summaryrefslogtreecommitdiff
path: root/src/renderergl2/glsl/lightall_fp.glsl
blob: d11827816984fe09825b04a8bd0659429babd054 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
uniform sampler2D u_DiffuseMap;

#if defined(USE_LIGHTMAP)
uniform sampler2D u_LightMap;
#endif

#if defined(USE_NORMALMAP)
uniform sampler2D u_NormalMap;
#endif

#if defined(USE_DELUXEMAP)
uniform sampler2D u_DeluxeMap;
#endif

#if defined(USE_SPECULARMAP)
uniform sampler2D u_SpecularMap;
#endif

#if defined(USE_SHADOWMAP)
uniform sampler2D u_ShadowMap;
#endif

#if defined(USE_CUBEMAP)
uniform samplerCube u_CubeMap;
#endif

#if defined(USE_NORMALMAP) || defined(USE_DELUXEMAP) || defined(USE_SPECULARMAP) || defined(USE_CUBEMAP)
// y = deluxe, w = cube
uniform vec4      u_EnableTextures; 
#endif

#if defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
uniform vec3      u_DirectedLight;
uniform vec3      u_AmbientLight;
#endif

#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
uniform vec3  u_PrimaryLightColor;
uniform vec3  u_PrimaryLightAmbient;
#endif

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
uniform vec4      u_NormalScale;
uniform vec4      u_SpecularScale;
#endif

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_CUBEMAP)
uniform vec4      u_CubeMapInfo;
#endif
#endif

varying vec4      var_TexCoords;

varying vec4      var_Color;

#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
  #if defined(USE_VERT_TANGENT_SPACE)
varying vec4   var_Normal;
varying vec4   var_Tangent;
varying vec4   var_Bitangent;
  #else
varying vec3   var_Normal;
varying vec3   var_ViewDir;
  #endif
#endif

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
varying vec4      var_LightDir;
#endif

#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
varying vec4      var_PrimaryLightDir;
#endif


#define EPSILON 0.00000001

#if defined(USE_PARALLAXMAP)
float SampleDepth(sampler2D normalMap, vec2 t)
{
  #if defined(SWIZZLE_NORMALMAP)
	return 1.0 - texture2D(normalMap, t).r;
  #else
	return 1.0 - texture2D(normalMap, t).a;
  #endif
}

float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
	const int linearSearchSteps = 16;
	const int binarySearchSteps = 6;

	// current size of search window
	float size = 1.0 / float(linearSearchSteps);

	// current depth position
	float depth = 0.0;

	// best match found (starts with last position 1.0)
	float bestDepth = 1.0;

	// texture depth at best depth
	float texDepth = 0.0;

	float prevT = SampleDepth(normalMap, dp);
	float prevTexDepth = prevT;

	// search front to back for first point inside object
	for(int i = 0; i < linearSearchSteps - 1; ++i)
	{
		depth += size;
		
		float t = SampleDepth(normalMap, dp + ds * depth);
		
		if(bestDepth > 0.996)		// if no depth found yet
			if(depth >= t)
			{
				bestDepth = depth;	// store best depth
				texDepth = t;
				prevTexDepth = prevT;
			}
		prevT = t;
	}

	depth = bestDepth;

#if !defined (USE_RELIEFMAP)
	float div = 1.0 / (1.0 + (prevTexDepth - texDepth) * float(linearSearchSteps));
	bestDepth -= (depth - size - prevTexDepth) * div;
#else
	// recurse around first point (depth) for closest match
	for(int i = 0; i < binarySearchSteps; ++i)
	{
		size *= 0.5;

		float t = SampleDepth(normalMap, dp + ds * depth);
		
		if(depth >= t)
		{
			bestDepth = depth;
			depth -= 2.0 * size;
		}

		depth += size;
	}
#endif

	return bestDepth;
}
#endif

vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL, float shininess)
{
  #if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR)
	float gamma = dot(E, L) - NE * NL;
	float B = 2.22222 + 0.1 * shininess;
		
