summaryrefslogtreecommitdiff
path: root/src/renderergl2/tr_model_iqm.c
blob: 1f1bf74713f78ceb0d986f1e23428e53264c3edf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
/*
===========================================================================
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/

#include "tr_local.h"

#define	LL(x) x=LittleLong(x)

static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
				int count,int size ) {
	// return true if the range specified by offset, count and size
	// doesn't fit into the file
	return ( count <= 0 ||
		 offset < 0 ||
		 offset > header->filesize ||
		 offset + count * size < 0 ||
		 offset + count * size > header->filesize );
}
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( float *a, float *b, float *out ) {
	out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
	out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
	out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
	out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3];
	out[ 4] = a[4] * b[0] + a[5] * b[4] + a[ 6] * b[ 8];
	out[ 5] = a[4] * b[1] + a[5] * b[5] + a[ 6] * b[ 9];
	out[ 6] = a[4] * b[2] + a[5] * b[6] + a[ 6] * b[10];
	out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7];
	out[ 8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[ 8];
	out[ 9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[ 9];
	out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
	out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
}
static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) {
	float unLerp = 1.0f - lerp;

	mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
	mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
	mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
	mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
	mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
	mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
	mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
	mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
	mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
	mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
	mat[10] = a[10] * unLerp + b[10] * lerp;
	mat[11] = a[11] * unLerp + b[11] * lerp;
}
static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
			   float *mat ) {
	float xx = 2.0f * rot[0] * rot[0];
	float yy = 2.0f * rot[1] * rot[1];
	float zz = 2.0f * rot[2] * rot[2];
	float xy = 2.0f * rot[0] * rot[1];
	float xz = 2.0f * rot[0] * rot[2];
	float yz = 2.0f * rot[1] * rot[2];
	float wx = 2.0f * rot[3] * rot[0];
	float wy = 2.0f * rot[3] * rot[1];
	float wz = 2.0f * rot[3] * rot[2];

	mat[ 0] = scale[0] * (1.0f - (yy + zz));
	mat[ 1] = scale[0] * (xy - wz);
	mat[ 2] = scale[0] * (xz + wy);
	mat[ 3] = trans[0];
	mat[ 4] = scale[1] * (xy + wz);
	mat[ 5] = scale[1] * (1.0f - (xx + zz));
	mat[ 6] = scale[1] * (yz - wx);
	mat[ 7] = trans[1];
	mat[ 8] = scale[2] * (xz - wy);
	mat[ 9] = scale[2] * (yz + wx);
	mat[10] = scale[2] * (1.0f - (xx + yy));
	mat[11] = trans[2];
}
static void Matrix34Invert( float *inMat, float *outMat )
{
	vec3_t trans;
	float invSqrLen, *v;
 
	outMat[ 0] = inMat[ 0]; outMat[ 1] = inMat[ 4]; outMat[ 2] = inMat[ 8];
	outMat[ 4] = inMat[ 1]; outMat[ 5] = inMat[ 5]; outMat[ 6] = inMat[ 9];
	outMat[ 8] = inMat[ 2]; outMat[ 9] = inMat[ 6]; outMat[10] = inMat[10];

	v = outMat + 0; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
	v = outMat + 4; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
	v = outMat + 8; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);

	trans[0] = inMat[ 3];
	trans[1] = inMat[ 7];
	trans[2] = inMat[11];

	outMat[ 3] = -DotProduct(outMat + 0, trans);
	outMat[ 7] = -DotProduct(outMat + 4, trans);
	outMat[11] = -DotProduct(outMat + 8, trans);
}

/*
=================
R_LoadIQM

Load an IQM model and compute the joint matrices for every frame.
=================
*/
qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_name ) {
	iqmHeader_t		*header;
	iqmVertexArray_t	*vertexarray;
	iqmTriangle_t		*triangle;
	iqmMesh_t		*mesh;
	iqmJoint_t		*joint;
	iqmPose_t		*pose;
	iqmBounds_t		*bounds;
	unsigned short		*framedata;
	char			*str;
	int			i, j;
	float			jointMats[IQM_MAX_JOINTS * 2 * 12];
	float			*mat;
	size_t			size, joint_names;
	iqmData_t		*iqmData;
	srfIQModel_t		*surface;

	if( filesize < sizeof(iqmHeader_t) ) {
		return qfalse;
	}

	header = (iqmHeader_t *)buffer;
	if( Q_strncmp( header->magic, IQM_MAGIC, sizeof(header->magic) ) ) {
		return qfalse;
	}

