summaryrefslogtreecommitdiff
path: root/src/renderergl2/glsl/lightall_fp.glsl
blob: b8f3985f7d7b926745b776ba05567df7afbf29da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
uniform sampler2D u_DiffuseMap;

#if defined(USE_LIGHTMAP)
uniform sampler2D u_LightMap;
#endif

#if defined(USE_NORMALMAP)
uniform sampler2D u_NormalMap;
#endif

#if defined(USE_DELUXEMAP)
uniform sampler2D u_DeluxeMap;
#endif

#if defined(USE_SPECULARMAP)
uniform sampler2D u_SpecularMap;
#endif

#if defined(USE_SHADOWMAP)
uniform sampler2D u_ShadowMap;
#endif

#if defined(USE_CUBEMAP)
uniform samplerCube u_CubeMap;
#endif

#if defined(USE_NORMALMAP) || defined(USE_DELUXEMAP) || defined(USE_SPECULARMAP) || defined(USE_CUBEMAP)
// y = deluxe, w = cube
uniform vec4      u_EnableTextures; 
#endif

#if defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
uniform vec3      u_DirectedLight;
uniform vec3      u_AmbientLight;
#endif

#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
uniform vec3  u_PrimaryLightColor;
uniform vec3  u_PrimaryLightAmbient;
#endif

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
uniform vec4      u_NormalScale;
uniform vec4      u_SpecularScale;
#endif

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_CUBEMAP)
uniform vec4      u_CubeMapInfo;
#endif
#endif

varying vec4      var_TexCoords;

varying vec4      var_Color;

#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
  #if defined(USE_VERT_TANGENT_SPACE)
varying vec4   var_Normal;
varying vec4   var_Tangent;
varying vec4   var_Bitangent;
  #else
varying vec3   var_Normal;
varying vec3   var_ViewDir;
  #endif
#endif

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
varying vec4      var_LightDir;
#endif

#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
varying vec4      var_PrimaryLightDir;
#endif


#define EPSILON 0.00000001

#if defined(USE_PARALLAXMAP)
float SampleDepth(sampler2D normalMap, vec2 t)
{
  #if defined(SWIZZLE_NORMALMAP)
	return 1.0 - texture2D(normalMap, t).r;
  #else
	return 1.0 - texture2D(normalMap, t).a;
  #endif
}

float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
	const int linearSearchSteps = 16;
	const int binarySearchSteps = 6;

	// current size of search window
	float size = 1.0 / float(linearSearchSteps);

	// current depth position
	float depth = 0.0;

	// best match found (starts with last position 1.0)
	float bestDepth = 1.0;

	// texture depth at best depth
	float texDepth = 0.0;

	float prevT = SampleDepth(normalMap, dp);
	float prevTexDepth = prevT;

	// search front to back for first point inside object
	for(int i = 0; i < linearSearchSteps - 1; ++i)
	{
		depth += size;
		
		float t = SampleDepth(normalMap, dp + ds * depth);
		
		if(bestDepth > 0.996)		// if no depth found yet
			if(depth >= t)
			{
				bestDepth = depth;	// store best depth
				texDepth = t;
				prevTexDepth = prevT;
			}
		prevT = t;
	}

	depth = bestDepth;

#if !defined (USE_RELIEFMAP)
	float div = 1.0 / (1.0 + (prevTexDepth - texDepth) * float(linearSearchSteps));
	bestDepth -= (depth - size - prevTexDepth) * div;
#else
	// recurse around first point (depth) for closest match
	for(int i = 0; i < binarySearchSteps; ++i)
	{
		size *= 0.5;

		float t = SampleDepth(normalMap, dp + ds * depth);
		
		if(depth >= t)
		{
			bestDepth = depth;
			depth -= 2.0 * size;
		}

		depth += size;
	}
#endif

	return bestDepth;
}
#endif

vec3 CalcDiffuse(vec3 diffuseAlbedo, float EH, float NH, float roughness)
{
#if defined(USE_BURLEY)
	// modified from https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
	float fd90 = -0.5 + EH * EH * roughness;
	float burley = 1.0 + fd90 * 0.04 / NH;
	burley *= burley;
	return diffuseAlbedo * burley;
#else
	return diffuseAlbedo;
#endif
}

vec3 EnvironmentBRDF(float roughness, float NE, vec3 specular)
{
	// from http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf
	float v = 1.0 - max(roughness, NE);
	v *= v * v;
	return vec3(v) + specular;
}

vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float roughness)
{
	// from http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf
	float rr = roughness*roughness;
	float rrrr = rr*rr;
	float d = (NH * NH) * (rrrr - 1.0) + 1.0;
	float v = (EH * EH) * (roughness + 0.5);
	return specular * (rrrr / (4.0 * d * d * v));
}


float CalcLightAttenuation(float point, float normDist)
{
	// zero light at 1.0, approximating q3 style
	// also don't attenuate directional light
	float attenuation = (0.5 * normDist - 1.5) * point + 1.0;

