+ VectorMA(dest->or.origin, -shadow->lightRadius, dest->frustum[4].normal, pop);
+ dest->frustum[4].dist = DotProduct(pop, dest->frustum[4].normal);
+
+ for (j = 0; j < 5; j++)
+ {
+ dest->frustum[j].type = PLANE_NON_AXIAL;
+ SetPlaneSignbits (&dest->frustum[j]);
+ }
+
+ dest->flags |= VPF_FARPLANEFRUSTUM;
+ }
+
+ for (j = 0; j < shadow->numEntities; j++)
+ {
+ R_AddEntitySurface(shadow->entityNums[j]);
+ }
+
+ R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
+
+ if (!glRefConfig.framebufferObject)
+ R_AddCapShadowmapCmd( i, -1 );
+ }
+ }
+}
+
+static float CalcSplit(float n, float f, float i, float m)
+{
+ return (n * pow(f / n, i / m) + (f - n) * i / m) / 2.0f;
+}
+
+
+void R_RenderSunShadowMaps(const refdef_t *fd, int level)
+{
+ viewParms_t shadowParms;
+ vec4_t lightDir, lightCol;
+ vec3_t lightViewAxis[3];
+ vec3_t lightOrigin;
+ float splitZNear, splitZFar, splitBias;
+ float viewZNear, viewZFar;
+ vec3_t lightviewBounds[2];
+ qboolean lightViewIndependentOfCameraView = qfalse;
+
+ if (r_forceSun->integer == 2)
+ {
+ int scale = 32768;
+ float angle = (fd->time % scale) / (float)scale * M_PI;
+ lightDir[0] = cos(angle);
+ lightDir[1] = sin(35.0f * M_PI / 180.0f);
+ lightDir[2] = sin(angle) * cos(35.0f * M_PI / 180.0f);
+ lightDir[3] = 0.0f;
+
+ if (1) //((fd->time % (scale * 2)) < scale)
+ {
+ lightCol[0] =
+ lightCol[1] =
+ lightCol[2] = CLAMP(sin(angle) * 2.0f, 0.0f, 1.0f) * 2.0f;
+ lightCol[3] = 1.0f;
+ }
+ else
+ {
+ lightCol[0] =
+ lightCol[1] =
+ lightCol[2] = CLAMP(sin(angle) * 2.0f * 0.1f, 0.0f, 0.1f);
+ lightCol[3] = 1.0f;
+ }
+
+ VectorCopy4(lightDir, tr.refdef.sunDir);
+ VectorCopy4(lightCol, tr.refdef.sunCol);
+ VectorScale4(lightCol, 0.2f, tr.refdef.sunAmbCol);
+ }
+ else
+ {
+ VectorCopy4(tr.refdef.sunDir, lightDir);
+ }
+
+ viewZNear = r_shadowCascadeZNear->value;
+ viewZFar = r_shadowCascadeZFar->value;
+ splitBias = r_shadowCascadeZBias->value;
+
+ switch(level)
+ {
+ case 0:
+ default:
+ //splitZNear = r_znear->value;
+ //splitZFar = 256;
+ splitZNear = viewZNear;
+ splitZFar = CalcSplit(viewZNear, viewZFar, 1, 3) + splitBias;
+ break;
+ case 1:
+ splitZNear = CalcSplit(viewZNear, viewZFar, 1, 3) + splitBias;
+ splitZFar = CalcSplit(viewZNear, viewZFar, 2, 3) + splitBias;
+ //splitZNear = 256;
+ //splitZFar = 896;
+ break;
+ case 2:
+ splitZNear = CalcSplit(viewZNear, viewZFar, 2, 3) + splitBias;
+ splitZFar = viewZFar;
+ //splitZNear = 896;
+ //splitZFar = 3072;
+ break;
+ }
+
+ VectorCopy(fd->vieworg, lightOrigin);
+
+
+ // Make up a projection
+ VectorScale(lightDir, -1.0f, lightViewAxis[0]);
+
+ if (lightViewIndependentOfCameraView)
+ {
+ // Use world up as light view up
+ VectorSet(lightViewAxis[2], 0, 0, 1);
+ }
+ else if (level == 0)
+ {
+ // Level 0 tries to use a diamond texture orientation relative to camera view
+ // Use halfway between camera view forward and left for light view up
+ VectorAdd(fd->viewaxis[0], fd->viewaxis[1], lightViewAxis[2]);
