1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
uniform sampler2D u_DiffuseMap;
#if defined(USE_LIGHTMAP)
uniform sampler2D u_LightMap;
#endif
#if defined(USE_NORMALMAP)
uniform sampler2D u_NormalMap;
#endif
#if defined(USE_DELUXEMAP)
uniform sampler2D u_DeluxeMap;
#endif
#if defined(USE_SPECULARMAP)
uniform sampler2D u_SpecularMap;
#endif
#if defined(USE_SHADOWMAP)
uniform sampler2D u_ShadowMap;
#endif
#if defined(USE_CUBEMAP)
uniform samplerCube u_CubeMap;
#endif
#if defined(USE_LIGHT_VECTOR)
uniform vec3 u_DirectedLight;
uniform vec3 u_AmbientLight;
uniform float u_LightRadius;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
uniform vec3 u_PrimaryLightColor;
uniform vec3 u_PrimaryLightAmbient;
uniform float u_PrimaryLightRadius;
#endif
#if defined(USE_LIGHT)
uniform vec2 u_MaterialInfo;
#endif
varying vec2 var_DiffuseTex;
#if defined(USE_LIGHTMAP)
varying vec2 var_LightTex;
#endif
varying vec4 var_Color;
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
varying vec3 var_ViewDir;
varying vec3 var_Normal;
varying vec3 var_Tangent;
varying vec3 var_Bitangent;
#endif
#if defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
varying vec3 var_lightColor;
#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP)
varying vec4 var_LightDir;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
varying vec3 var_PrimaryLightDir;
#endif
#define EPSILON 0.00000001
#if defined(USE_PARALLAXMAP)
float SampleDepth(sampler2D normalMap, vec2 t)
{
#if defined(SWIZZLE_NORMALMAP)
return 1.0 - texture2D(normalMap, t).r;
#else
return 1.0 - texture2D(normalMap, t).a;
#endif
}
float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
const int linearSearchSteps = 16;
const int binarySearchSteps = 6;
// current size of search window
float size = 1.0 / float(linearSearchSteps);
// current depth position
float depth = 0.0;
// best match found (starts with last position 1.0)
float bestDepth = 1.0;
// search front to back for first point inside object
for(int i = 0; i < linearSearchSteps - 1; ++i)
{
depth += size;
float t = SampleDepth(normalMap, dp + ds * depth);
if(bestDepth > 0.996) // if no depth found yet
if(depth >= t)
bestDepth = depth; // store best depth
}
depth = bestDepth;
// recurse around first point (depth) for closest match
for(int i = 0; i < binarySearchSteps; ++i)
{
size *= 0.5;
float t = SampleDepth(normalMap, dp + ds * depth);
if(depth >= t)
{
bestDepth = depth;
depth -= 2.0 * size;
}
depth += size;
}
return bestDepth;
}
#endif
vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL, float shininess)
{
#if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR)
float gamma = dot(E, L) - NE * NL;
float B = 2.22222 + 0.1 * shininess;
#if defined(USE_OREN_NAYAR)
float A = 1.0 - 1.0 / (2.0 + 0.33 * shininess);
gamma = clamp(gamma, 0.0, 1.0);
#endif
#if defined(USE_TRIACE_OREN_NAYAR)
float A = 1.0 - 1.0 / (2.0 + 0.65 * shininess);
if (gamma >= 0.0)
#endif
{
B = max(B * max(NL, NE), EPSILON);
}
return diffuseAlbedo * (A + gamma / B);
#else
return diffuseAlbedo;
#endif
}
vec3 EnvironmentBRDF(float gloss, float NE, vec3 specular)
{
#if 1
// from http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
vec4 t = vec4( 1/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96,0.25 ) * gloss;
t += vec4( 0.0, 0.0, (0.015 - 0.75 * 0.04)/0.96,0.75 );
float a0 = t.x * min( t.y, exp2( -9.28 * NE ) ) + t.z;
float a1 = t.w;
return clamp( a0 + specular * ( a1 - a0 ), 0.0, 1.0 );
#elif 0
// from http://seblagarde.wordpress.com/2011/08/17/hello-world/
return mix(specular.rgb, max(specular.rgb, vec3(gloss)), CalcFresnel(NE));
#else
// from http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20%28Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course%29.pptx
return mix(specular.rgb, vec3(1.0), CalcFresnel(NE) / (4.0 - 3.0 * gloss));
#endif
}
float CalcBlinn(float NH, float shininess)
{
#if 0
// from http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
float a = shininess + 0.775;
return exp(a * NH - a);
#else
return pow(NH, shininess);
#endif
}
float CalcGGX(float NH, float shininess)
{
// from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes.pdf
float m_sq = 2.0 / shininess;
float d = ((NH * NH) * (m_sq - 1.0) + 1.0);
return m_sq / (d * d);
}
float CalcFresnel(float EH)
{
#if 1
// From http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
return exp2((-5.55473 * EH - 6.98316) * EH);
#elif 0
float blend = 1.0 - EH;
float blend2 = blend * blend;
blend *= blend2 * blend2;
return blend;
#else
return pow(1.0 - NH, 5.0);
#endif
}
float CalcVisibility(float NH, float NL, float NE, float EH, float shininess)
{
#if 0
float geo = 2.0 * NH * min(NE, NL);
geo /= max(EH, geo);
return geo;
#else
// Modified from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes.pdf
// NL, NE in numerator factored out from cook-torrance
