1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
|
// Copyright (C) 1999-2000 Id Software, Inc.
//
// q_math.c -- stateless support routines that are included in each code module
/*
* Portions Copyright (C) 2000-2001 Tim Angus
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* To assertain which portions are licensed under the LGPL and which are
* licensed by Id Software, Inc. please run a diff between the equivalent
* versions of the "Tremulous" modification and the unmodified "Quake3"
* game source code.
*/
#include "q_shared.h"
vec3_t vec3_origin = {0,0,0};
vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
vec4_t colorBlack = {0, 0, 0, 1};
vec4_t colorRed = {1, 0, 0, 1};
vec4_t colorGreen = {0, 1, 0, 1};
vec4_t colorBlue = {0, 0, 1, 1};
vec4_t colorYellow = {1, 1, 0, 1};
vec4_t colorMagenta= {1, 0, 1, 1};
vec4_t colorCyan = {0, 1, 1, 1};
vec4_t colorWhite = {1, 1, 1, 1};
vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1};
vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1};
vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1};
vec4_t g_color_table[8] =
{
{0.0, 0.0, 0.0, 1.0},
{1.0, 0.0, 0.0, 1.0},
{0.0, 1.0, 0.0, 1.0},
{1.0, 1.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 1.0},
{0.0, 1.0, 1.0, 1.0},
{1.0, 0.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
};
vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
};
//==============================================================
int Q_rand( int *seed ) {
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random( int *seed ) {
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}
float Q_crandom( int *seed ) {
return 2.0 * ( Q_random( seed ) - 0.5 );
}
#ifdef __LCC__
int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
return 0;
}
return 1;
}
vec_t VectorLength( const vec3_t v ) {
return (vec_t)sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
vec_t VectorLengthSquared( const vec3_t v ) {
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract (p2, p1, v);
return VectorLength( v );
}
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract (p2, p1, v);
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}
// fast vector normalize routine that does not check to make sure
// that length != 0, nor does it return length, uses rsqrt approximation
void VectorNormalizeFast( vec3_t v )
{
float ilength;
ilength = Q_rsqrt( DotProduct( v, v ) );
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
void VectorInverse( vec3_t v ){
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
#endif
//=======================================================
signed char ClampChar( int i ) {
if ( i < -128 ) {
return -128;
}
if ( i > 127 ) {
return 127;
}
return i;
}
signed short ClampShort( int i ) {
if ( i < -32768 ) {
return -32768;
}
if ( i > 0x7fff ) {
return 0x7fff;
}
return i;
}
// this isn't a real cheap function to call!
int DirToByte( vec3_t dir ) {
int i, best;
float d, bestd;
if ( !dir ) {
return 0;
}
bestd = 0;
best = 0;
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
d = DotProduct (dir, bytedirs[i]);
if (d > bestd)
{
bestd = d;
best = i;
}
}
return best;
}
void ByteToDir( int b, vec3_t dir ) {
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
VectorCopy( vec3_origin, dir );
return;
}
VectorCopy (bytedirs[b], dir);
}
unsigned ColorBytes3 (float r, float g, float b) {
unsigned i;
( (byte *)&i )[0] = r * 255;
( (byte *)&i )[1] = g * 255;
( (byte *)&i )[2] = b * 255;
return i;
}
unsigned ColorBytes4 (float r, float g, float b, float a) {
unsigned i;
( (byte *)&i )[0] = r * 255;
( (byte *)&i )[1] = g * 255;
( (byte *)&i )[2] = b * 255;
( (byte *)&i )[3] = a * 255;
return i;
}
float NormalizeColor( const vec3_t in, vec3_t out ) {
float max;
max = in[0];
if ( in[1] > max ) {
max = in[1];
}
if ( in[2] > max ) {
max = in[2];
}
if ( !max ) {
VectorClear( out );
} else {
out[0] = in[0] / max;
out[1] = in[1] / max;
out[2] = in[2] / max;
}
return max;
}
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/// These optimised and much cleaner implementations of the Vector Rotation
/// functions were provided by Riv of planetquake (riviera@planetquake.com)
/// ...Cheers Riv...