+ }
+ else
+ {
+ // Use camera view up as light view up
+ VectorCopy(fd->viewaxis[2], lightViewAxis[2]);
+ }
+
+ // Check if too close to parallel to light direction
+ if (abs(DotProduct(lightViewAxis[2], lightViewAxis[0])) > 0.9f)
+ {
+ if (lightViewIndependentOfCameraView)
+ {
+ // Use world left as light view up
+ VectorSet(lightViewAxis[2], 0, 1, 0);
+ }
+ else if (level == 0)
+ {
+ // Level 0 tries to use a diamond texture orientation relative to camera view
+ // Use halfway between camera view forward and up for light view up
+ VectorAdd(fd->viewaxis[0], fd->viewaxis[2], lightViewAxis[2]);
+ }
+ else
+ {
+ // Use camera view left as light view up
+ VectorCopy(fd->viewaxis[1], lightViewAxis[2]);
+ }
+ }
+
+ // clean axes
+ CrossProduct(lightViewAxis[2], lightViewAxis[0], lightViewAxis[1]);
+ VectorNormalize(lightViewAxis[1]);
+ CrossProduct(lightViewAxis[0], lightViewAxis[1], lightViewAxis[2]);
+
+ // Create bounds for light projection using slice of view projection
+ {
+ matrix_t lightViewMatrix;
+ vec4_t point, base, lightViewPoint;
+ float lx, ly;
+
+ base[3] = 1;
+ point[3] = 1;
+ lightViewPoint[3] = 1;
+
+ Matrix16View(lightViewAxis, lightOrigin, lightViewMatrix);
+
+ ClearBounds(lightviewBounds[0], lightviewBounds[1]);
+
+ // add view near plane
+ lx = splitZNear * tan(fd->fov_x * M_PI / 360.0f);
+ ly = splitZNear * tan(fd->fov_y * M_PI / 360.0f);
+ VectorMA(fd->vieworg, splitZNear, fd->viewaxis[0], base);
+
+ VectorMA(base, lx, fd->viewaxis[1], point);
+ VectorMA(point, ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ VectorMA(base, -lx, fd->viewaxis[1], point);
+ VectorMA(point, ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ VectorMA(base, lx, fd->viewaxis[1], point);
+ VectorMA(point, -ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ VectorMA(base, -lx, fd->viewaxis[1], point);
+ VectorMA(point, -ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+
+ // add view far plane
+ lx = splitZFar * tan(fd->fov_x * M_PI / 360.0f);
+ ly = splitZFar * tan(fd->fov_y * M_PI / 360.0f);
+ VectorMA(fd->vieworg, splitZFar, fd->viewaxis[0], base);
+
+ VectorMA(base, lx, fd->viewaxis[1], point);
+ VectorMA(point, ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ VectorMA(base, -lx, fd->viewaxis[1], point);
+ VectorMA(point, ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ VectorMA(base, lx, fd->viewaxis[1], point);
+ VectorMA(point, -ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ VectorMA(base, -lx, fd->viewaxis[1], point);
+ VectorMA(point, -ly, fd->viewaxis[2], point);
+ Matrix16Transform(lightViewMatrix, point, lightViewPoint);
+ AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
+
+ if (!glRefConfig.depthClamp)
+ lightviewBounds[0][0] = lightviewBounds[1][0] - 8192;
+
+ // Moving the Light in Texel-Sized Increments
+ // from http://msdn.microsoft.com/en-us/library/windows/desktop/ee416324%28v=vs.85%29.aspx
+ //
+ if (lightViewIndependentOfCameraView)