	// clamp attenuation
	#if defined(NO_LIGHT_CLAMP)
	attenuation = max(attenuation, 0.0);
	#else
	attenuation = clamp(attenuation, 0.0, 1.0);
	#endif

	return attenuation;
}

// from http://www.thetenthplanet.de/archives/1180
mat3 cotangent_frame( vec3 N, vec3 p, vec2 uv )
{
	// get edge vectors of the pixel triangle
	vec3 dp1 = dFdx( p );
	vec3 dp2 = dFdy( p );
	vec2 duv1 = dFdx( uv );
	vec2 duv2 = dFdy( uv );

	// solve the linear system
	vec3 dp2perp = cross( dp2, N );
	vec3 dp1perp = cross( N, dp1 );
	vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
	vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;

	// construct a scale-invariant frame 
	float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) );
	return mat3( T * invmax, B * invmax, N );
}

void main()
{
	vec3 viewDir, lightColor, ambientColor;
	vec3 L, N, E, H;
	float NL, NH, NE, EH, attenuation;

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
  #if defined(USE_VERT_TANGENT_SPACE)
	mat3 tangentToWorld = mat3(var_Tangent.xyz, var_Bitangent.xyz, var_Normal.xyz);
	viewDir = vec3(var_Normal.w, var_Tangent.w, var_Bitangent.w);
  #else
	mat3 tangentToWorld = cotangent_frame(var_Normal, -var_ViewDir, var_TexCoords.xy);
	viewDir = var_ViewDir;
  #endif

	E = normalize(viewDir);

	L = var_LightDir.xyz;
  #if defined(USE_DELUXEMAP)
	L += (texture2D(u_DeluxeMap, var_TexCoords.zw).xyz - vec3(0.5)) * u_EnableTextures.y;
  #endif
	float sqrLightDist = dot(L, L);
#endif

#if defined(USE_LIGHTMAP)
	vec4 lightmapColor = texture2D(u_LightMap, var_TexCoords.zw);
  #if defined(RGBM_LIGHTMAP)
	lightmapColor.rgb *= lightmapColor.a;
  #endif
#endif

	vec2 texCoords = var_TexCoords.xy;

#if defined(USE_PARALLAXMAP)
	vec3 offsetDir = viewDir * tangentToWorld;

	offsetDir.xy *= -u_NormalScale.a / offsetDir.z;

	texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
#endif

	vec4 diffuse = texture2D(u_DiffuseMap, texCoords);

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
  #if defined(USE_LIGHTMAP)
	lightColor   = lightmapColor.rgb * var_Color.rgb;
	ambientColor = vec3(0.0);
	attenuation  = 1.0;
  #elif defined(USE_LIGHT_VECTOR)
	lightColor   = u_DirectedLight * var_Color.rgb;
	ambientColor = u_AmbientLight * var_Color.rgb;
	attenuation  = CalcLightAttenuation(float(var_LightDir.w > 0.0), var_LightDir.w / sqrLightDist);
  #elif defined(USE_LIGHT_VERTEX)
	lightColor   = var_Color.rgb;
	ambientColor = vec3(0.0);
	attenuation  = 1.0;
  #endif

  #if defined(r_lightGamma)
	lightColor   = pow(lightColor,   vec3(r_lightGamma));
	ambientColor = pow(ambientColor, vec3(r_lightGamma));
  #endif

  #if defined(USE_NORMALMAP)
    #if defined(SWIZZLE_NORMALMAP)
	N.xy = texture2D(u_NormalMap, texCoords).ag - vec2(0.5);
    #else
	N.xy = texture2D(u_NormalMap, texCoords).rg - vec2(0.5);
    #endif
	N.xy *= u_NormalScale.xy;
	N.z = sqrt(clamp((0.25 - N.x * N.x) - N.y * N.y, 0.0, 1.0));
	N = tangentToWorld * N;
  #else
	N = var_Normal.xyz;
  #endif

	N = normalize(N);
	L /= sqrt(sqrLightDist);

  #if defined(USE_SHADOWMAP) 
	vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
	float shadowValue = texture2D(u_ShadowMap, shadowTex).r;

	// surfaces not facing the light are always shadowed
	shadowValue *= float(dot(var_Normal.xyz, var_PrimaryLightDir.xyz) > 0.0);

    #if defined(SHADOWMAP_MODULATE)
	lightColor *= shadowValue * (1.0 - u_PrimaryLightAmbient.r) + u_PrimaryLightAmbient.r;
    #endif
  #endif

  #if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
	ambientColor = lightColor;
	float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0);

	// Scale the incoming light to compensate for the baked-in light angle
	// attenuation.
	lightColor /= max(surfNL, 0.25);

	// Recover any unused light as ambient, in case attenuation is over 4x or
	// light is below the surface
	ambientColor = clamp(ambientColor - lightColor * surfNL, 0.0, 1.0);
  #endif
  
	vec3 reflectance;