	LL( header->version );
	if( header->version != IQM_VERSION ) {
		ri.Printf(PRINT_WARNING, "R_LoadIQM: %s is a unsupported IQM version (%d), only version %d is supported.\n",
				mod_name, header->version, IQM_VERSION);
		return qfalse;
	}

	LL( header->filesize );
	if( header->filesize > filesize || header->filesize > 16<<20 ) {
		return qfalse;
	}

	LL( header->flags );
	LL( header->num_text );
	LL( header->ofs_text );
	LL( header->num_meshes );
	LL( header->ofs_meshes );
	LL( header->num_vertexarrays );
	LL( header->num_vertexes );
	LL( header->ofs_vertexarrays );
	LL( header->num_triangles );
	LL( header->ofs_triangles );
	LL( header->ofs_adjacency );
	LL( header->num_joints );
	LL( header->ofs_joints );
	LL( header->num_poses );
	LL( header->ofs_poses );
	LL( header->num_anims );
	LL( header->ofs_anims );
	LL( header->num_frames );
	LL( header->num_framechannels );
	LL( header->ofs_frames );
	LL( header->ofs_bounds );
	LL( header->num_comment );
	LL( header->ofs_comment );
	LL( header->num_extensions );
	LL( header->ofs_extensions );

	// check ioq3 joint limit
	if ( header->num_joints > IQM_MAX_JOINTS ) {
		ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %d joints (%d).\n",
				mod_name, IQM_MAX_JOINTS, header->num_joints);
		return qfalse;
	}

	// check and swap vertex arrays
	if( IQM_CheckRange( header, header->ofs_vertexarrays,
			    header->num_vertexarrays,
			    sizeof(iqmVertexArray_t) ) ) {
		return qfalse;
	}
	vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
	for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
		int	j, n, *intPtr;

		if( vertexarray->size <= 0 || vertexarray->size > 4 ) {
			return qfalse;
		}

		// total number of values
		n = header->num_vertexes * vertexarray->size;

		switch( vertexarray->format ) {
		case IQM_BYTE:
		case IQM_UBYTE:
			// 1 byte, no swapping necessary
			if( IQM_CheckRange( header, vertexarray->offset,
					    n, sizeof(byte) ) ) {
				return qfalse;
			}
			break;
		case IQM_INT:
		case IQM_UINT:
		case IQM_FLOAT:
			// 4-byte swap
			if( IQM_CheckRange( header, vertexarray->offset,
					    n, sizeof(float) ) ) {
				return qfalse;
			}
			intPtr = (int *)((byte *)header + vertexarray->offset);
			for( j = 0; j < n; j++, intPtr++ ) {
				LL( *intPtr );
			}
			break;
		default:
			// not supported
			return qfalse;
			break;
		}

		switch( vertexarray->type ) {
		case IQM_POSITION:
		case IQM_NORMAL:
			if( vertexarray->format != IQM_FLOAT ||
			    vertexarray->size != 3 ) {
				return qfalse;
			}
			break;
		case IQM_TANGENT:
			if( vertexarray->format != IQM_FLOAT ||
			    vertexarray->size != 4 ) {
				return qfalse;
			}
			break;
		case IQM_TEXCOORD:
			if( vertexarray->format != IQM_FLOAT ||
			    vertexarray->size != 2 ) {
				return qfalse;
			}
			break;
		case IQM_BLENDINDEXES:
		case IQM_BLENDWEIGHTS:
			if( vertexarray->format != IQM_UBYTE ||
			    vertexarray->size != 4 ) {
				return qfalse;
			}
			break;
		case IQM_COLOR:
			if( vertexarray->format != IQM_UBYTE ||
			    vertexarray->size != 4 ) {
				return qfalse;
			}
			break;
		}
	}

	// check and swap triangles
	if( IQM_CheckRange( header, header->ofs_triangles,
			    header->num_triangles, sizeof(iqmTriangle_t) ) ) {
		return qfalse;
	}
	triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
	for( i = 0; i < header->num_triangles; i++, triangle++ ) {
		LL( triangle->vertex[0] );
		LL( triangle->vertex[1] );
		LL( triangle->vertex[2] );
		
		if( triangle->vertex[0] > header->num_vertexes ||
		    triangle->vertex[1] > header->num_vertexes ||
		    triangle->vertex[2] > header->num_vertexes ) {
			return qfalse;
		}
	}

