summaryrefslogtreecommitdiff
path: root/src/libvorbis-1.3.4/lib/lsp.c
blob: 50031a7a1cf88ebaf862c4cf7bffbc47751a4c35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/********************************************************************
 *                                                                  *
 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
 *                                                                  *
 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
 * by the Xiph.Org Foundation http://www.xiph.org/                  *
 *                                                                  *
 ********************************************************************

  function: LSP (also called LSF) conversion routines
  last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $

  The LSP generation code is taken (with minimal modification and a
  few bugfixes) from "On the Computation of the LSP Frequencies" by
  Joseph Rothweiler (see http://www.rothweiler.us for contact info).
  The paper is available at:

  http://www.myown1.com/joe/lsf

 ********************************************************************/

/* Note that the lpc-lsp conversion finds the roots of polynomial with
   an iterative root polisher (CACM algorithm 283).  It *is* possible
   to confuse this algorithm into not converging; that should only
   happen with absurdly closely spaced roots (very sharp peaks in the
   LPC f response) which in turn should be impossible in our use of
   the code.  If this *does* happen anyway, it's a bug in the floor
   finder; find the cause of the confusion (probably a single bin
   spike or accidental near-float-limit resolution problems) and
   correct it. */

#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "lsp.h"
#include "os.h"
#include "misc.h"
#include "lookup.h"
#include "scales.h"

/* three possible LSP to f curve functions; the exact computation
   (float), a lookup based float implementation, and an integer
   implementation.  The float lookup is likely the optimal choice on
   any machine with an FPU.  The integer implementation is *not* fixed
   point (due to the need for a large dynamic range and thus a
   separately tracked exponent) and thus much more complex than the
   relatively simple float implementations. It's mostly for future
   work on a fully fixed point implementation for processors like the
   ARM family. */

/* define either of these (preferably FLOAT_LOOKUP) to have faster
   but less precise implementation. */
#undef FLOAT_LOOKUP
#undef INT_LOOKUP

#ifdef FLOAT_LOOKUP
#include "lookup.c" /* catch this in the build system; we #include for
                       compilers (like gcc) that can't inline across
                       modules */

/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
                            float amp,float ampoffset){
  int i;
  float wdel=M_PI/ln;
  vorbis_fpu_control fpu;

  vorbis_fpu_setround(&fpu);
  for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);

  i=0;
  while(i<n){
    int k=map[i];
    int qexp;
    float p=.7071067812f;
    float q=.7071067812f;
    float w=vorbis_coslook(wdel*k);
    float *ftmp=lsp;
    int c=m>>1;

    while(c--){
      q*=ftmp[0]-w;
      p*=ftmp[1]-w;
      ftmp+=2;
    }

    if(m&1){
      /* odd order filter; slightly assymetric */
      /* the last coefficient */
      q*=ftmp[0]-w;
      q*=q;
      p*=p*(1.f-w*w);
    }else{
      /* even order filter; still symmetric */
      q*=q*(1.f+w);
      p*=p*(1.f-w);
    }

    q=frexp(p+q,&qexp);
    q=vorbis_fromdBlook(amp*
                        vorbis_invsqlook(q)*
                        vorbis_invsq2explook(qexp+m)-
                        ampoffset);

    do{
      curve[i++]*=q;
    }while(map[i]==k);
  }
  vorbis_fpu_restore(fpu);
}

#else

#ifdef INT_LOOKUP
#include "lookup.c" /* catch this in the build system; we #include for
                       compilers (like gcc) that can't inline across
                       modules */

static const int MLOOP_1[64]={
   0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
  14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
  15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
  15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
};

static const int MLOOP_2[64]={
  0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
  8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
  9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
  9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
};

static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};


/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
                            float amp,float ampoffset){

