1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "SigProc_FIX.h"
#include "define.h"
#include "tuning_parameters.h"
#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
#define QA 25
#define N_BITS_HEAD_ROOM 2
#define MIN_RSHIFTS -16
#define MAX_RSHIFTS (32 - QA)
/* Compute reflection coefficients from input signal */
void silk_burg_modified(
opus_int32 *res_nrg, /* O Residual energy */
opus_int *res_nrg_Q, /* O Residual energy Q value */
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
const opus_int nb_subfr, /* I Number of subframes stacked in x */
const opus_int D /* I Order */
)
{
opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
const opus_int16 *x_ptr;
opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
/* Compute autocorrelations, added over subframes */
silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
if( rshifts > MAX_RSHIFTS ) {
C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
silk_assert( C0 > 0 );
rshifts = MAX_RSHIFTS;
} else {
lz = silk_CLZ32( C0 ) - 1;
rshifts_extra = N_BITS_HEAD_ROOM - lz;
if( rshifts_extra > 0 ) {
rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
C0 = silk_RSHIFT32( C0, rshifts_extra );
} else {
rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
C0 = silk_LSHIFT32( C0, -rshifts_extra );
}
rshifts += rshifts_extra;
}
CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
if( rshifts > 0 ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
for( n = 1; n < D + 1; n++ ) {
C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
}
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
for( n = 1; n < D + 1; n++ ) {
C_first_row[ n - 1 ] += silk_LSHIFT32(
silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts );
}
}
}
silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
/* Initialize */
CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
invGain_Q30 = (opus_int32)1 << 30;
reached_max_gain = 0;
for( n = 0; n < D; n++ ) {
/* Update first row of correlation matrix (without first element) */
/* Update last row of correlation matrix (without last element, stored in reversed order) */
/* Update C * Af */
/* Update C * flipud(Af) (stored in reversed order) */
if( rshifts > -2 ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
for( k = 0; k < n; k++ ) {
C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
Atmp_QA = Af_QA[ k ];
tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
}
tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
for( k = 0; k <= n; k++ ) {
CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
}
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
for( k = 0; k < n; k++ ) {
C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
}
tmp1 = -tmp1; /* Q17 */
tmp2 = -tmp2; /* Q17 */
for( k = 0; k <= n; k++ ) {
CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
}
}
}
/* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
num = 0; /* Q( -rshifts ) */
nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
for( k = 0; k < n; k++ ) {
Atmp_QA = Af_QA[ k ];
lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
lz = silk_min( 32 - QA, lz );
Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
}
CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
/* Calculate the next order reflection (parcor) coefficient */
if( silk_abs( num ) < nrg ) {
rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
} else {
rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
}
/* Update inverse prediction gain */
tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
if( tmp1 <= minInvGain_Q30 ) {
/* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
/* Newton-Raphson iteration */
rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
if( num < 0 ) {
/* Ensure adjusted reflection coefficients has the original sign */
rc_Q31 = -rc_Q31;
}
invGain_Q30 = minInvGain_Q30;
reached_max_gain = 1;
} else {
invGain_Q30 = tmp1;
}
/* Update the AR coefficients */
for( k = 0; k < (n + 1) >> 1; k++ ) {
tmp1 = Af_QA[ k ]; /* QA */
tmp2 = Af_QA[ n - k - 1 ]; /* QA */
Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
}
Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
if( reached_max_gain ) {
/* Reached max prediction gain; set remaining coefficients to zero and exit loop */
for( k = n + 1; k < D; k++ ) {
Af_QA[ k ] = 0;
}
break;
}
/* Update C * Af and C * Ab */
for( k = 0; k <= n + 1; k++ ) {
tmp1 = CAf[ k ]; /* Q( -rshifts ) */
tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
}
}
if( reached_max_gain ) {
for( k = 0; k < D; k++ ) {
/* Scale coefficients */
A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
}
/* Subtract energy of preceding samples from C0 */
if( rshifts > 0 ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts );
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts );
}
}
/* Approximate residual energy */
*res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
*res_nrg_Q = -rshifts;
} else {
/* Return residual energy */
nrg = CAf[ 0 ]; /* Q( -rshifts ) */
tmp1 = (opus_int32)1 << 16; /* Q16 */
for( k = 0; k < D; k++ ) {
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
A_Q16[ k ] = -Atmp1;
}
*res_nrg = silk_SMLAWW( nrg, silk_SMMUL( FIND_LPC_COND_FAC, C0 ), -tmp1 ); /* Q( -rshifts ) */
*res_nrg_Q = -rshifts;
}
}
|