#if defined(USE_GGX)
float roughness = sqrt(2.0 / (shininess + 2.0));
float k = (roughness + 1.0);
k *= k * 0.125;
#else
float k = 2.0 / sqrt(3.1415926535 * (shininess + 2.0));
#endif
float k2 = 1.0 - k;
float invGeo1 = NL * k2 + k;
float invGeo2 = NE * k2 + k;
return 1.0 / (invGeo1 * invGeo2);
#endif
}
vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float shininess)
{
float blinn = CalcBlinn(NH, shininess);
vec3 fSpecular = mix(specular, vec3(1.0), CalcFresnel(EH));
float vis = CalcVisibility(NH, NL, NE, EH, shininess);
#if defined(USE_BLINN)
// Normalized Blinn-Phong
return specular * blinn * (shininess * 0.125 + 1.0);
#elif defined(USE_BLINN_FRESNEL)
// Normalized Blinn-Phong with Fresnel
return fSpecular * blinn * (shininess * 0.125 + 1.0);
#elif defined(USE_MCAULEY)
// Cook-Torrance as done by Stephen McAuley
// http://blog.selfshadow.com/publications/s2012-shading-course/mcauley/s2012_pbs_farcry3_notes_v2.pdf
return fSpecular * blinn * (shininess * 0.25 + 0.125);
#elif defined(USE_GOTANDA)
// Neumann-Neumann as done by Yoshiharu Gotanda
// http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
return fSpecular * blinn * (shininess * 0.124858 + 0.269182) / max(max(NL, NE), EPSILON);
#elif defined(USE_LAZAROV)
// Cook-Torrance as done by Dimitar Lazarov
// http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
return fSpecular * blinn * (shininess * 0.125 + 0.25) * vis;
#endif
return vec3(0.0);
}
void main()
{
vec3 L, N, E, H;
float NL, NH, NE, EH;
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
mat3 tangentToWorld = mat3(var_Tangent, var_Bitangent, var_Normal);
#endif
#if defined(USE_DELUXEMAP)
L = (2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0));
#if defined(USE_TANGENT_SPACE_LIGHT)
L = L * tangentToWorld;
#endif
#elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
L = var_LightDir.xyz;
#endif
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
E = normalize(var_ViewDir);
#endif
#if defined(USE_LIGHTMAP)
vec4 lightSample = texture2D(u_LightMap, var_LightTex).rgba;
#if defined(RGBM_LIGHTMAP)
lightSample.rgb *= 32.0 * lightSample.a;
#endif
vec3 lightColor = lightSample.rgb;
#elif defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
// inverse square light
float attenuation = u_LightRadius * u_LightRadius / dot(L, L);
// zero light at radius, approximating q3 style
attenuation = 0.5 * attenuation - 0.5;
//attenuation = 0.0697168 * attenuation;
//attenuation *= step(0.294117, attenuation);
// clamp attenuation
#if defined(NO_LIGHT_CLAMP)
attenuation *= step(0.0, attenuation);
#else
attenuation = clamp(attenuation, 0.0, 1.0);
#endif
// don't attenuate directional light
attenuation = (attenuation - 1.0) * var_LightDir.w + 1.0;
vec3 lightColor = u_DirectedLight * attenuation;
vec3 ambientColor = u_AmbientLight;
#elif defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
vec3 lightColor = var_lightColor;
#endif
vec2 texCoords = var_DiffuseTex;
#if defined(USE_PARALLAXMAP)
#if defined(USE_TANGENT_SPACE_LIGHT)
vec3 offsetDir = E;
#else
vec3 offsetDir = E * tangentToWorld;
#endif
offsetDir.xy *= -0.05 / offsetDir.z;
texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
#endif
vec4 diffuse = texture2D(u_DiffuseMap, texCoords);
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_LINEAR_LIGHT)
diffuse.rgb *= diffuse.rgb;
#endif
#if defined(USE_NORMALMAP)
#if defined(SWIZZLE_NORMALMAP)
N.xy = 2.0 * texture2D(u_NormalMap, texCoords).ag - vec2(1.0);
#else
N.xy = 2.0 * texture2D(u_NormalMap, texCoords).rg - vec2(1.0);
#endif
N.z = sqrt(1.0 - clamp(dot(N.xy, N.xy), 0.0, 1.0));
#if !defined(USE_TANGENT_SPACE_LIGHT)
N = normalize(tangentToWorld * N);
#endif
#elif defined(USE_TANGENT_SPACE_LIGHT)
N = vec3(0.0, 0.0, 1.0);
#else
N = normalize(var_Normal);
#endif
L = normalize(L);
#if defined(USE_SHADOWMAP)
vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
float shadowValue = texture2D(u_ShadowMap, shadowTex).r;
// surfaces not facing the light are always shadowed
#if defined(USE_TANGENT_SPACE_LIGHT)
shadowValue *= step(0.0, var_PrimaryLightDir.z);
#else
shadowValue *= step(0.0, dot(var_Normal, var_PrimaryLightDir));
#endif
#if defined(SHADOWMAP_MODULATE)
//vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor);
vec3 shadowColor = u_PrimaryLightAmbient * lightColor;
#if 0
// Only shadow when the world light is parallel to the primary light
shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDir), 0.0, 1.0);
#endif
lightColor = mix(shadowColor, lightColor, shadowValue);
#endif
#endif
#if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
vec3 ambientColor = lightColor;
#if defined(USE_TANGENT_SPACE_LIGHT)
float surfNL = L.z;
#else
float surfNL = clamp(dot(var_Normal, L), 0.0, 1.0);
#endif
// Scale the incoming light to compensate for the baked-in light angle
// attenuation.