	// check and swap meshes
	if( IQM_CheckRange( header, header->ofs_meshes,
			    header->num_meshes, sizeof(iqmMesh_t) ) ) {
		return qfalse;
	}
	mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
	for( i = 0; i < header->num_meshes; i++, mesh++) {
		LL( mesh->name );
		LL( mesh->material );
		LL( mesh->first_vertex );
		LL( mesh->num_vertexes );
		LL( mesh->first_triangle );
		LL( mesh->num_triangles );

		// check ioq3 limits
		if ( mesh->num_vertexes > SHADER_MAX_VERTEXES ) 
		{
			ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %i verts on a surface (%i).\n",
				  mod_name, SHADER_MAX_VERTEXES, mesh->num_vertexes );
			return qfalse;
		}
		if ( mesh->num_triangles*3 > SHADER_MAX_INDEXES ) 
		{
			ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %i triangles on a surface (%i).\n",
				  mod_name, SHADER_MAX_INDEXES / 3, mesh->num_triangles );
			return qfalse;
		}

		if( mesh->first_vertex >= header->num_vertexes ||
		    mesh->first_vertex + mesh->num_vertexes > header->num_vertexes ||
		    mesh->first_triangle >= header->num_triangles ||
		    mesh->first_triangle + mesh->num_triangles > header->num_triangles ||
		    mesh->name >= header->num_text ||
		    mesh->material >= header->num_text ) {
			return qfalse;
		}
	}

	// check and swap joints
	if( IQM_CheckRange( header, header->ofs_joints,
			    header->num_joints, sizeof(iqmJoint_t) ) ) {
		return qfalse;
	}
	joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
	joint_names = 0;
	for( i = 0; i < header->num_joints; i++, joint++ ) {
		LL( joint->name );
		LL( joint->parent );
		LL( joint->translate[0] );
		LL( joint->translate[1] );
		LL( joint->translate[2] );
		LL( joint->rotate[0] );
		LL( joint->rotate[1] );
		LL( joint->rotate[2] );
		LL( joint->rotate[3] );
		LL( joint->scale[0] );
		LL( joint->scale[1] );
		LL( joint->scale[2] );

		if( joint->parent < -1 ||
		    joint->parent >= (int)header->num_joints ||
		    joint->name >= (int)header->num_text ) {
			return qfalse;
		}
		joint_names += strlen( (char *)header + header->ofs_text +
				       joint->name ) + 1;
	}

	// check and swap poses
	if( header->num_poses != header->num_joints ) {
		return qfalse;
	}
	if( IQM_CheckRange( header, header->ofs_poses,
			    header->num_poses, sizeof(iqmPose_t) ) ) {
		return qfalse;
	}
	pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
	for( i = 0; i < header->num_poses; i++, pose++ ) {
		LL( pose->parent );
		LL( pose->mask );
		LL( pose->channeloffset[0] );
		LL( pose->channeloffset[1] );
		LL( pose->channeloffset[2] );
		LL( pose->channeloffset[3] );
		LL( pose->channeloffset[4] );
		LL( pose->channeloffset[5] );
		LL( pose->channeloffset[6] );
		LL( pose->channeloffset[7] );
		LL( pose->channeloffset[8] );
		LL( pose->channeloffset[9] );
		LL( pose->channelscale[0] );
		LL( pose->channelscale[1] );
		LL( pose->channelscale[2] );
		LL( pose->channelscale[3] );
		LL( pose->channelscale[4] );
		LL( pose->channelscale[5] );
		LL( pose->channelscale[6] );
		LL( pose->channelscale[7] );
		LL( pose->channelscale[8] );
		LL( pose->channelscale[9] );
	}

	if (header->ofs_bounds)
	{
		// check and swap model bounds
		if(IQM_CheckRange(header, header->ofs_bounds,
				  header->num_frames, sizeof(*bounds)))
		{
			return qfalse;
		}
		bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
		for(i = 0; i < header->num_frames; i++)
		{
			LL(bounds->bbmin[0]);
			LL(bounds->bbmin[1]);
			LL(bounds->bbmin[2]);
			LL(bounds->bbmax[0]);
			LL(bounds->bbmax[1]);
			LL(bounds->bbmax[2]);