    #if defined(USE_OREN_NAYAR)
	float A = 1.0 - 1.0 / (2.0 + 0.33 * shininess);
	gamma = clamp(gamma, 0.0, 1.0);
    #endif
	
    #if defined(USE_TRIACE_OREN_NAYAR)
	float A = 1.0 - 1.0 / (2.0 + 0.65 * shininess);

	if (gamma >= 0.0)
    #endif
	{
		B = max(B * max(NL, NE), EPSILON);
	}

	return diffuseAlbedo * (A + gamma / B);
  #else
	return diffuseAlbedo;
  #endif
}

vec3 EnvironmentBRDF(float gloss, float NE, vec3 specular)
{
  #if 1
	// from http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
	vec4 t = vec4( 1.0/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96,0.25 ) * gloss;
	t += vec4( 0.0, 0.0, (0.015 - 0.75 * 0.04)/0.96,0.75 );
	float a0 = t.x * min( t.y, exp2( -9.28 * NE ) ) + t.z;
	float a1 = t.w;
	return clamp( a0 + specular * ( a1 - a0 ), 0.0, 1.0 );
  #elif 0
	// from http://seblagarde.wordpress.com/2011/08/17/hello-world/
	return specular + CalcFresnel(NE) * clamp(vec3(gloss) - specular, 0.0, 1.0);
  #else
	// from http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20%28Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course%29.pptx
	return mix(specular.rgb, vec3(1.0), CalcFresnel(NE) / (4.0 - 3.0 * gloss));
  #endif
}

float CalcBlinn(float NH, float shininess)
{
#if defined(USE_BLINN) || defined(USE_BLINN_FRESNEL)
	// Normalized Blinn-Phong
	float norm = shininess * 0.125    + 1.0;
#elif defined(USE_MCAULEY)
	// Cook-Torrance as done by Stephen McAuley
	// http://blog.selfshadow.com/publications/s2012-shading-course/mcauley/s2012_pbs_farcry3_notes_v2.pdf
	float norm = shininess * 0.25     + 0.125;
#elif defined(USE_GOTANDA)
	// Neumann-Neumann as done by Yoshiharu Gotanda
	// http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
	float norm = shininess * 0.124858 + 0.269182;
#elif defined(USE_LAZAROV)
	// Cook-Torrance as done by Dimitar Lazarov
	// http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
	float norm = shininess * 0.125    + 0.25;
#else
	float norm = 1.0;
#endif

#if 0
	// from http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
	float a = shininess + 0.775;
	return norm * exp(a * NH - a);
#else
	return norm * pow(NH, shininess);
#endif
}

float CalcGGX(float NH, float gloss)
{
	// from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
	float a_sq = exp2(gloss * -13.0 + 1.0);
	float d = ((NH * NH) * (a_sq - 1.0) + 1.0);
	return a_sq / (d * d);
}

float CalcFresnel(float EH)
{
#if 1
	// From http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
	// not accurate, but fast
	return exp2(-10.0 * EH);
#elif 0
	// From http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
	return exp2((-5.55473 * EH - 6.98316) * EH);
#elif 0
	float blend = 1.0 - EH;
	float blend2 = blend * blend;
	blend *= blend2 * blend2;
	
	return blend;
#else
	return pow(1.0 - EH, 5.0);
#endif
}

float CalcVisibility(float NH, float NL, float NE, float EH, float gloss)
{
#if defined(USE_GOTANDA)
	// Neumann-Neumann as done by Yoshiharu Gotanda
	// http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
	return 1.0 / max(max(NL, NE), EPSILON);
#elif defined(USE_LAZAROV)
	// Cook-Torrance as done by Dimitar Lazarov
	// http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
	float k = min(1.0, gloss + 0.545);
	return 1.0 / (k * (EH * EH - 1.0) + 1.0);
#elif defined(USE_GGX)
	float roughness = exp2(gloss * -6.5);