lightColor /= max(surfNL, 0.25);
// Recover any unused light as ambient, in case attenuation is over 4x or
// light is below the surface
ambientColor -= lightColor * surfNL;
#endif
vec3 reflectance;
NL = clamp(dot(N, L), 0.0, 1.0);
NE = clamp(dot(N, E), 0.0, 1.0);
#if defined(USE_SPECULARMAP)
vec4 specular = texture2D(u_SpecularMap, texCoords);
#if defined(USE_LINEAR_LIGHT)
specular.rgb *= specular.rgb;
#endif
#else
vec4 specular = vec4(1.0);
#endif
specular *= u_MaterialInfo.xxxy;
float gloss = specular.a;
float shininess = exp2(gloss * 13.0);
float localOcclusion = clamp((diffuse.r + diffuse.g + diffuse.b) * 16.0f, 0.0, 1.0);
#if defined(SPECULAR_IS_METALLIC)
// diffuse is actually base color, and red of specular is metallicness
float metallic = specular.r;
specular.rgb = vec3(0.04) + 0.96 * diffuse.rgb * metallic;
diffuse.rgb *= 1.0 - metallic;
#else
// adjust diffuse by specular reflectance, to maintain energy conservation
diffuse.rgb *= vec3(1.0) - specular.rgb;
#endif
reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
#if defined(r_deluxeSpecular) || defined(USE_LIGHT_VECTOR)
float adjShininess = shininess;
#if !defined(USE_LIGHT_VECTOR)
adjShininess = exp2(gloss * r_deluxeSpecular * 13.0);
#endif
H = normalize(L + E);
EH = clamp(dot(E, H), 0.0, 1.0);
NH = clamp(dot(N, H), 0.0, 1.0);
#if !defined(USE_LIGHT_VECTOR)
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjShininess) * r_deluxeSpecular * localOcclusion;
#else
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjShininess) * localOcclusion;
#endif
#endif
gl_FragColor.rgb = lightColor * reflectance * NL;
gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb);
#if defined(USE_CUBEMAP)
reflectance = EnvironmentBRDF(gloss, NE, specular.rgb);
vec3 R = reflect(E, N);
#if defined(USE_TANGENT_SPACE_LIGHT)
R = tangentToWorld * R;
#endif
vec3 cubeLightColor = textureCubeLod(u_CubeMap, R, 7.0 - gloss * 7.0).rgb;
#if defined(USE_LINEAR_LIGHT)
cubeLightColor *= cubeLightColor;
#endif
#if defined(USE_LIGHTMAP)
cubeLightColor *= lightSample.rgb;
#elif defined (USE_LIGHT_VERTEX)
cubeLightColor *= var_lightColor;
#else
cubeLightColor *= lightColor * NL + ambientColor;
#endif
//gl_FragColor.rgb += diffuse.rgb * textureCubeLod(u_CubeMap, N, 7.0).rgb;
gl_FragColor.rgb += cubeLightColor * reflectance * localOcclusion;
#endif
#if defined(USE_PRIMARY_LIGHT)
L = normalize(var_PrimaryLightDir);
NL = clamp(dot(N, L), 0.0, 1.0);
H = normalize(L + E);
EH = clamp(dot(E, H), 0.0, 1.0);
NH = clamp(dot(N, H), 0.0, 1.0);
reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, shininess);
#if defined(USE_SHADOWMAP)
reflectance *= shadowValue;
#endif
gl_FragColor.rgb += u_PrimaryLightColor * reflectance * NL;
#endif
#if defined(USE_LINEAR_LIGHT)
gl_FragColor.rgb = sqrt(gl_FragColor.rgb);
#endif
gl_FragColor.a = diffuse.a;
#else
gl_FragColor = diffuse;
#if defined(USE_LIGHTMAP)
gl_FragColor.rgb *= lightColor;
#endif
#endif
gl_FragColor *= var_Color;
}
|