			bounds++;
		}
	}

	// allocate the model and copy the data
	size = sizeof(iqmData_t);
	size += header->num_meshes * sizeof( srfIQModel_t );
	size += header->num_joints * header->num_frames * 12 * sizeof( float );
	if(header->ofs_bounds)
		size += header->num_frames * 6 * sizeof(float);	// model bounds
	size += header->num_vertexes * 3 * sizeof(float);	// positions
	size += header->num_vertexes * 2 * sizeof(float);	// texcoords
	size += header->num_vertexes * 3 * sizeof(float);	// normals
	size += header->num_vertexes * 4 * sizeof(float);	// tangents
	size += header->num_vertexes * 4 * sizeof(byte);	// blendIndexes
	size += header->num_vertexes * 4 * sizeof(byte);	// blendWeights
	size += header->num_vertexes * 4 * sizeof(byte);	// colors
	size += header->num_joints * sizeof(int);		// parents
	size += header->num_triangles * 3 * sizeof(int);	// triangles
	size += joint_names;					// joint names

	mod->type = MOD_IQM;
	iqmData = (iqmData_t *)ri.Hunk_Alloc( size, h_low );
	mod->modelData = iqmData;

	// fill header
	iqmData->num_vertexes = header->num_vertexes;
	iqmData->num_triangles = header->num_triangles;
	iqmData->num_frames   = header->num_frames;
	iqmData->num_surfaces = header->num_meshes;
	iqmData->num_joints   = header->num_joints;
	iqmData->surfaces     = (srfIQModel_t *)(iqmData + 1);
	iqmData->poseMats     = (float *) (iqmData->surfaces + iqmData->num_surfaces);
	if(header->ofs_bounds)
	{
		iqmData->bounds       = iqmData->poseMats + 12 * header->num_joints * header->num_frames;
		iqmData->positions    = iqmData->bounds + 6 * header->num_frames;
	}
	else
		iqmData->positions    = iqmData->poseMats + 12 * header->num_joints * header->num_frames;
	iqmData->texcoords    = iqmData->positions + 3 * header->num_vertexes;
	iqmData->normals      = iqmData->texcoords + 2 * header->num_vertexes;
	iqmData->tangents     = iqmData->normals + 3 * header->num_vertexes;
	iqmData->blendIndexes = (byte *)(iqmData->tangents + 4 * header->num_vertexes);
	iqmData->blendWeights = iqmData->blendIndexes + 4 * header->num_vertexes;
	iqmData->colors       = iqmData->blendWeights + 4 * header->num_vertexes;
	iqmData->jointParents = (int *)(iqmData->colors + 4 * header->num_vertexes);
	iqmData->triangles    = iqmData->jointParents + header->num_joints;
	iqmData->names        = (char *)(iqmData->triangles + 3 * header->num_triangles);

	// calculate joint matrices and their inverses
	// they are needed only until the pose matrices are calculated
	mat = jointMats;
	joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
	for( i = 0; i < header->num_joints; i++, joint++ ) {
		float baseFrame[12], invBaseFrame[12];
 
		JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
		Matrix34Invert( baseFrame, invBaseFrame );
 
		if ( joint->parent >= 0 )
		{
			Matrix34Multiply( jointMats + 2 * 12 * joint->parent, baseFrame, mat );
			mat += 12;
			Matrix34Multiply( invBaseFrame, jointMats + 2 * 12 * joint->parent + 12, mat );
			mat += 12;
 		}
		else
		{
			Com_Memcpy( mat, baseFrame,    sizeof(baseFrame)    );
			mat += 12;
			Com_Memcpy( mat, invBaseFrame, sizeof(invBaseFrame) );
			mat += 12;
 		}
	}

	// calculate pose matrices
	framedata = (unsigned short *)((byte *)header + header->ofs_frames);
	mat = iqmData->poseMats;
	for( i = 0; i < header->num_frames; i++ ) {
		pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
		for( j = 0; j < header->num_poses; j++, pose++ ) {
			vec3_t	translate;
			vec4_t	rotate;
			vec3_t	scale;
			float	mat1[12], mat2[12];

			translate[0] = pose->channeloffset[0];
			if( pose->mask & 0x001)
				translate[0] += *framedata++ * pose->channelscale[0];
			translate[1] = pose->channeloffset[1];
			if( pose->mask & 0x002)
				translate[1] += *framedata++ * pose->channelscale[1];
			translate[2] = pose->channeloffset[2];
			if( pose->mask & 0x004)
				translate[2] += *framedata++ * pose->channelscale[2];