+ {
+ float cascadeBound, worldUnitsPerTexel, invWorldUnitsPerTexel;
+
+ cascadeBound = MAX(lightviewBounds[1][0] - lightviewBounds[0][0], lightviewBounds[1][1] - lightviewBounds[0][1]);
+ cascadeBound = MAX(cascadeBound, lightviewBounds[1][2] - lightviewBounds[0][2]);
+ worldUnitsPerTexel = cascadeBound / tr.sunShadowFbo[level]->width;
+ invWorldUnitsPerTexel = 1.0f / worldUnitsPerTexel;
+
+ VectorScale(lightviewBounds[0], invWorldUnitsPerTexel, lightviewBounds[0]);
+ lightviewBounds[0][0] = floor(lightviewBounds[0][0]);
+ lightviewBounds[0][1] = floor(lightviewBounds[0][1]);
+ lightviewBounds[0][2] = floor(lightviewBounds[0][2]);
+ VectorScale(lightviewBounds[0], worldUnitsPerTexel, lightviewBounds[0]);
+
+ VectorScale(lightviewBounds[1], invWorldUnitsPerTexel, lightviewBounds[1]);
+ lightviewBounds[1][0] = floor(lightviewBounds[1][0]);
+ lightviewBounds[1][1] = floor(lightviewBounds[1][1]);
+ lightviewBounds[1][2] = floor(lightviewBounds[1][2]);
+ VectorScale(lightviewBounds[1], worldUnitsPerTexel, lightviewBounds[1]);
+ }
+
+ //ri.Printf(PRINT_ALL, "znear %f zfar %f\n", lightviewBounds[0][0], lightviewBounds[1][0]);
+ //ri.Printf(PRINT_ALL, "fovx %f fovy %f xmin %f xmax %f ymin %f ymax %f\n", fd->fov_x, fd->fov_y, xmin, xmax, ymin, ymax);
+ }
+
+
+ {
+ int firstDrawSurf;
+
+ Com_Memset( &shadowParms, 0, sizeof( shadowParms ) );
+
+ if (glRefConfig.framebufferObject)
+ {
+ shadowParms.viewportX = 0;
+ shadowParms.viewportY = 0;
+ }
+ else
+ {
+ shadowParms.viewportX = tr.refdef.x;
+ shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + tr.sunShadowFbo[level]->height );
+ }
+ shadowParms.viewportWidth = tr.sunShadowFbo[level]->width;
+ shadowParms.viewportHeight = tr.sunShadowFbo[level]->height;
+ shadowParms.isPortal = qfalse;
+ shadowParms.isMirror = qfalse;
+
+ shadowParms.fovX = 90;
+ shadowParms.fovY = 90;
+
+ if (glRefConfig.framebufferObject)
+ shadowParms.targetFbo = tr.sunShadowFbo[level];
+
+ shadowParms.flags = VPF_DEPTHSHADOW | VPF_DEPTHCLAMP | VPF_ORTHOGRAPHIC;
+ shadowParms.zFar = lightviewBounds[1][0];
+
+ VectorCopy(lightOrigin, shadowParms.or.origin);
+
+ VectorCopy(lightViewAxis[0], shadowParms.or.axis[0]);
+ VectorCopy(lightViewAxis[1], shadowParms.or.axis[1]);
+ VectorCopy(lightViewAxis[2], shadowParms.or.axis[2]);
+
+ VectorCopy(lightOrigin, shadowParms.pvsOrigin );
+
+ {
+ tr.viewCount++;
+
+ tr.viewParms = shadowParms;
+ tr.viewParms.frameSceneNum = tr.frameSceneNum;
+ tr.viewParms.frameCount = tr.frameCount;
+
+ firstDrawSurf = tr.refdef.numDrawSurfs;
+
+ tr.viewCount++;
+
+ // set viewParms.world
+ R_RotateForViewer ();
+
+ R_SetupProjectionOrtho(&tr.viewParms, lightviewBounds);
+
+ R_AddWorldSurfaces ();
+
+ R_AddPolygonSurfaces();
+
+ R_AddEntitySurfaces ();
+
+ R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
+ }
+
+ Matrix16Multiply(tr.viewParms.projectionMatrix, tr.viewParms.world.modelMatrix, tr.refdef.sunShadowMvp[level]);
+ }
+}