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees)
{
float sin_a;
float cos_a;
float cos_ia;
float i_i_ia;
float j_j_ia;
float k_k_ia;
float i_j_ia;
float i_k_ia;
float j_k_ia;
float a_sin;
float b_sin;
float c_sin;
float rot[3][3];
cos_ia = DEG2RAD(degrees);
sin_a = sin(cos_ia);
cos_a = cos(cos_ia);
cos_ia = 1.0F - cos_a;
i_i_ia = dir[0] * dir[0] * cos_ia;
j_j_ia = dir[1] * dir[1] * cos_ia;
k_k_ia = dir[2] * dir[2] * cos_ia;
i_j_ia = dir[0] * dir[1] * cos_ia;
i_k_ia = dir[0] * dir[2] * cos_ia;
j_k_ia = dir[1] * dir[2] * cos_ia;
a_sin = dir[0] * sin_a;
b_sin = dir[1] * sin_a;
c_sin = dir[2] * sin_a;
rot[0][0] = i_i_ia + cos_a;
rot[0][1] = i_j_ia - c_sin;
rot[0][2] = i_k_ia + b_sin;
rot[1][0] = i_j_ia + c_sin;
rot[1][1] = j_j_ia + cos_a;
rot[1][2] = j_k_ia - a_sin;
rot[2][0] = i_k_ia - b_sin;
rot[2][1] = j_k_ia + a_sin;
rot[2][2] = k_k_ia + cos_a;
dst[0] = point[0] * rot[0][0] + point[1] * rot[0][1] + point[2] * rot[0][2];
dst[1] = point[0] * rot[1][0] + point[1] * rot[1][1] + point[2] * rot[1][2];
dst[2] = point[0] * rot[2][0] + point[1] * rot[2][1] + point[2] * rot[2][2];
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection(vec3_t axis[3], vec_t angle)
{
vec_t scale;
angle = DEG2RAD(angle);
// create an arbitrary axis[1]
PerpendicularVector(axis[1], axis[0]);
// cross to get axis[2]
CrossProduct(axis[0], axis[1], axis[2]);
// rotate
scale = cos(angle);
VectorScale(axis[1], scale, axis[1]);
scale = sin(angle);
VectorMA(axis[1], scale, axis[2], axis[1]);
// recalculate axis[2]
CrossProduct(axis[0], axis[1], axis[2]);
}
void vectoangles( const vec3_t value1, vec3_t angles ) {
float forward;
float yaw, pitch;
if ( value1[1] == 0 && value1[0] == 0 ) {
yaw = 0;
if ( value1[2] > 0 ) {
pitch = 90;
}
else {
pitch = 270;
}
}
else {
if ( value1[0] ) {
yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
}
else if ( value1[1] > 0 ) {
yaw = 90;
}
else {
yaw = 270;
}
if ( yaw < 0 ) {
yaw += 360;
}
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
pitch = ( atan2(value1[2], forward) * 180 / M_PI );
if ( pitch < 0 ) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
/*
=================
AxisToAngles
TA: takes an axis (forward + right + up)
and returns angles -- including a roll
=================
*/
void AxisToAngles( vec3_t axis[3], vec3_t angles ) {
float length1;
float yaw, pitch, roll;
if ( axis[0][1] == 0 && axis[0][0] == 0 ) {
yaw = 0;
if ( axis[0][2] > 0 ) {
pitch = 90;
}
else {
pitch = 270;
}
}
else {
if ( axis[0][0] ) {
yaw = ( atan2 ( axis[0][1], axis[0][0] ) * 180 / M_PI );
}
else if ( axis[0][1] > 0 ) {
yaw = 90;
}
else {
yaw = 270;
}
if ( yaw < 0 ) {
yaw += 360;
}
length1 = sqrt ( axis[0][0]*axis[0][0] + axis[0][1]*axis[0][1] );
pitch = ( atan2(axis[0][2], length1) * 180 / M_PI );
if ( pitch < 0 ) {
pitch += 360;
}
roll = ( atan2( axis[1][2], axis[2][2] ) * 180 / M_PI );
if ( roll < 0 ) {
roll += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = roll;
}
/*
=================
AnglesToAxis
=================
*/
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
vec3_t right;
// angle vectors returns "right" instead of "y axis"
AngleVectors( angles, axis[0], right, axis[2] );
VectorSubtract( vec3_origin, right, axis[1] );
}
void AxisClear( vec3_t axis[3] ) {
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
void AxisCopy( vec3_t in[3], vec3_t out[3] ) {
VectorCopy( in[0], out[0] );
VectorCopy( in[1], out[1] );
VectorCopy( in[2], out[2] );
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
#ifndef Q3_VM
assert( Q_fabs(inv_denom) != 0.0f ); // bk010122 - zero vectors get here
#endif
inv_denom = 1.0f / inv_denom;
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
{
out[0] = DotProduct( in, matrix[0] );
out[1] = DotProduct( in, matrix[1] );
out[2] = DotProduct( in, matrix[2] );
}
//============================================================================
#if !idppc
/*
** float q_rsqrt( float number )
*/
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
}
#endif
float Q_fabs( float f ) {
int tmp = * ( int * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
}
//============================================================
/*
===============
LerpAngle
===============
*/
float LerpAngle (float from, float to, float frac) {
float a;
if ( to - from > 180 ) {
to -= 360;
}
if ( to - from < -180 ) {
to += 360;
}
a = from + frac * (to - from);
return a;
}
/*
=================
AngleSubtract
Always returns a value from -180 to 180
=================
*/
float AngleSubtract( float a1, float a2 ) {
float a;
a = a1 - a2;
while ( a > 180 ) {
a -= 360;
}
while ( a < -180 ) {
a += 360;
}
return a;
}
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
v3[0] = AngleSubtract( v1[0], v2[0] );
v3[1] = AngleSubtract( v1[1], v2[1] );
v3[2] = AngleSubtract( v1[2], v2[2] );