			rotate[0] = pose->channeloffset[3];
			if( pose->mask & 0x008)
				rotate[0] += *framedata++ * pose->channelscale[3];
			rotate[1] = pose->channeloffset[4];
			if( pose->mask & 0x010)
				rotate[1] += *framedata++ * pose->channelscale[4];
			rotate[2] = pose->channeloffset[5];
			if( pose->mask & 0x020)
				rotate[2] += *framedata++ * pose->channelscale[5];
			rotate[3] = pose->channeloffset[6];
			if( pose->mask & 0x040)
				rotate[3] += *framedata++ * pose->channelscale[6];

			scale[0] = pose->channeloffset[7];
			if( pose->mask & 0x080)
				scale[0] += *framedata++ * pose->channelscale[7];
			scale[1] = pose->channeloffset[8];
			if( pose->mask & 0x100)
				scale[1] += *framedata++ * pose->channelscale[8];
			scale[2] = pose->channeloffset[9];
			if( pose->mask & 0x200)
				scale[2] += *framedata++ * pose->channelscale[9];

			// construct transformation matrix
			JointToMatrix( rotate, scale, translate, mat1 );
			
			if( pose->parent >= 0 ) {
				Matrix34Multiply( jointMats + 12 * 2 * pose->parent,
						  mat1, mat2 );
			} else {
				Com_Memcpy( mat2, mat1, sizeof(mat1) );
			}
			
			Matrix34Multiply( mat2, jointMats + 12 * (2 * j + 1), mat );
			mat += 12;
		}
	}

	// register shaders
	// overwrite the material offset with the shader index
	mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
	surface = iqmData->surfaces;
	str = (char *)header + header->ofs_text;
	for( i = 0; i < header->num_meshes; i++, mesh++, surface++ ) {
		surface->surfaceType = SF_IQM;
		Q_strncpyz(surface->name, str + mesh->name, sizeof (surface->name));
		Q_strlwr(surface->name); // lowercase the surface name so skin compares are faster
		surface->shader = R_FindShader( str + mesh->material, LIGHTMAP_NONE, qtrue );
		if( surface->shader->defaultShader )
			surface->shader = tr.defaultShader;
		surface->data = iqmData;
		surface->first_vertex = mesh->first_vertex;
		surface->num_vertexes = mesh->num_vertexes;
		surface->first_triangle = mesh->first_triangle;
		surface->num_triangles = mesh->num_triangles;
	}

	// copy vertexarrays and indexes
	vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
	for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
		int	n;

		// total number of values
		n = header->num_vertexes * vertexarray->size;

		switch( vertexarray->type ) {
		case IQM_POSITION:
			Com_Memcpy( iqmData->positions,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(float) );
			break;
		case IQM_NORMAL:
			Com_Memcpy( iqmData->normals,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(float) );
			break;
		case IQM_TANGENT:
			Com_Memcpy( iqmData->tangents,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(float) );
			break;
		case IQM_TEXCOORD:
			Com_Memcpy( iqmData->texcoords,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(float) );
			break;
		case IQM_BLENDINDEXES:
			Com_Memcpy( iqmData->blendIndexes,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(byte) );
			break;
		case IQM_BLENDWEIGHTS:
			Com_Memcpy( iqmData->blendWeights,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(byte) );
			break;
		case IQM_COLOR:
			Com_Memcpy( iqmData->colors,
				    (byte *)header + vertexarray->offset,
				    n * sizeof(byte) );
			break;
		}
	}

	// copy joint parents
	joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
	for( i = 0; i < header->num_joints; i++, joint++ ) {
		iqmData->jointParents[i] = joint->parent;
	}

	// copy triangles
	triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
	for( i = 0; i < header->num_triangles; i++, triangle++ ) {
		iqmData->triangles[3*i+0] = triangle->vertex[0];
		iqmData->triangles[3*i+1] = triangle->vertex[1];
		iqmData->triangles[3*i+2] = triangle->vertex[2];
	}

	// copy joint names
	str = iqmData->names;
	joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
	for( i = 0; i < header->num_joints; i++, joint++ ) {
		char *name = (char *)header + header->ofs_text +
			joint->name;
		int len = strlen( name ) + 1;
		Com_Memcpy( str, name, len );
		str += len;
	}