	// Modified from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
	// NL, NE in numerator factored out from cook-torrance
	float k = roughness + 1.0;
	k *= k * 0.125;

	float k2 = 1.0 - k;
	
	float invGeo1 = NL * k2 + k;
	float invGeo2 = NE * k2 + k;

	return 1.0 / (invGeo1 * invGeo2);
#else
	return 1.0;
#endif
}


vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float gloss, float shininess)
{
#if defined(USE_GGX)
	float distrib = CalcGGX(NH, gloss);
#else
	float distrib = CalcBlinn(NH, shininess);
#endif

#if defined(USE_BLINN)
	vec3 fSpecular = specular;
#else
	vec3 fSpecular = mix(specular, vec3(1.0), CalcFresnel(EH));
#endif

	float vis = CalcVisibility(NH, NL, NE, EH, gloss);

	return fSpecular * (distrib * vis);
}


float CalcLightAttenuation(float point, float normDist)
{
	// zero light at 1.0, approximating q3 style
	// also don't attenuate directional light
	float attenuation = (0.5 * normDist - 1.5) * point + 1.0;

	// clamp attenuation
	#if defined(NO_LIGHT_CLAMP)
	attenuation = max(attenuation, 0.0);
	#else
	attenuation = clamp(attenuation, 0.0, 1.0);
	#endif

	return attenuation;
}

// from http://www.thetenthplanet.de/archives/1180
mat3 cotangent_frame( vec3 N, vec3 p, vec2 uv )
{
	// get edge vectors of the pixel triangle
	vec3 dp1 = dFdx( p );
	vec3 dp2 = dFdy( p );
	vec2 duv1 = dFdx( uv );
	vec2 duv2 = dFdy( uv );

	// solve the linear system
	vec3 dp2perp = cross( dp2, N );
	vec3 dp1perp = cross( N, dp1 );
	vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
	vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;

	// construct a scale-invariant frame 
	float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) );
	return mat3( T * invmax, B * invmax, N );
}

void main()
{
	vec3 viewDir, lightColor, ambientColor;
	vec3 L, N, E, H;
	float NL, NH, NE, EH, attenuation;

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
  #if defined(USE_VERT_TANGENT_SPACE)
	mat3 tangentToWorld = mat3(var_Tangent.xyz, var_Bitangent.xyz, var_Normal.xyz);
	viewDir = vec3(var_Normal.w, var_Tangent.w, var_Bitangent.w);
  #else
	mat3 tangentToWorld = cotangent_frame(var_Normal, -var_ViewDir, var_TexCoords.xy);
	viewDir = var_ViewDir;
  #endif

	E = normalize(viewDir);

	L = var_LightDir.xyz;
  #if defined(USE_DELUXEMAP)
	L += (texture2D(u_DeluxeMap, var_TexCoords.zw).xyz - vec3(0.5)) * u_EnableTextures.y;
  #endif
	float sqrLightDist = dot(L, L);
#endif

#if defined(USE_LIGHTMAP)
	vec4 lightmapColor = texture2D(u_LightMap, var_TexCoords.zw);
  #if defined(RGBM_LIGHTMAP)
	lightmapColor.rgb *= lightmapColor.a;
  #endif
#endif

	vec2 texCoords = var_TexCoords.xy;

#if defined(USE_PARALLAXMAP)
	vec3 offsetDir = viewDir * tangentToWorld;

	offsetDir.xy *= -u_NormalScale.a / offsetDir.z;

	texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
#endif

	vec4 diffuse = texture2D(u_DiffuseMap, texCoords);

#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
  #if defined(USE_LIGHTMAP)
	lightColor   = lightmapColor.rgb * var_Color.rgb;
	ambientColor = vec3(0.0);
	attenuation  = 1.0;
  #elif defined(USE_LIGHT_VECTOR)
	lightColor   = u_DirectedLight * var_Color.rgb;
	ambientColor = u_AmbientLight * var_Color.rgb;
	attenuation  = CalcLightAttenuation(float(var_LightDir.w > 0.0), var_LightDir.w / sqrLightDist);
  #elif defined(USE_LIGHT_VERTEX)
	lightColor   = var_Color.rgb;
	ambientColor = vec3(0.0);
	attenuation  = 1.0;
  #endif