}
float AngleMod(float a) {
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
return a;
}
/*
=================
AngleNormalize360
returns angle normalized to the range [0 <= angle < 360]
=================
*/
float AngleNormalize360 ( float angle ) {
return (360.0 / 65536) * ((int)(angle * (65536 / 360.0)) & 65535);
}
/*
=================
AngleNormalize180
returns angle normalized to the range [-180 < angle <= 180]
=================
*/
float AngleNormalize180 ( float angle ) {
angle = AngleNormalize360( angle );
if ( angle > 180.0 ) {
angle -= 360.0;
}
return angle;
}
/*
=================
AngleDelta
returns the normalized delta from angle1 to angle2
=================
*/
float AngleDelta ( float angle1, float angle2 ) {
return AngleNormalize180( angle1 - angle2 );
}
//============================================================
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits (cplane_t *out) {
int bits, j;
// for fast box on planeside test
bits = 0;
for (j=0 ; j<3 ; j++) {
if (out->normal[j] < 0) {
bits |= 1<<j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
// this is the slow, general version
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
int i;
float dist1, dist2;
int sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
==================
*/
#if !( (defined __linux__ || __FreeBSD__) && (defined __i386__) && (!defined C_ONLY)) // rb010123
#if defined __LCC__ || defined C_ONLY || !id386 || defined __VECTORC
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
float dist1, dist2;
int sides;
// fast axial cases
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
static int bops_initialized;
static int Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0*4], offset Lcase0
mov Ljmptab[1*4], offset Lcase1
mov Ljmptab[2*4], offset Lcase2
mov Ljmptab[3*4], offset Lcase3
mov Ljmptab[4*4], offset Lcase4
mov Ljmptab[5*4], offset Lcase5
mov Ljmptab[6*4], offset Lcase6
mov Ljmptab[7*4], offset Lcase7
initialized:
mov edx,dword ptr[4+12+esp]
mov ecx,dword ptr[4+4+esp]
xor eax,eax
mov ebx,dword ptr[4+8+esp]
mov al,byte ptr[17+edx]
cmp al,8
jge Lerror
fld dword ptr[0+edx]
fld st(0)
jmp dword ptr[Ljmptab+eax*4]
Lcase0:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase1:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase2:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase3:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase4:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase5:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase6:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase7:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
LSetSides:
faddp st(2),st(0)
fcomp dword ptr[12+edx]
xor ecx,ecx
fnstsw ax
fcomp dword ptr[12+edx]
and ah,1
xor ah,1
add cl,ah
fnstsw ax
and ah,1
add ah,ah
add cl,ah
pop ebx
mov eax,ecx
ret
Lerror:
int 3
}
}
#pragma warning( default: 4035 )
#endif
#endif
/*
=================
RadiusFromBounds
=================
*/
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
int i;
vec3_t corner;
float a, b;
for (i=0 ; i<3 ; i++) {
a = fabs( mins[i] );
b = fabs( maxs[i] );
corner[i] = a > b ? a : b;
}
return VectorLength (corner);
}
void ClearBounds( vec3_t mins, vec3_t maxs ) {
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
if ( v[0] < mins[0] ) {
mins[0] = v[0];
}
if ( v[0] > maxs[0]) {
maxs[0] = v[0];
}
if ( v[1] < mins[1] ) {
mins[1] = v[1];
}
if ( v[1] > maxs[1]) {
maxs[1] = v[1];
}
if ( v[2] < mins[2] ) {
mins[2] = v[2];
}
if ( v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
vec_t VectorNormalize( vec3_t v ) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if ( length ) {
ilength = 1/length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if (length)
{
ilength = 1/length;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
} else {
VectorClear( out );
}
return length;
}
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
vecc[0] = veca[0] + scale*vecb[0];
vecc[1] = veca[1] + scale*vecb[1];
vecc[2] = veca[2] + scale*vecb[2];
}
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
void _VectorCopy( const vec3_t in, vec3_t out ) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
}
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
out[3] = in[3]*scale;
}
int Q_log2( int val ) {
int answer;
answer = 0;
while ( ( val>>=1 ) != 0 ) {
answer++;
}
return answer;
}
/*
=================
PlaneTypeForNormal
=================
*/
/*
int PlaneTypeForNormal (vec3_t normal) {
if ( normal[0] == 1.0 )
return PLANE_X;
if ( normal[1] == 1.0 )
return PLANE_Y;
if ( normal[2] == 1.0 )
return PLANE_Z;
return PLANE_NON_AXIAL;
}
*/
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
right[1] = (-1*sr*sp*sy+-1*cr*cy);
right[2] = -1*sr*cp;
}
if (up)
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
|