	// copy model bounds
	if(header->ofs_bounds)
	{
		mat = iqmData->bounds;
		bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
		for(i = 0; i < header->num_frames; i++)
		{
			mat[0] = bounds->bbmin[0];
			mat[1] = bounds->bbmin[1];
			mat[2] = bounds->bbmin[2];
			mat[3] = bounds->bbmax[0];
			mat[4] = bounds->bbmax[1];
			mat[5] = bounds->bbmax[2];

			mat += 6;
			bounds++;
		}
	}

	return qtrue;
}

/*
=============
R_CullIQM
=============
*/
static int R_CullIQM( iqmData_t *data, trRefEntity_t *ent ) {
	vec3_t		bounds[2];
	vec_t		*oldBounds, *newBounds;
	int		i;

	if (!data->bounds) {
		tr.pc.c_box_cull_md3_clip++;
		return CULL_CLIP;
	}

	// compute bounds pointers
	oldBounds = data->bounds + 6*ent->e.oldframe;
	newBounds = data->bounds + 6*ent->e.frame;

	// calculate a bounding box in the current coordinate system
	for (i = 0 ; i < 3 ; i++) {
		bounds[0][i] = oldBounds[i] < newBounds[i] ? oldBounds[i] : newBounds[i];
		bounds[1][i] = oldBounds[i+3] > newBounds[i+3] ? oldBounds[i+3] : newBounds[i+3];
	}

	switch ( R_CullLocalBox( bounds ) )
	{
	case CULL_IN:
		tr.pc.c_box_cull_md3_in++;
		return CULL_IN;
	case CULL_CLIP:
		tr.pc.c_box_cull_md3_clip++;
		return CULL_CLIP;
	case CULL_OUT:
	default:
		tr.pc.c_box_cull_md3_out++;
		return CULL_OUT;
	}
}

/*
=================
R_ComputeIQMFogNum

=================
*/
int R_ComputeIQMFogNum( iqmData_t *data, trRefEntity_t *ent ) {
	int			i, j;
	fog_t			*fog;
	const vec_t		*bounds;
	const vec_t		defaultBounds[6] = { -8, -8, -8, 8, 8, 8 };
	vec3_t			diag, center;
	vec3_t			localOrigin;
	vec_t			radius;

	if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
		return 0;
	}

	// FIXME: non-normalized axis issues
	if (data->bounds) {
		bounds = data->bounds + 6*ent->e.frame;
	} else {
		bounds = defaultBounds;
	}
	VectorSubtract( bounds+3, bounds, diag );
	VectorMA( bounds, 0.5f, diag, center );
	VectorAdd( ent->e.origin, center, localOrigin );
	radius = 0.5f * VectorLength( diag );

	for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
		fog = &tr.world->fogs[i];
		for ( j = 0 ; j < 3 ; j++ ) {
			if ( localOrigin[j] - radius >= fog->bounds[1][j] ) {
				break;
			}
			if ( localOrigin[j] + radius <= fog->bounds[0][j] ) {
				break;
			}
		}
		if ( j == 3 ) {
			return i;
		}
	}

	return 0;
}

/*
=================
R_AddIQMSurfaces

Add all surfaces of this model
=================
*/
void R_AddIQMSurfaces( trRefEntity_t *ent ) {
	iqmData_t		*data;
	srfIQModel_t		*surface;
	int			i, j;
	qboolean		personalModel;
	int			cull;
	int			fogNum;
	shader_t		*shader;
	skin_t			*skin;

	data = tr.currentModel->modelData;
	surface = data->surfaces;

	// don't add third_person objects if not in a portal
	personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal;

	if ( ent->e.renderfx & RF_WRAP_FRAMES ) {
		ent->e.frame %= data->num_frames;
		ent->e.oldframe %= data->num_frames;
	}

	//
	// Validate the frames so there is no chance of a crash.
	// This will write directly into the entity structure, so
	// when the surfaces are rendered, they don't need to be
	// range checked again.
	//
	if ( (ent->e.frame >= data->num_frames) 
	     || (ent->e.frame < 0)
	     || (ent->e.oldframe >= data->num_frames)
	     || (ent->e.oldframe < 0) ) {
		ri.Printf( PRINT_DEVELOPER, "R_AddIQMSurfaces: no such frame %d to %d for '%s'\n",
			   ent->e.oldframe, ent->e.frame,
			   tr.currentModel->name );
		ent->e.frame = 0;
		ent->e.oldframe = 0;
	}

	//
	// cull the entire model if merged bounding box of both frames
	// is outside the view frustum.
	//
	cull = R_CullIQM ( data, ent );
	if ( cull == CULL_OUT ) {
		return;
	}

	//
	// set up lighting now that we know we aren't culled
	//
	if ( !personalModel || r_shadows->integer > 1 ) {
		R_SetupEntityLighting( &tr.refdef, ent );
	}