  #if defined(USE_NORMALMAP)
    #if defined(SWIZZLE_NORMALMAP)
	N.xy = texture2D(u_NormalMap, texCoords).ag - vec2(0.5);
    #else
	N.xy = texture2D(u_NormalMap, texCoords).rg - vec2(0.5);
    #endif
	N.xy *= u_NormalScale.xy;
	N.z = sqrt(clamp((0.25 - N.x * N.x) - N.y * N.y, 0.0, 1.0));
	N = tangentToWorld * N;
  #else
	N = var_Normal.xyz;
  #endif

	N = normalize(N);
	L /= sqrt(sqrLightDist);

  #if defined(USE_SHADOWMAP) 
	vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
	float shadowValue = texture2D(u_ShadowMap, shadowTex).r;

	// surfaces not facing the light are always shadowed
	shadowValue *= float(dot(var_Normal.xyz, var_PrimaryLightDir.xyz) > 0.0);

    #if defined(SHADOWMAP_MODULATE)
	//vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor);
	vec3 shadowColor = u_PrimaryLightAmbient * lightColor;

      #if 0
	// Only shadow when the world light is parallel to the primary light
	shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDir.xyz), 0.0, 1.0);
      #endif
	lightColor = mix(shadowColor, lightColor, shadowValue);
    #endif
  #endif

  #if defined(r_lightGamma)
	lightColor   = pow(lightColor,   vec3(r_lightGamma));
	ambientColor = pow(ambientColor, vec3(r_lightGamma));
  #endif

  #if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
	ambientColor = lightColor;
	float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0);

	// Scale the incoming light to compensate for the baked-in light angle
	// attenuation.
	lightColor /= max(surfNL, 0.25);

	// Recover any unused light as ambient, in case attenuation is over 4x or
	// light is below the surface
	ambientColor = clamp(ambientColor - lightColor * surfNL, 0.0, 1.0);
  #endif
  
	vec3 reflectance;

	NL = clamp(dot(N, L), 0.0, 1.0);
	NE = clamp(dot(N, E), 0.0, 1.0);

  #if defined(USE_SPECULARMAP)
	vec4 specular = texture2D(u_SpecularMap, texCoords);
  #else
	vec4 specular = vec4(1.0);
  #endif

	specular *= u_SpecularScale;

  #if defined(r_materialGamma)
	diffuse.rgb   = pow(diffuse.rgb,  vec3(r_materialGamma));
	specular.rgb  = pow(specular.rgb, vec3(r_materialGamma));
  #endif

	float gloss = specular.a;
	float shininess = exp2(gloss * 13.0);

  #if defined(SPECULAR_IS_METALLIC)
	// diffuse is actually base color, and red of specular is metallicness
	float metallic = specular.r;

	specular.rgb = (0.96 * metallic) * diffuse.rgb + vec3(0.04);
	diffuse.rgb *= 1.0 - metallic;
  #else
	// adjust diffuse by specular reflectance, to maintain energy conservation
	diffuse.rgb *= vec3(1.0) - specular.rgb;
  #endif

	reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);

  #if defined(r_deluxeSpecular) || defined(USE_LIGHT_VECTOR)
	float adjGloss = gloss;
	float adjShininess = shininess;

    #if !defined(USE_LIGHT_VECTOR)
	adjGloss *= r_deluxeSpecular;
	adjShininess = exp2(adjGloss * 13.0);
    #endif

	H = normalize(L + E);

	EH = clamp(dot(E, H), 0.0, 1.0);
	NH = clamp(dot(N, H), 0.0, 1.0);

    #if !defined(USE_LIGHT_VECTOR)
	reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjGloss, adjShininess) * r_deluxeSpecular;
    #else
	reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjGloss, adjShininess);
    #endif
  #endif

	gl_FragColor.rgb  = lightColor   * reflectance * (attenuation * NL);