	NL = clamp(dot(N, L), 0.0, 1.0);
	NE = clamp(dot(N, E), 0.0, 1.0);

  #if defined(USE_SPECULARMAP)
	vec4 specular = texture2D(u_SpecularMap, texCoords);
  #else
	vec4 specular = vec4(1.0);
  #endif

	specular *= u_SpecularScale;

  #if defined(r_materialGamma)
	diffuse.rgb   = pow(diffuse.rgb,  vec3(r_materialGamma));
    #if !defined(SPECULAR_IS_METALLIC)
	specular.rgb  = pow(specular.rgb, vec3(r_materialGamma));
    #endif
  #endif

	float gloss = specular.a;
  #if defined(GLOSS_IS_ROUGHNESS)
	float roughness = gloss;
  #else
	float roughness = exp2(-3.0 * gloss);
  #endif

  #if defined(SPECULAR_IS_METALLIC)
	// diffuse is actually base color, and green of specular is metallicness
	float metallic = specular.g;

	specular.rgb = metallic * diffuse.rgb + vec3(0.04 - 0.04 * metallic);
	diffuse.rgb *= 1.0 - metallic;
  #else
	// adjust diffuse by specular reflectance, to maintain energy conservation
	diffuse.rgb *= vec3(1.0) - specular.rgb;
  #endif

	reflectance  = CalcDiffuse(diffuse.rgb, EH, NH, roughness);

	gl_FragColor.rgb  = lightColor   * reflectance * (attenuation * NL);
	gl_FragColor.rgb += ambientColor * diffuse.rgb;

  #if defined(USE_CUBEMAP)
	reflectance = EnvironmentBRDF(roughness, NE, specular.rgb);

	vec3 R = reflect(E, N);

	// parallax corrected cubemap (cheaper trick)
	// from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
	vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir;

    #if defined(GLOSS_IS_ROUGHNESS)
	vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 * roughness).rgb * u_EnableTextures.w;
    #else
	vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 - gloss * 7.0).rgb * u_EnableTextures.w;
    #endif

	// normalize cubemap based on lowest mip (~diffuse)
	// multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation
	//vec3 cubeLightDiffuse = max(textureCubeLod(u_CubeMap, N, 6.0).rgb, 0.5 / 255.0);
	//cubeLightColor /= dot(cubeLightDiffuse, vec3(0.2125, 0.7154, 0.0721));

    #if defined(r_framebufferGamma)
	cubeLightColor = pow(cubeLightColor, vec3(r_framebufferGamma));
    #endif

	// multiply cubemap values by lighting
	// not technically correct, but helps make reflections look less unnatural
	//cubeLightColor *= lightColor * (attenuation * NL) + ambientColor;

	gl_FragColor.rgb += cubeLightColor * reflectance;
  #endif

  #if defined(USE_PRIMARY_LIGHT) || defined(SHADOWMAP_MODULATE)
	vec3 L2, H2;
	float NL2, EH2, NH2;

	L2 = var_PrimaryLightDir.xyz;

	// enable when point lights are supported as primary lights
	//sqrLightDist = dot(L2, L2);
	//L2 /= sqrt(sqrLightDist);

	NL2 = clamp(dot(N, L2), 0.0, 1.0);

	H2 = normalize(L2 + E);
	EH2 = clamp(dot(E, H2), 0.0, 1.0);
	NH2 = clamp(dot(N, H2), 0.0, 1.0);

	reflectance  = CalcSpecular(specular.rgb, NH2, NL2, NE, EH2, roughness);

	// bit of a hack, with modulated shadowmaps, ignore diffuse
    #if !defined(SHADOWMAP_MODULATE)
	reflectance += CalcDiffuse(diffuse.rgb, EH2, NH2, roughness);
    #endif

	lightColor = u_PrimaryLightColor;

    #if defined(r_lightGamma)
	lightColor = pow(lightColor, vec3(r_lightGamma));
    #endif

    #if defined(USE_SHADOWMAP)
	lightColor *= shadowValue;
    #endif

	// enable when point lights are supported as primary lights
	//lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist);

	gl_FragColor.rgb += lightColor * reflectance * NL2;
  #endif
#else
	lightColor = var_Color.rgb;

  #if defined(USE_LIGHTMAP) 
	lightColor *= lightmapColor.rgb;
  #endif

  #if defined(r_lightGamma)
	lightColor = pow(lightColor, vec3(r_lightGamma));
  #endif

  #if defined(r_materialGamma)
	diffuse.rgb   = pow(diffuse.rgb,  vec3(r_materialGamma));
  #endif

	gl_FragColor.rgb = diffuse.rgb * lightColor;

#endif

#if defined(r_framebufferGamma)
	gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0 / r_framebufferGamma));
#endif

	gl_FragColor.a = diffuse.a * var_Color.a;
}