	//
	// see if we are in a fog volume
	//
	fogNum = R_ComputeIQMFogNum( data, ent );

	for ( i = 0 ; i < data->num_surfaces ; i++ ) {
		if(ent->e.customShader)
			shader = R_GetShaderByHandle( ent->e.customShader );
		else if(ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins)
		{
			skin = R_GetSkinByHandle(ent->e.customSkin);
			shader = tr.defaultShader;

			for(j = 0; j < skin->numSurfaces; j++)
			{
				if (!strcmp(skin->surfaces[j]->name, surface->name))
				{
					shader = skin->surfaces[j]->shader;
					break;
				}
			}
		} else {
			shader = surface->shader;
		}

		// we will add shadows even if the main object isn't visible in the view

		// stencil shadows can't do personal models unless I polyhedron clip
		if ( !personalModel
			&& r_shadows->integer == 2 
			&& fogNum == 0
			&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) ) 
			&& shader->sort == SS_OPAQUE ) {
			R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, 0, 0 );
		}

		// projection shadows work fine with personal models
		if ( r_shadows->integer == 3
			&& fogNum == 0
			&& (ent->e.renderfx & RF_SHADOW_PLANE )
			&& shader->sort == SS_OPAQUE ) {
			R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, 0, 0 );
		}

		if( !personalModel ) {
			R_AddDrawSurf( (void *)surface, shader, fogNum, 0, 0 );
		}

		surface++;
	}
}


static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
			      float backlerp, float *mat ) {
	float	*mat1, *mat2;
	int	*joint = data->jointParents;
	int	i;

	if ( oldframe == frame ) {
		mat1 = data->poseMats + 12 * data->num_joints * frame;
		for( i = 0; i < data->num_joints; i++, joint++ ) {
			if( *joint >= 0 ) {
				Matrix34Multiply( mat + 12 * *joint,
						  mat1 + 12*i, mat + 12*i );
			} else {
				Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
			}
		}
	} else  {
		mat1 = data->poseMats + 12 * data->num_joints * frame;
		mat2 = data->poseMats + 12 * data->num_joints * oldframe;
		
		for( i = 0; i < data->num_joints; i++, joint++ ) {
			if( *joint >= 0 ) {
				float tmpMat[12];
				InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
						   backlerp, tmpMat );
				Matrix34Multiply( mat + 12 * *joint,
						  tmpMat, mat + 12*i );
				
			} else {
				InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
						   backlerp, mat );
			}
		}
	}
}


/*
=================
RB_AddIQMSurfaces

Compute vertices for this model surface
=================
*/
void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
	srfIQModel_t	*surf = (srfIQModel_t *)surface;
	iqmData_t	*data = surf->data;
	float		jointMats[IQM_MAX_JOINTS * 12];
	int		i;

	vec4_t		*outXYZ = &tess.xyz[tess.numVertexes];
	vec4_t		*outNormal = &tess.normal[tess.numVertexes];
	vec2_t		(*outTexCoord)[2] = &tess.texCoords[tess.numVertexes];
	vec4_t	*outColor = &tess.vertexColors[tess.numVertexes];

	int	frame = backEnd.currentEntity->e.frame % data->num_frames;
	int	oldframe = backEnd.currentEntity->e.oldframe % data->num_frames;
	float	backlerp = backEnd.currentEntity->e.backlerp;

	int		*tri;
	glIndex_t	*ptr;
	glIndex_t	base;

	RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );

	// compute interpolated joint matrices
	ComputeJointMats( data, frame, oldframe, backlerp, jointMats );

	// transform vertexes and fill other data
	for( i = 0; i < surf->num_vertexes;
	     i++, outXYZ++, outNormal++, outTexCoord++, outColor++ ) {
		int	j, k;
		float	vtxMat[12];
		float	nrmMat[9];
		int	vtx = i + surf->first_vertex;

		// compute the vertex matrix by blending the up to
		// four blend weights
		for( k = 0; k < 12; k++ )
			vtxMat[k] = data->blendWeights[4*vtx]
				* jointMats[12*data->blendIndexes[4*vtx] + k];
		for( j = 1; j < 4; j++ ) {
			if( data->blendWeights[4*vtx + j] <= 0 )
				break;
			for( k = 0; k < 12; k++ )
				vtxMat[k] += data->blendWeights[4*vtx + j]
					* jointMats[12*data->blendIndexes[4*vtx + j] + k];
		}
		for( k = 0; k < 12; k++ )
			vtxMat[k] *= 1.0f / 255.0f;