#if 0
	vec3 aSpecular = EnvironmentBRDF(gloss, NE, specular.rgb);

	// do ambient as two hemisphere lights, one straight up one straight down
	float hemiDiffuseUp    = N.z * 0.5 + 0.5;
	float hemiDiffuseDown  = 1.0 - hemiDiffuseUp;
	float hemiSpecularUp   = mix(hemiDiffuseUp, float(N.z >= 0.0), gloss);
	float hemiSpecularDown = 1.0 - hemiSpecularUp;

	gl_FragColor.rgb += ambientColor * 0.75 * (diffuse.rgb * hemiDiffuseUp   + aSpecular * hemiSpecularUp);
	gl_FragColor.rgb += ambientColor * 0.25 * (diffuse.rgb * hemiDiffuseDown + aSpecular * hemiSpecularDown);
#else
	gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb);
#endif

  #if defined(USE_CUBEMAP)
	reflectance = EnvironmentBRDF(gloss, NE, specular.rgb);

	vec3 R = reflect(E, N);

	// parallax corrected cubemap (cheaper trick)
	// from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
	vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir;

	vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 - gloss * 7.0).rgb * u_EnableTextures.w;

	// normalize cubemap based on lowest mip (~diffuse)
	// multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation
	//vec3 cubeLightDiffuse = max(textureCubeLod(u_CubeMap, N, 6.0).rgb, 0.5 / 255.0);
	//cubeLightColor /= dot(cubeLightDiffuse, vec3(0.2125, 0.7154, 0.0721));

    #if defined(r_framebufferGamma)
	cubeLightColor = pow(cubeLightColor, vec3(r_framebufferGamma));
    #endif

	// multiply cubemap values by lighting
	// not technically correct, but helps make reflections look less unnatural
	//cubeLightColor *= lightColor * (attenuation * NL) + ambientColor;

	gl_FragColor.rgb += cubeLightColor * reflectance;
  #endif

  #if defined(USE_PRIMARY_LIGHT)
	vec3 L2, H2;
	float NL2, EH2, NH2;

	L2 = var_PrimaryLightDir.xyz;

	// enable when point lights are supported as primary lights
	//sqrLightDist = dot(L2, L2);
	//L2 /= sqrt(sqrLightDist);

	NL2 = clamp(dot(N, L2), 0.0, 1.0);

	H2 = normalize(L2 + E);
	EH2 = clamp(dot(E, H2), 0.0, 1.0);
	NH2 = clamp(dot(N, H2), 0.0, 1.0);

	reflectance  = CalcDiffuse(diffuse.rgb, N, L2, E, NE, NL2, shininess);
	reflectance += CalcSpecular(specular.rgb, NH2, NL2, NE, EH2, gloss, shininess);

	lightColor = u_PrimaryLightColor * var_Color.rgb;

    #if defined(r_lightGamma)
	lightColor = pow(lightColor, vec3(r_lightGamma));
    #endif

    #if defined(USE_SHADOWMAP)
	lightColor *= shadowValue;
    #endif

	// enable when point lights are supported as primary lights
	//lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist);

	gl_FragColor.rgb += lightColor * reflectance * NL2;
  #endif
#else
	lightColor = var_Color.rgb;

  #if defined(USE_LIGHTMAP) 
	lightColor *= lightmapColor.rgb;
  #endif

  #if defined(r_lightGamma)
	lightColor = pow(lightColor, vec3(r_lightGamma));
  #endif

  #if defined(r_materialGamma)
	diffuse.rgb   = pow(diffuse.rgb,  vec3(r_materialGamma));
  #endif

	gl_FragColor.rgb = diffuse.rgb * lightColor;

#endif

#if defined(r_framebufferGamma)
	gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0 / r_framebufferGamma));
#endif

	gl_FragColor.a = diffuse.a * var_Color.a;
}