  /* 0 <= m < 256 */

  /* set up for using all int later */
  int i;
  int ampoffseti=rint(ampoffset*4096.f);
  int ampi=rint(amp*16.f);
  long *ilsp=alloca(m*sizeof(*ilsp));
  for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);

  i=0;
  while(i<n){
    int j,k=map[i];
    unsigned long pi=46341; /* 2**-.5 in 0.16 */
    unsigned long qi=46341;
    int qexp=0,shift;
    long wi=vorbis_coslook_i(k*65536/ln);

    qi*=labs(ilsp[0]-wi);
    pi*=labs(ilsp[1]-wi);

    for(j=3;j<m;j+=2){
      if(!(shift=MLOOP_1[(pi|qi)>>25]))
        if(!(shift=MLOOP_2[(pi|qi)>>19]))
          shift=MLOOP_3[(pi|qi)>>16];
      qi=(qi>>shift)*labs(ilsp[j-1]-wi);
      pi=(pi>>shift)*labs(ilsp[j]-wi);
      qexp+=shift;
    }
    if(!(shift=MLOOP_1[(pi|qi)>>25]))
      if(!(shift=MLOOP_2[(pi|qi)>>19]))
        shift=MLOOP_3[(pi|qi)>>16];

    /* pi,qi normalized collectively, both tracked using qexp */

    if(m&1){
      /* odd order filter; slightly assymetric */
      /* the last coefficient */
      qi=(qi>>shift)*labs(ilsp[j-1]-wi);
      pi=(pi>>shift)<<14;
      qexp+=shift;

      if(!(shift=MLOOP_1[(pi|qi)>>25]))
        if(!(shift=MLOOP_2[(pi|qi)>>19]))
          shift=MLOOP_3[(pi|qi)>>16];

      pi>>=shift;
      qi>>=shift;
      qexp+=shift-14*((m+1)>>1);

      pi=((pi*pi)>>16);
      qi=((qi*qi)>>16);
      qexp=qexp*2+m;

      pi*=(1<<14)-((wi*wi)>>14);
      qi+=pi>>14;

    }else{
      /* even order filter; still symmetric */

      /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
         worth tracking step by step */

      pi>>=shift;
      qi>>=shift;
      qexp+=shift-7*m;

      pi=((pi*pi)>>16);
      qi=((qi*qi)>>16);
      qexp=qexp*2+m;

      pi*=(1<<14)-wi;
      qi*=(1<<14)+wi;
      qi=(qi+pi)>>14;

    }


    /* we've let the normalization drift because it wasn't important;
       however, for the lookup, things must be normalized again.  We
       need at most one right shift or a number of left shifts */

    if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
      qi>>=1; qexp++;
    }else
      while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
        qi<<=1; qexp--;
      }

    amp=vorbis_fromdBlook_i(ampi*                     /*  n.4         */
                            vorbis_invsqlook_i(qi,qexp)-
                                                      /*  m.8, m+n<=8 */
                            ampoffseti);              /*  8.12[0]     */

    curve[i]*=amp;
    while(map[++i]==k)curve[i]*=amp;
  }
}

#else

/* old, nonoptimized but simple version for any poor sap who needs to
   figure out what the hell this code does, or wants the other
   fraction of a dB precision */

/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
                            float amp,float ampoffset){
  int i;
  float wdel=M_PI/ln;
  for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);

  i=0;
  while(i<n){
    int j,k=map[i];
    float p=.5f;
    float q=.5f;
    float w=2.f*cos(wdel*k);
    for(j=1;j<m;j+=2){
      q *= w-lsp[j-1];
      p *= w-lsp[j];
    }
    if(j==m){
      /* odd order filter; slightly assymetric */
      /* the last coefficient */
      q*=w-lsp[j-1];
      p*=p*(4.f-w*w);
      q*=q;
    }else{
      /* even order filter; still symmetric */
      p*=p*(2.f-w);
      q*=q*(2.f+w);
    }

    q=fromdB(amp/sqrt(p+q)-ampoffset);

    curve[i]*=q;
    while(map[++i]==k)curve[i]*=q;
  }
}

#endif
#endif

static void cheby(float *g, int ord) {
  int i, j;

  g[0] *= .5f;
  for(i=2; i<= ord; i++) {
    for(j=ord; j >= i; j--) {
      g[j-2] -= g[j];
      g[j] += g[j];
    }
  }
}

static int comp(const void *a,const void *b){
  return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
}