		// compute the normal matrix as transpose of the adjoint
		// of the vertex matrix
		nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
		nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
		nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
		nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
		nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
		nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
		nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
		nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
		nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];

		(*outTexCoord)[0][0] = data->texcoords[2*vtx + 0];
		(*outTexCoord)[0][1] = data->texcoords[2*vtx + 1];
		(*outTexCoord)[1][0] = (*outTexCoord)[0][0];
		(*outTexCoord)[1][1] = (*outTexCoord)[0][1];

		(*outXYZ)[0] =
			vtxMat[ 0] * data->positions[3*vtx+0] +
			vtxMat[ 1] * data->positions[3*vtx+1] +
			vtxMat[ 2] * data->positions[3*vtx+2] +
			vtxMat[ 3];
		(*outXYZ)[1] =
			vtxMat[ 4] * data->positions[3*vtx+0] +
			vtxMat[ 5] * data->positions[3*vtx+1] +
			vtxMat[ 6] * data->positions[3*vtx+2] +
			vtxMat[ 7];
		(*outXYZ)[2] =
			vtxMat[ 8] * data->positions[3*vtx+0] +
			vtxMat[ 9] * data->positions[3*vtx+1] +
			vtxMat[10] * data->positions[3*vtx+2] +
			vtxMat[11];
		(*outXYZ)[3] = 1.0f;

		(*outNormal)[0] =
			nrmMat[ 0] * data->normals[3*vtx+0] +
			nrmMat[ 1] * data->normals[3*vtx+1] +
			nrmMat[ 2] * data->normals[3*vtx+2];
		(*outNormal)[1] =
			nrmMat[ 3] * data->normals[3*vtx+0] +
			nrmMat[ 4] * data->normals[3*vtx+1] +
			nrmMat[ 5] * data->normals[3*vtx+2];
		(*outNormal)[2] =
			nrmMat[ 6] * data->normals[3*vtx+0] +
			nrmMat[ 7] * data->normals[3*vtx+1] +
			nrmMat[ 8] * data->normals[3*vtx+2];
		(*outNormal)[3] = 0.0f;

		(*outColor)[0] = data->colors[4*vtx+0] / 255.0f;
		(*outColor)[1] = data->colors[4*vtx+1] / 255.0f;
		(*outColor)[2] = data->colors[4*vtx+2] / 255.0f;
		(*outColor)[3] = data->colors[4*vtx+3] / 255.0f;
	}

	tri = data->triangles + 3 * surf->first_triangle;
	ptr = &tess.indexes[tess.numIndexes];
	base = tess.numVertexes;

	for( i = 0; i < surf->num_triangles; i++ ) {
		*ptr++ = base + (*tri++ - surf->first_vertex);
		*ptr++ = base + (*tri++ - surf->first_vertex);
		*ptr++ = base + (*tri++ - surf->first_vertex);
	}

	tess.numIndexes += 3 * surf->num_triangles;
	tess.numVertexes += surf->num_vertexes;
}

int R_IQMLerpTag( orientation_t *tag, iqmData_t *data,
		  int startFrame, int endFrame, 
		  float frac, const char *tagName ) {
	float	jointMats[IQM_MAX_JOINTS * 12];
	int	joint;
	char	*names = data->names;

	// get joint number by reading the joint names
	for( joint = 0; joint < data->num_joints; joint++ ) {
		if( !strcmp( tagName, names ) )
			break;
		names += strlen( names ) + 1;
	}
	if( joint >= data->num_joints ) {
		AxisClear( tag->axis );
		VectorClear( tag->origin );
		return qfalse;
	}

	ComputeJointMats( data, startFrame, endFrame, frac, jointMats );

	tag->axis[0][0] = jointMats[12 * joint + 0];
	tag->axis[1][0] = jointMats[12 * joint + 1];
	tag->axis[2][0] = jointMats[12 * joint + 2];
	tag->origin[0] = jointMats[12 * joint + 3];
	tag->axis[0][1] = jointMats[12 * joint + 4];
	tag->axis[1][1] = jointMats[12 * joint + 5];
	tag->axis[2][1] = jointMats[12 * joint + 6];
	tag->origin[1] = jointMats[12 * joint + 7];
	tag->axis[0][2] = jointMats[12 * joint + 8];
	tag->axis[1][2] = jointMats[12 * joint + 9];
	tag->axis[2][2] = jointMats[12 * joint + 10];
	tag->origin[2] = jointMats[12 * joint + 11];

	return qtrue;
}