/* Newton-Raphson-Maehly actually functioned as a decent root finder,
   but there are root sets for which it gets into limit cycles
   (exacerbated by zero suppression) and fails.  We can't afford to
   fail, even if the failure is 1 in 100,000,000, so we now use
   Laguerre and later polish with Newton-Raphson (which can then
   afford to fail) */

#define EPSILON 10e-7
static int Laguerre_With_Deflation(float *a,int ord,float *r){
  int i,m;
  double lastdelta=0.f;
  double *defl=alloca(sizeof(*defl)*(ord+1));
  for(i=0;i<=ord;i++)defl[i]=a[i];

  for(m=ord;m>0;m--){
    double new=0.f,delta;

    /* iterate a root */
    while(1){
      double p=defl[m],pp=0.f,ppp=0.f,denom;

      /* eval the polynomial and its first two derivatives */
      for(i=m;i>0;i--){
        ppp = new*ppp + pp;
        pp  = new*pp  + p;
        p   = new*p   + defl[i-1];
      }

      /* Laguerre's method */
      denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
      if(denom<0)
        return(-1);  /* complex root!  The LPC generator handed us a bad filter */

      if(pp>0){
        denom = pp + sqrt(denom);
        if(denom<EPSILON)denom=EPSILON;
      }else{
        denom = pp - sqrt(denom);
        if(denom>-(EPSILON))denom=-(EPSILON);
      }

      delta  = m*p/denom;
      new   -= delta;

      if(delta<0.f)delta*=-1;

      if(fabs(delta/new)<10e-12)break;
      lastdelta=delta;
    }

    r[m-1]=new;

    /* forward deflation */

    for(i=m;i>0;i--)
      defl[i-1]+=new*defl[i];
    defl++;

  }
  return(0);
}


/* for spit-and-polish only */
static int Newton_Raphson(float *a,int ord,float *r){
  int i, k, count=0;
  double error=1.f;
  double *root=alloca(ord*sizeof(*root));

  for(i=0; i<ord;i++) root[i] = r[i];

  while(error>1e-20){
    error=0;

    for(i=0; i<ord; i++) { /* Update each point. */
      double pp=0.,delta;
      double rooti=root[i];
      double p=a[ord];
      for(k=ord-1; k>= 0; k--) {

        pp= pp* rooti + p;
        p = p * rooti + a[k];
      }

      delta = p/pp;
      root[i] -= delta;
      error+= delta*delta;
    }

    if(count>40)return(-1);

    count++;
  }

  /* Replaced the original bubble sort with a real sort.  With your
     help, we can eliminate the bubble sort in our lifetime. --Monty */

  for(i=0; i<ord;i++) r[i] = root[i];
  return(0);
}


/* Convert lpc coefficients to lsp coefficients */
int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
  int order2=(m+1)>>1;
  int g1_order,g2_order;
  float *g1=alloca(sizeof(*g1)*(order2+1));
  float *g2=alloca(sizeof(*g2)*(order2+1));
  float *g1r=alloca(sizeof(*g1r)*(order2+1));
  float *g2r=alloca(sizeof(*g2r)*(order2+1));
  int i;

  /* even and odd are slightly different base cases */
  g1_order=(m+1)>>1;
  g2_order=(m)  >>1;

  /* Compute the lengths of the x polynomials. */
  /* Compute the first half of K & R F1 & F2 polynomials. */
  /* Compute half of the symmetric and antisymmetric polynomials. */
  /* Remove the roots at +1 and -1. */

  g1[g1_order] = 1.f;
  for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
  g2[g2_order] = 1.f;
  for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];

  if(g1_order>g2_order){
    for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
  }else{
    for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
    for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
  }

  /* Convert into polynomials in cos(alpha) */
  cheby(g1,g1_order);
  cheby(g2,g2_order);

  /* Find the roots of the 2 even polynomials.*/
  if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
     Laguerre_With_Deflation(g2,g2_order,g2r))
    return(-1);

  Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
  Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */

  qsort(g1r,g1_order,sizeof(*g1r),comp);
  qsort(g2r,g2_order,sizeof(*g2r),comp);

  for(i=0;i<g1_order;i++)
    lsp[i*2] = acos(g1r[i]);

  for(i=0;i<g2_order;i++)
    lsp[i*2+1] = acos(g2r[i]);
  return(0);
}